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Abstract This paper discusses the use of a stopping criterion based on the
scaling of the Karush-Kuhn-Tucker (KKT) conditions by the norm of the ap-
proximate Lagrange multiplier in the ALGENCAN implementation of a safe-
guarded augmented Lagrangian method. Such stopping criterion is already
used in several nonlinear programming solvers, but it has not yet been con-
sidered in ALGENCAN due to its firm commitment with finding a true KKT
point even when the multiplier set is not bounded. In contrast with this view,
we present a strong global convergence theory under the quasi-normality con-
straint qualification, that allows for unbounded multiplier sets, accompanied
by an extensive numerical test which shows that the scaled stopping criterion
is more efficient in detecting convergence sooner. In particular, by scaling,
ALGENCAN is able to recover a solution in some difficult problems where
the original implementation fails, while the behavior of the algorithm in the
easier instances is maintained. Furthermore, we show that, in some cases, a
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considerable computational effort is saved, proving the practical usefulness of
the proposed strategy.

Keywords Nonlinear optimization · Augmented Lagrangian methods ·
Optimality conditions · Scaled stopping criteria
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1 Introduction

In this paper, we consider the constrained nonlinear programming problem
with abstract convex constraints of the form

Minimize f(x)

s.t. hi(x) = 0, i = 1, . . . ,m

gj(x) ≤ 0, j = 1, . . . , p

x ∈ X,

(NLP)

where the functions f : Rn → R, h : Rn → Rm, g : Rn → Rp are continuously
differentiable andX is a non-empty, closed and convex set. Nonlinear optimiza-
tion problems appear in almost all disciplines like economics and finance [12],
Engineering [13,36], and Data Science [35]. Therefore, due to its paramount
importance in real world applications, it has been extensively studied.

The most used tool to characterize minimizers of (NLP) is the well known
Karush-Kuhn-Tucker (KKT) conditions [14,31]. It is based on the Lagrangian
function defined for each x ∈ Rn and (λ, µ) ∈ Rm × Rp+ as

L(x, λ, µ) = f(x) +

m∑
i=1

λihi(x) +

p∑
j=1

µjgj(x).

The KKT conditions basically state that the negative of the gradient of the
objective function is normal to the feasible set at a minimizer. However, it is
based on an approximated normal cone that takes into account the algebraic
formulation of the functional constraints. For this reason, KKT conditions are
widely used in algorithms, as computer programs can more easily deal with
algebraic objects than with abstract, geometric, ones.

More precisely, denote by PX(·) the orthogonal Euclidean projection oper-
ator over X. It is well known that, for the non-empty, closed and convex set
X, we have that PX(y) is unique for all y ∈ Rn, it is continuous in y and

x∗ ∈ X and z ∈ NX(x∗) if, and only if, PX(x∗ + z)− x∗ = 0, (1)

where NX(x∗) = {z | zT (y − x∗) ≤ 0,∀y ∈ X} is the normal cone to X at
x∗ ∈ X [15, Proposition 2.2.1]. Using this notation, we may define the KKT
points for (NLP) as:

Definition 1 We say that a feasible x∗ is a Karush-Kuhn-Tucker point for
(NLP) if there is a vector (λ, µ) ∈ Rm × Rp+ such that
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1. PX(x∗ −∇xL(x∗, λ, µ))− x∗ = 0;
2. µjgj(x

∗) = 0, ∀j = 1, . . . , p.

Clearly, the first item of Definition 1 can be rewritten as 0 ∈ ∇xL(x∗, λ, µ) +
NX(x∗) by (1) and, when X = Rn, it reduces to ∇xL(x∗, λ, µ) = 0. Note
that the functional constraints enter into these conditions via their gradients
while the projection operation only takes into account the abstract constraint
x ∈ X.

However, since KKT uses gradients to approximate the (geometrical) nor-
mal cone to the feasible set, such condition does not necessarily hold at a local
minimizer of (NLP). Only constrained sets that conform to conditions called
Constraint Qualifications (CQs) can ensure KKT validity [14,31] for all possi-
ble objectives. There are many such conditions. The most famous is regularity,
or the linear independence of the gradients of the constraints. In particular, it
guarantees not only the existence of the Lagrange multipliers (λ, µ) but also
their uniqueness. It is also extensively used in the development of algorithms
for solving NLP.

On the other hand, regularity is very stringent as there are many other
constraint qualifications that require less from the feasible set description.
Examples are Mangasarian-Fromovitz [29], linearity, constant rank and vari-
ations [5,28,33], cone continuity [8,9], pseudo and quasi-normality [32], and
the most general which is Guignard [27]. This whole hierarchy of different
conditions is then used to analyze specific problems and the conditions for the
convergence of different algorithms.

The convergence analysis of algorithms have given rise to the development
of sequential optimality conditions, see [3,9,10] and references therein. The
main idea is to replace the, pointwise, KKT condition by inexact versions that
approximate KKT only in the limit. Such conditions have a natural connection
with actual algorithms for solving NLP as they try to approximate possible
solutions iteratively. Henceforth, sequential conditions have been extensively
used to unveil the condition, and in particular the CQs, that are necessary for
the convergence of different methods [8,9,25].

Many state-of-the-art codes for nonlinear programming employ a scaled
variation of the KKT conditions as stopping criterion, dividing the gradient
of the Lagrangian by the norm of the multiplier estimate. This is the case of
IPOPT [37], filterSQP [24], an implementation of the augmented Lagrangian
method present in MINOS [30], among others. On the other hand, ALGEN-
CAN [1,19], another implementation of the augmented Lagrangian framework,
employs an “absolute” stopping criterion. This difference is one of the reasons
that makes its convergence theory very robust, allowing one to assert that all
the limit points are indeed KKT under very mild CQs [2,4,8]. However, such
stringent stopping criterion may force the method to perform an extra effort
when a scaled criterion would do.

This paper fits this framework. We introduce a scaled version of the posi-
tive approximate-KKT condition [2] to analyze the convergence of a variation
of ALGENCAN that implements the respective scaled stopping criterion. We
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then use the sequential condition and its companion CQ to show that the
proposed variation of ALGENCAN can converge to KKT under a condition
closely related to quasi-normality that still allows for unbounded multipliers.
Then, we close the paper with an extensive numerical experiment showing
that using the scaled version of ALGENCAN does preserve the good proper-
ties of the unscaled ALGENCAN while taking advantage of the less stringent
stopping criterion in some cases.

The rest of the paper is organized as follows. In section 2 we present the
scaled version of the positive approximate-KKT condition, shortly, Scaled-
PAKKT. We also discuss its relationship with quasi-normality and the Fritz-
John conditions. Section 3 is devoted to the global convergence of ALGEN-
CAN, particularly its proposed scaled version. The numerical tests and a de-
tailed discussion are presented in section 4. Finally, conclusions are given in
section 5.

Notation For each feasible x, we define

Ig(x) := {j ∈ {1, . . . , p} | gj(x) = 0},

the index set of active inequality constraints at x.
‖·‖, ‖·‖2 and ‖·‖∞ stand for an arbitrary, the Euclidean and the supremum

norms, respectively. For an α ∈ R, we denote α+ = max{α, 0} and for a z ∈ Rq,
z+ = ((z1)+, . . . , (zq)+).

2 The Scaled-PAKKT condition

The positive approximate KKT (PAKKT) condition for the case X = Rn was
introduced in [2]. In the sequel we present a slightly different definition, which
we also call PAKKT.

Definition 2 Suppose thatX = Rn. We say that a feasible point x∗ fulfills the
positive approximate KKT (PAKKT) condition if there are sequences {xk} ⊂
Rn and {(λk, µk)} ⊂ Rm × Rp+ such that limk x

k = x∗,

lim
k
‖∇xL(xk, λk, µk)‖ = 0, (2a)

lim
k
‖min{−g(xk), µk}‖ = 0. (2b)

Additionally, whenever {(λk, µk)} is unbounded, this sequence together with
{xk} satisfies

lim
k

|λki |
δk

> 0⇒ λki hi(x
k) > 0, ∀k, and lim

k

µkj
δk

> 0⇒ µkj gj(x
k) > 0, ∀k,

(3)
where δk := ‖(1, λk, µk)‖∞. The sequence {xk} is called a PAKKT sequence.
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The difference is that the original PAKKT imposed (3) even for the case
where {δk} is bounded. We separate this case because the control of signs
in (3) is only fulfilled by the safeguarded PHR augmented Lagrangian method
when the dual sequence is unbounded (see details in the proof of [2, Theorem
4.1]). This is not a concern since when {(λk, µk)} is bounded, clearly x∗ is
already KKT. Thus, the definition we present here is equivalent to the original
one; however, with this definition of a PAKKT sequence, these sequences are
always generated by the safeguarded PHR augmented Lagrangian method (the
proof of a scaled version of this statement is given in Theorem 3). It is worth
mentioning that condition (2) alone is known in the literature as approximate
KKT (AKKT) [3], which is the first sequential optimality condition employed
in the convergence analysis of the safeguarded PHR method (see [19]).

PAKKT is related to the enhanced KKT conditions (see for instance [38]),
and it was used to improve the convergence of the PHR augmented Lagrangian
method [2], encompassing the quasi-normality CQ (see Definition 4). Besides
this, one of the interesting properties of PAKKT is that every associated dual
sequence {(λk, µk)} is bounded under the quasi-normality CQ [2,21] (this
property is clearly maintained in our new definition of PAKKT). This mo-
tivates the definition of a Scaled-PAKKT sequential optimality condition, as
made in [9] for AKKT, by simply replacing (2a) by the weaker statement

lim
k

∥∥∥∥∇xL(xk, λk, µk)

δk

∥∥∥∥ = 0. (4)

In the next definition, we extend the notion of Scaled-PAKKT to include the
abstract constraints x ∈ X. In this definition, the case where the dual sequence
is bounded is treated separately as in Definition 2.

Definition 3 We say that a feasible point x∗ fulfills the Scaled-PAKKT con-
dition if there are sequences {xk} ⊂ X and {(λk, µk)} ⊂ Rm × Rp+ such that
limk x

k = x∗,

lim
k

∥∥∥∥PX (xk − ∇xL(xk, λk, µk)

δk

)
− xk

∥∥∥∥ = 0, (5)

where δk := ‖(1, λk, µk)‖∞, and condition (2b) holds. Additionally, condi-
tion (3) is satisfied whenever {(λk, µk)} is unbounded. The sequence {xk} is
called a Scaled-PAKKT sequence.

When X = Rn, condition (5) is simply the scalarization of (2a) by δk (ex-
pression (4)) and we recover the previous definition of Scaled-PAKKT when
no abstract constraints are present. As we already mentioned, PAKKT with-
out (3) is exactly AKKT. Analogously, Scaled-PAKKT resembles the Scaled-
AKKT condition presented in [9] (for X = Rn), in which condition (3) is not
imposed either. In that work, the authors showed that the weakest strict CQ
associated with Scaled-AKKT is the proposition

MFCQ or

[{
∇h(x∗)λ+∇g(x∗)µ

∣∣∣ µ ≥ 0,
µj = 0,∀j 6∈ Ig(x∗)

}
= Rn

]
, (6)
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where MFCQ stands for the Mangasarian-Fromovitz CQ. This means that
every Scaled-AKKT point x∗ satisfying (6) is KKT and, conversely, if for
every objective function f , the Scaled-AKKT point x∗ is actually KKT, then
x∗ conforms to (6). That is, in view of the KKT condition, expression (6)
plays the same role with respect to the Scaled-AKKT necessary optimality
condition, as Guignard’s CQ does with respect to a local minimizer. In this
section we will show that the weakest strict constraint qualification associated
with Scaled-PAKKT (including abstract constraints) is the proposition

QN or

[{
∇h(x∗)λ+∇g(x∗)µ+NX(x∗)

∣∣∣ µ ≥ 0,
µj = 0,∀j 6∈ Ig(x∗)

}
= Rn

]
, (7)

where QN states for the quasi-normality CQ, presented next. Clearly, (7) is
less stringent than (6) since MFCQ implies QN; and QN also encompasses
linear constraints [16], or even other weaker constraint qualifications, such as
the constant positive linear dependence (CPLD) condition [7]. In the sequel,
we recall the quasi-normality condition, stating it equivalently by means of
projections, instead of using the normal cone as in [16].

Definition 4 We say that a feasible point x∗ for (NLP) is quasi-normal (or
that it conforms to the quasi-normality CQ) if there are no vectors λ ∈ Rm,
µ ∈ Rp+, and no sequence {xk} ⊂ X such that

1. PX(x∗ − [∇h(x∗)λ+∇g(x∗)µ])− x∗ = 0;
2. λ1, . . . , λm, µ1, . . . , µp are not all equal to 0;
3. {xk} converges to x∗ and for each k, λihi(x

k) > 0 for all i with λi 6= 0 and
µjgj(x

k) > 0 for all j with µj > 0.

As we already mentioned, every PAKKT sequence has bounded dual se-
quences whenever its primal limit fulfills QN (X = Rn) [2]. We show next that
the same happens with the Scaled-PAKKT condition, even when the abstract
constraint x ∈ X is present.

Theorem 1 Let x∗ be a Scaled-PAKKT point that conforms to the quasi-
normality CQ. Then every Scaled-PAKKT sequence {xk} associated with x∗

has bounded corresponding dual sequences {(λk, µk)}.

Proof If {δk = ‖(1, λk, µk)‖∞} is unbounded, then by (5) we have

lim
k
PX

xk −
∇f(xk)

δk
+

m∑
i=1

λ̃ki∇hi(xk) +

p∑
j=1

µ̃kj∇gj(xk)

− xk = 0,

where ‖(λ̃k, µ̃k)‖∞ = 1 for all k. Therefore, taking an appropriate subsequence
and using the continuity of the projection, we have that there are vectors λ ∈
Rn and µ ∈ Rp+ such that (λ, µ) 6= 0 and PX(x∗− [∇h(x∗)λ+∇g(x∗)µ])−x∗ =
0, where complementarity follows from (2b). Note that (3) implies item 3 of
Definition 4. Thus, the quasi-normality condition is violated at x∗. This proves
that the sequence {(λk, µk)} is bounded. ut
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Next, we show that (7) is the weakest strict CQ associated with the Scaled-
PAKKT condition.

Theorem 2 If x∗ is a Scaled-PAKKT point satisfying (7) then x∗ is a KKT
point for (NLP). Reciprocally, if for every continuously differentiable function
f such that x∗ is a Scaled-PAKKT point the KKT conditions also hold, then
x∗ satisfies (7).

Proof Assume that x∗ is a Scaled-PAKKT point that fulfills (7). If the expres-
sion between brackets in (7) is true then 0 ∈ ∇xL(x∗, λ, µ) + NX(x∗) for a
certain (λ, µ) ∈ Rm × Rp+ such that µjgj(x

∗) = 0 for all j. Thus, x∗ satisfies
the KKT conditions independently of the objective function. On the other
hand, if QN holds at x∗ then {(λk, µk)} is bounded by Theorem 1, which also
implies the KKT conditions.

Now let us show the converse. Suppose that x∗ does not satisfy (7). In
particular, there is a non-null c ∈ Rn such that

c /∈


m∑
i=1

λ̃i∇hi(x∗) +
∑

j∈Ig(x∗)

µ̃j∇gj(x∗) +NX(x∗) | µ̃j ≥ 0,∀j ∈ Ig(x∗)

 ,

which is equivalent to

−(−c+∇h(x∗)λ̃+∇g(x∗)µ̃) 6∈ NX(x∗), ∀(λ̃, µ̃) ∈ Rm×Rp+ | µ̃jgj(x∗) = 0,∀j,

which in turn, by (1), is equivalent to

PX(x∗ − (−c+∇h(x∗)λ̃+∇g(x∗)µ̃))− x∗ 6= 0,

∀(λ̃, µ̃) ∈ Rm × Rp+ such that µ̃jgj(x
∗) = 0,∀j.

(8)

Since x∗ also does not satisfy QN, there are vectors λ ∈ Rm, µ ∈ Rp+ and
a sequence {xk} ⊂ X converging to x∗ such that (λ, µ) 6= 0 where

λihi(x
k) > 0 for all i with λi 6= 0 and µjgj(x

k) > 0 for all j with µj > 0
(9)

and
lim
k
PX(xk − [∇h(xk)λ+∇g(xk)µ])− xk = 0, (10)

where the last expression follows from the continuity of the projection. In
particular, µj = 0 for all j 6∈ Ig(x∗). We can suppose without loss of generality
that ‖(λ, µ)‖∞ = 1, since any positive multiple of (λ, µ) also satisfies the three
conditions of Definition 4 (note that item 1 is equivalent to −[∇h(x∗)λ +
∇g(x∗)µ] ∈ NX(x∗), which is a cone). Defining f(x) := −cTx, expression (10)
implies

lim
k
PX

(
xk − 1

k
[∇f(xk) +∇h(xk)kλ+∇g(xk)kµ]

)
− xk = 0.

So, x∗ is a Scaled-PAKKT point with λk := kλ and µk := kµ. In fact, δk =
‖(1, kλ, kµ)‖∞ = k, condition (3) follows from (9), and (2b) is a consequence
of kµj = 0, j 6∈ Ig(x∗). However, by (8) with −c = ∇f(x∗), x∗ is not KKT.
This concludes the proof. ut
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We conclude this section discussing an interesting relation between scaled
versions of the sequential optimality conditions and the well known Fritz-John
(FJ) conditions. For the sake of simplicity, let us assume that X = Rn. As
we already mentioned, the Scaled-AKKT condition [9] is stated as Scaled-
PAKKT without (3). The Fritz-John conditions relax KKT by allowing a null
multiplier for the gradient of the objective function, that is, they require that

ν̃∇f(x∗) +∇h(x∗)λ̃+∇g(x∗)µ̃ = 0, (11)

where ν̃ ≥ 0, µ̃ ≥ 0, (ν̃, λ̃, µ̃) 6= 0 and µ̃jg(x∗) = 0 for all j, and, differently
from KKT, they are satisfied at every local minimizer independently of the
fulfillment of any CQ. It is easy to see that Scaled-AKKT can be viewed as
a sequential counterpart of FJ in the sense that every Scaled-AKKT point x∗

is FJ and vice-versa. Now, let us consider the Scaled-PAKKT condition. A
related control of signs (3) was used to improve the FJ conditions, leading to
enhanced versions of it (see [38] and references therein). The most basic version
states that x∗ is an enhanced FJ point if (11) and item 3 of Definition 4 hold
for a (ν̃, λ̃, µ̃) 6= 0 and a sequence {x̃k} converging to x∗. We affirm that every
Scaled-PAKKT point x∗ such that {δk} is unbounded is an enhanced FJ one
and, conversely, an enhanced FJ point is actually Scaled-PAKKT. In fact,
if limk δk = ∞ then, taking a subsequence if necessary, (5) imply (11) with
ν = 0 and some (λ, µ) 6= 0. The control of signs (item 3 of Definition 4) and
complementary slackness are automatically fulfilled. Conversely, let x∗ be a
FJ point. If ν > 0 then it is Scaled-PAKKT with constant sequences defined
by xk := x∗ and (λk, µk) := (λ̃/ν̃, µ̃/ν̃) for all k; and if ν = 0, it is sufficient
to take the same sequence {xk := x̃k} that fulfills the control of signs and
(λk, µk) := (kλ̃, kµ̃) for all k.

3 Safeguarded PHR augmented Lagrangian method with scaled
stopping criteria

We consider a sightly modified version of the ALGENCAN method, pro-
vided in [1,19], which employs the commonly used Powell-Hestenes-Rocka-
fellar (PHR), or quadratic-like penalty, augmented Lagrangian function

Lρ,λ̄,µ̄(x) = f(x) +
ρ

2

∥∥∥∥ λ̄ρ + h(x)

∥∥∥∥2

2

+

∥∥∥∥∥
(
µ̄

ρ
+ g(x)

)
+

∥∥∥∥∥
2

2

 , (12)

ρ > 0, µ̄ ≥ 0, on its subproblems. Our version aggregates a stopping criterion,
adequate for our purposes, and it is described in Algorithm 1.

The first order optimality conditions of Definition 1 for problem (NLP) can
be stated as

PX(x∗ −∇xL(x∗, λ, µ))− x∗ = 0 and

max{ ‖h(x∗)‖∞ , ‖min{−g(x∗), µ}‖∞ } = 0.
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Related conditions are used to attest optimality for subproblems of ALGEN-
CAN (see conditions (13)). In particular, when X is a box, let us say, X =
{x ∈ Rn | ` ≤ x ≤ u}, then PX(z) can easily be computed by [PX(z)]i =
min{ui,max{`i, zi}}, i = 1, . . . , n. For simplicity, we will refer to PX(x −
∇xL(x, λ, µ))− x as projected gradient during the rest of the paper (x, λ and
µ will be clear from the context).

Scaled stopping criteria are employed in successful state-of-the-art prac-
tical implementations of different methods, such as interior point methods
(IPOPT [37]), sequential quadratic programming (WORHP [22], filterSQP
[24]), augmented Lagrangian methods (MINOS [30]) and specialized inte-
rior point methods for linear and quadratic programming [26]. Inspired by
the Scaled-PAKKT condition and Theorem 2, we consider a scaled stop-
ping criterion for ALGENCAN. Algorithm 1 encompasses both scaled and
standard/non-scaled versions. For simplicity, we can refer to Algorithm 1 with
different stopping criteria by “scaled/non-scaled algorithm” or “scaled/non-
scaled ALGENCAN”.

Global theoretical convergence of the non-scaled version of Algorithm 1
was established under PAKKT condition (in the sense of [2]) in Theorem 4.1
of [2]. In that result, it has been proved that every feasible accumulation point
of the method is always a PAKKT point. But for the case of bounded dual
generated (sub)sequences {(λk, µk)}, we do not have the guarantee that the
associated (sub)sequence {xk} is in fact a PAKKT sequence. As we already
mentioned, this is not a concern since in this case the accumulation point x∗ is
actually KKT, and every KKT point is indeed PAKKT [2, Lemma 2.6]. On the
other hand, the theorem below states that such (sub)sequences are actually
PAKKT in the sense of Definition 2, or Scaled-PAKKT for the scaled version
of the algorithm. This justifies why we separate the cases of bounded and
unbounded multipliers in Definitions 2 and 3. Following traditional results on
global convergence, we assume that Algorithm 1 never stops at step 1, allowing
us to study the quality of the accumulation points of the infinite sequences
hypothetically generated by it.

Theorem 3 Suppose that Algorithm 1 never stops and let x∗ be a feasible ac-
cumulation point of the sequence {xk} generated by it, let us say, limk∈K x

k =
x∗.

Then, for the scaled (respectively non-scaled) version, {xk}k∈K is a Scaled-
PAKKT (respectively PAKKT) sequence. In particular, x∗ is a Scaled-PAKKT
(respectively PAKKT) point.

Proof Let {(λk, µk)}k∈K be the dual sequence associated with {xk}k∈K . If it
is unbounded, then the statement follows the same arguments of [2, Theo-
rem 4.1]. If not, condition (3) does not need to be verified, only (2b), (2a)
and (5) must be considered. Conditions (2a) and (5) follows from step 2 of
the respective version of Algorithm 1 with multipliers estimates λk and µk

computed by the method. There are two cases to consider: (i) {ρk} bounded
and (ii) limk ρk = ∞. In the first case, step 3 of Algorithm 1 ensures that
limk∈K Vk = 0, which implies that limk∈K µ̄

k/ρk = 0. Thus, limk∈K µ
k+1
j /ρk =
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Algorithm 1 Safeguarded PHR augmented Lagrangian method — ALGEN-
CAN
Set parameters:

– bounds on projected Lagrange multipliers: λmin < λmax, µmax > 0;
– penalty parameter update: τ ∈ (0, 1), γ > 1;
– tolerances: εopt, εV ≥ 0, {εk} ⊂ R+ with limk εk = 0.

Set initial variables:

– primal point: x0 ∈ X;
– projected Lagrange multipliers: λ̄0 ∈ [λmin, λmax]m, µ̄0 ∈ [0, µmax]p;
– penalty parameter: ρ0 > 0.

Initialize with k ← 0, λ0 := λ̄0 + ρ0h(x0) and µ0 := [µ̄0 + ρ0g(x0)]+.

Step 1 (Stopping criteria). Stop, declaring success if∥∥∥∥PX (
xk −

1

δk
∇xL(xk, λk, µk)

)
− xk

∥∥∥∥
∞
≤ εopt and (13a)

max{ ‖h(xk)‖∞ , ‖min{−g(xk), µk}‖∞ } ≤ εV, (13b)

where δk := ‖(1, λk, µk)‖∞ for the scaled version or δk := 1 for the non-scaled version.

Step 2 (Solving the subproblems). Find an approximate minimizer xk+1 of the subproblem

Minimize Lρk,λ̄k,µ̄k (x) s.t. x ∈ X,

that is, compute a point xk+1 ∈ X satisfying

‖PX(xk+1 −∇Lρk,λ̄k,µ̄k (xk+1))− xk+1‖∞ ≤ εk.

The multipliers estimates given by the derivative of (12) with respect to x are

λk+1 := λ̄k + ρkh(xk+1) and µk+1 := [µ̄k + ρkg(x
k+1)]+.

Step 3 (Update the penalty parameter). Define

Vk := max{ ‖h(xk+1)‖∞ , ‖min{−g(xk+1), µ̄k/ρk}‖∞ }.

If k > 0 and Vk ≤ τVk−1, set ρk+1 := ρk. Otherwise, take ρk+1 := γρk.

Step 4 (Estimate new projected multipliers). Compute

λ̄k+1 := P[λmin,λmax]m (λk+1), µ̄k+1 := P[0,µmax]p (µk+1),

take k ← k + 1 and go to Step 1.

limk∈K [µ̄kj /ρk + gj(x
k+1)]+ = 0 whenever j 6∈ Ig(x∗), which, by the bounded-

ness of {ρk}, implies (2b). In the second case, the limit limk ρk = ∞ implies
limk∈K µ

k+1
j = limk∈K [µ̄kj + ρkgj(x

k+1)]+ = 0 for all j 6∈ Ig(x∗). Thus, (2b)
holds and the proof is complete. ut

Finally, we note that when Algorithm 1 converges asymptotically to an in-
feasible point, the limit is stationary for the sum-of-squares infeasibility prob-
lem

Minimize ‖h(x)‖22 + ‖g(x)+‖22 s.t. x ∈ X, (14)
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since the analysis made for the standard ALGENCAN method [1, Theorem
4.1(i)] remains unchanged in the presence of the scaled stopping criterion (13).

4 Numerical tests

We implemented Algorithm 1 in Fortran 90, adapting the code of ALGEN-
CAN package, version 3.1.1, provided by the TANGO project (www.ime.us
p.br/~egbirgin/tango) under the GNU General Public License. This is a
robust and mature implementation which employs an active-set strategy with
spectral gradients, namely GENCAN [17], for solving the subproblems (those
from step 2 of Algorithm 1). The non-scaled algorithm (δk = 1 in step 1 of
Algorithm 1) is exactly the original ALGENCAN package. Thus, the only
modification we made in its code was to aggregate δk = ‖(1, λk, µk)‖∞ to the
stopping criterion in the scaled version, which is available for download [34].
In the ALGENCAN package, X is a box, for which projection, as we already
mentioned, is trivial. Tolerances are set to εopt = εV = 10−6, and the prob-
lem data is scaled once, before starting the minimization process (see [19] for
details). All other parameters are maintained in their default values.

ALGENCAN includes by default “acceleration steps”, which consist of
switching, near a solution, to a Newtonian strategy for solving the KKT sys-
tem obtained from the original unscaled problem (NLP) by fixing the approx-
imate active constraints as equalities. See [18,19] for details. This strategy is
employed just after step 1 of Algorithm 1 whenever at least one of the following
situations occur:

1. The non-scaled stopping criterion ((13) with δk = 1) is almost fulfilled, in
the sense that

‖PX(xk −∇xL(xk, λk, µk))− xk‖∞ ≤
√
εopt = 10−3 and

max{ ‖h(xk)‖∞ , ‖min{−g(xk), µk}‖∞ } ≤
√
εV = 10−3;

(15)

2. The non-scaled stopping criterion seems to be fulfilled, but the inner solver
GENCAN failed to get a good approximate stationary point for the sub-
problem in the previous outer iteration. Specifically, ALGENCAN switches
to the Newtonian strategy at the outer iteration k if GENCAN does not
declare success at the previous iteration k − 1,

‖PX(xk −∇xL(xk, λk, µk))− xk‖∞ ≤ ε1/4
opt = 10−3/2 and

max{ ‖h(xk)‖∞ , ‖min{−g(xk), µk}‖∞ } ≤ ε1/4
V = 10−3/2.

(16)

Conditions (15) and (16) say that the Newtonian method may be applied
whenever the norm of the projected gradient and the feasibility measure are
reasonably small, suggesting that the current point is close enough to a solution
to identify the active constraints and allow for fast local convergence [18].
If successful, the Newtonian acceleration should achieve the full, unscaled,
stopping criterion quickly. In particular, the Newton strategy may be triggered
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when the method already achieved feasibility, but is not being able to decrease
the projected gradient of the Lagrangian for degenerate/bad-scaled problems
fast enough. In such cases, the scaled stopping criterion (13) may be beneficial,
as it is tailored to identifying whether such approximate stationary point is
already acceptable, giving a certificate of optimality for degenerate/bad-scaled
problems, and saving the computational time required by extra Newton steps.
This is achieved in (13a) by relaxing optimality as the Lagrange multipliers
tend to grow.

As the scaled stopping criterion may be beneficial in both situations, one
that employs acceleration steps (the hybrid strategy “augmented Lagrangian
+ Newton”) and other that does not, we compare the behavior of ALGEN-
CAN with and without the scaled criterion in both cases. Note that the theory
developed in this paper does not apply to the Newton acceleration, hence we
cannot ensure that it generates PAKKT points. Actually, recent results show
that a pure Newton strategy may not generate even AKKT points [6]. There-
fore, when this option is enabled, we limit ourselves to scale the termination
criterion of the augmented Lagrangian method itself and keep the criterion
that declares a success of the Newton heuristic unscaled.

We performed our tests in a computer equipped with an Intel® Xeon®

Silver 4114 CPU 2.20GHz running the Ubuntu 18.04.4 operating system. The
code was compiled using GNU Fortran 7.5.0 with -O3 flag. Numerical linear
algebra packages HSL MA57/MA86/MA97 (available at www.hsl.rl.ac.uk

/catalogue) with Metis 4.0.3 (glaros.dtc.umn.edu/gkhome/fetch/sw/m
etis/OLD) and BLAS routines from Intel® MKL 2020.0 were also employed
(software.intel.com/content/www/us/en/develop/tools/math-kern
el-library.html). We considered the constrained nonlinear programming
problems from CUTEst (available at github.com/ralna/CUTEst), including
all from the Netlib (ftp://ftp.numerical.rl.ac.uk/pub/cutest/netl
ib) and the Maros & Meszaros (bitbucket.org/optrove/maros-meszar
os) libraries. Mathematical programs with complementarity constraints from
MacMPEC (available at wiki.mcs.anl.gov/leyffer/index.php/MacMPEC)
were also considered, where the complementarity constraints ai(x) ≥ 0, bi(x) ≥
0, ai(x)bi(x) = 0, i = 1, . . . , q, were rewritten equivalently as a(x) ≥ 0, b(x) ≥
0 and a(x)T b(x) ≤ 0, as done in [11]. In our tests, we limited the execution
time for each test-problem to 5 hours (single thread mode). For each case, with
and without acceleration, problems for which both the scaled and non-scaled
algorithms exceeded the time limit have been ruled out, resulting in a small
discrepancy in the total number of tests considered for each variation. The
total number of test-problems used in the comparisons are:

– 1,308 when acceleration Newtonian steps are disabled;
– 1,300 when acceleration is enabled.

Tables 1 to 4 present those problems where the scaled and non-scaled
algorithms behaved differently. Asterisks (*) indicate that the CPU time limit
of 5 hours has been exceeded. The description of each column is the following:

– st: output status =
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– “ - ”: stop with a non-scaled approximate stationary point satisfy-
ing (13) with δk = 1;

– 1: stop with an (infeasible) stationary point of the infeasibility prob-
lem (14);

– 2: failure with a large ρ;
– 3: maximum number of iterations (= 50) achieved;
– 4: stop with a scaled approximate stationary point satisfying (13);

– it: number of outer iterations performed. For scaled algorithms, the differ-
ence to the non-scaled versions are presented between parentheses;

– obj: value of the objective function at the final iterate;
– opt: sup-norm of the non-scaled projected gradient ((13a) with δk = 1) at

the final point;
– feas: feasibility measure ‖(h(x), g(x)+)‖∞ at the final iterate;
– compl: complementarity measure ‖min{−g(x), µ}‖∞ at the final iterate;
– multip: sup-norm of the multiplier vector at the final iterate;
– 6= obj: relative difference of the final objective of scaled algorithms in re-

lation to that of the non-scaled versions, defined as

|fnon-sc − fsc|
|fnon-sc|

if |fnon-sc| ≥ 10−4, and |fnon-sc − fsc| otherwise.

When the acceleration based on Newtonian steps is not employed, the
scaled and non-scaled algorithms performs differently in 57 problems (4.36%
of the total — Tables 1 and 2). In the other case, when the Newtonian strategy
is enabled, this total was 26 (2.00% of the total — Tables 3 and 4). We highlight
some aspects illustrated by the numerical tests:

– There are problems for which the scaled algorithms declare success, while
the non-scaled ones fail, namely, AGG2, CRESC50, HS87, NCVXQP2 (Tables 1
and 3), HS99EXP, NCVXQP3, NCVXQP9 and ORBIT2 (Table 1). This indicates
the situation where the original non-scaled ALGENCAN reached, at some
iteration, a sufficiently feasible point with the required level of comple-
mentarity, but suffered to achieve optimality. That is, a good primal-
dual pair was probably obtained, but, due to numerical instabilities or
ill-conditioning, a small projected gradient was not found. For those prob-
lems, non-scaled ALGENCAN tries to get optimality increasing the penalty
parameter ρ. But when feasibility almost holds, this strategy may not
be enough. For instance, in the problems AGG2, HS87 (Tables 1 and 3)
and NCVXQP3 (Table 1), ALGENCAN fails with the same objective value
than the point obtained by the scaled algorithm, which indicates that the
method stayed “frozen” during various unsuccessful iterations or made
small movements, even losing the previously achieved feasibility (see the
problems of Tables 1 and 3 with bold values in the column “feas”). In
these situations, scaling optimality may help to give a correct answer ear-
lier, saving computational effort. Note that the reduction in iterations was
considerable in the problems cited above;



14 R. Andreani et al.
T
a
b
le

1
C

U
T

E
st

p
ro

b
le

m
s

in
w

h
ic

h
A

L
G

E
N

C
A

N
co

n
v
er

g
es

to
a

sc
a
le

d
a
p

p
ro

x
im

a
te

st
a
ti

o
n

a
ry

p
o
in

t
(a

cc
el

er
a
ti

o
n

d
is

a
b

le
d

).

S
ta

n
d
a
rd

A
L

G
E

N
C

A
N

A
L

G
E

N
C

A
N

w
it

h
sc

a
le

d
st

o
p
p
in

g
c
ri

te
ri

o
n

P
ro

b
le

m
st

it
o
b

j
o
p
t

fe
a
s

c
o
m

p
l

m
u
lt

ip
st

it
o
b

j
o
p
t

fe
a
s

c
o
m

p
l

m
u
lt

ip
6=

o
b

j

A
2
N
S
D
S
I
L

-
3
2

8
.5

1
e
+

0
1

3
.7

7
e
−

0
7

2
.1

3
e
−

0
7

2
.8

9
e
−

0
8

1
.8

4
e
+

0
2

4
2
5

(-
7
)

8
.5

1
e
+

0
1

1
.0

1
e
−

0
4

4
.4

3
e
−

0
7

5
.2

8
e
−

0
8

1
.8

4
e
+

0
2

0
.0

0

A
5
N
S
D
S
I
L

-
2
6

5
.8

8
e
+

0
0

3
.7

5
e
−

0
7

2
.3

8
e
−

0
7

6
.5

3
e
−

0
8

1
.3

1
e
+

0
1

4
2
5

(-
1
)

5
.8

8
e
+

0
0

5
.4

8
e
−

0
6

2
.3

7
e
−

0
7

2
.9

2
e
−

0
8

1
.3

1
e
+

0
1

0
.0

0

A
C
O
P
R
1
1
8

-
4
1

1
.3

0
e
+

0
5

1
.9

6
e
−

0
7

5
.9

6
e
−

0
7

1
.7

2
e
−

0
8

3
.3

9
e
+

0
2

4
1
2

(-
2
9
)

1
.3

0
e
+

0
5

1
.0

7
e
−

0
4

1
.9

2
e
−

0
8

2
.7

8
e
−

0
9

3
.3

9
e
+

0
2

0
.0

0

A
C
O
P
R
3
0

-
1
5

5
.7

7
e
+

0
2

2
.8

4
e
−

0
7

2
.0

3
e
−

0
7

4
.1

8
e
−

0
8

6
.5

9
e
+

0
1

4
1
4

(-
1
)

5
.7

7
e
+

0
2

2
.7

3
e
−

0
5

1
.9

9
e
−

0
7

1
.9

0
e
−

0
8

6
.5

9
e
+

0
1

0
.0

0

A
C
O
P
R
3
0
0

-
4
0

7
.2

0
e
+

0
5

9
.9

9
e
−

0
7

2
.2

6
e
−

0
7

2
.3

7
e
−

1
0

2
.4

1
e
+

0
3

4
1
7

(-
2
3
)

7
.2

0
e
+

0
5

2
.0

8
e
−

0
3

1
.2

2
e
−

0
8

4
.1

0
e
−

1
0

2
.4

1
e
+

0
3

0
.0

0

A
C
O
P
R
5
7

-
4
3

4
.1

7
e
+

0
4

3
.9

8
e
−

0
7

6
.6

8
e
−

0
7

5
.2

6
e
−

0
8

7
.4

1
e
+

0
1

4
1
5

(-
2
8
)

4
.1

7
e
+

0
4

4
.1

1
e
−

0
5

6
.4

5
e
−

0
7

1
.1

5
e
−

0
7

7
.4

1
e
+

0
1

0
.0

0

A
G
G
2

3
5
0

-2
.0

2
e
+

0
7

2
.7

7
e
+

0
0

4
.1

2
e
−
0
5

2
.9

4
e
−

0
7

2
.9

9
e
+

0
2

4
2
2

(-
2
8
)

-2
.0

2
e
+

0
7

8
.5

1
e
−

0
6

2
.5

1
e
−

0
7

6
.1

4
e
−

0
9

1
.4

3
e
+

0
2

A
U
G
2
D
C
Q
P

-
1
4

6
.5

0
e
+

0
6

1
.2

3
e
−

0
8

4
.8

6
e
−

0
8

4
.8

6
e
−

0
8

2
.7

8
e
+

0
3

4
1
2

(-
2
)

6
.5

0
e
+

0
6

1
.8

5
e
−

0
3

4
.1

5
e
−

0
7

4
.1

5
e
−

0
7

2
.7

8
e
+

0
3

0
.0

0

B
R
I
D
G
E
N
D

-
2
5

5
.3

8
e
+

0
1

2
.0

3
e
−

0
7

7
.7

0
e
−

0
8

7
.7

0
e
−

0
8

6
.8

4
e
+

0
2

4
1
1

(-
1
4
)

5
.3

8
e
+

0
1

2
.8

0
e
−

0
5

1
.1

2
e
−

0
9

1
.1

2
e
−

0
9

6
.8

4
e
+

0
2

0
.0

0

C
A
T
E
N
A

-
7

-2
.1

0
e
+

0
6

4
.9

2
e
−

0
7

7
.0

3
e
−

1
3

5
.8

6
e
−

1
3

6
.3

1
e
+

0
2

4
3

(-
4
)

-2
.1

0
e
+

0
6

1
.4

1
e
−

0
6

9
.9

9
e
−

0
7

8
.3

2
e
−

0
7

6
.3

1
e
+

0
2

0
.0

0

C
A
T
E
N
A
R
Y

-
3
8

-2
.1

0
e
+

0
6

5
.5

9
e
−

0
7

3
.3

6
e
−

0
7

2
.8

0
e
−

1
0

1
.9

6
e
+

0
5

4
3
5

(-
3
)

-2
.1

0
e
+

0
6

1
.6

1
e
−

0
4

5
.7

9
e
−

0
7

4
.8

3
e
−

1
0

1
.9

6
e
+

0
5

0
.0

0

C
M
P
C
1
6

-
3
2

-1
.5

0
e
+

0
7

2
.7

2
e
−

0
7

3
.9

6
e
−

0
7

3
.8

4
e
−

1
0

3
.1

7
e
+

0
0

4
2
2

(-
1
0
)

-1
.5

0
e
+

0
7

3
.1

4
e
−

0
6

2
.7

1
e
−

0
7

3
.7

5
e
−

1
0

3
.1

7
e
+

0
0

0
.0

0

C
R
E
S
C
5
0

1
2
2

8
.2

3
e
−

0
9

8
.4

9
e
−

0
8

4
.6

4
e
−
0
1

2
.8

8
e
−

0
3

3
.2

0
e
+

0
4

4
1
3

(-
9
)

5
.9

7
e
−

0
1

1
.0

5
e
−

0
5

5
.8

0
e
−

0
8

1
.8

7
e
−

0
8

2
.5

7
e
+

0
1

C
V
X
Q
P
1
L

-
2
2

1
.0

9
e
+

0
8

7
.6

7
e
−

0
7

1
.7

6
e
−

0
8

4
.4

0
e
−

0
9

1
.5

5
e
+

0
4

4
1
9

(-
3
)

1
.0

9
e
+

0
8

1
.0

5
e
−

0
2

1
.4

6
e
−

0
7

3
.6

4
e
−

0
8

1
.5

5
e
+

0
4

0
.0

0

C
V
X
Q
P
3

-
2
5

1
.1

6
e
+

0
8

7
.9

1
e
−

0
7

3
.3

1
e
−

0
7

1
.1

0
e
−

0
7

2
.2

0
e
+

0
3

4
1
6

(-
9
)

1
.1

6
e
+

0
8

2
.3

4
e
−

0
4

8
.7

7
e
−

0
7

2
.9

2
e
−

0
7

2
.2

0
e
+

0
3

0
.0

0

C
V
X
Q
P
3
L

-
4
2

1
.1

6
e
+

0
8

8
.5

8
e
−

0
7

9
.0

1
e
−

0
7

3
.0

0
e
−

0
7

1
.1

0
e
+

0
4

4
2
0

(-
2
2
)

1
.1

6
e
+

0
8

8
.8

1
e
−

0
3

4
.9

8
e
−

0
7

1
.6

6
e
−

0
7

1
.1

0
e
+

0
4

0
.0

0

D
I
S
C
S

-
3
0

1
.2

0
e
+

0
1

2
.4

7
e
−

0
7

9
.0

6
e
−

0
9

4
.9

7
e
−

1
0

1
.0

5
e
+

0
1

4
2
3

(-
7
)

1
.2

0
e
+

0
1

3
.7

2
e
−

0
6

1
.1

8
e
−

0
9

2
.8

1
e
−

1
1

1
.0

5
e
+

0
1

0
.0

0

D
N
I
E
P
E
R

-
2
0

1
.8

7
e
+

0
4

8
.6

5
e
−

1
1

1
.8

5
e
−

0
7

8
.0

6
e
−

0
9

1
.1

8
e
+

0
3

4
1
9

(-
1
)

1
.8

7
e
+

0
4

1
.8

2
e
−

0
6

5
.1

3
e
−

0
7

2
.2

4
e
−

0
8

1
.1

8
e
+

0
3

0
.0

0

G
A
N
G
E
S

-
2
6

-1
.1

0
e
+

0
5

6
.0

4
e
−

0
7

2
.0

4
e
−

1
0

2
.0

4
e
−

1
0

1
.2

5
e
+

0
3

4
2
1

(-
5
)

-1
.1

0
e
+

0
5

9
.7

6
e
−

0
6

2
.9

1
e
−

1
1

2
.9

1
e
−

1
1

1
.2

5
e
+

0
3

0
.0

0

G
R
O
W
2
2

-
1
2

-1
.6

1
e
+

0
8

7
.2

4
e
−

0
7

1
.1

7
e
−

0
9

1
.1

7
e
−

0
9

1
.2

2
e
+

0
1

4
5

(-
7
)

-1
.6

1
e
+

0
8

2
.5

3
e
−

0
6

2
.1

5
e
−

0
7

2
.1

5
e
−

0
7

1
.2

2
e
+

0
1

0
.0

0

H
A
N
G
I
N
G

-
1
4

-3
.1

5
e
+

0
4

9
.8

6
e
−

0
8

8
.7

9
e
−

0
8

2
.2

0
e
−

0
8

2
.0

4
e
+

0
2

4
1
3

(-
1
)

-3
.1

5
e
+

0
4

1
.8

0
e
−

0
6

5
.0

6
e
−

0
7

1
.2

6
e
−

0
7

2
.0

4
e
+

0
2

0
.0

0

H
S
1
1
1
L
N
P

-
6

-4
.7

8
e
+

0
1

1
.7

4
e
−

1
2

3
.2

8
e
−

0
9

3
.2

8
e
−

0
9

4
.1

8
e
+

0
0

4
5

(-
1
)

-4
.7

8
e
+

0
1

3
.2

9
e
−

0
6

2
.0

0
e
−

0
8

2
.0

0
e
−

0
8

4
.1

8
e
+

0
0

0
.0

0

H
S
8
7

3
5
0

9
.0

0
e
+

0
3

5
.4

5
e
−

0
4

1
.5

1
e
−
0
4

1
.3

0
e
−

0
7

1
.1

6
e
+

0
3

4
3
3

(-
1
7
)

9
.0

0
e
+

0
3

4
.3

2
e
−

0
4

4
.3

3
e
−

0
7

3
.6

2
e
−

1
0

1
.1

6
e
+

0
3

H
S
8
9

-
1
2

1
.3

6
e
+

0
0

1
.2

0
e
−

1
0

0
.0

0
e
+

0
0

1
.1

4
e
−

0
8

1
.0

6
e
+

0
3

4
1
1

(-
1
)

1
.3

6
e
+

0
0

2
.9

8
e
−

0
6

0
.0

0
e
+

0
0

1
.4

4
e
−

0
7

1
.0

6
e
+

0
3

0
.0

0

H
S
9
9
E
X
P

3
5
0

-4
.0

8
e
+

2
7

2
.0

0
e
+

0
1

2
.4

2
e
+
1
3

1
.2

5
e
+

0
8

2
.4

8
e
+

1
9

4
4
4

(-
6
)

-1
.2

6
e
+

1
2

1
.2

5
e
+

0
3

2
.3

8
e
−

0
7

6
.7

1
e
−

1
3

4
.3

6
e
+

1
1

L
O
B
S
T
E
R
Z

-
4
4

2
.7

7
e
+

0
3

5
.2

0
e
−

0
7

4
.0

0
e
−

0
7

4
.0

0
e
−

0
7

1
.3

5
e
+

0
5

4
1
8

(-
2
6
)

2
.7

7
e
+

0
3

2
.5

2
e
−

0
3

5
.4

0
e
−

0
7

5
.4

0
e
−

0
7

1
.2

6
e
+

0
5

0
.0

0



On scaled stopping criteria for a safeguarded augmented Lagrangian method 15

S
ta

n
d
a
rd

A
L

G
E

N
C

A
N

A
L

G
E

N
C

A
N

w
it

h
sc

a
le

d
st

o
p
p
in

g
c
ri

te
ri

o
n

P
ro

b
le

m
st

it
o
b

j
o
p
t

fe
a
s

c
o
m

p
l

m
u
lt

ip
st

it
o
b

j
o
p
t

fe
a
s

c
o
m

p
l

m
u
lt

ip
6=

o
b

j

L
U
K
V
L
E
1
4

-
2
3

3
.1

4
e
+

0
8

4
.2

8
e
−

0
7

1
.4

3
e
−

1
1

7
.1

5
e
−

1
3

3
.9

3
e
+

0
4

4
1
5

(-
8
)

3
.1

4
e
+

0
8

1
.0

3
e
−

0
2

4
.0

7
e
−

0
7

4
.5

2
e
−

0
8

3
.9

3
e
+

0
4

0
.0

0

M
P
C
7

-
2
4

-1
.5

0
e
+

0
7

6
.7

6
e
−

0
7

6
.5

2
e
−

1
1

5
.2

7
e
−

1
2

7
.3

1
e
+

0
0

4
2
2

(-
2
)

-1
.5

0
e
+

0
7

1
.6

9
e
−

0
6

8
.7

3
e
−

1
0

5
.3

6
e
−

1
2

7
.3

1
e
+

0
0

0
.0

0

N
C
V
X
Q
P
1

-
1
2

-7
.5

1
e
+

0
9

4
.1

0
e
−

0
7

6
.4

1
e
−

0
9

2
.1

4
e
−

0
9

1
.2

5
e
+

0
4

4
1
1

(-
1
)

-7
.5

1
e
+

0
9

1
.0

1
e
−

0
2

4
.3

9
e
−

0
8

1
.1

0
e
−

0
8

1
.2

5
e
+

0
4

0
.0

0

N
C
V
X
Q
P
2

3
5
0

-5
.8

4
e
+

0
9

4
.6

8
e
−

0
7

1
.3

5
e
−
0
3

4
.5

0
e
−

0
4

2
.4

4
e
+

0
4

4
2
3

(-
2
7
)

-5
.8

4
e
+

0
9

9
.7

1
e
−

0
3

1
.4

5
e
−

0
8

4
.8

3
e
−

0
9

2
.4

4
e
+

0
4

N
C
V
X
Q
P
3

3
5
0

-3
.1

3
e
+

0
9

1
.8

3
e
−

0
4

3
.1

0
e
−
0
4

1
.0

3
e
−

0
4

2
.2

7
e
+

0
4

4
1
8

(-
3
2
)

-3
.1

3
e
+

0
9

2
.0

9
e
−

0
2

3
.0

8
e
−

0
7

7
.6

9
e
−

0
8

2
.5

0
e
+

0
4

N
C
V
X
Q
P
7

-
1
2

-5
.2

2
e
+

0
9

1
.7

0
e
−

0
7

1
.5

4
e
−

0
9

5
.1

5
e
−

1
0

5
.6

9
e
+

0
4

4
1
1

(-
1
)

-5
.2

2
e
+

0
9

7
.0

7
e
−

0
4

6
.8

7
e
−

0
8

2
.2

9
e
−

0
8

5
.6

9
e
+

0
4

0
.0

0

N
C
V
X
Q
P
8

-
2
0

-3
.5

8
e
+

0
9

1
.9

5
e
−

0
8

1
.9

4
e
−

0
8

6
.4

5
e
−

0
9

3
.7

9
e
+

0
4

4
1
4

(-
6
)

-3
.5

8
e
+

0
9

1
.4

1
e
−

0
3

6
.5

2
e
−

0
7

1
.6

3
e
−

0
7

3
.7

9
e
+

0
4

0
.0

0

N
C
V
X
Q
P
9

3
5
0

-2
.1

3
e
+

0
9

2
.7

7
e
−

0
2

2
.0

7
e
−
0
3

6
.9

1
e
−

0
4

1
.2

7
e
+

0
4

4
2
2

(-
2
8
)

-2
.1

2
e
+

0
9

1
.8

1
e
−

0
1

8
.6

6
e
−

0
8

2
.8

9
e
−

0
8

1
.1

5
e
+

0
4

O
R
B
I
T
2

*
*

*
*

*
*

*
4

1
2

3
.1

2
e
+

0
2

4
.8

7
e
−

0
5

2
.2

4
e
−

0
9

3
.0

3
e
−

1
0

9
.2

4
e
+

0
3

O
R
T
H
R
D
S
2

-
2
6

7
.6

2
e
+

0
2

2
.3

1
e
−

0
8

5
.0

1
e
−

0
7

6
.2

6
e
−

0
8

2
.8

9
e
+

0
3

4
2
4

(-
2
)

7
.6

2
e
+

0
2

1
.2

6
e
−

0
3

6
.6

8
e
−

0
7

8
.3

5
e
−

0
8

2
.5

1
e
+

0
3

0
.0

0

P
O
W
E
L
L
2
0

-
3
5

5
.2

1
e
+

1
0

1
.9

8
e
−

0
7

6
.3

0
e
−

0
8

6
.6

7
e
−

0
8

1
.0

4
e
+

0
7

4
2
9

(-
6
)

5
.2

1
e
+

1
0

2
.1

3
e
−

0
3

3
.0

9
e
−

0
8

3
.2

6
e
−

0
8

1
.0

4
e
+

0
7

0
.0

0

Q
B
R
A
N
D
Y

-
1
9

2
.8

4
e
+

0
4

3
.4

9
e
−

0
7

7
.1

0
e
−

0
8

1
.2

2
e
−

0
9

8
.0

9
e
+

0
2

4
1
6

(-
3
)

2
.8

4
e
+

0
4

2
.7

9
e
−

0
5

6
.1

8
e
−

0
7

2
.1

8
e
−

0
7

8
.0

9
e
+

0
2

0
.0

0

Q
G
R
O
W
1
5

-
1
6

-1
.0

2
e
+

0
8

1
.4

5
e
−

0
7

2
.1

1
e
−

0
9

2
.1

1
e
−

0
9

1
.6

4
e
+

0
1

4
1
5

(-
1
)

-1
.0

2
e
+

0
8

2
.7

0
e
−

0
6

2
.4

4
e
−

0
9

2
.4

4
e
−

0
9

1
.6

4
e
+

0
1

0
.0

0

Q
G
R
O
W
2
2

-
1
7

-1
.5

0
e
+

0
8

2
.3

3
e
−

0
7

2
.4

4
e
−

0
7

2
.4

4
e
−

0
7

1
.6

4
e
+

0
1

4
9

(-
8
)

-1
.5

0
e
+

0
8

7
.4

4
e
−

0
6

4
.0

7
e
−

0
8

4
.0

7
e
−

0
8

1
.6

4
e
+

0
1

0
.0

0

Q
G
R
O
W
7

-
1
4

-4
.2

8
e
+

0
7

9
.5

7
e
−

0
7

9
.3

1
e
−

1
0

9
.3

1
e
−

1
0

1
.6

4
e
+

0
1

4
9

(-
5
)

-4
.2

8
e
+

0
7

5
.8

4
e
−

0
6

6
.6

2
e
−

1
0

6
.6

2
e
−

1
0

1
.6

4
e
+

0
1

0
.0

0

Q
P
C
B
O
E
I
1

-
4
2

1
.1

5
e
+

0
7

9
.5

8
e
−

0
8

8
.7

1
e
−

0
9

3
.0

7
e
−

0
9

1
.2

3
e
+

0
4

4
3
9

(-
3
)

1
.1

5
e
+

0
7

8
.2

6
e
−

0
4

2
.9

3
e
−

0
7

2
.0

7
e
−

0
9

1
.2

3
e
+

0
4

0
.0

0

Q
P
N
B
L
E
N
D

-
1
8

-9
.1

4
e
−

0
3

5
.3

4
e
−

1
6

4
.3

3
e
−

0
8

1
.8

8
e
−

0
8

1
.6

4
e
+

0
0

4
1
5

(-
3
)

-9
.1

4
e
−

0
3

1
.0

7
e
−

0
6

2
.3

1
e
−

0
8

2
.3

6
e
−

0
9

1
.6

4
e
+

0
0

0
.0

0

Q
S
C
S
D
8

-
2
8

9
.4

1
e
+

0
2

8
.4

6
e
−

0
7

1
.3

9
e
−

0
8

1
.3

9
e
−

0
8

1
.6

0
e
+

0
1

4
1
5

(-
1
3
)

9
.4

1
e
+

0
2

6
.4

4
e
−

0
6

8
.2

4
e
−

0
7

8
.2

4
e
−

0
7

1
.6

0
e
+

0
1

0
.0

0

Q
S
C
T
A
P
1

-
1
4

1
.4

2
e
+

0
3

5
.4

8
e
−

0
7

1
.9

2
e
−

0
7

7
.7

7
e
−

0
9

5
.5

0
e
+

0
0

4
1
1

(-
3
)

1
.4

2
e
+

0
3

2
.6

8
e
−

0
6

1
.0

9
e
−

0
7

2
.6

8
e
−

0
9

5
.5

0
e
+

0
0

0
.0

0

Q
S
E
B
A

-
2
7

8
.1

5
e
+

0
7

2
.5

3
e
−

0
7

1
.2

6
e
−

0
7

1
.2

4
e
−

0
9

7
.4

3
e
+

0
3

4
2
3

(-
4
)

8
.1

5
e
+

0
7

4
.8

2
e
−

0
4

2
.0

8
e
−

0
7

1
.5

4
e
−

0
8

7
.4

3
e
+

0
3

0
.0

0

Q
S
T
A
I
R

-
1
8

7
.9

9
e
+

0
6

4
.0

0
e
−

0
7

1
.7

8
e
−

0
9

1
.7

8
e
−

0
9

2
.4

0
e
+

0
2

4
1
3

(-
5
)

7
.9

9
e
+

0
6

1
.1

3
e
−

0
4

5
.7

0
e
−

0
7

1
.9

0
e
−

0
7

2
.4

0
e
+

0
2

0
.0

0

S
T
A
D
A
T
2

-
2
3

-3
.2

6
e
+

0
1

7
.0

0
e
−

0
8

1
.5

8
e
−

0
8

8
.7

9
e
−

1
2

1
.3

2
e
+

0
2

4
2
0

(-
3
)

-3
.2

6
e
+

0
1

4
.3

7
e
−

0
6

1
.4

1
e
−

1
0

1
.0

1
e
−

1
2

1
.3

2
e
+

0
2

0
.0

0

S
T
A
D
A
T
3

-
2
2

-3
.5

8
e
+

0
1

5
.2

0
e
−

0
7

8
.0

5
e
−

0
7

2
.0

1
e
−

1
0

1
.1

2
e
+

0
2

4
1
6

(-
6
)

-3
.5

8
e
+

0
1

4
.6

6
e
−

0
6

3
.5

2
e
−

0
8

5
.8

5
e
−

1
1

1
.1

2
e
+

0
2

0
.0

0

S
W
O
P
F

-
1
1

6
.7

9
e
−

0
2

6
.5

6
e
−

0
7

3
.4

9
e
−

0
8

4
.2

2
e
−

1
0

9
.1

0
e
+

0
1

4
1
0

(-
1
)

6
.7

9
e
−

0
2

1
.4

3
e
−

0
6

6
.6

4
e
−

0
8

1
.6

1
e
−

0
9

9
.1

0
e
+

0
1

0
.0

0

T
R
U
S
S

-
3
4

4
.5

9
e
+

0
5

9
.5

4
e
−

0
7

8
.8

9
e
−

0
8

8
.8

9
e
−

0
8

1
.7

8
e
+

0
2

4
2
8

(-
6
)

4
.5

9
e
+

0
5

7
.0

6
e
−

0
5

8
.6

5
e
−

0
8

8
.6

5
e
−

0
8

1
.7

8
e
+

0
2

0
.0

0

V
T
P
-
B
A
S
E

-
2
6

1
.3

0
e
+

0
5

7
.3

3
e
−

0
7

4
.2

7
e
−

1
1

3
.1

0
e
−

1
2

1
.7

2
e
+

0
5

4
1
7

(-
9
)

1
.3

0
e
+

0
5

5
.8

7
e
−

0
4

1
.4

6
e
−

1
1

3
.1

9
e
−

1
2

1
.7

2
e
+

0
5

0
.0

0

Y
A
O

-
2
4

1
.3

0
e
+

0
2

4
.3

7
e
−

1
1

7
.0

2
e
−

0
7

3
.5

1
e
−

0
7

1
.8

4
e
+

0
5

4
2
2

(-
2
)

1
.1

1
e
+

0
2

9
.8

2
e
−

0
6

9
.8

9
e
−

0
7

4
.9

4
e
−

0
7

1
.5

0
e
+

0
5

0
.1

5



16 R. Andreani et al.
T
a
b
le

2
M

a
cM

P
E

C
p

ro
b

le
m

s
in

w
h

ic
h

A
L

G
E

N
C

A
N

co
n
v
er

g
es

to
a

sc
a
le

d
a
p

p
ro

x
im

a
te

st
a
ti

o
n

a
ry

p
o
in

t
(a

cc
el

er
a
ti

o
n

d
is

a
b

le
d

).

S
ta

n
d
a
rd

A
L

G
E

N
C

A
N

A
L

G
E

N
C

A
N

w
it

h
sc

a
le

d
st

o
p
p
in

g
c
ri

te
ri

o
n

P
ro

b
le

m
st

it
o
b

j
o
p
t

fe
a
s

c
o
m

p
l

m
u
lt

ip
st

it
o
b

j
o
p
t

fe
a
s

c
o
m

p
l

m
u
lt

ip
6=

o
b

j

e
x
9
.
1
.
1
0

-
1
6

-3
.2

5
e
+

0
0

3
.5

9
e
−

0
8

1
.1

9
e
−

0
7

1
.1

9
e
−

0
7

7
.8

2
e
+

0
2

4
1
3

(-
3
)

-3
.2

5
e
+

0
0

2
.1

0
e
−

0
6

4
.5

1
e
−

0
8

4
.5

1
e
−

0
8

7
.8

2
e
+

0
2

0
.0

0

e
x
9
.
1
.
8

-
1
6

-3
.2

5
e
+

0
0

3
.5

9
e
−

0
8

1
.1

9
e
−

0
7

1
.1

9
e
−

0
7

7
.8

2
e
+

0
2

4
1
3

(-
3
)

-3
.2

5
e
+

0
0

2
.1

0
e
−

0
6

4
.5

1
e
−

0
8

4
.5

1
e
−

0
8

7
.8

2
e
+

0
2

0
.0

0

m
o
n
t
e
i
r
o
B

-
2
0

-8
.2

8
e
+

0
2

3
.5

7
e
−

0
7

3
.5

7
e
−

0
7

3
.5

7
e
−

0
7

8
.0

5
e
+

0
0

4
1
7

(-
3
)

-8
.2

8
e
+

0
2

1
.6

3
e
−

0
6

8
.2

2
e
−

0
7

8
.2

2
e
−

0
7

8
.0

5
e
+

0
0

0
.0

0

p
a
c
k
-
r
i
g
2
-
8

-
1
5

7
.8

0
e
−

0
1

9
.5

8
e
−

0
7

1
.1

1
e
−

0
7

2
.7

8
e
−

0
8

5
.2

6
e
+

0
1

4
1
4

(-
1
)

7
.8

0
e
−

0
1

4
.4

0
e
−

0
5

3
.8

2
e
−

0
7

9
.5

6
e
−

0
8

5
.2

6
e
+

0
1

0
.0

0

T
a
b
le

3
C

U
T

E
st

p
ro

b
le

m
s

in
w

h
ic

h
A

L
G

E
N

C
A

N
co

n
v
er

g
es

to
a

sc
a
le

d
a
p

p
ro

x
im

a
te

st
a
ti

o
n

a
ry

p
o
in

t
(a

cc
el

er
a
ti

o
n

en
a
b

le
d

).

S
ta

n
d
a
rd

A
L

G
E

N
C

A
N

A
L

G
E

N
C

A
N

w
it

h
sc

a
le

d
st

o
p
p
in

g
c
ri

te
ri

o
n

P
ro

b
le

m
st

it
o
b

j
o
p
t

fe
a
s

c
o
m

p
l

m
u
lt

ip
st

it
o
b

j
o
p
t

fe
a
s

c
o
m

p
l

m
u
lt

ip
6=

o
b

j

A
C
O
P
R
1
1
8

-
3
9

1
.3

0
e
+

0
5

2
.6

6
e
−

1
0

4
.7

6
e
−

1
2

0
.0

0
e
+

0
0

3
.3

9
e
+

0
2

4
1
2

(-
2
7
)

1
.3

0
e
+

0
5

1
.0

7
e
−

0
4

1
.9

2
e
−

0
8

2
.7

8
e
−

0
9

3
.3

9
e
+

0
2

0
.0

0

A
C
O
P
R
3
0
0

-
4
0

7
.2

0
e
+

0
5

9
.9

9
e
−

0
7

2
.2

6
e
−

0
7

2
.3

7
e
−

1
0

2
.4

1
e
+

0
3

4
1
7

(-
2
3
)

7
.2

0
e
+

0
5

2
.0

8
e
−

0
3

1
.2

2
e
−

0
8

4
.1

0
e
−

1
0

2
.4

1
e
+

0
3

0
.0

0

A
C
O
P
R
5
7

-
4
3

4
.1

7
e
+

0
4

3
.9

8
e
−

0
7

6
.6

8
e
−

0
7

5
.2

6
e
−

0
8

7
.4

1
e
+

0
1

4
1
5

(-
2
8
)

4
.1

7
e
+

0
4

4
.1

1
e
−

0
5

6
.4

5
e
−

0
7

1
.1

5
e
−

0
7

7
.4

1
e
+

0
1

0
.0

0

A
G
G
2

3
5
0

-2
.0

2
e
+

0
7

2
.7

7
e
+

0
0

4
.1

2
e
−
0
5

2
.9

4
e
−

0
7

2
.9

9
e
+

0
2

4
2
2

(-
2
8
)

-2
.0

2
e
+

0
7

8
.5

1
e
−

0
6

2
.5

1
e
−

0
7

6
.1

4
e
−

0
9

1
.4

3
e
+

0
2

C
A
T
E
N
A

-
3

-2
.1

0
e
+

0
6

8
.3

1
e
−

1
0

1
.3

0
e
−

1
1

0
.0

0
e
+

0
0

6
.3

1
e
+

0
2

4
3

-2
.1

0
e
+

0
6

1
.4

1
e
−

0
6

9
.9

9
e
−

0
7

8
.3

2
e
−

0
7

6
.3

1
e
+

0
2

0
.0

0

C
M
P
C
1
6

-
2
2

-1
.5

0
e
+

0
7

9
.9

2
e
−

0
7

8
.2

2
e
−

1
2

0
.0

0
e
+

0
0

3
.1

7
e
+

0
0

4
2
2

-1
.5

0
e
+

0
7

3
.1

4
e
−

0
6

2
.7

1
e
−

0
7

3
.7

5
e
−

1
0

3
.1

7
e
+

0
0

0
.0

0

C
R
E
S
C
5
0

1
2
2

8
.2

3
e
−

0
9

8
.4

9
e
−

0
8

4
.6

4
e
−
0
1

2
.8

8
e
−

0
3

3
.2

0
e
+

0
4

4
1
3

(-
9
)

5
.9

7
e
−

0
1

1
.0

5
e
−

0
5

5
.8

0
e
−

0
8

1
.8

7
e
−

0
8

2
.5

7
e
+

0
1

H
A
N
G
I
N
G

-
1
3

-3
.1

5
e
+

0
4

2
.4

7
e
−

1
0

3
.2

4
e
−

0
7

0
.0

0
e
+

0
0

2
.0

4
e
+

0
2

4
1
3

-3
.1

5
e
+

0
4

1
.8

0
e
−

0
6

5
.0

6
e
−

0
7

1
.2

6
e
−

0
7

2
.0

4
e
+

0
2

0
.0

0

H
S
8
7

3
5
0

9
.0

0
e
+

0
3

5
.4

5
e
−

0
4

1
.5

1
e
−
0
4

1
.3

0
e
−

0
7

1
.1

6
e
+

0
3

4
3
3

(-
1
7
)

9
.0

0
e
+

0
3

4
.3

2
e
−

0
4

4
.3

3
e
−

0
7

3
.6

2
e
−

1
0

1
.1

6
e
+

0
3

H
S
8
9

-
1
1

1
.3

6
e
+

0
0

1
.3

4
e
−

0
8

7
.6

9
e
−

1
0

0
.0

0
e
+

0
0

1
.0

6
e
+

0
3

4
1
1

1
.3

6
e
+

0
0

2
.9

8
e
−

0
6

0
.0

0
e
+

0
0

1
.4

4
e
−

0
7

1
.0

6
e
+

0
3

0
.0

0



On scaled stopping criteria for a safeguarded augmented Lagrangian method 17

S
ta

n
d
a
rd

A
L

G
E

N
C

A
N

A
L

G
E

N
C

A
N

w
it

h
sc

a
le

d
st

o
p
p
in

g
c
ri

te
ri

o
n

P
ro

b
le

m
st

it
o
b

j
o
p
t

fe
a
s

c
o
m

p
l

m
u
lt

ip
st

it
o
b

j
o
p
t

fe
a
s

c
o
m

p
l

m
u
lt

ip
6=

o
b

j

L
O
B
S
T
E
R
Z

-
1
8

2
.7

7
e
+

0
3

6
.2

9
e
−

0
8

5
.4

8
e
−

0
7

0
.0

0
e
+

0
0

1
.2

6
e
+

0
5

4
1
8

2
.7

7
e
+

0
3

2
.5

2
e
−

0
3

5
.4

0
e
−

0
7

5
.4

0
e
−

0
7

1
.2

6
e
+

0
5

0
.0

0

L
U
K
V
L
E
1
4

-
2
3

3
.1

4
e
+

0
8

4
.2

8
e
−

0
7

1
.4

3
e
−

1
1

7
.1

5
e
−

1
3

3
.9

3
e
+

0
4

4
1
5

(-
8
)

3
.1

4
e
+

0
8

1
.0

3
e
−

0
2

4
.0

7
e
−

0
7

4
.5

2
e
−

0
8

3
.9

3
e
+

0
4

0
.0

0

N
C
V
X
Q
P
1

-
1
2

-7
.5

1
e
+

0
9

4
.1

0
e
−

0
7

6
.4

1
e
−

0
9

2
.1

4
e
−

0
9

1
.2

5
e
+

0
4

4
1
1

(-
1
)

-7
.5

1
e
+

0
9

1
.0

1
e
−

0
2

4
.3

9
e
−

0
8

1
.1

0
e
−

0
8

1
.2

5
e
+

0
4

0
.0

0

N
C
V
X
Q
P
2

*
*

*
*

*
*

*
4

2
3

-5
.8

4
e
+

0
9

9
.7

1
e
−

0
3

1
.4

5
e
−

0
8

4
.8

3
e
−

0
9

2
.4

4
e
+

0
4

N
C
V
X
Q
P
3

-
1
8

-3
.1

3
e
+

0
9

8
.1

3
e
−

0
7

2
.2

6
e
−

0
7

0
.0

0
e
+

0
0

2
.5

0
e
+

0
4

4
1
8

-3
.1

3
e
+

0
9

2
.0

9
e
−

0
2

3
.0

8
e
−

0
7

7
.6

9
e
−

0
8

2
.5

0
e
+

0
4

0
.0

0

N
C
V
X
Q
P
7

-
1
2

-5
.2

2
e
+

0
9

1
.7

0
e
−

0
7

1
.5

4
e
−

0
9

5
.1

5
e
−

1
0

5
.6

9
e
+

0
4

4
1
1

(-
1
)

-5
.2

2
e
+

0
9

7
.0

7
e
−

0
4

6
.8

7
e
−

0
8

2
.2

9
e
−

0
8

5
.6

9
e
+

0
4

0
.0

0

O
R
T
H
R
D
S
2

-
2
6

7
.6

2
e
+

0
2

2
.3

1
e
−

0
8

5
.0

1
e
−

0
7

6
.2

6
e
−

0
8

2
.8

9
e
+

0
3

4
2
4

(-
2
)

7
.6

2
e
+

0
2

1
.2

6
e
−

0
3

6
.6

8
e
−

0
7

8
.3

5
e
−

0
8

2
.5

1
e
+

0
3

0
.0

0

P
O
W
E
L
L
2
0

-
3
5

5
.2

1
e
+

1
0

1
.9

8
e
−

0
7

6
.3

0
e
−

0
8

6
.6

7
e
−

0
8

1
.0

4
e
+

0
7

4
2
9

(-
6
)

5
.2

1
e
+

1
0

2
.1

3
e
−

0
3

3
.0

9
e
−

0
8

3
.2

6
e
−

0
8

1
.0

4
e
+

0
7

0
.0

0

Q
P
C
B
O
E
I
1

-
4
2

1
.1

5
e
+

0
7

9
.5

8
e
−

0
8

8
.7

1
e
−

0
9

3
.0

7
e
−

0
9

1
.2

3
e
+

0
4

4
3
9

(-
3
)

1
.1

5
e
+

0
7

8
.2

6
e
−

0
4

2
.9

3
e
−

0
7

2
.0

7
e
−

0
9

1
.2

3
e
+

0
4

0
.0

0

Q
S
C
T
A
P
1

-
1
1

1
.4

2
e
+

0
3

8
.2

2
e
−

0
7

5
.3

7
e
−

1
5

0
.0

0
e
+

0
0

5
.5

0
e
+

0
0

4
1
1

1
.4

2
e
+

0
3

2
.6

8
e
−

0
6

1
.0

9
e
−

0
7

2
.6

8
e
−

0
9

5
.5

0
e
+

0
0

0
.0

0

Q
S
T
A
I
R

-
1
8

7
.9

9
e
+

0
6

4
.0

0
e
−

0
7

1
.7

8
e
−

0
9

1
.7

8
e
−

0
9

2
.4

0
e
+

0
2

4
1
3

(-
5
)

7
.9

9
e
+

0
6

1
.1

3
e
−

0
4

5
.7

0
e
−

0
7

1
.9

0
e
−

0
7

2
.4

0
e
+

0
2

0
.0

0

S
T
A
D
A
T
2

-
2
0

-3
.2

6
e
+

0
1

7
.9

6
e
−

0
7

2
.0

2
e
−

0
9

0
.0

0
e
+

0
0

1
.3

2
e
+

0
2

4
2
0

-3
.2

6
e
+

0
1

4
.3

7
e
−

0
6

1
.4

1
e
−

1
0

1
.0

1
e
−

1
2

1
.3

2
e
+

0
2

0
.0

0

S
T
A
D
A
T
3

-
2
2

-3
.5

8
e
+

0
1

5
.2

0
e
−

0
7

8
.0

5
e
−

0
7

2
.0

1
e
−

1
0

1
.1

2
e
+

0
2

4
1
6

(-
6
)

-3
.5

8
e
+

0
1

4
.6

6
e
−

0
6

3
.5

2
e
−

0
8

5
.8

5
e
−

1
1

1
.1

2
e
+

0
2

0
.0

0

V
T
P
-
B
A
S
E

-
2
2

1
.3

0
e
+

0
5

3
.0

6
e
−

0
7

1
.2

0
e
−

1
0

0
.0

0
e
+

0
0

1
.7

2
e
+

0
5

4
1
7

(-
5
)

1
.3

0
e
+

0
5

5
.8

7
e
−

0
4

1
.4

6
e
−

1
1

3
.1

9
e
−

1
2

1
.7

2
e
+

0
5

0
.0

0

Y
A
O

-
2
2

1
.1

1
e
+

0
2

2
.9

1
e
−

1
1

9
.8

7
e
−

0
7

0
.0

0
e
+

0
0

1
.5

0
e
+

0
5

4
2
2

1
.1

1
e
+

0
2

9
.8

2
e
−

0
6

9
.8

9
e
−

0
7

4
.9

4
e
−

0
7

1
.5

0
e
+

0
5

0
.0

0

T
a
b
le

4
M

a
cM

P
E

C
p

ro
b

le
m

s
in

w
h

ic
h

A
L

G
E

N
C

A
N

co
n
v
er

g
es

to
a

sc
a
le

d
a
p

p
ro

x
im

a
te

st
a
ti

o
n

a
ry

p
o
in

t
(a

cc
el

er
a
ti

o
n

en
a
b

le
d

).

S
ta

n
d
a
rd

A
L

G
E

N
C

A
N

A
L

G
E

N
C

A
N

w
it

h
sc

a
le

d
st

o
p
p
in

g
c
ri

te
ri

o
n

P
ro

b
le

m
st

it
o
b

j
o
p
t

fe
a
s

c
o
m

p
l

m
u
lt

ip
st

it
o
b

j
o
p
t

fe
a
s

c
o
m

p
l

m
u
lt

ip
6=

o
b

j

m
o
n
t
e
i
r
o
B

-
2
0

-8
.2

8
e
+

0
2

3
.5

7
e
−

0
7

3
.5

7
e
−

0
7

3
.5

7
e
−

0
7

8
.0

5
e
+

0
0

4
1
7

(-
3
)

-8
.2

8
e
+

0
2

1
.6

3
e
−

0
6

8
.2

2
e
−

0
7

8
.2

2
e
−

0
7

8
.0

5
e
+

0
0

0
.0

0



18 R. Andreani et al.

– Among all the problems where only the scaled algorithm declared success,
we compared their final objective values with those from the literature. For
Netlib problems, optimal values are available at www.netlib.org/lp/da

ta/readme. For other problems, we get values from numerical tests with
the WORHP [22] package available at worhp.de/content/cutest. In the
problems AGG2, HS87 and NCVXQP2 (Tables 1 and 3), the objective value is
almost the same. For NCVXQP3, NCVXQP9 and ORBIT2 (Table 1), WORHP re-
ports a compatible objective value (-3.04E+09, -2.10E+09 and 3.17E+02,
respectively) with feasibility measures 7.18E-08, 1.78E-15 and 4.80E-10. A
large relative difference occurs in the problem CRESC50 (Tables 1 and 3).
The non-scaled version of Algorithm 1 fails with a stationary point for
the infeasibility problem, while the scaled algorithm declares convergence
to a feasible point. The objective value returned by the scaled algorithm
is 5.97E-01, much closer to the optimal value encountered by WORHP
(7.86E-01) than the non-scaled version. In this problem, non-scaled AL-
GENCAN reaches a good feasible point, but it gets away from it trying to
achieve optimality. We were unable to find an optimal value for HS99EXP;

– For problem YAO (Table 1) the final objective value obtained by the scaled
version of Algorithm 1 has a significant difference to that of the non-scaled
algorithm. This difference does not occur when acceleration is enabled. YAO
is a convex quadratic programming problem, for which WORHP declares
success returning yet another different (worse) objective value (1.98E+02);

– The number of iterations performed by scaled versions of ALGENCAN is
evidently always not higher than the non-scaled versions, since they differ
only in the stopping criteria. The same reasoning is true for the compu-
tational cost. When acceleration steps are disabled, the scaled versions in
fact terminate with fewer iterations. But when the acceleration is enabled,
the number of outer iterations between different versions of Algorithm 1
may be the same (see problems CATENA, CMPC16, HS89, HANGING, HS89,
LOBSTERZ, NCVXQP3, QSCTAP1, STADAT2, YAO — Table 3). This happens if,
at the final iteration, the Newtonian strategy is responsible for attaining
optimality for the unscaled criterion after feasibility and complementarity
were already achieved. In this case, scaled algorithms may declare conver-
gence before the Newton step was employed saving computational time. In
our tests, when this occurs, the scaled ALGENCAN gave the same objec-
tive function value as the Newton strategy;

– We emphasize that it is impossible for the non-scaled Algorithm 1 to con-
verge when the scaled version does not, since the second algorithm is ex-
actly the first with a more flexible stopping criterion. So, Tables 1 to 4
contain all the problems whose algorithms performed differently.

Early termination of scaled algorithms culminates in time savings. We then
compare CPU times between scaled and non-scaled algorithms in those cases
where they performed differently. In Tables 5 and 6, we highlight from Tables 1
to 4 those problems satisfying at least one of the following criterion:
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Table 5 Comparison of CPU times for problems of Tables 1 and 2 (acceleration disabled)

non-scaled scaled

Problem n m st it time (s) st it time (s)

A2NSDSIL 25,004 20,004 - 32 311.69 4 25 (-7) 301.52
A5NSDSIL 25,004 20,004 - 26 188.91 4 25 (-1) 188.74
ACOPR118 344 844 - 41 16.17 4 12 (-29) 12.10
ACOPR300 738 2,022 - 40 40.72 4 17 (-23) 20.07
ACOPR57 128 388 - 43 1.37 4 15 (-28) 0.89
AGG2 302 516 3 50 16.98 4 22 (-28) 4.55
BRIDGEND 2,734 2,727 - 25 8.95 4 11 (-14) 2.37
CATENA 2,999 1,000 - 7 294.78 4 3 (-4) 294.74
CMPC16 1,515 2,351 - 32 15.07 4 22 (-10) 11.17
CRESC50 6 100 1 22 1.14 4 13 (-9) 1.10
CVXQP1 L 10,000 5,000 - 22 919.38 4 19 (-3) 907.66
CVXQP3 10,000 7,500 - 25 3,170.89 4 16 (-9) 2,594.42
CVXQP3 L 10,000 7,500 - 42 4,481.93 4 20 (-22) 2,878.13
DISCS 33 66 - 30 0.07 4 23 (-7) 0.06
GANGES 1,681 1,309 - 26 7.56 4 21 (-5) 7.39
GROW22 946 440 - 12 5.13 4 5 (-7) 4.81
HANGING 3,588 2,330 - 14 21.08 4 13 (-1) 20.47
HS87 6 4 3 50 0.17 4 33 (-17) 0.16
HS99EXP 28 21 3 50 0.03 4 44 (-6) 0.03
LOBSTERZ 16,240 16,243 - 44 5,367.52 4 18 (-26) 1,936.34
LUKVLE14 9,998 6,664 - 23 700.60 4 15 (-8) 698.06
NCVXQP1 10,000 5,000 - 12 341.98 4 11 (-1) 339.99
NCVXQP2 10,000 5,000 3 50 3,219.21 4 23 (-27) 1,978.97
NCVXQP3 10,000 5,000 3 50 3,757.57 4 18 (-32) 2,269.82
NCVXQP7 10,000 7,500 - 12 1,321.63 4 11 (-1) 1,309.48
NCVXQP8 10,000 7,500 - 20 2,065.44 4 14 (-6) 1,954.84
NCVXQP9 10,000 7,500 3 50 17,184.14 4 22 (-28) 6,550.92
ORBIT2 2,692 2,097 * * > 20 hours 4 12 1,224.93
POWELL20 5,000 5,000 - 35 107.23 4 29 (-6) 104.16
QGROW22 946 440 - 17 17.53 4 9 (-8) 16.55
QGROW7 301 140 - 14 0.57 4 9 (-5) 0.49
QPCBOEI1 384 440 - 42 20.87 4 39 (-3) 20.36
QSCSD8 2,750 397 - 28 2.76 4 15 (-13) 2.43
QSTAIR 385 356 - 18 7.49 4 13 (-5) 7.27
STADAT3 4,001 11,999 - 22 40.35 4 16 (-6) 39.39
TRUSS 8,806 1,000 - 34 263.51 4 28 (-6) 258.16
VTP-BASE 185 198 - 26 10.73 4 17 (-9) 10.41
YAO 2,000 2,000 - 24 36.91 4 22 (-2) 33.16

1. the scaled algorithm terminates at least 5 iterations earlier than the non-
scaled one;

2. the non-scaled algorithm spent more than 15 seconds (single thread mode);
3. when Newtonian acceleration steps are activated (Tables 3 and 4), both

scaled and non-scaled versions converge with the same number of iterations.

The imposition of criteria 1 and 2 aims at omitting cases where both algorithms
behaved very similarly, and thus the execution time are almost the same; and
criterion 3 aims at highlighting the amount of effort to execute a final useless
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Table 6 Comparison of CPU times for problems of Tables 3 and 4 (acceleration enabled)

non-scaled scaled

Problem n m st it time (s) st it time (s)

ACOPR118 344 844 - 39 24.89 4 12 (-27) 13.27
ACOPR300 738 2,022 - 40 109.30 4 17 (-23) 41.71
ACOPR57 128 388 - 43 4.39 4 15 (-28) 1.65
AGG2 302 516 3 50 19.99 4 22 (-28) 4.82
CATENA 2,999 1,000 - 3 294.81 4 3 294.80
CMPC16 1,515 2,351 - 22 32.25 4 22 30.31
CRESC50 6 100 1 22 1.17 4 13 (-9) 1.08
HANGING 3,588 2,330 - 13 33.00 4 13 33.00
HS87 6 4 3 50 0.18 4 33 (-17) 0.17
HS89 3 1 - 11 0.03 4 11 0.03
LOBSTERZ 16,240 16,243 - 18 1,985.93 4 18 1,980.82
LUKVLE14 9,998 6,664 - 23 12,932.82 4 15 (-8) 6,393.10
NCVXQP1 10,000 5,000 - 12 1,069.05 4 11 (-1) 781.82
NCVXQP2 10,000 5,000 3 50 18,671.31 4 23 (-27) 10,008.95
NCVXQP3 10,000 5,000 - 18 5,597.96 4 18 5,193.74
NCVXQP7 10,000 7,500 - 12 11,154.04 4 11 (-1) 7,791.76
POWELL20 5,000 5,000 - 35 110.24 4 29 (-6) 105.24
QPCBOEI1 384 440 - 42 21.21 4 39 (-3) 20.53
QSCTAP1 480 300 - 11 0.62 4 11 0.58
QSTAIR 385 356 - 18 7.71 4 13 (-5) 7.25
STADAT2 2,001 5,999 - 20 51.53 4 20 50.13
STADAT3 4,001 11,999 - 22 147.93 4 16 (-6) 102.82
VTP-BASE 185 198 - 22 11.14 4 17 (-5) 10.40
YAO 2,000 2,000 - 22 34.18 4 22 34.18

Newtonian iteration. Figure 1, presents a visual representation of the data in
these tables using performance profiles [23].

Columns “st” and “it” in Tables 5 and 6 are as previously defined. Columns
“n” and “m” contain, respectively, the number of variables and ordinary con-
straints (not simple bounds) treated internally by the ALGENCAN package,
after removing possible variables with tight bounds. Each problem was run re-
peatedly until 15 seconds were reached and the arithmetic mean of the times
was reported in column “time (s)”; this minimizes the influence of system pro-
cess on small problems. We observed that, naturally, the run time of scaled
algorithms are always not higher than their non-scaled counterparts. The non-
scaled algorithm in ORBIT2 takes more than 20 hours of execution, and thus it
was interrupted. In order to measure the overall reduction in the CPU time, we
computed the geometric mean of rates “time scaled problem P”/“time non-
scaled problem P” over all problems P ; this provides a measure of relative
decrease of the run time of the scaled algorithm with respect to the non-scaled
one. Among all problems where algorithms performed differently (Tables 1
to 4, which include those from Tables 5 and 6), the reduction was 15.03%
when Newtonian acceleration steps are disabled (excluding ORBIT2, which re-
duction, although huge, can not be precisely measured), and 23.67% when
they are enabled. In particular, in problems where non-scaled Algorithm 1
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Fig. 1 Visual representation of the data of Tables 5 and 6, emphasizing the problems where
the nonscaled and scaled variants performed differently.

fails, the reduction in computing time was drastic (see problems with nonzero
status in Tables 5 and 6). When we look only at the problems in Table 6
where both scaled and non-scaled algorithms converge with the same number
of iterations, the reduction in run time decreases to 3.18%; this is the aver-
age effort of the final Newtonian iteration in relation to the total execution
time, saved by the scaled algorithm. It is worth noting that the Newtonian
steps do not always result in a reduction in total CPU time, as most of the
common problems between Tables 5 and 6 illustrate. In fact, it was observed
in [18] that problems with a poor KKT structure may lead to an expensive use
of time in matrix factorizations. This is a situation where scaling may help.
Furthermore, no problem included in Table 6 presented a reduction in outer
iterations with the Newtonian strategy compared with scaled algorithm (Ta-
ble 5). That is, in these cases even intermediate Newton steps were not really
more effective than the usual augmented Lagrangian iterations, and thus the
time spent with matrix factorizations was basically lost. We note that, in the
ALGENCAN implementation, Newtonian steps do not count as outer itera-
tions, that is, the acceleration steps are viewed as a complementary strategy to
improve the point already calculated by the standard inner solver GENCAN.
So, such Newtonian steps are mostly an additional computational effort that
did not prove useful in such tests. On the other hand, we are not trying to
claim that the Newton acceleration is not effective. Remember that in most
tests the scaled and unscaled versions behaved the same, and hence were left
out of Tables 5 and 6. In such cases, the Newton acceleration strategy proved
to be effective specially for very large scale problems.

One may say that scaling solutions simply means that a poorer solution
is returned. However, we stress that, as our tests indicate, when both scaled
and non-scaled algorithms stop successfully, they almost always converge to
points with the same objective value (probably the same point). Furthermore,
the scaled criterion (13) relaxes neither feasibility nor complementarity. In
particular, the scaled algorithm gives as “true” feasible points as the non-
scaled algorithm does. In addition, scaling tends to avoid numerical difficulties
in ill-conditioned problems, typical cases where Lagrange multipliers tend to
explode, attesting some level of optimality instead of declaring failure. This
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situation was in fact observed in some test problems. Therefore, we believe that
the scale criterion is useful in practice. Nevertheless, if for some reason it is
mandatory a “non-scaled” certificate of optimality, the following strategy could
be adopted: during the execution of the non-scaled version of Algorithm 1, save
a scaled solution whenever one is found. Then, if the non-scaled algorithm
failed, return the last scaled solution found if it is available. Such strategy has
the same computational cost of the original non-scaled ALGENCAN; it does
not discard possible final costly iterations (they exist, as illustrated in our
tests), but adds one more possibility to return a good feasible point with some
certificate of optimality in the cases where the original ALGENCAN fails to
converge.

5 Conclusions

The ALGENCAN package has received constant updates in the previous fifteen
years, being largely considered today a robust code for solving general non-
linear programming problems. For instance, in [20], new strategies have been
introduced inspired by worst-case complexity results. Since its first versions,
differently from most other solvers, a non-scaled stopping criterion is imple-
mented. This is due to its firm commitment with finding true KKT points,
rather than FJ points, but also motivated by its strong global convergence
results based on sequential optimality conditions and weak constraint quali-
fications, that ensures, for instance, convergence to a KKT point even in the
case of an unbounded sequence of approximate Lagrange multipliers.

It was previously thought that the unboundedness of the set of Lagrange
multipliers (let us say, degenerate problems) was closely related to the un-
boundedness of the sequence of approximate Lagrange multipliers generated
by the algorithm. Thus, it would be unreasonable to use a scaled stopping
criterion for such degenerate problems. However, it has been clarified in [2,21]
that even for degenerate problems, the first-order dual update is responsible for
guaranteeing that the algorithm generates a bounded sequence of approximate
Lagrange multipliers under the very general quasi-normality CQ.

In this paper we provided an adequate global convergence theory under
the quasi-normality CQ for a scaled variant of the algorithm. In some sense,
we were able to characterize quasi-normality as the weakest CQ guaranteeing
our global convergence result, which is, generally, not possible when non-scaled
algorithms are considered. That is, for this task, one usually define new tailored
CQs with these characteristics using elements of convex analysis [9], which was
surprisingly not necessary when considering the scaled algorithm.

A thorough numerical comparison of the scaled versus the non-scaled vari-
ants of ALGENCAN is performed, where we show that the scaled version out-
performs the non-scaled one in terms of detecting convergence sooner. Even in
view of the commitment of ALGENCAN to finding a KKT point, the scaled
stopping criterion has shown to be more robust in detecting a near-KKT point
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complementing current heuristics employed by ALGENCAN of calling a New-
tonian acceleration strategy.
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