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Abstract. We propose an extension of the real-valued conjugate directions method for uncon-
strained quadratic multiobjective problems. As in the single-valued counterpart, the procedure
requires a set of directions that are simultaneously conjugate with respect to the positive definite
matrices of all quadratic objective components. Likewise, the multicriteria version computes the
steplength by means of the unconstrained minimization of a single-variable strongly convex function
at each iteration. When it is implemented with a weakly-increasing (strongly-increasing) auxiliary
function, the scheme produces weak Pareto (Pareto) optima in finitely many iterations.
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1. Introduction

Solving multicriteria problems is not always a straightforward task. Some very popular pro-
cedures have severe drawbacks. Widely used schemes such as the weighting method may lead to
unbounded problems. This procedure consists in minimizing a convex combination of the objectives,
and the difficulty is that we do not know a priori the suitable coefficients. In order to overcome
these flaws, extensions to the multiobjective setting of classical methods for scalar optimization
have been proposed in the last two decades (see [2, 3, 4, 6, 5, 7, 13], for instance).

We propose a conjugate directions-type procedure for unconstrained multiobjective quadratic
problems. As far as we know, this is the first attempt to adapt the scalar method to the multicriteria
setting.

The proposed extension is suitable for quadratic multiobjectives that satisfy a strong condition,
namely, the existence of a Hamel basis simultaneously conjugate with respect to the symmetric
positive definite matrices that determine the quadratic part of the components. This condition
extends the essential requirement of the classical conjugate directions method, i.e., the existence of
an orthogonal basis for Rn with respect to the inner product induced by the quadratic objective
function’s matrix. In the scalar case one can use the Gram-Schmidt procedure to obtain such a
basis. For the multiobjective case we exhibit a large class of quadratic problems whose Hamel basis
can be explicitly constructed.

Our procedure requires solving finitely many single-variable unconstrained strongly convex mini-
mization real-valued problems. In each subproblem the unique solution is the steplength of the next
iterate. The objective functions are essentially the composition of the quadratic multiobjective’s
components with an auxiliary function taken from quite large families.
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As expected, the convergence results of the extension are not better than the ones for the scalar
counterpart. Regardless of how poor the initial guess is, the scheme implemented with a weakly
(strongly) increasing auxiliary function produces a weak Pareto (Pareto) optimal solution in finitely
many iterations. Recall that for general nonlinear scalar-valued optimization problems, the related
approach (called conjugate gradient method) does not guarantee convergence with a finite number of
iterations. This also happens with its multiobjective version, proposed in [11]. Our paper actually
clarifies what happens when more general directions are considered in multiobjective quadratic
problems.

The outline of this work is as follows. In Section 2 we introduce some notations and exhibit a large
class of problems suitable for the application of the method. More specifically, for any finite set of
symmetric positive definite matrices, we give a sufficient condition for the existence of a Hamel basis
for Rn whose elements are simultaneously conjugate with respect to all these matrices. In Section 3
we formally define the quadratic problem for an m-multifunction of n variables and the auxiliary
functions to be used in the procedure. We also recall a well-known result relating monotonicity
and optimality that is essential for the convergence analysis. In Section 4 we present and analyze
the main algorithm, which starts from an initial point x0 and produces a sequence {x1, . . . , xn}
in Rn. In particular, in the real-valued case we retrieve the classical conjugate directions method.
In Section 5 we define the procedure which consists in running the algorithm n+1 times with n+1
suitable initial points. In Section 6 we analyze the convergence of the procedure. We apply the
multiobjective conjugate directions-type method for a simple instance of the problem in Section 7.
In this example we show that all Pareto optima can be found by varying a parameter of the auxiliary
function. We end with some final remarks in Section 8.

2. Preliminaries

We let x ∈ Rn stand for the column vector with coordinates x1, . . . , xn and its transpose given
by x> = (x1, . . . , xn) ∈ R1×n. For the sake of simplicity, we also write the vector x as [xi]

n
i=1. We

denote sequences in R and Rn (for n ≥ 2) by {xk} and {xk}, respectively. For i = 1, . . . , n, the
canonical vector ei ∈ Rn has 1 in the ith position and 0 elsewhere, i.e., (ei)j = δij , where δij is
the Kronecker δ defined by δij = 1 if i = j, and 0 otherwise. The transpose of an n × n matrix

A = (aij) is A> = (aji). The canonical matrix eij ∈ Rn×n has 1 in the position ij and 0 elsewhere.
A diagonal matrix D ∈ Rn×n is a matrix such that dij = 0 for all i 6= j. It is represented by
diag(d11, . . . , dnn); in particular, the identity matrix I can be written as diag(1, . . . , 1). A symmetric
positive definite matrix Q induces an inner product and a norm over Rn given by 〈x, y〉Q = x>Qy

and a ‖x‖Q =
√
〈x, x〉Q, respectively. When Q = I, we obtain the canonical inner product and the

Euclidean norm. In this case we simply write 〈·, ·〉 and ‖ · ‖.
Given M ⊂ Rn, spanM represents the subspace generated by the elements in M . For a subspace

S ⊂ Rn, S⊥Q stands for its orthogonal complement with respect to 〈·, ·〉Q, i.e., S⊥Q = {x ∈
Rn : 〈x, y〉Q = 0 for all y ∈ S}. The Paretian cone is Rn+ := {x ∈ Rn : xi ≥ 0 for i = 1, . . . , n}.
For a function h : Rn → R and W ⊂ Rn, the set of minimizers of h restricted to W is denoted by
argminx∈W h(x). If this set has a single element, say x∗, we write x∗ = argminx∈W h(x).

In unconstrained scalar optimization, the so-called conjugate directions method seeks to achieve
a faster convergence rate than the steepest descent’s one with a smaller computational cost than
Newton’s method’s one [1, 8]. The conjugate directions method was originally developed for con-
vex quadratic objective functions f : Rn → R. When f is also strongly convex, it produces the
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unconstrained minimizer in at most n iterations. For a large n, one obtains a good approximation
of the optimum with fewer iterations. The conjugate directions method can be used to solve linear
systems of equations Qx = b for a nonsingular matrix Q. We may assume Q to be symmetric
positive definite; otherwise, we consider the equivalent system Q>Qx = Q>b, which can be solved
by applying a conjugate directions method to minx∈Rn ‖Q>Qx − Q>b‖2/2 in finitely many steps.
In nonquadratic optimization problems, although the conjugate directions method does not have
finite termination in general, it has nice convergence properties.

Our goal is to extend the conjugate directions method to the multiobjective setting. For a
quadratic vector-valued function f with strongly convex components fi, we propose a conjugate
direction-type scheme by using a Hamel basis of conjugate directions with respect to the matrices
associated to all fi’s. Before establishing a sufficient condition for the existence of this basis, we
recall the notion of conjugacy.

Definition 2.1. Let Q ∈ Rn×n be symmetric positive definite. A set {u1, . . . , ur} ⊂ Rn \ {0} is
said to be Q-conjugate, if its elements are pairwise orthogonal with respect to 〈·, ·〉Q.

The following result concerns sets of conjugate directions.

Lemma 2.2. Let Q ∈ Rn×n be symmetric positive definite. If {u1, . . . , ur} is Q-conjugate, then it
is linearly independent. In particular, it is a Hamel basis for Rn when r = n.

Proof. See [8, Lemma 3.4.1]. �

In order to establish an existence condition for the Hamel basis, we point out the following fact.

Remark 2.3. Consider a symmetric positive definite matrix Q in Rn×n. Then there exist an n×n
orthogonal matrix P and D = diag(λ1, . . . , λn) with λj > 0 for all j such that Q = PDP>; see [12,
Theorem 1.13]. Since P is orthogonal and the canonical basis {e1, . . . , en} is D-conjugate, it follows
that

(Pei)>QPej = (ei)>Dej = λiδij .

So {Pe1, . . . , P en} is a Q-conjugate basis for Rn. Moreover, every Pej is an eigenvector of Q
associated to the eigenvalue λj .

Given symmetric positive definite matrices Q1, . . . , Qm in Rn×n, we show how Remark 2.3 can
lead us to obtain a Qi-conjugate Hamel basis for i = 1, . . . ,m.

First, recall that σ : Jn → Jn is a permutation on Jn := {1, . . . , n}, if σ is injective. By setting
σi := σ(i), we can represent σ by (σ1, . . . , σn). We denote by Iσ an n×n matrix whose jth column
coincides with the σth

j column of I, for all j = 1, . . . , n. Since I and Iσ have the same columns, the
matrix Iσ is nonsingular.

Lemma 2.4. Let σ be a permutation on Jn and Q,P,D ∈ Rn×n be such that Q is symmetric
positive definite, P is orthogonal, D = diag(λ1, . . . , λn) and Q = PDP>. The following statements
hold true:

(i) the jth column of PIσ coincides with the σth
j column of P for all j; in particular, P and PIσ

have the same columns;
(ii) Iσ = eσ11 + eσ22 + · · ·+ eσnn;

(iii) Dek` = λke
k` for any ek` ∈ Rn×n;

(iv) eijDek` = δkjλke
i` for any ek` ∈ Rn×n; in particular, eijek` = δjke

i`;
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(v) I>σ DIσ = diag(λσ1 , . . . , λσn); in particular, Iσ is orthogonal and so is PIσ;
(vi) IσDI

>
σ = diag(λζ1 , . . . , λζn) for a certain permutation ζ on Jn.

Proof. (i) By definition, the jth column of Iσ coincides with the canonical (column) vector eσj

for all j.
(ii) The result follows immediately, since by (i) the jth column of Iσ coincides with eσj for all j.

(iii) Immediate.
(iv) The first part is immediate. By taking D = I, we obtain the second one.
(v) By using (ii) and (iv), we see that

I>σ DIσ = (e1σ1 + e2σ2 + · · ·+ enσn)D(eσ11 + eσ22 + · · ·+ eσnn)

= λσ1e
11 + λσ2e

22 + · · ·+ λσne
nn

= diag(λσ1 , . . . , λσn).

(vi) By using (ii), (iv) and the injectivity of σ, we have

IσDI
>
σ = (eσ11 + eσ22 + · · ·+ eσnn)D(e1σ1 + e2σ2 + · · ·+ enσn)

= λ1e
σ1σ1 + λ2e

σ2σ2 + · · ·+ λne
σnσn

= diag(λζ1 , . . . , λζn),

for an adequate permutation ζ.
�

Definition 2.5. Let σ be a permutation on Jn, and let Q1, Q2, P1, D1, D2 ∈ Rn×n be such that
Q1, Q2 are symmetric positive definite, P1 is orthogonal and D1, D2 are diagonal. We say that Q1

and Q2 are σ-related if Q1 = P1D1P
>
1 and Q2 = (P1Iσ)D2(P1Iσ)>.

Lemma 2.6. Let Q, Q̃ be symmetric positive definite matrices in Rn×n such that Q = PDP> and
Q̃ = P̃ D̃P̃>, where P , P̃ are orthogonal and D, D̃ are diagonal.

(i) The matrices Q and Q̃ are σ-related for some permutation σ on Jn if and only if Q and Q̃

have the same eigenvectors. In this case the set of eigenvectors is Q- and Q̃-conjugate.
(ii) Let Q and Q̃ be σ-related. Then QQ̃ = Q̃Q.

Proof. (i) By Remark 2.3, the sets {Pe1, . . . , P en} and {P̃ e1, . . . , P̃ en} consist of eigenvectors

of Q and Q̃, respectively. By hypothesis, P̃ = PIσ, so {P̃ e1, . . . , P̃ en} = {Pe1, . . . , P en}
by Lemma 2.4(i). Conversely, by Remark 2.3 it follows that the set of eigenvectors of Q is

{Pe1, . . . , P en}, which coincides with {P̃ e1, . . . , P̃ en}. Therefore P and P̃ have the same

columns. By Lemma 2.4(i), there exists a permutation σ on Jn such that P̃ = PIσ. By

using Remark 2.3 once again, this common set of eigenvectors is Q- and Q̃-conjugate.
(ii) Assume P̃ = PIσ. Then

QQ̃ = PDP>(PIσ)D̃(PIσ)>

= PD(IσD̃I
>
σ )P>

= P (IσD̃I
>
σ )DP>

= PIσD̃I
>
σ (P>P )DP>

= (PIσ)D̃(PIσ)>PDP>
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= Q̃Q,

where we use the orthogonality of P in the second and fourth equalities, and Lemma 2.4(vi)
combined with the fact that diagonal matrices commute in the third one.

�

Proposition 2.7. Let Q1, . . . , Qm ∈ Rn×n be symmetric positive definite matrices such that Q1 =
P1D1P

>
1 , where P1 is orthogonal and D1 is diagonal. Let σ1 = (1, . . . , n) and σi be a permutation

on Jn for all i = 2, . . . ,m. If Q1 is σi-related to Qi for every i, then there exists a Qi-conjugate
Hamel basis for every i.

Proof. We haveQi = (P1Iσi)Di(P1Iσi)
> withDi diagonal for i = 1, . . . ,m. Consider {w0, . . . , wn−1}

where wj−1 = P1e
j for j = 1, . . . , n. The result follows by Lemma 2.6(i). �

Remark 2.8. Let i = 1, . . . ,m. If Q1 = P1D1P
>
1 is σi-related to Qi, then Qi = P1(IσiDiI

>
σi

)P>1 .

By Lemma 2.4(vi), the matrix IσiDiI
>
σi

is diagonal. Therefore, Q1 is σi-related to Qi for every
i if and only if Q1, . . . , Qm are simultaneously diagonalizable. The commutativity of Q1, . . . , Qm
is not a criterion for determining whether or not they are simultaneously diagonalizable. In fact,
the converse of Lemma 2.6(ii) is not true. For instance, take Q̃ = I and any n × n symmetric

positive definite matrix Q whose set of eigenvectors is not the canonical basis, so Q̃Q = QQ̃.
However, by Lemma 2.6(i), the matrices Q and Q̃ are not σ-related for any σ ∈ Jn. Given
Q1, . . . , Qm, if QiQj 6= QjQi for some i 6= j, then there does not exist a basis for Rn comprised of
common eigenvectors. Therefore, for symmetric positive definite matrices Q1, . . . , Qm ∈ Rn×n, the
existence of a Qi-conjugate Hamel basis for i = 1, . . . ,m requires checking that these matrices are
simultaneously diagonalizable, or equivalently, that they have the same eigenvectors.

3. The quadratic multicriteria problem

Let f : Rn → Rm be a quadratic function given by

fi(x) =
1

2
x>Qix+ (qi)>x,

where Qi ∈ Rn×n is symmetric positive definite and qi ∈ Rn for i = 1, . . . ,m. Note that f is
Rm+ -strongly convex, i.e., each fi is strongly convex. We consider the unconstrained multiobjective
problem,

min
x∈Rn

f(x) (1)

in the weak-Pareto or Pareto sense.
A point x̄ ∈ Rn is a weak-Pareto optimum for Problem (1), if there does not exist x ∈ Rn such

that
f(x) < f(x̄),

and Pareto optimum for Problem (1), if there does not exist x ∈ Rn such that

f(x) ≤ f(x̄) and f(x) 6= f(x̄);

the inequalities < and ≤ are defined componentwise.
There is no loss of generality in assuming that the quadratic objective components fi’s in Prob-

lem (1) have no zero-degree terms and that the corresponding Qi’s are symmetric. Indeed, we
observe that x̄ ∈ Rn is a weak Pareto (Pareto) optimum for Problem (1) if and only if x̄ is
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a weak Pareto (Pareto) optimum for minx∈Rn f̃(x), where f̃i(x) = fi(x) + ri with ri ∈ R for
i = 1, . . . ,m. If Qi ∈ Rn×n is not symmetric, then Q̄i =

(
Qi + Q>i

)
/2 is symmetric and

x>Q̄ix = x>Qix for all i. Therefore solving Problem (1) is equivalent to solving minx∈Rn f̄(x),
where f̄i(x) = (1/2)x>Q̄ix+ (qi)>x+ ri for i = 1, . . . ,m.

We recall the following notions of monotonicity for functions from Rm to R; see [9].

Definition 3.1. A function Φ: Rm → R is weakly-increasing (w-increasing) if

u < v ⇒ Φ(u) < Φ(v),

and strongly-increasing ( s-increasing) if

u ≤ v and u 6= v ⇒ Φ(u) < Φ(v).

We may write v > u and v ≥ u to mean u < v and u ≤ v, respectively.
Every s-increasing function is w-increasing. Moreover, if Φ is w-increasing and continuous, then

u ≤ v ⇒ Φ(u) ≤ Φ(v), (2)

and by the above observation this also holds when Φ is s-increasing and continuous.
Now we state a well-known result that is used in the sequel.

Proposition 3.2. Let g : Rn → Rm, Φ: Rm → R, M ⊂ Rn, and x̄ ∈ argminx∈M Φ(g(x)).

(i) If Φ is w-increasing, then x̄ is a weak Pareto solution to minx∈M g(x).
(ii) If Φ is s-increasing, then x̄ is a Pareto solution to minx∈M g(x).

Proof. See [9, Lemmas 5.14 and 5.24]. �

4. The multiobjective algorithm

In this section we propose a conjugate directions-type algorithm for Problem (1). From now on,
we assume that the following condition holds.

Assumption E : There exists a Qi-conjugate Hamel basis {w0, . . . , wn−1} ⊂ Rn, where Qi ∈ Rn×n
corresponds to fi in Problem (1) for i = 1, . . . ,m.

This condition is not vacuous. As we have seen in Section 2, for a certain type of problems,
Assumption E holds for wj = P1e

j , where Qi = P1IσiDi(P1Iσi)
>, P1 is orthogonal, Di is diagonal,

and σi is a permutation on Jn for i = 1, . . . ,m.
Now we present the algorithm, which, as we will see, has to be performed n + 1 times in order

to reach an optimal solution to Problem (1).
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Algorithm 1: Multiobjective Conjugate Directions Algorithm (weak version)

Step 1: Take a Qi-conjugate set {w0, . . . , wn−1} ⊂ Rn for i = 1, . . . ,m and a w-increasing
continuous auxiliary function Φ: Rm → R such that Φ ◦ f is strongly convex. Choose
x0 ∈ Rn.

Step 2: For k = 0, . . . , n− 1, let

tk = argmin
t∈R

Φ(f(xk + twk)), (3)

and set
xk+1 = xk + tkw

k. (4)

The strong version of Algorithm 1 is similar to the weak one: it suffices to take an s-increasing
continuous auxiliary function Φ in Step 1.

Some comments are in order. First, Step 1 is well-defined in view of Assumption E . Step 2 is also
well-defined. In fact, since the function t 7→ Φ(f(xk + twk+1)) is strongly convex 1, Subproblem (3)
has a unique minimizer tk for all k. Therefore, starting from an arbitrary initial point x0, the
algorithm generates x1, . . . , xn ∈ Rn whose Φ ◦ f values decrease. Indeed, by (3) and (4), we have

Φ(f(xk+1)) = Φ(f(xk + tkw
k)) ≤ Φ(f(xk)) for k = 0, . . . , n− 1. (5)

At each iteration, Algorithm 1 requires the minimization of a (possibly nonsmooth) continuous
scalar-valued function defined over the real line. If the unconstrained convex subproblems happen
to be nonsmooth, in some cases they may be rewritten in such a way that the lost smoothness is
retrieved at a certain cost. For instance, consider the w-increasing continuous auxiliary function
defined by Φ(u) = maxi=1,...,m{ui}. Then the Subproblem (3) can be expressed as

min
(t,λ)∈G

ψk(t, λ) = λ,

where G = {(t, λ) ∈ R× R : fi(x
k + twk) ≤ λ for i = 1, . . . ,m}.

For m = 1, Problem (1) consists in minimizing a strongly convex real-valued quadratic function
f(x) = (1/2)x>Qx + q>x over Rn. So Assumption E is an empty condition: in Step 1 the set
{w0, . . . , wn−1} is Q-conjugate. Besides the directions wj = Pej from Proposition 2.7, we can also
use the Gram-Schmidt procedure to obtain a Q-conjugate set of n elements; see [10, Theorem 1.17]
or [1, page 120]. Moreover, the function Φ: R→ R is strictly increasing, so is immaterial in scalar
minimization. Thus (3) is the same kth subproblem of the classical scalar procedure. In other
words, we retrieve the conjugate directions method.

In the following section we define a procedure that requires running Algorithm 1 with different
initial points n + 1 times. Among the last iterates of the generated n + 1 sequences, we find an
optimal point. In the scalar optimization case, performing Algorithm 1 yields the same optimum
each of the n+ 1 times.

1We point out that in [5, Subsection 3.2] there are examples of w- or s-increasing continuous auxiliary functions Φ
such that Φ ◦ f is strongly convex. For instance, Φ(u) = maxi=1,...,m{ui} is a w-increasing continuous function such
that Φ ◦ f is strongly convex.
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One could ask why not simply apply the scalar-valued conjugate directions method to Φ ◦ f ,
obtain a minimizer of Φ ◦ f in at most n iterations, and then apply Proposition 3.2 in order to
reach an optimum for Problem (1). The answer is simple: the function Φ◦f may not be quadratic.

Now we need to study some single-variable convex quadratic functions derived from the multi-
objective f . For the initial guess x0 ∈ Rn and the Qi-conjugate Hamel basis {w0, . . . , wn−1} for all

i chosen in Step 1 of Algorithm 1, we consider the strongly convex quadratic function ∆
(j)
i : R→ R

given by

∆
(j)
i (τ) = ∆

(j)
i (x0, τ) :=

1

2

[
(wj)>Qiw

j
]
τ2 +

[
(Qix

0 + qi)>wj
]
τ, (6)

for i = 1, . . . ,m and j = 0, . . . , n− 1. We define

µ− = µ−(x0) := min{τ : ∆
(j)
i (τ) = 0 and τ < 0 for some i = 1, . . . ,m, j = 0, . . . , n− 1} (7)

and

µ+ = µ+(x0) := max{τ : ∆
(j)
i (τ) = 0 and τ ≥ 0 for some i = 1, . . . ,m, j = 0, . . . , n− 1}. (8)

Then ∆
(j)
i (τ) ≥ 0 for τ ∈ (−∞, µ−] ∪ [µ+,+∞), i = 1, . . . ,m and j = 0, . . . , n− 1. For the sake of

simplicity, take

µ = µ(x0) := max{|µ−|, µ+}. (9)

If the set in (7) is empty, we take µ = µ+. The set in (8) is never empty, because τ = 0 is a root

of ∆
(j)
i for all i, j. Finally, by taking τj such that |τj | ≥ µ for j = 0, . . . , n− 1, we guarantee that

n−1∑
j=0

∆
(j)
i (τj) ≥ 0 for i = 1, . . . ,m. (10)

5. Multiobjective Conjugate Directions Procedure (MCDP)

We begin this section by analyzing the behavior of the last iterate xn generated by Algorithm 1.
We show that Φ (f(xn)) is a lower bound for Φ (f(·)) outside a certain set C ⊂ Rn, which depends
on x0 and µ. We also show that C is a union of the open coordinate hyperplanes with respect to
the basis {w0, . . . , wn−1} enlarged by a factor of 2µ in their corresponding orthogonal directions.

Proposition 5.1. Suppose that {x1, . . . , xn} is the sequence produced by Algorithm 1, implemented
with the Qi-conjugate basis {w0, . . . , wn−1} for all i, the w- or s-increasing continuous auxiliary
function Φ: Rm → R and the initial guess x0 = x0

0w
0 + · · ·+ x0

n−1w
n−1 ∈ Rn. Let τ0, . . . , τn−1 ∈ R

be such that |τj | ≥ µ for j = 0, . . . , n− 1, where µ is given by (9). Then

Φ(f(xn)) ≤ Φ
(
f(x0 +

n−1∑
j=0

τjw
j)
)
. (11)

Moreover, if µ = 0, then xn ∈ argminx∈Rn Φ(f(x)).

Proof. By using (5), the definition of fi, the Qi-conjugacy of {w0, . . . , wn−1} for all i, the symmetry
of Qi, (6), and (10) combined with (2), we see that

Φ(f(xn)) ≤ Φ(f(x0))
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= Φ
([1

2
(x0 +

n−1∑
j=0

τjw
j −

n−1∑
j=0

τjw
j)>Qi(x

0 +
n−1∑
j=0

τjw
j −

n−1∑
j=0

τjw
j)+

+ (qi)>(x0 +

n−1∑
j=0

τjw
j −

n−1∑
j=0

τjw
j)
]m
i=1

)

= Φ
([
fi(x

0 +
n−1∑
j=0

τjw
j)− (x0 +

n−1∑
j=0

τjw
j)>Qi(

n−1∑
j=0

τjw
j)+

+
1

2
(
n−1∑
j=0

τjw
j)>Qi(

n−1∑
j=0

τjw
j)− (qi)>(

n−1∑
j=0

τjw
j)
]m
i=1

)

= Φ
([
fi(x

0 +

n−1∑
j=0

τjw
j)−

n−1∑
j=0

∆
(j)
i (τj)

]m
i=1

)

≤ Φ
([
fi(x

0 +
n−1∑
j=0

τjw
j)
]m
i=1

)
.

If µ = 0, then (11) holds for any τj ∈ R with j = 0, . . . , n − 1. By Lemma 2.2, the last iterate xn

is an unconstrained minimizer of Φ ◦ f . �

We have just seen that Φ(f(xn)) ≤ Φ(f(x)) for x ∈ Rn \C := {x0 +
∑n−1

j=0 τjw
j : |τj | ≥ µ for j =

0, . . . , n − 1}. We do not know whether or not xn is a minimizer of Φ ◦ f in Rn \ C, since it may

belong to C. The open set C consists of all affine combinations x0 +
∑n−1

j=0 τjw
j with at least

one τj ∈ (−µ, µ). The set of these sums is the union of the coordinate hyperplanes span{wj}⊥Q1 ,
added by x0 and enlarged by a factor of 2µ in the direction of span{wj}, without the boundary,
for j = 0, . . . , n− 1. In other words, we have

C = C(x0, µ) =
n−1⋃
j=0

Hj
µ(x0),

where

Hj
µ(x0) = Rj × (x0

j − µ, x0
j + µ)× Rn−j−1. (12)

In the case n = 2 the set C is a 2µ-width cross, centered at x0 = x0
0w

0 + x0
1w

1, unbounded in
both senses of the left-right and up-down directions as Figure 1 indicates.

Our goal is to find a minimizer of Φ ◦ f in the affine manifold {x0 +
∑n−1

j=0 τjw
j : τj ∈ R for j =

0, . . . , n}, which coincides with Rn by Lemma 2.2. We plan to do this by performing Algorithm 1
n+ 1 times with cleverly chosen different initial points, and then comparing the Φ ◦ f values of the
respective last iterates. We now present the weak version of this scheme.
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x0
0 + µx0

0 − µ

x0

x0
1 − µ

x0
1 + µ

2µ

2µ C

0

w0
w1

Figure 1. C =
[
(x0

0 − µ, x0
0 + µ)× R

]
∪
[
R× (x0

1 − µ, x0
1 + µ)

]
.

Procedure 1: Multiobjective Conjugate Directions Procedure - MCDP(weak version)

Step 1: Take a Qi-conjugate set {w0, . . . , wn−1} ⊂ Rn for i = 1, . . . ,m and a w-increasing
continuous auxiliary function Φ: Rm → R such that Φ ◦ f is strongly convex. Choose
x0 ∈ Rn.

Step 2: For ` = 0, . . . , n, apply Algorithm 1 with the following initial point

x`,0 = x0 + `(2µ̄+ 1)
n−1∑
j=0

wj , (13)

where µ̄ = max{µ(x`,0) : ` = 0, . . . , n} and µ(x`,0) is given by (9). The sequence
{x`,1, . . . , x`,n} is then produced.

Step 3: Set `∗ = argmin
`=0,...,n

{Φ(f(x`,n))} and x∗ = x`
∗,n.

The strong version of Procedure 1 is similar to the weak one: it suffices to take an s-increasing
continuous auxiliary function Φ in Step 1.

Let ` = 0, . . . , n. For each initial point x`,0, there are n + 1 sets of mn real-valued quadratic

functions ∆
(j)
i = ∆

(j)
i (x`,0, ·) for i = 1, . . . ,m and j = 0, . . . , n − 1. Substituting µ by µ̄ gives

that (10) holds for the mn(n+ 1) quadratic functions ∆
(j)
i (x`,0, ·) for all i, j, `. Whence, replacing

both µ by µ̄ and {x1, . . . , xn} by {x`,1, . . . , x`,n} in Proposition 5.1, we have

Φ(f(x`,n) ≤ Φ(f(x)) for x ∈ Rn \ C` and ` = 0, . . . , n, (14)

where

C` := C(x`,0, µ̄) =

n−1⋃
j=0

Hj
µ̄(x`,0) (15)
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with Hj
µ(x`,0) = Rj × (x`,0j − µ, x

`,0
j + µ)× Rn−j−1.

6. Convergence analysis of MCDP

In this section we show that x∗ from Step 3 of MCDP is an unconstrained optimum of Φ ◦ f .
For the benefit of the reader, we first concentrate on the cases n = 1 and 2. By Proposition 5.1,
from now on we assume µ̄ > 0.

Let n = 1. By taking w0 = 1, Φ: Rm → R, and the point x0 ∈ R, MCDP generates the initial
points x0,0 = x0 and x1,0 = x0 +2µ̄+1 by (13), and then the sequences {x0,1} and {x1,1}. Without
loss of generality, we may assume x∗ = x0,1 in Step 3, so

Φ(f(x∗)) ≤ Φ(f(x1,1)).

By using that
Φ(f(x∗)) ≤ Φ(f(x)) for x ∈ R \ C0

and
Φ(f(x1,1)) ≤ Φ(f(x)) for x ∈ R \ C1,

we obtain
Φ(f(x∗)) ≤ Φ(f(x))

for x ∈ (R \ C0) ∪ (R \ C1) = R \ (C0 ∩ C1) = R, since

C0 ∩ C1 = (x0,0 − µ̄, x0,0 + µ̄) ∩ (x1,0 − µ̄, x1,0 + µ̄)

= (x0 − µ̄, x0 + µ̄) ∩ (x0 + µ̄+ 1, x0 + 3µ̄+ 1)

= ∅.
So MCDP yields an unconstrained minimizer of Φ ◦ f in at most two iterations of Algorithm 1.

Now let n = 2. By taking a Qi-conjugate basis {w0, w1} for every i, Φ: Rm → R and x0 =
x0

0w
0 + x0

1w1 ∈ R2 in Step 1, MCDP gives the initial points x0,0, x1,0 and x2,0, and then the
sequences {x0,1, x0,2}, {x1,1, x1,2} and {x2,1, x2,2}. Without loss of generality, we may assume
x∗ = x0,2 in Step 3, so

Φ(f(x∗)) ≤ Φ(f(x`,2)) for ` = 1, 2. (16)

Since
Φ(f(x∗)) ≤ Φ(f(x)) for x ∈ R2 \ C0

and
Φ(f(x`,2)) ≤ Φ(f(x)) for x ∈ R2 \ C` and ` = 1, 2,

by (16) we conclude that
Φ(f(x∗)) ≤ Φ(f(x))

for x ∈ (R2 \ C0) ∪ (R2 \ C1) ∪ (R2 \ C2) = R2 \ (C0 ∩ C1 ∩ C2) = R2; see Figures 2 and 3.
We are now in the position to state and prove that MCDP ends up with an unconstrained

minimizer of Φ ◦ f in at most n(n+ 1) iterations of Algorithm 1 in the general case.

Theorem 6.1. Let ` = 0, . . . , n. Suppose that {x`,1, . . . , x`,n} is the `th sequence produced by
MCDP, implemented with the Qi-conjugate basis {w0, . . . , wn−1} for all i, the w- or s-increasing
continuous auxiliary function Φ: Rm → R, and x0 = x0

0w
0 + · · ·+ x0

n−1w
n−1 ∈ Rn. Then

x∗ ∈ argmin
x∈Rn

Φ(f(x)),
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x0,0 = x0

x1,0 = x0 + 2µ̄+ 1

x01 − µ̄

x01 + 3µ̄+ 1

x01 + µ̄+ 1

x01 + µ̄

x00 + µ̄

x00 + µ̄+ 1x00 − µ̄

x00 + 3µ̄+ 1

C0 C1

Figure 2. C0 ∩ C1 is the union of two squares of sides 2µ̄ centered at (x0,0
0 , x1,0

1 )

and (x1,0
0 , x0,0

1 ).

where x∗ is given by Step 3 of MCDP.

Proof. We begin by studying the intersections of the sets C`. Recall that C0 =
⋃n−1
j=0 H

j
µ̄(x0,0),

where Hj
µ̄(x0,0) is the n-dimensional affine manifold (without the border) parallel to span{wj}⊥Q1

passing through x0,0 = x0, enlarged by a factor of 2µ̄ in the (only bounded) direction span{wj};
see (15).

The first intersection is C0 ∩ C1 =
⋃n−1
j=0 (Hj

µ̄(x0,0) ∩ C1). We claim that this is a union of the

n(n−1) open n-dimensional unbounded parallelepipeds Hj
µ̄(x0,0)∩C1, each one bounded in exactly

two directions. Indeed, every Hj
µ̄(x0,0) ∩ C1 is formed by n − 1 unbounded parallelepipeds which

are the intersections of Hj
µ̄(x0,0) with the nonparallel enlarged coordinate hyperplanes H i

µ̄(x1,0).

More precisely, these parallelepipeds are given by cartesian products with (x0,0
j − µ̄, x

0,0
j + µ̄) in the

jth position, (x1,0
i − µ̄, x

1,0
i + µ̄) in the ith position (i 6= j), and R in the remaining positions. Since

there are n− 1 such possible cartesian products and n sets Hj
µ̄(x0,0), the number of parallelepipeds

in C0 ∩ C1 is n(n− 1).
Similarly, C0 ∩ C1 ∩ C2 is a union of n(n− 1)(n− 2) unbounded open parallelepipeds. Indeed,

every (Hj
µ̄(x0,0) ∩ C1) ∩ C2 is a union of open parallelepipeds given by cartesian products with

(x0,0
j −µ̄, x

0,0
j +µ̄) in the jth position, (x1,0

i −µ̄, x
1,0
i +µ̄) in the ith position (i 6= j), (x2,0

k −µ̄, x
2,0
k +µ̄)

in the kth position (k 6= i, j), and R elsewhere. There are n − 2 such possible cartesian products

and n(n − 1) sets Hj
µ̄(x0,0) ∩ C1, so we conclude that C0 ∩ C1 ∩ C2 is a union of n(n − 1)(n − 2)

parallelepipeds.
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x00 + µ̄+ 1 x00 + 3µ̄+ 2

x00 + 5µ̄+ 2

x01 + 3µ̄+ 2

x01 + 5µ̄+ 2

x2,0 = x0 + 4µ̄+ 2

x00 + 3µ̄+ 1x00 + µ̄

x00 − µ̄

x01 − µ̄

x01 + µ̄

x01 + µ̄+ 1

x01 + 3µ̄+ 1

C2

C0 ∩ C1

Figure 3. C0 ∩ C1 ∩ C2 = ∅.

Proceeding in the same way, we see that C0 ∩ · · · ∩ Cn−1 is a union of n! open bounded paral-
lelepipeds. Explicitly, we have

C0 ∩ · · · ∩ Cn−1 =
⋃

θ=(θ0,...,θn−1)

permutation on {0,...,n−1}

(xθ0,00 − µ̄, xθ0,00 + µ̄)× · · · × (x
θn−1,0
n−1 − µ̄, xθn−1,0

n−1 + µ̄). (17)

We finally show that MCDP solves minx∈Rn Φ(f(x)). The procedure generates the sequence
{x`,1, . . . , x`,n} for ` = 0, . . . , n. Each one of the n+ 1 last iterates satisfies

Φ(f(x`,n)) ≤ Φ(f(x)) for x ∈ Rn \ C`,
for ` = 0, . . . , n; see (14)-(15). By Step 3 of MCDP, it follows that

Φ(f(x∗)) ≤ Φ(f(x)) for x ∈
(
Rn \ C0

)
∪ · · · ∪ (Rn \ Cn) = Rn \

n⋂
`=0

C`. (18)

In view of (13), x`,0 = x`−1,0 + (2µ̄+ 1)
∑n−1

j=0 w
j , so x`,0j = x`−1,0

j + 2µ̄+ 1 for j = 0, . . . , n− 1 and
` = 1, . . . , n. Thus

xn,0j − µ̄ > x`,0j + µ̄ for j = 0, . . . , n− 1 and ` = 0, . . . , n− 1.

Since Cn is the union of Hj
µ(xn,0) = Rj × (xn,0j − µ, x

n,0
j + µ) × Rn−j−1 with j = 0, . . . , n − 1, the

n! hypercubes that appear in (17) do not overlap with Cn, i.e.,

C0 ∩ · · · ∩ Cn−1 ∩ Cn = ∅.
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The result now follows from (18). �

We conclude the convergence analysis by showing that MCDP implemented with a w-increasing
(s-increasing) Φ yields a w-Pareto (Pareto) optimum. In other words, the scheme produces a
solution to Problem (1) after at most n(n+ 1) iterations of Algorithm 1.

Corollary 6.2. Let ` = 0, . . . , n. Suppose that {x`,1, . . . , x`,n} is the `th sequence produced by
MCDP, implemented with the Qi-conjugate basis {w0, . . . , wn−1} for all i, the w- or s-increasing
continuous auxiliary function Φ: Rm → R, and x0 = x0

0w
0 + · · · + x0

n−1w
n−1 ∈ Rn. If Φ is

w-increasing (s-increasing), then x∗ is a w-Pareto (Pareto) optimal solution to Problem (1).

Proof. It suffices to combine Theorem 6.1 with Proposition 3.2. �

In summary, under Assumption E , by applying MCDP implemented with a fixed Qi-conjugate
Hamel basis for all i, a w-increasing (s-increasing) continuous function Φ: Rm → R, and x0 ∈ Rn,
we obtain a weak Pareto (Pareto) optimal solution to Problem (1). This means that in at most
n(n+ 1) iterations of Algorithm 1 we can find a weak Pareto or a Pareto optimum to Problem (1).

7. An example

We present an ad hoc example of Problem (1) for which, by varying a parameter in the auxiliary
function, MCDP furnishes the whole Pareto optimal set and consequently the whole Pareto frontier.

Example 7.1. Consider f : R→ R2 defined by

f(x) = (x2, x2 − 2x)>.

For f1(x) = x2, we have Q1 = 1 ∈ R1×1 and q1 = 0 ∈ R1. For f2(x) = x2 − 2x, we have
Q2 = Q1 ∈ R1×1 and q2 = −2 ∈ R1. By taking the basis {w0} for R with w0 = 1, Assumption E is
satisfied. Since f1 and f2 decrease from −∞ to 0, both increase from 1 to +∞, and f1 increases
while f2 decreases on [0, 1], the set of Pareto optima is given by SP = [0, 1]. We consider the family
of auxiliary functions {Ψω : R2 → R}ω∈[0,2] defined by Ψω(u) = maxi=1,2{(u−ωe1)i}. The function
Ψω is w-increasing and continuous, and Ψω ◦ f : R→ R is strongly convex. We apply MCDP with
{w0}, Ψω for ω ∈ [0, 2], and x0 ∈ R. By Corollary 6.2, we obtain a family {x∗ω}ω∈[0,2] of weak
Pareto optima. We see that {x∗ω}ω∈[0,2] = [0, 1] and, since there is no weak Pareto solution that is
not Pareto optimum, we obtain all Pareto solutions to the problem. Starting from x0,0 = x0 ∈ R,
Algorithm 1 produces the sequence {x0,1}. We compute the steplength

t0,0 = argmin
t∈R

Ψω(f(x0 + tw0))

= argmin
t∈R

max
i=1,2
{fi(x0 + t)− ωe1}

= argmin
t∈R

{(x0 + t)2 − ω, (x0 + t)2 − 2(x0 + t)},

which is the argument, where f1(x0 + t) − ω crosses f2(x0 + t). By solving (x0 + t)2 − ω =
(x0 + t)2 − 2(x0 + t), we get t0,0 = ω/2− x0, so

x0,1 = x0,0 + t0,0w0 = x0 +
(ω

2
− x0

)
1 =

ω

2
.

Hence the element generated by Algorithm 1 does not depend on the initial point, and the next
application with the initial point x1,0 = x0 + 2µ + 1 yields x1,1 = ω/2. So, for each auxiliary
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function Ψω we get the Pareto optimum x∗ω = ω/2. By applying MCDP with all ω ∈ [0, 2], we
obtain SP = [0, 1].

8. Final remarks

We propose a conjugate directions-type method for unconstrained quadratic multiobjective prob-
lems. Essentially, the strategy consists in substituting the unconstrained multicriteria problem by
a finite sequence of single-variable unconstrained scalar-valued convex optimization problems, all
with a single optimal solution. Depending on the chosen auxiliary function, the procedure yields a
weak Pareto or a Pareto optimum.

Example 7.1 suggests that it may be worth to investigate which classes of quadratic multiobjec-
tive problems are such that the scheme produces all optima by varying a parameter on the auxiliary
function. The fact that MCDP furnishes an unconstrained minimizer of Φ ◦ f (an apparent lim-
itation) may be a good starting point for characterizing the classes of problems whose efficient
frontier can be entirely computed. Another possible research direction is to explore applications of
the scheme to multiobjective problems that satisfy weaker conditions.
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