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Abstract

To meet evacuation needs from carless populations who may require personalized assistance

to evacuate safely, we propose a ridesharing-based evacuation program that recruits volunteer

drivers before a disaster strikes, and then matches volunteers with evacuees who need assistance

once demand is realized. We optimize resource planning and evacuation operations under un-

certain spatiotemporal demand, and construct a two-stage stochastic mixed-integer program,

first with an expectation-based objective and then a probabilistic constraint, to ensure high

demand fulfillment rates. In addition to optimizing the sample average approximations of the

two formulations, we study a heuristic approach that is able to provide quick, dynamic and

conservative solutions. We demonstrate the performance of our approaches using five test net-

works of varying sizes based on regions of Charleston County, SC, an area that experienced

a mandatory evacuation order during Hurricane Florence. We utilize demographic data and

hourly traffic count data from the day of evacuation to estimate the demand distribution. The

risk-neutral formulation ensures an average 97% demand fulfillment rate for all test cases and

complete fulfillment rates for larger instances at peak-demand time. For smaller instances at off

peak time, the risk-averse approach achieves better reliability results.

Keywords: Stochastic programming; evacuation planning; ridesharing; chance-constrained pro-

gramming

1 Introduction

Planning for evacuations and ensuring efficient operations are key aspects of disaster preparation

and mitigation. In the United States, where transportation systems are designed around per-

sonal vehicle ownership, evacuation planning for carless populations can be particularly challenging

(Urbina and Wolshon, 2003). Further difficulties in evacuation planning arise from the specialized

assistance that some carless populations, including people with disabilities and senior citizens, may
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rely on (Renne et al., 2011). To address these issues, we propose a ridesharing program that can

be incorporated into a short-notice evacuation plan, recruiting and matching volunteer drivers with

evacuees without vehicles, and providing personalized assistance to those who need it. Specifically,

we develop models and investigate solution methods for optimal resource planning for setting up

the program in the presence of uncertain spatiotemporal demand. Our goal is to determine how

many volunteer drivers to recruit before a disaster takes place, so that as many evacuees as possible

can be served, when actual demand is uncertain but can be predicted with historical data and

behavioral models. We also optimize the operations of such a program, which begin when demand

for services is realized and volunteers that were hired must be assigned to riders and routes before

the disaster strikes. We assume that the probability distribution of spatiotemporal demand is fully

known and obtainable from data, which is then used to sample finite demand samples each with a

probability value to build the optimization models. We first formulate this problem as a two-stage

stochastic mixed-integer program, with a lexicographical objective to maximize expected number

of evacuees served and then minimize expected total distance traveled by all vehicles based on all

demand samples. Then, we build a risk-averse counterpart of the risk-neutral stochastic optimiza-

tion model by using a chance-constrained formulation, to determine how many volunteer drivers

to recruit in order to guarantee that we can accommodate all evacuation requests with sufficiently

high probability.

1.1 Literature of evacuation planning

Resource planning for shared mobility based evacuation is situated in the field of emergency lo-

gistics (Caunhye et al., 2012), and in particular, evacuation planning. Many evacuation planning

models are adapted from traffic assignment models and aim to optimize vehicular flow by selecting

evacuation routes (Bayram, 2016). A wide variety of papers have taken a multi-objective evolution-

ary optimization approach (Saadatseresht et al., 2009), a simulation approach (Gan et al., 2016), a

deep learning approach (Tanaka et al., 2017), and have utilized a range of heuristic methods (Yusoff

et al., 2008) for planning and facilitating evacuation operations. Some of these models incorporate

uncertainty, although often in traffic parameters, rather than demand for services, which our mod-

els consider. Lim et al. (2019), for example, utilize a distributionally robust chance-constrained

formulation to determine evacuation start time and traffic assignment under uncertain traffic de-

mand. Wang et al. (2016) consider an evacuation routing problem under stochastic travel time

and a variety of objective functions. For an overview of approaches to optimization of evacuation

planning, we direct the reader to Yusoff et al. (2008).

In addition to the study of individual evacuation using personal vehicles, a wide spectrum of

previous work has examined bus- or public transportation-based evacuation (see, e.g., Bish, 2011;

Kulshrestha et al., 2014; Goerigk et al., 2015), modes that can be effective for transporting large

carless populations efficiently to safe zones and minimizing loss of life (Litman, 2006). Because

vulnerable populations with specialized needs may not be served well by a fleet of evacuation buses,

though, we focus on a smaller-scale ridesharing program, to complement buses in a comprehensive

evacuation plan, providing personalized assistance to those who need it.
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1.2 Related vehicle routing literature

Our formulation is closely related to and is a stochastic adaptation of the general pickup and

delivery problem (GPDP) (Savelsbergh and Sol, 1995), which is a variant of the vehicle routing

problem (VRP), aiming to minimize the distance traveled by a fleet of gasoline delivery trucks

serving a set of gasoline stations. We refer interested readers to Toth and Vigo (2002) for a

comprehensive review of VRP variants and models, as well as optimal/approximate algorithms or

meta-heuristics for solving them. While the VRP is often utilized in business applications, such as

small package delivery (Wong, 2008), its variants are also used to solve problems of social benefit,

including the Dial-a-Ride Problem (Savelsbergh and Sol, 1995; Cordeau and Laporte, 2007) and

Senior Transportation Problem (Liu et al., 2018).

In particular, we examine a stochastic VRP variant to increase mobility for underserved popula-

tions in response to disaster evacuation orders. Yu and Shen (2020) also examine the transportation

needs of underserved populations, under normal, everyday conditions, without a disaster. They

study an integrated car-and-ride sharing system, in which drivers without their own vehicles can

rent cars from a company at a discounted price, in exchange for providing rides to other users

without vehicles who are not able to drive. Their objective is to maximize users served while mini-

mizing expected penalty cost of waiting and overtime, under stochastic travel and service times. In

contrast, in the evacuation resource planning problem, we face stochastic demand that will occur

randomly in different locations and over time, influenced by the variance in intensity of disasters

and the perceived need to evacuate. Thus, the objective in our risk-neutral formulation is to maxi-

mize expected evacuees served and minimize expected total distance traveled by all vehicles under

forecast uncertainty of potential demand.

1.3 Prior work on evacuation via ridesharing

To the best of our knowledge, this paper is the first to address the resource planning for ridesharing-

based evacuation problem, as well as the first to consider uncertainty in the geographical patterns

and temporal distribution of demand. On the other hand, the optimization of operations for shared

mobility based evacuation has been considered in deterministic settings (Naoum-Sawaya and Yu,

2017; Lu et al., 2020) and under uncertainty in travel time (Li, 2017; Wang, 2020). Naoum-Sawaya

and Yu (2017) formulate the ridesharing problem as a mixed-integer program on a network. The

spatial distribution of the demand is known, and the objective is to make routing decisions that

maximize evacuees served in a fixed time. They also extend their model to minimize evacuation

time and to include placement of extra vehicles at pickup nodes for evacuees to drive themselves. Lu

et al. (2020) examine ridesharing-based evacuation as a particular instance of the Dial a Ride Prob-

lem with Transfers (DARPT). They match drivers and riders using a vehicle-space-time network

and a multi-commodity network flow integer program. They test their model using the Chicago

traffic network and 10 random locations of drivers and riders. Li (2017) explores ridesharing-based

evacuation, using time windows to incorporate a temporal aspect to demand and specifying ori-

gins and destinations for both drivers and riders. The author models this problem with an integer
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program for matching drivers and riders and providing routing decisions. They also use a robust op-

timization formulation to incorporate uncertainty in travel time. Both of the deterministic integer

program and robust formulation are solved using heuristics.

1.4 Contributions of the paper

We study both risk-neutral and risk-averse formulations and conduct computational tests in five

test networks of varying sizes, based on regions of Charleston County, South Carolina, an area

that experienced a mandatory hurricane evacuation order in 2018. We estimate the geographical

distribution of demand and volunteers available based on granular demographic data and utilize

hourly traffic counts over a two-week period that included the evacuation to estimate the temporal

distribution of demand.

We plan the total number of volunteer vehicles to recruit, as well as their spatial distribution,

in order to either maximize expected evacuees served and minimize total distance traveled by all

vehicles (risk-neutral formulation), or ensure complete evacuation with high probability (risk-averse

formulation), when facing stochastic spatiotemporal demand. Incorporating stochastic demand

requires optimizing over large sets of scenarios, leading to computational challenges in addition to

solving the underlying integer program. Modeling realistic instance sizes, with a large number of

nodes and arcs that respectively represent locations and their connecting roads in an evacuation

network, increases the computational difficulty. We develop algorithms and methods to find near-

optimal solutions for this ridesharing-based evacuation problem efficiently.

1.5 Structure of the paper

The remainder of this paper is organized as follows. In Section 2, we describe our mathemati-

cal models, beginning with basic assumptions, followed by the two-stage stochastic optimization

model, and then the chance-constrained formulation. In Section 3, we describe solution approaches

for optimizing different models or deriving near-optimal solutions. In Section 4, we conduct com-

putational studies and test instances of five regional networks based on Charleston County, South

Carolina, using traffic data from Hurricane Florence evacuation in September 2018. In Section 5,

we summarize the research and discuss future research directions.

2 Mathematical Models

The ridesharing program that we propose has two phases. During the planning phase, volunteers

with cars are recruited to provide rides in case of a disaster. Then, when a short-notice evacuation

order is given for a particular disaster, such as a hurricane, flood, or slowly-spreading wildfire,

individuals who meet eligibility criteria can request rides at a specific location and time. Due

to the variability of impact for different disasters, the volume and geographical distribution of

demand for evacuation services are not known ahead of time. During the operational phase, once

a particular spatiotemporal demand distribution has been realized, decisions are made of where to
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route the volunteer drivers, and how many evacuees to load at each location. Emergency drivers are

available to assist the volunteer drivers and can be dispatched after we know the realized demand.

Because demand for services must be realized in order to optimize corresponding operations, the

formulation does not apply to no-notice disasters, such as earthquakes or terrorist attacks.

We begin by defining basic notation, parameters and assumptions in Section 2.1. We then

describe the two-stage expectation-based stochastic optimization model in Section 2.2 and the

chance-constrained formulation in Section 2.3. For an overview of stochastic programming, which

includes two-stage stochastic optimization models and chance-constrained formulations, we direct

the interested readers to Birge and Louveaux (2011) and Shapiro et al. (2014).

2.1 Notation, parameters and basic assumptions

We consider a geographical network, denoted L = (N ′,A′), containing locations and connecting

roadways in an evacuation region. Specifically, the set of locations is given by N ′ = N ′P ∪O′ ∪{h},
whose elements are denoted as follows. Evacuees requesting service can arrive at any pickup node

i ∈ N ′P over a discrete set of time periods t = 1, . . . , T . We have a set of emergency vehicles R and

a set of volunteer vehicles S, whose union is defined to be V . Each emergency vehicle r ∈ R, has an

origin node or ∈ O′, and each volunteer vehicle s ∈ S has an origin location os ∈ O′. The location

h represents a “safe zone”, e.g., the highway. We assume that once a vehicle reaches the safe zone,

it has left the evacuation region and is no longer available to pick up additional evacuees. In set

A′, there are arcs (ov, j) for v ∈ V = R∪S and j ∈ N ′P , arcs (i, j) for all i, j ∈ N ′P such that i 6= j,

and arcs (i, h) for all i ∈ N ′P . Each arc has weights tij , representing travel time from i to j, and

dij , representing travel distance. If tij = dij = 0, the physical location of the two nodes is the same

(e.g., a volunteer lives in a pickup zone). If tij = dij =∞, nodes i, j ∈ N ′ are not connected in the

evacuation network. Figure 1a depicts one such geographical network with notation illustration,

where we exclude arcs (i, j) ∈ A′ having tij = dij =∞.

To construct the corresponding spatiotemporal network G = (N ,A) based on a given L, we

create the set of spatiotemporal nodes N = NP ∪O∪{hT+1}, whose elements we explain as follows.

Since evacuees can arrive throughout the planning horizon, we have pickup nodes NP of the form

it, for every i ∈ N ′P and t = 1, . . . , T. We assume that all vehicles leave their origin node for a

pickup node at time t = 0. Thus, we have a set of origin nodes O = {o0
v : v ∈ V = R∪S}. Also, all

vehicles need to reach the highway node at time t = T + 1, just after the last period that evacuees

requesting service can arrive at a pickup location. Thus, the safe zone node in G is hT+1. (Note

that we make these assumptions on the time of the origin nodes and highway node to reduce the

size of the network, but it is easy to convert the routing and loading decisions described in later

sections to an evacuation plan that includes start times t = 1, . . . , T − 1 for vehicles and times

t = 2, . . . , T to reach the highway.) The set A of the spatiotemporal network contains idle arcs,

connecting (it, it+1), along with travel arcs, (it, jt
′
), that exist if the discretized travel time tij for

(i, j) ∈ A′ is equal to t′ − t. We also have a set of dummy arcs (h, o0
v) ∈ A for v ∈ V with travel

time and distance 0 to simplify flow balance constraints.

Spatiotemporal demand is a random vector a(ω̃) = [atj(ω̃) : jt ∈ NP ]T ∈ Z|NP |×T
+ that is a
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Figure 1: Illustrating the correspondence between a geographical network and a spatiotemporal
network given a demand realization and vehicle capacities.

function of random disaster ω̃, with entries atj(ω̃) equal to the number of arrivals at each location

j ∈ NP and time t = 1, . . . , T , requesting evacuation services. We denote the distribution of a(ω̃)

as B and the support of ω̃ as ΩB. A realization ω of ω̃ has fixed arrival vector a(ω) ∈ Z|NP |×T
+ .

Each vehicle v ∈ V has a maximum capacity Qv, representing the number of evacuees requesting

service that the driver can accommodate in a single ride.

Figure 1 utilizes a small example to illustrate the correspondence between a geographical net-

work and its spatialtemporal transformation, where spatial network L = (N ′,A′) pictured in Figure

1a has N ′P = {i, j}, S = {s1, s2}, R = {r1}, and arcs labeled by travel time te for e ∈ A′. (We

exclude all the arcs e with te = ∞.) The spatiotemporal network constructed from this spatial

network, assuming T = 5, is pictured in Figure 1b with description of the capacities of the vehicles,

and one realization of demand a(ω). One possible evacuation plan for this example is as follows.

Volunteer vehicle s1 travels to i1 and picks up 2 people, then travels to j3 and picks up 1 person.

Another volunteer vehicle s2 travels to i3 and picks up 1 person who has been waiting since t = 2.

The vehicle waits, traveling along the idle arc to i4, and picks up 2 more people at i4. Emergency

vehicle r1 drives to j2 and waits until t = 3 and picks up 1 person at j3. All three vehicles travel

to the highway node h6, by time T + 1 = 6, after picking up their last passengers.

Our objective is to choose which of the available volunteer vehicles s ∈ S to hire based on one

of the following criteria: (i) maximizing expected evacuees served and minimizing expected total

distance traveled by all vehicles, or (ii) ensuring that all evacuees are served with high probability.

In the next two sections, we describe the models we use based on criteria (i) and (ii), respectively.
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2.2 Two-stage stochastic integer program using criterion (i)

To maximize the expected number of evacuees served and minimize expected total distance traveled

by all vehicles, we utilize a two-stage stochastic integer program with a risk-neutral expectation-

based objective function to evaluate the consequence of planning decisions after realizing values of

the uncertain parameter a(ω̃). In this model, there is a planning phase and an operational phase.

We define planning-phase binary decision variables, x = [xs, s ∈ S]T ∈ {0, 1}|S|, where xs = 1 if

we hire volunteer vehicle s ∈ S, and xs = 0 otherwise. These decisions take place before random

disaster ω̃, with knowledge of the distribution B with support ΩB of arrival vector a(ω̃). After

a disaster takes place and realization a(ω) is known, the operational phase occurs. At this time,

operational decisions are made, with respect to both x and a(ω), with the goal of maximizing

evacuees served and minimizing total distance traveled.

In the operational phase, for each scenario ω ∈ ΩB, we define binary variables zω = [zrω, r ∈
R]T ∈ {0, 1}|R| to indicate hiring decisions for emergency vehicles r ∈ R, where zrω = 1 if emergency

vehicle r is hired in scenario ω and zrω = 0 otherwise. For each scenario ω, define binary variables

yω = [yvitjt′ω, v ∈ V, (it, jt
′
) ∈ A]T ∈ {0, 1}|V |×|A| to represent routing decisions, where yvitjt′ω = 1

if vehicle v ∈ V travels the arc (it, jt
′
) ∈ A in scenario ω and 0 otherwise, along with integer variables

qω = [qvitω, v ∈ V, it ∈ NP ]T ∈ {0, 1}|V |×|NP | that represent loading decisions, where qvitω is the

number of passengers picked up by vehicle v ∈ V at node it ∈ NP in scenario ω. Thus, for each

scenario ω ∈ ΩB, given a planning solution x and demand realization a(ω), the corresponding

operational phase optimization problem can be modeled as follows:

Q(x,a(ω)) = min
yω,zω,qω

− λ1
∑
v∈V

∑
jt∈NP

qvjtω + λ2
∑
v∈V

∑
(it,jt′ )∈A

yvitjt′ωdij (1)

s.t.
∑

jt:(o0s,j
t)∈A

yso0sjtω ≤ xs, s ∈ S (2)

∑
jt:(o0r,j

t)∈A

yro0rjtω = zrω, r ∈ R (3)

∑
it:(it,jt′ )∈A

yvitjt′ω −
∑

it:(jt′ ,it)∈A

yvjt′ itω = 0, jt
′ ∈ N , v ∈ V (4)

qvjt′ω ≤ Qv

∑
it:(it,jt′ )∈A

yvitjt′ω, j
t′ ∈ NP , v ∈ V (5)

∑
jt′∈NP

qvjtω ≤ Qv, v ∈ V (6)

∑
v∈V

qvjtω ≤
t′∑

t=0

atj(ω)−
∑
v∈V

t′−1∑
t=0

qvjtω, j
t′ ∈ NP (7)∑

s∈S
αsxs +

∑
r∈R

βrzrω ≤ C (8)

zω ∈ {0, 1}|R|, yω ∈ {0, 1}|V |×|A|, qω ∈ Z|V |×|NP |
+ . (9)

In the objective function (1), we maximize the total evacuees served and minimize total distance

traveled for all vehicles. Parameters λ1 and λ2 determine the weights of the two objectives, with λ1

assumed to be much larger than λ2, to heavily preference maximizing evacuees served. Constraints
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(2)–(3) ensure that a vehicle v only leaves its origin node o0
v if it is hired in that scenario, and

constraint (2) ensures that if xs = 0, we cannot dispatch a volunteer’s vehicle s from its origin.

Constraints (4) are flow balance constraints to ensure that when a vehicle v enters node jt
′
, it

also exits that node. Constraints (5) ensure that vehicle v only picks up passengers at node jt
′

if it drives to node jt
′
. Constraints (6) ensure that no vehicle picks up more passengers than its

capacity, Qv. Constraints (7) ensure that the number of passengers picked up at node jt by any

vehicle is less than or equal to those that have arrived by time t and have not yet been picked up

in earlier periods. Constraint (8) is a budget constraint, ensuring that the total cost, calculated

based on unit cost αs of hiring volunteer vehicle s ∈ S and unit cost βr of hiring emergency vehicle

r ∈ R, is less than or equal to a given budget parameter C.

The overall objective of the two-stage model is to maximize expected evacuees served and

minimize expected total distance traveled for all vehicles with respect to the distribution B. We

define set X as a deterministic feasible region that encompasses any constraints on the volunteer

vehicles hired. For example, in our later computation, X contains upper-bound capacities on the

number of volunteers we can hire at each location. One can also include the correlations between

the number of volunteers across different locations set X, if such correlations can be obtained a

priori and approximated through linear constraints. The function f(x) is a cost function associated

with these in-use volunteer vehicles, and EB[·] denotes the expectation of · under distribution B of

the uncertain parameter. Then the overall problem is given by

u∗ = min
x

f(x) + EB[Q(x,a(ω̃))] (SP)

s.t. x ∈ X ∩ {0, 1}|S|.

Solving Model (SP) exactly is computationally difficult, even if the support of the distribution

is discrete and finite (Kleywegt et al., 2002). Further difficulty arises if the support is continuous,

for which (SP) involves multidimensional integration.

Thus, instead we estimate the optimal objective value of (SP) using the Sample Average Ap-

proximation (SAA) approach (Kleywegt et al., 2002). In SAA, a Monte Carlo sample Ω of random

variable ω̃ of size N is taken. (Note that Ω is a sample of the random parameter, as opposed to

ΩB, which denotes the support of the distribution.) Because each scenario ω ∈ Ω is independently

sampled, we have that 1
N

∑N
n=1Q(x,a(ωn))→ EB[Q(x,a(ω̃))] almost surely as N →∞. Thus, we

have the approximation problem

min
x

f(x) +
1

N

N∑
n=1

Q(x,a(ωn)) (SP-SAA)

s.t. x ∈ X ∩ {0, 1}|S|

Kleywegt et al. (2002) prove a bound for the sample size N required to ensure that the solution

to (SP-SAA) is within ε of u∗ with high probability. The bound is conservative, though, requiring

a very large sample size N , which also can be computationally prohibitive.
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On the other hand, solving |Ω| = N subproblems Q(x,a(ωn)) is often much less computationally

expensive than minimizing 1
N

∑N
n=1Q(x,a(ωn)) over the deterministic feasible region. For this

reason, we take M Monte Carlo samples of smaller size N , where Ωm = {ω1
m, . . . , ω

N
m}, to find an

optimal solution x̂m to (SP-SAA) with objective value ûm, for m = 1, . . . ,M . Let u = 1
M

∑M
m=1 ûm.

Mak et al. (1999) showed that E[u] ≤ u∗, the optimal value for (SP). Thus, we can find an estimated

lower bound of the true optimum.

Then, because any candidate solution x̂m, m = 1, . . . ,M is feasible for any realization of

ω̃ (by letting qω = zω = 0 in Model (SP) for all scenarios ω ∈ ΩB), we have upper bound

EB[Q(x̂m,a(ω̃))] ≥ u∗, for each m = 1, . . . ,M . Of course, it is difficult to calculate this expectation,

as well. Using a sample Ω0 = {ω0
1, . . . , ω

0
N ′} of size N ′ > N that is independent of the samples

{Ωm}Mm=1, we can estimate the expectation with 1
N ′
∑N ′

n=1Q(x̂m, ω
n
0 ). Because this value is an

unbiased estimator of EB[Q(x̂m,a(ω̃))], we have a statistical upper bound 1
N ′
∑N ′

n=1Q(x̂m,a(ωn0 )] ≥
u∗. Because this is true for all x̂m, we can choose the least upper bound, and find the optimality

gap between this and u, to judge the efficacy of the method, which we demonstrate numerically

later in Section 4.

2.3 Chance-constrained program based on criterion (ii)

One of the pitfalls of an expectation-based model in a humanitarian setting is its focus on the

average performance across all scenarios. Scenarios that deviate from the average may not be

served as well by the resource planning solution calculated using the approach in Section 2.2.

To obtain reliable decisions, we consider an alternative chance-constrained formulation (Charnes

and Cooper, 1959, 1962), in which we use probabilistic constraints to ensure that a quality of service

threshold is met with a particular probability. Luedtke and Ahmed (2008) use SAA to approximate

the probability distribution of a chance constraint with a discrete distribution with finite support,

which allows the techniques developed in the previously mentioned papers to be utilized for a wider

variety of probability distributions. For our problem, chance-constrained models can examine the

cost-risk tradeoff of recruiting more volunteer vehicles for disaster evacuation, to find the number

of vehicles required to efficiently provide complete evacuation in a range of spatiotemporal demand

scenarios, within a specific probability threshold.

Following criterion (ii), we make decisions that satisfy (2)–(9) for all possible realizations of ω̃,

along with the following probabilistic constraint:

PB

∑
v∈V

∑
jt∈NP

qvjtω̃ ≥ γ
∑

jt∈NP

atj(ω̃)

 > 1− ε0, (CC)

which ensures with probability greater than 1−ε0 that at least γ proportion of evacuees requesting

services are successfully evacuated, with respect to the distribution B of a(ω̃). Finding solutions

is again computationally difficult, especially if the distribution B is continuous. Following the

SAA approach, we approximate the probabilistic constraint (CC) using the empirical distribution

of the Monte Carlo sample Ω, which has finite cardinality. We model this empirical probabilistic
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constraint using binary decision variables k = [kω : ω ∈ Ω]T ∈ {0, 1}|Ω|, where kω = 1 if the

constraint is violated for scenario ω and kω = 0 otherwise. Then, we have the following constraints:∑
v∈V

∑
jt∈N

qvjtω +M2kω ≥ γ
∑
jt∈N

atj(ω), ω ∈ Ω, (10)

where the constant M2 in (10) is chosen sufficiently large so that if kω = 1 the constraint will be

satisfied, and ∑
ω∈Ω

kω ≤ bε|Ω|c, (11)

which ensures that the probabilistic constraint is satisfied for a constant ε ≤ ε0.

Thus, we formulate the chance-constrained model as a mixed-integer program (MIP) as follows:

min
x

f(x) +
1

N

∑
ω∈Ω

∑
v∈V

∑
(it,jt′ )∈A

yvitjt′ωdij (CC-SAA)

s.t. (2)–(9),∀ω ∈ Ω, (10), (11).

In this model, the objective is to minimize the cost of volunteer vehicles hired, along with the

expected distance traveled of all vehicles. Here, we have a probabilistic constraint for the number

of evacuees served by the system, the primary objective of the second stage of the expectation-

based model. Minimizing distance traveled is a secondary objective, and thus, we do not give it a

probabilistic constraint in this model, instead, leaving it in the objective, in order to expand the

feasible region and emphasize satisfying the probabilistic constraint for number of evacuees served.

Luedtke and Ahmed (2008) show that feasible solutions to (CC-SAA) satisfy the probabilistic

constraint (CC) with probability that goes to 1 as |Ω| = N → ∞. Again, because the sample

size N required to ensure with high confidence that the solutions to (CC-SAA) satisfy (CC) is

prohibitively high, we follow a similar method to that described in Section 2.2, of drawing M

Monte Carlo samples Ω1, . . . ,ΩM of size N , and checking if the candidate solutions x̂m satisfy

W (x̂m,a(ωn)) ≥ γa(ωn) for scenarios {ωn}(1−ε0)·N ′
n=1 of a larger, independent Monte Carlo sample

of size N ′ > N , where

W (x,a(ω)) = max
yω,zω,qω

∑
v∈V

∑
jt∈NP

qvjtω

s.t. (2)–(9).

Here, we check to see if
∑

v∈V
∑

jt∈NP
qvjtω ≥ γa(ω) for the maximum such value, under the

constraints (2)–(9). For the given solution of volunteer vehicles x, the constraint (CC) is satisfied

if and only if W (x̂m,a(ωn)) ≥ γa(ωn) for (1− ε0) ·N ′ scenarios {ωn}(1−ε0)·N ′
n=1 . We demonstrate the

computational efficacy of the SAA-based chance-constrained model later in Section 4.5
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3 Solution Algorithm

We demonstrate the computational performance of directly solving (SP-SAA) and (CC-SAA) using

off-the-shelf optimization solvers in Section 4, showing that reliable solutions can be found within

an hour for test instances with up to 16 locations and 4 time periods, with |Ωm| = 100 for a

relaxation of (SP-SAA) and |Ωm| = 25 or 50 for (CC-SAA), for samples m = 1, . . . ,M . On

the other hand, in this problem, volunteer drivers are low-cost and fairly easy to recruit, which

implies quick, conservative solutions could also provide useful information to decision makers. For

larger problem sizes that cannot be accommodated by (SP-SAA) or (CC-SAA), heuristic-based

approaches can be especially helpful for improving evacuation efficiency and also planning under

uncertainty.

For this reason, we develop an algorithm that constructs a single deterministic worst-case sce-

nario from all scenarios in a Monte Carlo sample Ωm to find a feasible solution x̂m to (SP-SAA),

m = 1, . . . ,M . Later, we measure the performance of this approach using second-stage function

Q(x̂m,a(ω)), described in Section 2.2, checking the total distance traveled and evacuees served,

and whether inequality
∑

v∈V
∑

jt∈N qvjtω ≥ γ
∑

jt∈N a
t
j(ω) is satisfied, for each scenario ω ∈ Ω0,

an independent Monte Carlo sample of size N ′ > N = |Ωm|. In this way, we can compare the

performance of the mean distance traveled and mean evacuees served for the (SP-SAA)-feasible

solution x̂m given by the algorithm, while checking to see if (CC) is satisfied by the risk-neutral

formulation. Because we use Q(x̂m,a(ω)) to compare candidate solutions x̂m, for m = 1, . . . , 5, the

best candidate solution is the one that minimizes the objective of (SP-SAA).

The nature of ridesharing suggests that many practical applications of these models would have

a particular network structure. Because the pickup nodes N ′P in the spatial network L represent

zones of the planning region, it is likely that there is overlap in the physical locations represented

by a pickup node and a vehicle origin node. Volunteers in the ridesharing program will likely be

recruited from the community evacuating, and emergency vehicles will likely be located within the

community as well. Thus, one mild assumption that we can apply is that each vehicle v ∈ V has

an origin node ov such that distance dovi = 0 for exactly one i ∈ N ′P . We say vehicle v originates

in zone i, and denote the set of volunteer vehicles that originate in zone i as Si.

Under this assumption, we provide the details of a greedy heuristic in Algorithm 1 as follows. It

constructs a worst-case spatial scenario ωspatial from a Monte Carlo sample Ωm of random variable

ω̃, defining spatial demand at location i ∈ N ′P in ωspatial to be aimax, the largest total number of

evacuees that arrive at location i over all scenarios ω ∈ Ωm. Then, we find a set of vehicles with

the capacity to accommodate all demand in ωspatial. For simplicity of language, for the remainder

of Section 3, “demand” and “evacuees” refer to the demand in this worst-case scenario.

We assume that in the worst-case scenario, the emergency vehicles will be filled to their full

capacity. For this reason, the overall goal of Algorithm 1 is to hire enough volunteer vehicles to

satisfy the difference between the demand and the total capacity for all emergency vehicles. The

algorithm first matches demand and volunteer vehicles located at the same node i ∈ N ′P , hiring and

completely filling volunteer vehicles s ∈ Si one at a time, in order from the largest to the smallest

11



vehicle capacity Qs for s ∈ Si. It continues to hire volunteer vehicles and fill them with demand

at node i ∈ N ′P until the location runs out of volunteer vehicles or people who need rides, or until

a global condition is met, i.e., the remaining unassigned demand from all locations is less than or

equal to total capacity of the emergency vehicles.

To do this, a set of empty volunteer vehicles, Ei, is initialized as Si. Each volunteer vehicle s

has a remaining capacity variable Qrem
s , which is initialized as its capacity Qs. When a volunteer

vehicle s ∈ Ei is hired, it is removed from Ei and added to set SH . Once the vehicle is hired, it

is filled to capacity, or with remaining unassigned individuals at the node, whichever is smaller.

At this point, we simultaneously decrease Qrem
s and airem, a variable which represents remaining

unassigned demand at location i ∈ N ′P , accordingly.

Once we have matched as many people and seats as possible at each location i ∈ N ′P , we test to

see if the total remaining demand for all locations i ∈ N ′P , denoted arem, exceeds the total capacity

for all emergency vehicles r ∈ R. If so, we stop. Otherwise, we continue to fill and hire volunteer

vehicles until remaining demand arem falls to the level of the total capacity of the emergency vehicles

or we run out of empty volunteer vehicles in
⋃
i∈N ′P

Ei and remaining capacity in hired vehicles.

To do this, Algorithm 1 repeatedly chooses the pickup location i∗ with the greatest remaining

demand, i∗ = arg maxi∈N ′P a
i
rem. If there is a volunteer vehicle s in the set of hired cars SH such

that remaining capacity Qrem
s > 0, the algorithm identifies the closest such vehicle to i∗, and

fills the vehicle as much as possible. Otherwise, the closest empty volunteer vehicle, in the set

Ej ⊆
⋃
i∈N ′P

Ei, to i∗ is added to SH and removed from Ej , and filled as much as possible.

In Step 1, we construct a worst case spatial demand scenario, by examining total demand over

periods 1, . . . , T at pickup location i ∈ N ′P and maximizing this value over all scenarios ω ∈ Ωm.

The sample size |Ωm| only affects this first step – thus, Algorithm 1 can be used with large Monte

Carlo samples.

We initialize a set of variables in Steps 2–3. The cars that have been assigned at least one

evacuee are contained in the set SH , and thus, SH is empty at first. Steps 4–14 hire the initial set

of volunteer vehicles, matching demand and vehicles by location. Step 5 initializes a set of cars

that have not yet been assigned evacuees, Ei, as Si, the set of volunteer vehicles that originate at i.

Then the condition in Step 6 checks to see if the total remaining demand is greater than the sum of

the capacities of the emergency vehicles and the remaining capacity of the volunteer vehicles that

have already been hired. The while loop also checks to see if there is still remaining demand in the

location and cars to be hired in the location. If these conditions are met, in Step 7, we hire the

volunteer vehicle at location i with greatest capacity. Then, in Step 8, we check to see if demand

left at the location is at least as large as the capacity of the volunteer vehicle we have hired. In

this case, in Step 9, we fill the volunteer vehicle and decrease the remaining demand. Otherwise,

remaining capacity in the volunteer vehicle exceeds demand and we have seats left in the vehicle,

as seen in Step 11. The for loop can be executed in a particular order based on the specifics of the

instance. For example, if a network has a single emergency origin location, pickup nodes can be

chosen in order from furthest to closest to the emergency origin node, so that if the total remaining

demand condition in Step 6 is met quickly, the areas furthest from the emergency vehicles will be
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Algorithm 1 A greedy-based heuristic for obtaining shared-mobility-based evacuation plans.

1: Define aimax := maxω∈Ωm{
∑T

t=1 a
t
i(ω)}, ∀ i ∈ N ′P .

2: Initialize airem := aimax, ∀ i ∈ N ′P , and arem :=
∑

i∈N ′P
airem.

3: Initialize SH := ∅ and Qrem
s := Qs, ∀ s ∈ V.

4: for i ∈ N ′P do
5: Initialize Ei := Si.
6: while arem −

∑
s∈SH

Qrem
s >

∑
r∈RQr and airem > 0 and |Ei| > 0 do

7: Choose s ∈ Ei with maximum Qrem
s . Add s to SH and delete s from Ei.

8: if Qrem
s ≤ airem then

9: Update Qrem
s := 0, airem := airem −Qrem

s , and arem := arem −Qrem
s .

10: else
11: Update Qrem

s := Qrem
s − airem, airem := 0, and arem := arem − airem.

12: end if
13: end while
14: end for
15: while arem −

∑
s∈SH

Qrem
s >

∑
r∈RQr and (

∑
i∈N ′P

|Ei| > 0 or
∑

s∈SH
Qrem
s > 0) do

16: Choose pickup location i∗ with greatest remaining demand ai
∗

rem, over nodes in N ′P .
17: if

∑
s∈SH

Qrem
s > 0 then

18: Find node i ∈ N ′P closest to i∗ such that Qrem
s > 0 for s ∈ Si. Repeat Steps 8-12.

19: else
20: Find node i ∈ N ′P closest to i∗ such that |Ei| > 0. Repeat Steps 7-12.
21: end if
22: end while
23: return SH .
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assigned volunteer drivers.

Then, Steps 15–22 fill all remaining capacity in the hired cars, and add more cars if necessary.

The loop runs as long as total remaining demand exceeds the total emergency car capacity and

either some car has not been hired or some capacity remains in a hired car. In Step 16, we choose

the location with the most demand that has not yet been assigned a volunteer vehicle. Then, Step

17 checks to see if any of the hired volunteer vehicles are partially full. If so, in Step 18, demand

at location i∗ is fulfilled by the closest volunteer vehicle. Note that there is at most one hired

volunteer vehicle s at location i such that Qrem
s > 0 at any given time. If all hired cars are full, the

closest available car to location i∗ is hired and filled in Step 20.

4 Computational Studies

To test the efficacy of our models and Algorithm 1, we study a number of test cases based on

the greater Charleston area, a region located on the Atlantic coast that experienced a mandatory

evacuation order in 2018 for Hurricane Florence (see Manno, 2018). We begin by discussing the

generation of demand scenarios to form samples needed by the SAA approach in Section 4.1. We

describe parameter settings in Section 4.2 and experimental design and computer characteristics

in Section 4.3. Then, we discuss benchmark tests of solving the expectation-based stochastic opti-

mization model in Section 4.4, followed by tests and results of the chance-constrained programming

formulation and Algorithm 1 in Section 4.5.

4.1 Scenario generation method overview

In the literature, random evacuation scenarios are generated in a variety of ways. Legg et al. (2010)

represent regional hurricane hazard in North Carolina with a set of 100 hurricane scenarios (with 33

involving evacuation) constructed using HAZUS-MH probabilistic analysis (FEMA, 2006). Li et al.

(2012) use these 33 scenarios to study a shelter location model in North Carolina, using estimates

of geographical distribution and volume of evacuees and individuals requiring shelter determined by

HAZUS-MH software. They also describe temporal distribution of evacuation using the Rayleigh

distribution, which was used by Tweedie et al. (1986) to describe estimates for evacuation times

given by Oklahoma Civil Defense Office experts. Ben-Tal et al. (2011), who study a dynamic traffic

assignment problem in emergency evacution, assume the temporal distribution of evacuation is an

S-shaped curve and utilize a mathematical formulation given by Radwan et al. (1985).

To generate demand scenarios in different samples, we construct a set of five evacuation net-

works, based on Charleston County, South Carolina. We use hourly traffic counts from a continuous

count station on highway I-26 in Charleston on the day the 2018 Hurricane Florence evacuation

order took effect, to estimate of the temporal distribution of demand. Because the populations who

can request service from our program are distinct from populations who are most likely to provide

service, we use census data on the demographics of tracts in Charleston County to estimate the

geographical distribution of both evacuees requesting service and volunteers available.
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4.2 Parameter settings

4.2.1 Building spatiotemporal networks

To construct a spatial network, census tracts in Charleston County are aggregated to obtain 48

spatial zones – each represented as a node in the network. Distances and travel times between

nodes are determined using the centers of the spatial zones. The coordinates of each geographic

center are first found using ArcGIS Pro, and then utilized in Google Distance API to determine

dij and tij for each i, j ∈ N ′. This spatial network is separated into five subnetworks, ranging in

node size from 4 to 16, based on natural geographical boundaries, as depicted in Figure 2a.

(a) Location of traffic count Site 31 and de-
marcation of regions in Charleston County.

(b) Total expected demand for ridesharing
services in each region.

Figure 2: Illustration of regions and demand hot zones in Charleston County.

Temporal evacuation patterns are estimated using hourly traffic count data from Site 31, a

Continuous Count Station on Highway I-26 in Charleston, on September 11, 2018, from 6:01 am-

1:00 pm (South Carolina Department of Transportation, 2018). The location of Site 31 also can be

seen in Figure 2a. The governor of South Carolina had issued a mandatory evacuation order for

coastal areas by noon of that day (Manno, 2018). This seven-hour time horizon is divided into 28

periods of 15 minutes each. Because travel time tij is measured in seconds, the length of an interval

(t, t+ 1) for t = 1, . . . , 27 is 900.

A spatiotemporal network (N ,A) is constructed from each regional subnetwork (N ′,A′), with

origin node o0
i for each spatial zone i ∈ N ′ and origin node o0

j∗ for a centrally located spatial zone.

Here, we assume that for each volunteer s, we have o0
s := o0

i , the zone i where the volunteer lives.

For each emergency vehicle r, we have o0
r := o0

j∗ , a depot where all emergency vehicles originate.

In this way, regardless of the number of vehicles utilized in a particular test, the structure of the

spatiotemporal network remains the same. In addition to origin nodes, the spatiotemporal network

includes pickup nodes it for i ∈ N ′, t = 1, . . . , T and highway node hT+1. An arc is drawn from

it to jt
′

if t′ − t =
⌈ tij

900

⌉
. For every spatial zone, a state-determined evacuation route run through

either the zone or an adjacent zone. Thus, the highway is reachable in one period for every pickup

node.
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4.2.2 Demand generation and samples

Demand at each spatiotemporal node is assumed to be Normally distributed with mean µi,t and

variance σ2
i,t, independent of demand at other times or locations. The mean µi,t is determined by

first estimating total demand at location i ∈ N ′P over all periods, denoted µi, using data on the

median income and number of elderly people living in census tracts located in each node (United

States Census Bureau, 2018a,b). The mean value of elderly people (65+) assumed to take advantage

of our service is determined by taking a percentage of the total elderly population in that census

tract. The percentage is determined by the quartile of the median income for people 65 years and

older in that census tract, as seen in Table 1. Here, median income serves as a proxy for vehicle

ownership. We then determine µi for each zone i by adding the mean value for each tract in the

aggregated zone i, and round to the nearest integer. In the Appendix, we visualize the spatial

distribution of µi, i ∈ N ′ for each of the five regions in Figures 7a, 7c, 8a, 8c, and 9a.

Table 1: Percentage of 65+ population requesting ridesharing-based evacuation service in census
tract

Quartile Median Income Range Percentage

1 [$16,726, $34.235.50] 5%
2 ($34.235.50, $45,600] 2.5%
3 ($45,600, $62,106.50] 1.25%
4 ($62,106.50, $146,477] .625%

We assume that the same temporal evacuation pattern holds for each location. Using the

aforementioned traffic count data, we estimate the percentage of overall evacuees who leave in hour

h, denoted ph, where
∑7

h=1 ph = 1. Site 31 is chosen because the traffic count pattern clearly

changed the day of the evacuation deadline. Figure 3 shows the similar traffic patterns present on

normal work days – Tuesday, September 4 to Friday, September 7, along with Monday, September

10 – and present on weekend/holiday days – the Saturdays, Sundays, and Labor Day Monday.

Then, a markedly different pattern appears Tuesday, September 11. Residents were ordered to

evacuate by noon that day (Manno, 2018).

Figure 3: Hourly traffic counts for September 1 to September 13, 2018 on Highway I-26 in Charleston
County.

In addition, the data shows a clear pattern of greater westbound traffic the day of the evacuation
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deadline, in the direction away from the coast, which suggests that many of those passing by this

traffic count site were evacuees. While the ratio of total westbound to total eastbound traffic on

Tuesday, September 4 is .98, meaning traffic is roughly evenly split by east/west, the ratio for

westbound to eastbound traffic on Tuesday, September 11 is 2.33.

There is an overall reduction in traffic from September 4 to September 11 with about 20% of

the total eastbound traffic and about 50% of the total westbound traffic. Because those traveling in

the eastern direction are most likely not immediately evacuating, we use these travelers as a proxy

for the proportion of people in the westbound direction who are not evacuees.

For each hour h, we calculate the number of evacuees with the following formula:

W h
11 −W h

4 ×
Eh11

Eh4
,

where W h
11 (or Eh11) represents the westbound (or eastbound, respectively) traffic count at hour

h on September 11, 2018, and W h
4 (or Eh4 ) represents the westbound (or eastbound, respectively)

traffic count at hour h on September 4, 2018, a normal workday. Here, W h
4 estimates the number

of westbound commuters on a normal Tuesday, and
Eh

11

Eh
4

estimates the proportion of Tuesday west-

bound commuters who went to work the morning of September 11, 2018 rather than evacuating

at that time. The idea is that the eastbound and westbound directions each have regular morning

commuters (i.e., two distinct groups that travel in the same direction in the morning and at night).

We assume these groups are similar in their evacuation timing decisions. Thus, the proportion of

westbound travelers who have decided not to evacuate and are carrying about their normal business

on September 11, 2018 should be a similar proportion to the eastbound travelers, all of whom we

assume are not evacuating, since they travel toward the coast.

The hours of 6:01 am to 1 pm are found to have the highest volume of evacuees. The percentage

of evacuees in each hour of the roughly 2,300 estimated evacuees over the 7-hour period is used to

estimate ph. The parameters ph that we use are presented in Table 2. For period t in hour h, the

mean µi,t is determined by multiplying ph
4 µi. The variance σ2

i,t is assumed to be .3µi,t.

Table 2: Temporal distribution of evacuees at Site 31 during different hours on September 11, 2018.

Hour Percentage of Evacuees

6:01-7:00 am 12%
7:01-8:00 am 18%
8:01-9:00 am 14.5%
9:01-10:00 am 14.5%
10:01-11:00 am 15.5%

11:01 am-12:00 pm 13%
12:01-1:00 pm 12.5%

We further use a rolling horizon approach, performing all the tests for each hour separately.

Since Hours 3 and 4 have the same demand distributions, we test Hours 1, 2, 3, 5, 6, and 7, with

T = 4. For each region and hour, we perform Monte Carlo sampling, generating 5 samples of 100

scenarios each following the aforementioned distribution. Denote these samples ΩN
′h

m , m = 1, . . . , 5.

For each scenario ω ∈ ΩN
′h

m and spatiotemporal node it ∈ NP , the number of arrivals is ati(ω) =
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max{[Xi,t], 0}, where Xi,t is a random variable with distribution N(µi,t, σ
2
i,t). An independent

sample ΩN
′h of 1000 scenarios is generated in the same manner for out-of-sample testing. For ease

of notation, we denote the total expected demand over an hour h in all zones in network N ′ as

µN
′

h , where µN
′

h =
∑

i∈N ′
∑4h

t=4(h−1)+1 µi,t.

We assume that about 60% of demand will be satisfied by volunteer cars, and 40% by emergency

cars. To determine the number of vehicles available in hour h, we use the following formula:

|S| = .6×∑i∈N ′
∑4h

t=4(h−1)+1
µi,t
Qs
× 2 and |R| = .4×∑i∈N ′

∑4h
t=4(h−1)+1

µi,t
Qr
× 2. Here, Qv is fixed

for v ∈ R and v ∈ S, and 2 is a factor to increase the likelihood that the pool of available cars can

handle demand scenarios that arise. The capacities used for this study are Qs = 3 and Qr = 7.

4.2.3 Settings of supply (volunteers)

The spatial distribution of volunteer cars is estimated using data on the population size of in-

dividuals ages 25-64 and median income in the census tracts at particular nodes (United States

Census Bureau, 2018a,b). Higher median income in a particular census tract is assumed to increase

likelihood of vehicle ownership, and thus, ability to act as a volunteer driver. Each origin node, at

location i, is assigned an estimated proportion of volunteer drivers, vi. The number of volunteer

cars at an origin node at location i is determined by calculating [vi · |S|], the nearest integer. Any

vehicles not assigned by this process are randomly assigned to an origin node. The spatial distri-

bution of volunteers on average can be seen for each of the five networks in Figures 7b, 7d, 8b, 8d,

and 9b in Appendix.

4.3 Numerical setup and experimental design

The SP-SAA model and Algorithm 1 are applied to all thirty instances (consisting of five regions

and six periods). Algorithm 1 was implemented in Python 3.6 and provided quick, conservative

solutions, while the SP-SAA model was implemented in Gurobi 8.1 using multiple threads and

provided a benchmark for all spatiotemporal networks. From these thirty SP-SAA test cases, we

chose the nine worst-performing instances to test the chance-constrained formulation using Gurobi

8.1. All the tests were performed on a computer with an Intel Core E5-2630 v4 CPU 2.20 GHz and

128 GB of RAM.

For the expectation-based model, we assume that cost function f(x) = 0, because the cost of

volunteer vehicles and emergency vehicles utilized is constrained by (8). For the chance-constrained

model, we utilize a slightly-adapted formulation from (CC-SAA) to directly examine the tradeoff

between cost of volunteer vehicles recruited and probability of full evacuation, given by

min
x

∑
s∈S

αsxs (CC-SAA2)

s.t. (2)–(11),∑
v∈V

∑
(it,jt′ )∈A

yvitjt′ωdij ≤ D, ω ∈ Ω. (12)

Here, the objective is to minimize the cost of volunteer vehicles hired. We move the objective
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to minimize expected total distance traveled by all vehicles to constraint (12), putting an upper

bound on the distance traveled, D. Otherwise, the constraints of (CC-SAA2) remain the same as

(CC-SAA). We slightly amend the out-of-sample testing function from W (x,a(ω)) to

W ′(x,a(ω)) = max
yω,zω,qω

∑
v∈V

∑
jt∈NP

qvjtω

s.t. (2)–(9), (12).

For each instance tested for each of the three formulations, the five Monte Carlo samples ΩN
′h

1 , . . . ,ΩN
′h

5

are used to obtain 5 candidate solutions x̂1, . . . , x̂5 with corresponding optimal objective values

w1, . . . , w5. To perform the SP-SAA tests on regional subnetworks with up to 16 nodes with an

hour time limit, we relax the second stage decision variables, yω, qω, and zω, keeping only the first

stage decision variables x integer. Because wi ≤ ui, the optimal solution for the non-relaxed model,

the average w = 1
5

∑5
i=1wi ≤ 1

5

∑5
i=1 ui = u. Recall that E[u] ≤ u∗, the optimal value for the prob-

lem at hand (Mak et al., 1999), which implies w also provides a lower bound for u∗, for m = 1, . . . , 5.

An upper bound for u∗ is determined by û = min1≤m≤5

{
1

1000

∑
ω∈ΩN′hm

Q(x̂m, a(ω))
}
.

Relaxing variables in the chance-constrained formulation is not as effective, and thus, we solve

the full mixed-integer program (CC-SAA2) using Gurobi. For this reason, we decrease the size of

|ΩN ′hm | from 100 to 25 or 50 for m = 1, . . . , 5 in these tests to decrease computational time. For the

largest network, we also set the MIP Focus parameter to 1, to focus on finding feasible solutions.

We set the upper bound on distance, D = 1000 km, a loose bound for all networks tested.

To compare the computational time and effectiveness of Algorithm 1 directly with the stochas-

tic program, we use the same five samples with 100 scenarios and out-of-sample test with 1000

scenarios. Because these tests perform well, we do not increase the in-sample scenario size, though

as noted in Section 3, in-sample scenario size only affects the initialization of the algorithm which

for a fixed network is polynomial in |ΩN ′hm |.

4.4 Benchmark tests

We use Model (SP-SAA) as a benchmark for all thirty instances, and present its in-sample com-

putational time (in second) and solution performance in out-of-sample tests for each of the five

regions in Table 3.

For each of the four smaller regions, with pickup locations ranging from 4 to 10, the computa-

tional time for each period is less than one hour. For region D, the region with 16 pickup locations,

Hours 2, 3, and 5 had samples that timed out, though the mixed-integer program optimality gap

is better than .04% in each of these instances. The SAA optimality gap, calculated by taking the

difference û − w and dividing by |w|, is less than .03 across instances. For all regions and time

periods studied, the average percent evacuated across the 1,000 scenarios in the out-of-sample test

is at least 97%. In addition, for 21 of the 30 instances, the probability of a complete evacuation

is more than .98, according to the out-of-sample empirical distribution. Notably, Region B, with

10 nodes, had a complete evacuation for every out-of-sample scenario in each of the time periods

studied. This implies that for 21 of 30 instances of the SP-SAA test, the constraint (CC) holds for
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Table 3: In-sample runtime and out-of-sample solution performance of (SP-SAA) for all regions

Region |NP | h µN
′

h

In-sample runtime (s) Out-of-sample % evac.
Prob. of complete evac.

Mean Max Mean Min

A 4 1 11.28 0.9 1.11 100 100 1
2 16.92 1.97 2.39 99.996 95.83 .999
3 13.63 1.68 1.83 100 100 1
5 14.57 1.98 2.42 100 100 1
6 12.22 0.86 1 99.97 88.89 .995
7 11.75 0.6 0.7 99.99 88.89 .999

B 10 1 34.92 556.77 1049.45 100 100 1
2 52.38 738.69 2181.39 100 100 1
3 42.195 140.38 209.04 100 100 1
5 45.105 645.98 1518.33 100 100 1
6 37.83 375.62 1171.37 100 100 1
7 36.375 790.43 1274.7 100 100 1

C 9 1 21.48 22.47 31.98 99.98 95.45 .995
2 32.22 56.77 157.83 100 96.77 .999
3 25.955 30.3 54.12 99.56 95.24 .889
5 27.745 38.97 57 99.99 96.43 .998
6 23.27 34.15 49.96 97.91 90 .565
7 22.375 26.9 32.43 98.09 90.48 .605

D 16 1 51.12 1935.6 2854.17 99.3 96.08 67.9
2 76.68 2424.03* .02%** 100 100 1
3 61.77 2705.75* .04%** 100 100 1
5 66.03 1977.49* .03%** 100 100 1
6 55.38 2423.37 3129.6 99.73 98.08 .835
7 53.25 1912.97 2511.02 99.17 96.23 .621

E 9 1 21.48 24.53 33.69 99.76 94.74 .947
2 32.22 60.46 89.65 99.99 96.77 .998
3 25.955 52.69 58.23 99.99 96 .997
5 27.745 62.25 101.4 99.93 92.59 .982
6 23.27 39.01 51.23 99.4 94.44 .86
7 22.375 35.35 48.82 97.35 89.47 .495

* indicates that the average is taken among all samples that do not time out.
** indicates that the sample times out, and an optimality gap is given.
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γ = 1 and ε0 = .02, using the empirical distribution of the out-of-sample test. In addition, for all

but one instance, the constraint (CC) holds for γ = .95 and ε0 = .06.

Table 4: In-sample runtime and out-of-sample solution performance of (SP-SAA) for Region C in
Hour 3.

Second-stage
In-sample runtime (s) Out-of-sample % evac.

Prob. of complete evac.
Max Mean Min Mean

Relaxed 54.12 30.3 95.23 99.56 .889
Integer Program 0.18%* 0.17%* 100 100 1

* indicates that the sample times out, and an optimality gap is given.

Moreover, the effect of relaxing the second-stage problem when finding candidate solutions can

be seen in some of the larger instances. For example, using the best candidate solution for Region

C at Hour 3, the out-of-sample probability of complete evacuation is .889. At the same time, only

3 of the 10 available cars are hired in the first stage. This candidate solution is clearly suboptimal.

Table 4 compares these results with SAA without relaxing the second stage, using the same 5

samples and out-of-sample testing set Ω. Without relaxing the second stage, we find a candidate

solution that gives complete evacuation in all out-of-sample scenarios. However, each sample in

this trial times out at one hour and we instead present the optimality gaps. Region C only has 9

nodes, and takes at most a minute for each sample with relaxed second-stage variables. Thus, for

larger instances, like region D, which already time out for some samples, relaxing the second stage

is necessary.

We also explain why some instances perform better in the (SP-SAA) relaxation, in terms of

the probability of complete evacuation. Regions C, D, and E all have three periods in which the

probability of complete evacuation is less than .95 (see Table 3). In particular, Region C, Hour

6, has out-of-sample probability of full evacuation of .565 and Region E, Hour 7, .495. Each of

these regions has 9 pickup locations. On the other hand, Region B has 10 pickup locations, yet has

complete evacuation in all out-of-sample tests. One possible explanation is the ratio of µN
′

h , total

expected demand in period h for all locations in network N ′ and t = 4(h−1)+1, . . . , 4h, to number

of pickup locations. As total expected demand µN
′

h increases, number of hired volunteer vehicles

increases (see Figure 6 in Section 4.5), and in turn, the set of available volunteer and emergency

vehicles tends to be larger. This implies the ratio of available vehicles to pickup locations tends to

increase with the ratio of total expected demand µN
′

h to number of pickup locations.

The vehicle to pickup location ratio can have an important effect. If a different evacuee arrives

at every pickup location during the last epoch, t = 4h, and this ratio is less than 1, then a complete

evacuation does not happen. Figure 4 illustrates how out-of-sample probability of complete evacu-

ation is steeply concave in the ratio of vehicles to pickup locations. Regions A and B are excluded

because the range of the probability is small, between .99 and 1.

The effect of using the rolling horizon approach on the quality of solutions is tested on the

smallest network, Region A. As a baseline comparison, we perform SAA with the parameters

described in Section 4.2, on each hour individually. To isolate the effect of the rolling horizon

approach, in this case, we utilize independent Monte Carlo samples Ωh
m, m = 1, . . . , 5, for all
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Figure 4: Comparison of out-of-sample probability of complete evacuation and the ratio of available
vehicles to number of pickup locations in Regions C, D, E.

seven hours, including both Hour 3 and Hour 4, which have the same demand distribution. Then,

we merge the scenarios from Monte Carlo sample m = 1, . . . , 5 for Region A and each hour,

Ωh
m, h = 1, . . . , 7, to create set Ω′m. For 1 ≤ j ≤ 1000, scenario ωj ∈ Ω′m is merged as follows:

ωj = (ω1
j , . . . , ω

7
j ), such that ωhj is the jth scenario from sample Ωh

m. We perform SAA on on set

Ω′m with T = 28.

Table 5: Evacuees served by rolling-horizon approach compared with SAA for Region A.

Approach
In-sample runtime (s)

Out-of-sample % evac. (minimum) Prob of complete evac.
Max Mean

Rolling Horizon 11.70 10.22 98.02 .993
T = 28 (SAA) N/A** 2160.48* 98.11 .994

*: the average is taken among all samples that do not time out; **: the sample times out.

Note in Table 5, the evacuation rates are comparable in the rolling horizon and SAA approaches

(with T = 28). Across 1000 scenarios in the out-of-sample test, the minimum percentage evacuated

is 98.02% and 98.11% for the rolling horizon and SAA approaches, respectively. The distance

traveled and number of volunteer cars hired, described in Table 6, are much higher, however.

Table 6: Travel distance and hired cars by rolling-horizon approach compared with SAA for Region
A.

Approach
In-sample runtime (s) Distance traveled

# of hired cars from S
Max Mean Max Mean

Rolling Horizon 11.7 10.22 918.9 720.36 19
T = 28 (SAA) N/A** 2160.48* 792.7 329.14 9

*: the average is taken among all samples that do not time out; **: the sample times out.

Figure 5 depicts the effect of each individual volunteer vehicle and emergency vehicle on the

ability to serve evacuees for Region D at Hour 2. This instance involves the largest network with

the highest expected demand over the period, for all pickup nodes. All scenarios are completely

evacuated in the out-of-sample tests for a candidate solution with 9 volunteer cars dispersed amongst

6 pickup locations. We randomly remove a car one at a time from these 9 volunteer cars to create

candidate solutions with 3, 4, 5, 6, 7, and 8 volunteer cars. For the same instance, we fix the 9
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volunteer car solution, and reduce the emergency cars available to 5, 6, 7, and 8. The average percent

evacuated and out-of-sample probability of full evacuation are compared in Figure 5. As can be

seen in the left figure, average percent evacuated is concave in both volunteer and emergency cars,

with decreasing emergency cars and their greater capacity having a larger effect on average percent

evacuated. In the right figure, we can see that out-of-sample probability of complete evacuation as

a function of number of vehicles has an S-shaped curve for both emergency and volunteer vehicles.

Figure 5: Comparison of out-of-sample mean percent evacuated and probability of full evacuation
for different sizes of hired cars S and emergency cars R available for Region D, Hour 2.

4.5 Chance-constrained formulation and Algorithm 1 tests

Using (SP-SAA) as a benchmark, we perform a number of tests with the chance-constrained formu-

lation and Algorithm 1. Because the main advantage of (CC-SAA2) is ensuring reliable solutions,

and (SP-SAA) performs very reliably in 21 of 30 test instances, producing solutions that ensure full

evacuation with probability at least .98, we only perform (CC-SAA2) on the nine worst-performing

instances. These test cases ensure full evacuation with probability less than .95. Correspondingly,

the goal of the chance-constrained formulation tests is to produce solutions that satisfy the prob-

abilistic constraint (CC) with γ = 1 and ε0 = .05, with respect to the empirical out-of-sample

probability distribution.

On the other hand, the key advantage of Algorithm 1 is computational speed. The thirty

(SP-SAA) benchmarks range in mean runtime from .6 to 2705.75 seconds, and some samples time

out. For this reason, we are interested in comparing performance and computational time for all

thirty instances.

It is important to keep in mind that the objectives of (SP-SAA) and (CC-SAA2) differ. While

the objective of (SP-SAA) is to hire a set of volunteer vehicles that maximizes expected demand

served and minimizes expected distance traveled, (CC-SAA2) aims to minimize the cost of hired

volunteer vehicles, subject to a probabilistic constraint, which ensures complete evacuation with

a particular probability, and feasibility constraints, which include an upper bound on distance

traveled for each scenario. Thus, by design, (SP-SAA) tends to favor smaller distance traveled and

(CC-SAA2) tends to favor smaller sets of volunteer cars hired.

Both formulations utilize the sample average approximation technique, and in both cases, we uti-
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lize samples ΩN
′h

1 , . . . ,ΩN
′h

5 to find candidate solutions x̂1, . . . , x̂5. We then perform out-of-sample

tests with ΩN
′h to find the best candidate solution. How we rank these candidate solutions depends

on the formulation, however. Corresponding to the objectives of (SP-SAA) and (CC-SAA2), the

best candidate solution is defined as follows:

x∗ =


argmin

x̂m:m=1,...,5

{
1

1000

∑
ω∈ΩN′hm

Q(x̂m,a(ω))
}
, for (SP-SAA),

argmin
x̂m:m=1,...,5

{
1

1000

∑
ω∈ΩN′hm

αTx̂m : PΩN′hm

(
W ′(x̂m,a(ω)) = a(ω)

)
> .95

}
, for (CC-SAA2),

where PΩN′hm
represents the probability with respect to the out-of-sample distribution and α = [αs :

s ∈ S]T. Note that Algorithm 1 provides a quick, greedy solution, without regard to a particular

cost objective. Thus, it would be reasonable to compare its performance to either (SP-SAA)

or (CC-SAA2) directly, using the same samples ΩN
′h

1 , . . . ,ΩN
′h

5 to produce candidate solutions,

and then ranking those candidate solutions using either metric for x∗. Because (SP-SAA) is the

benchmark we use, and for which we performe tests for all thirty instances, we use the (SP-SAA)

metric to determine x∗ for the tests of Algorithm 1.

To decrease computational time, for the chance-constrained formulation, we relax a few param-

eters. For Region C and E, containing 9 pickup locations each, we relax ε = .05 to .1. We utilize

the first 50 scenarios in each of the five Monte Carlo samples generated for the (SP-SAA) tests.

For Region D, with 16 pickup locations, we let ε be quite large, .7, and utilize the first 25 scenarios.

Because we require γ = 1, the intuition is that a solution that satisfies complete evacuation for 90%

(or 30%, respectively) of scenarios would likely do well in many scenarios. Ultimately, using these

parameters, we are able to ensure complete evacuation with probability of at least .965 for all nine

instances.

Table 7 compares the in-sample runtime and out-of-sample successful evacuation rates given

by optimal solutions of the stochastic program, chance-constrained formulation, and Algorithm

1. For all nine instances, (CC-SAA2) and Algorithm 1 ensure full evacuation with out-of-sample

probability greater than .965. Because it is not possible to relax any integer variables in the chance-

constrained formulation, it takes the longest to solve, timing out in at least one sample for all but

one instance – Region C, Hour 7. Algorithm 1, on the other hand, has a mean runtime of less than

a tenth of a second for all nine test cases.

Table 8 compares the costs associated with the solutions of the nine instances given by different

methods. Algorithm 1 requires more vehicles than the chance-constrained formulation, which in

turn requires more vehicles than the stochastic program. As noted earlier, changing the metric for

the heuristic solution x∗ could potentially decrease the number of vehicles hired, if this objective

is of interest to decision makers.

The mean distance traveled for the solution of Algorithm 1 is less than the mean distance

traveled for the (SP-SAA) solution in 8 of 9 instances, and within a kilometer for the last instance.

This makes sense, as there are more cars in Algorithm 1’s solutions, meaning that vehicles are

more likely able to stay in their origin zone. We find that indeed for all 9 instances, the average
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Table 7: In-sample runtime and out-of-sample evacuation performance by SP-SAA, CC-SAA2, and
Algorithm 1.

N ′ h
In-sample runtime (s) (mean) Prob. of complete evac.

SP-SAA CC-SAA Algorithm 1 SP-SAA CC-SAA2 Algorithm 1

C 3 30.3 76.67%* *** 0.889 1 1
C 6 34.15 1823.93** *** 0.565 0.965 1
C 7 26.9 2366.51 *** 0.605 0.981 1
D 1 1935.6 100%*† *** 0.679 1 1
D 6 2423.37 100%*† *** 0.835 1 1
D 7 1912.97 100%*† *** 0.621 1 1
E 1 24.53 2355.04** *** 0.947 1 1
E 6 39.01 2651.77** *** 0.86 1 1
E 7 35.35 2418.25** .01 0.495 1 1

*: optimality gap; **: average taken among samples that do not time out;
***:<.01 seconds; †: MIP finds feasible solutions.

Table 8: Out-of-sample travel distance and # of cars hired by SP-SAA, CC-SAA2, and Algorithm
1.

N ′ h
# of cars hired Distance traveled (km) (mean)

SP-SAA CC-SAA Algorithm 1 SP-SAA CC-SAA Algorithm 1

C 3 3 4 6 152.6 245.15 142.83
C 6 2 3 4 147.09 196.95 141.12
C 7 2 3 4 142.79 193.21 137.30
D 1 8 10 11 289.36 516.53 282.89
D 6 9 11 13 304.56 533.21 288.00
D 7 8 11 13 293.77 529.75 274.52
E 1 4 5 5 152.8 242.88 139.92
E 6 3 4 4 150.27 247.8 150.88
E 7 2 4 4 150.62 239.93 145.90

number of cars that leave their origin zone increases, ranging from a 2% increase for Region E,

Hour 7 to a 23% increase from 3.73 to 4.59 average emergency and volunteer vehicles leaving their

origin zone for Region E, Hour 1. The median increase is 5%. In addition, (CC-SAA2) has much

larger mean distance traveled values, which makes sense, as the upper bound on distance traveled

for each scenario is loose, with D = 1000.

A comparison of all thirty instances of (SP-SAA) and Algorithm 1 can be seen in Figure 6. For

larger values of total expected demand, µN
′

h , the (SP-SAA) in-sample runtime tends to be higher,

while Algorithm 1’s runtime remains steady, in the first graph. On the other hand, the number

of hired volunteer cars tends to be larger for both for larger values of µN
′

h in the second graph.

In general, Algorithm 1’s solutions tend to have a larger set of hired vehicles than (SP-SAA)’s

solutions. In the third graph, we compare the out-of-sample probability of full evacuation, which

is consistently 1 for Algorithm 1, while lower in some cases for (SP-SAA).

Finally, we compare the in-sample runtime and out-of-sample detailed solution performance

given by (SP-SAA) and Algorithm 1 for all the regions in Table 9.

5 Conclusion

In this paper, we examined a resource planning for ridesharing-based evacuation problem. We

formulated the problem as a two-stage stochastic program and a chance-constrained formulation,
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Figure 6: Comparison of in-sample runtime, number of hired cars and probability of full evacuation
for the optimal candidate solutions given by SP-SAA and Algorithm 1.

Table 9: In-sample runtime and out-of-sample solution performance of (SP-SAA) and Algorithm 1
for all regions

N ′ h
In-sample runtime (s) Prob. of Complete Evac. # of cars hired

SP-SAA Algorithm 1
SP-SAA Algorithm 1 SP-SAA Algorithm 1

Mean Max Mean Max

A 1 0.9 1.11 *** *** 1 1 3 4
2 1.97 2.39 *** *** 0.999 1 3 4
3 1.68 1.83 *** *** 1 1 2 2
5 1.98 2.42 *** *** 1 1 3 3
6 0.86 1 *** *** 0.995 1 3 4
7 0.6 0.7 *** *** 0.999 1 3 4

B 1 556.77 1049.45 *** *** 1 1 6 8
2 738.69 2181.39 *** *** 1 1 8 11
3 140.38 209.04 *** *** 1 1 6 9
5 645.98 1518.33 *** *** 1 1 7 10
6 375.62 1171.37 *** *** 1 1 7 10
7 790.43 1274.7 *** 0.01 1 1 7 9

C 1 22.47 31.98 *** *** 0.995 1 4 5
2 56.77 157.83 *** *** 0.999 1 4 7
3 30.3 54.12 *** *** 0.889 1 3 6
5 38.97 57 *** *** 0.998 1 4 7
6 34.15 49.96 *** *** 0.565 1 2 4
7 26.9 32.43 *** *** 0.605 1 2 4

D 1 1935.6 2854.17 *** *** 0.679 1 8 11
2 2424.03* .02%** *** 0.01 1 1 9 15
3 2705.75* .04%** *** 0.01 1 1 10 15
5 1977.49* .03%** 0.01 0.01 1 1 8 13
6 2423.37 3129.6 *** 0.01 0.835 1 9 13
7 1912.97 2511.02 *** *** 0.621 1 8 13

E 1 24.53 33.69 *** *** 0.947 1 4 5
2 60.46 89.65 *** 0.01 0.998 1 4 6
3 52.69 58.23 *** *** 0.997 1 4 5
5 62.25 101.4 *** *** 0.982 1 4 6
6 39.01 51.23 *** *** 0.86 1 3 4
7 35.35 48.82 .01 .01 0.495 1 2 4

*: the average is taken among all samples that do not time out; **: optimality gap; ***: <.01 seconds.
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and developed a quick heuristic. We tested our models and heuristic algorithm (Algorithm 1) using

a variety of instances, with different geographical sizes and varying population density, based on

the Charleston area, which experienced a mandatory hurricane evacuation in September 2018.

The stochastic program, which acted as a benchmark for all models, had an average evacuation

rate of at least 97% for all instances. (SP-SAA) provided fairly reliable solutions as well, with 21

of 30 instances ensuring full evacuation with probability at least .98 with respect to the out-of-

sample distribution. For the other nine instances, (CC-SAA2) provided reliable solutions, ensuring

complete evacuation with probability at least .965. The (CC-SAA2) solutions required at least

one more vehicle than the corresponding (SP-SAA) solutions, and had larger mean total distance

traveled.

Algorithm 1 was able to find reliable solutions in less than a tenth of a second for all samples

and instances tested. For all instances, Algorithm 1’s solutions ensured complete evacuation with

probability 1. The heuristic solutions generally required more cars than the (SP-SAA) solution,

and for the instances in which (CC-SAA2) was tested, the heuristic solutions required more cars

than those solutions as well.

The SP-SAA tests showed an increasing concave relationship between the probability of com-

plete evacuation and the available vehicle to pickup location ratio, 1Tx∗+|R|
|NP | . In addition, the

number of available vehicles tended to increase with the total expected demand of a particular

spatiotemporal instance. Thus, the total expected demand to pickup location ratio, a measure of

population density, is a characteristic of the spatiotemporal network that is related to the reliability

of (SP-SAA). Spatiotemporal networks with high population density may be better candidates for

(SP-SAA), while spatiotemporal networks with lower population density may be better candidates

for (CC-SAA2) or Algorithm 1. Overall, Algorithm 1 can provide quick, reliable solutions across a

variety of instances.

In this work, we considered heterogeneous hiring decisions, routing decisions, and loading deci-

sions, under uncertainty in spatiotemporal demand. Our focus is on serving carless elderly popu-

lations, individuals with disabilities, and others who require specialized assistance, to complement

the work that has been done on larger-scale transit-dependent evacuation. One potential future

research question is how to best integrate large-scale transit and shared mobility in a comprehensive

evacuation plan, identifying which populations to assign to which transportation mode and how to

time the evacuations, taking into account changing density of traffic and different congestive factors

of buses versus personal vehicles.
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Appendix: Expected Demand and Volunteer Distributions

(a) Region A – Expected Demand (b) Region A – Expected Volunteers

(c) Region B – Expected Demand (d) Region B – Expected Volunteers

Figure 7: Spatial distributions of expected evacuation demand and number of volunteers in Regions
A and B.
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(a) Region C – Expected Demand (b) Region C – Expected Volunteers

(c) Region D – Expected Demand (d) Region D – Expected Volunteers

Figure 8: Spatial distributions of expected evacuation demand and number of volunteers in Regions
C and D.

(a) Region E – Expected Demand (b) Region E – Expected Volunteers

Figure 9: Spatial distributions of expected evacuation demand and number of volunteers in Region
E.
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