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Abstract. We present a solution framework for general alternating current optimal
power flow (AC OPF) problems that include discrete decisions. The latter occur,
for instance, in the context of the curtailment of renewables or the switching of
power generation units and transmission lines. Our approach delivers globally
optimal solutions and is provably convergent. We model AC OPF problems with
discrete decisions as mixed-integer nonlinear programs. The solution method starts
from a known framework that uses piecewise linear relaxations. These relaxations
are modeled as mixed-integer linear programs and adaptively refined until some
termination criterion is fulfilled. In this work, we extend and complement this
approach by both problem-specific and very general algorithmic enhancements. In
particular, they consist in mixed-integer second-order cone relaxations as well as
primal and dual cutting planes. For example objective cuts and no-good-cuts help
to compute good feasible solutions while outer approximation constraints tighten
the relaxations.

We present extensive numerical results for various AC OPF problems where
discrete decisions play a major role. Even for hard instances with a large proportion
of discrete decisions, the method is able to generate high quality solutions efficiently.
Furthermore, we compare our method with state-of-the-art MINLP solvers. Our
method outperforms all other algorithms.

1. Introduction

In power system analysis, a main objective is the numerical evaluation and opti-
mization of the power flow in an electricity network. The predominantly used model
is the optimal power flow (OPF) problem. The basic version results in a continuous
nonlinear optimization problem. The task is to compute an optimal generation and
power transmission strategy with minimal costs. This optimization problem allows
to plan future extensions of power supply grids and to establish optimal operating
conditions for electricity systems. The current and future challenges of the transi-
tion towards renewable energy production can only be mastered through optimized
decisions.

In this paper, we extend the classical OPF model of [12] by incorporating discrete
decisions on a fairly general level. Discrete decisions are necessary, e.g., to model
discrete feed-ins or the switching of power generation units and transmission lines.
Typically, power generation units must generate a minimal (positive) amount of power
and therefore cannot be controlled continuously from zero. One has to decide if a
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generation unit is switched on or off. Optimal transmission switching is a paradigm
that decides if lines are switched in and out of the network in order to maximize
economic efficiency of generation dispatch. Discrete feed-ins can occur, for example,
in the context of renewable energies. With the increasing share of renewable energy
sources, their feed-in also has to be regulated in order to maintain network security
and avoid line overload. Under the German Renewable Energy Sources Act (EEG), for
instance, these curtailment options are realized in discrete steps within Germany. At
the same time, the amount of curtailed power should be as small as possible to conserve
resources and avoid potential compensation payments from network operators to the
owner of production units. The additional component of integer decisions for the OPF
thus provides the possibility to establish more comprehensive and realistic models.
Such models are for example part of the prominent ARPA-E’s Grid Optimization
Competition [3], where the focus is to quickly find feasible solutions for very large
real-world test instances. In contrast to this, we are interested in global approaches
for discrete AC OPF problems, i.e., we equally aim for good primal solutions and
tight dual bounds.

We consider an alternating current (AC) power flow model that is described by
a system of non-convex nonlinear equations. This model was originally introduced
by [12]. For a broad overview of the history of solving the AC OPF, we refer to [43].
The authors of [21] and [22] survey OPF literature to a great extent. AC OPF
in its basic version is already a mathematically challenging problem, see [9]. More
drastically, the inclusion of discrete decisions finally leads to mixed-integer nonlinear
programs (MINLPs) that are in general NP-hard optimization problems and therefore
very difficult to solve in practice. This is aggravated by the fact that many AC models
contain trigonometric functions, which are not supported by every state-of-the-art
MINLP solvers such as Baron ([51]) and SCIP ([42]).

We model such problems as MINLPs. To solve these, we start from the approach
from [11] and incorporate several enhancements specific for AC OPF problems
where discrete decisions play a major role. In [11], the authors use piecewise linear
relaxations of the MINLP that are modeled as mixed-integer linear programs (MIPs).
These MIPs are adaptively refined until a given termination criterion is fulfilled.
Piecewise linear functions have been successfully used in the literature to construct
tight relaxations for difficult nonlinear problems, see, e.g., [10, 18, 20, 29, 37, 38, 45,
52]. In this work, we extend this approach by known problem-specific relaxations
that are based on second-order cone formulations. Combining this ingredient with
the MIP-based piecewise linear relaxations results in mixed-integer second-order cone
programs (MISOCPs) that yield tight dual bounds. Several enhancements together
with the non-trivial combination of existing algorithmic approaches for obtaining sharp
primal and dual bounds improve the algorithm further and deliver a practically efficient
solution procedure. We prove that the convergence result from [11] is also applicable
to our framework. In addition, extensive numerical results show the practicability of
our method for various discrete AC OPF problems. Even for the very challenging
instances that include the discrete curtailment of renewables our approach is able to
deliver solutions of high quality.

Many of the global optimization approaches that have been developed for AC
OPF in recent years use convex optimization like semi-definite programming (SDP).
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Originally, the authors of [4] introduced the convex SDP relaxation of the AC OPF.
It was shown that this relaxation together with a “rank 1” condition is equivalent to
the AC OPF. Since the “rank 1” condition is up to now not algorithmically tractable,
the quality of this convex relaxation can only be numerically verified. It also depends
on the parameters of the power network and its topology. Consequently, the solution
of the SDP relaxation may not always deliver satisfying results. For many instances,
however, this relaxation performs very well and often leads to a global solution for the
AC OPF. With the extended conic quadratic problem formulation of [32], one can
easily obtain a second-order cone relaxation of the AC OPF. This relaxation is weaker
than the SDP relaxation but needs less computational effort on average. In [36], this
reformulation and the approach that uses the SDP problem are combined. The authors
construct second-order cone programming (SOCP) relaxations that are embedded in
a branch-and-cut framework. The authors of [41] further tighten quadratic relaxations
with piecewise convex function relaxations. In [27], the SDP relaxation was sharpened
with RLT-cuts and bound tightening. Additional cutting planes, convex envelopes,
and further bound tightening techniques complete the approach yielding the current
state-of-the-art solver for AC OPF. Moreover, in [15] the authors give an overview of
different relaxations for AC OPF and present a comparison of their quality.

We point out that DC optimal power flow models, which are a linear approximation
of AC models, have been studied to a large amount, see [14] for example. The benefit is
that DC models bypass the nonlinear part of the AC model. Hence, very large power
networks can be considered. This approximation is also suitable for problems where
the OPF appears to be a subproblem. Common models where the DC approximation
is predominantly used are, e.g., electricity market ([28, 54]) and chance constrained
optimal power flow models ([2, 7]). For MIP techniques applied to network expansion
problems, see [1]. However, for several electrical (distribution) networks, the DC
approximation is not accurate enough. In [47] a thorough analysis is given for which
power networks the DC approximation is suitable.

In general, the combination of AC OPF with discrete decisions has scarcely been
addressed in the literature. In [5], the authors present a two-level approach for OPF
with additional switching of the transmission lines of the power network. First, they
compute optimal discrete decisions with a DC model and then derive feasible decisions
from the DC solution with an AC model. The same problem is discussed in [34],
where a method is proposed that utilizes mixed-integer SOCP relaxations. These
are based on the SOCP relaxations for AC OPF that are introduced in [32]. The
problem is solved in a branch-and-cut framework.

AC OPF problems with switching of the generator units appear to be even less
studied in the literature. In his Ph.D. thesis [39], the author develops heuristic solutions
for this problem. Recently, [48] have proposed a mixed-integer method. Based on a
mixed-integer SDP relaxation of the problem, they derive two MIP approximations
that are subsequently solved: an inner and an outer MIP approximation. The inner
MIP approximation improves feasible solutions, whereas the outer MIP approximation
delivers a relaxation and therefore a dual bound.

A more special class of OPF problems with discrete decisions are the time-dependent
unit commitment OPF problems. They are often decomposed in a discrete master
problem and an continuous AC OPF subproblem. The drawback here, however, is
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that the AC OPF subproblem can often not be solved to global optimality; see for
example [13, 23, 40]. Moreover, we refer to [49], where an overview of the solution
methods for unit commitment problems that have been developed in recent decades is
given.

The key contributions of our work are:
AC OPF with Discrete Decisions: We combine solution approaches from the literature
into an algorithmic framework that can handle discrete decisions for AC OPF on a
fairly general level. Our approach is able to incorporate any discrete decisions that
can be represented in algebraic form using integer variables.
Globally Convergent Solution Approach: We extend and complement the adaptive
construction of piecewise linear relaxations by both problem-specific (like MISOCP
relaxations and DC OPF heuristics) and general algorithmic enhancements (like no-
good-cuts and outer approximation cuts). Although these enhancements are known
in the literature on their own, the novelty of our method is to combine them in a
way that leads to a significant speed-up for piecewise linear relaxation based solution
approaches. We obtain an efficient algorithm for discrete AC OPF problems that
delivers globally optimal solutions. We extend the theoretical results from [11] and
prove that our approach converges to the global optimal solution of the MINLP
problem with an increasing accuracy of the piecewise linear relaxations.
Computational Results: We provide a computational study based on benchmark
instances from the NESTA test case archive ([16]). Our approach is able to generate
high quality solutions efficiently together with tight dual bounds It outperforms state-
of-the-art MINLPs solvers for various MINLP instances that result from transmission
line and generator switching and the discrete curtailment of renewables.

This article is organized as follows. In Section 2, recall how to formulate the AC
OPF problem as a nonlinear program. Starting from this, we develop MINLP models
for different scenarios that include discrete decisions in Section 3. Section 4 describes
the solution framework and shows its convergence. Finally, we present comprehensive
computational results in Section 5 and conclude this work in Section 6.

2. The AC OPF Model

In this section, we describe the NLP model for the AC OPF problem. It is based
on the power flow models from [32]. Section 3 completes it to an MINLP model with
integer formulations that include the various discrete decisions.

We represent a power network by an undirected graph N = (B, L), where the node
set B denotes the buses and the edge set L the transmission lines. The subset U ⊆ B
contains the nodes with a generator. Our objective is to minimize the production costs
of the generators and to simultaneously satisfy all physical and technical constraints.
The physical restrictions are essentially described by Ohm’s and Kirchhoff’s Law.
The technical restrictions represent the limits of the transmission lines and of the
production quantities of the generators.

The power supply system is characterized by a complex nodal admittance ma-
trix Y ∈ C|B|×|B| that describes the nodal admittance of the buses. Roughly speaking,
this matrix contains information about the network topology and transmission param-
eters. To each transmission line (k, l) ∈ L, we assign a component Ykl = Gkl + iHkl.
The shunt conductance and susceptance are denoted by gkk and hkk, respectively for
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every bus k ∈ B. As in [36] and [31], we follow the standard notation and denote
by pg

k and qg
k the real and reactive power output of the generator that is associated

to the bus k ∈ U and assume lower and upper bounds (pg
k)−, (qg

k)− and (pg
k)+, (qg

k)+

to be given. For a network node without generation units k ∈ B \ U , we set pg
k = 0

and qg
k = 0. We point out that there are instances with more than one generator on

a bus. More than one line between two nodes are also possible. In this cases, we
simply duplicate the corresponding bus and line in the sets B and L and label them
with increasing sub-indices. Usually the AC OPF minimizes production costs. The
objective is a univariate linear or convex quadratic function in dependence of active
power generation

Ck(pg
k) := Ck,1(pg

k)2 + Ck,2pg
k + Ck,3 (1)

with given constants Ck,1 ≥ 0 and Ck,2, Ck,3 ∈ R for every generator node k ∈ U. The
corresponding power demand at bus k is given by pd

k and qd
k. Moreover, we denote

the real and reactive power on a transmission line (k, l) ∈ L sent from node k ∈ B
to l ∈ δ(k) by pkl and qkl, respectively, where δ(k) denotes the set of neighbor nodes
for k.

In the literature, there are different formulations for the AC OPF depending on the
form the complex voltage on a network node is described. Recently, [8] has provided
a broad overview of different OPF formulations. We want to highlight that each
problem formulation has its own advantages and disadvantages and not all of them are
equivalent. The two equivalent polar formulation and the extended conic quadratic
formulation specify the complex voltage by voltage magnitude and voltage angle. The
power flow equations are described by trigonometric functions in these formulations.
Alternatively, the rectangular formulation specifies the complex voltage by its real
and imaginary part. This model avoids trigonometric expressions.

For our purposes, the extended conic quadratic formulation is the most appropriate
since it contains the fewest nonlinear expressions and thus introduces the least com-
plexity for an approach based on piecewise linear relaxations of the nonlinearities. In
this paper, we therefore focus on the extended conic quadratic formulation introduced
by [32], for which, additionally, convex SOCP-relaxations can be easily derived. Please
note that we also incorporate the rectangular formulation for a comparison of our
approach with state-of-the-art MINLP solvers. For more details on the modeling in
this alternative problem formulation, we refer to Appendix 8.

2.1. Extended Conic Quadratic Formulation. The complex voltage on a bus
k ∈ B is given by Vk = uk(cos θk + i sin θk), where uk = |Vk| is the voltage magnitude
with lower and upper bounds |Vk|− and |Vk|+, and θk is the phase angle. In [32] the
variable substitutions

ckk := u2
k, ckl := ukulcos(θk − θl), tkl := −ukulsin(θk − θl) (2)

are used for each bus k ∈ B and line (k, l) ∈ L and the extended conic quadratic AC
OPF flow model is formulated as

min
pg ,qg ,c,t,θ,p,q

∑
k∈U

Ck(pg
k) (3a)

s.t. pg
k − pd

k = gkk(ckk) +
∑

l∈δ(k)
pkl for all k ∈ B, (3b)
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qg
k − qd

k = −hkk(ckk) +
∑

l∈δ(k)
qkl for all k ∈ B, (3c)

pkl = −Gkl(ckk − ckl)−Hkltkl for all (k, l) ∈ L, (3d)
qkl = Hkl(ckk − ckl)−Gkltkl for all (k, l) ∈ L, (3e)
c2

kl + t2
kl = ckkcll for all (k, l) ∈ L, (3f)

θl − θk = arctan2(tkl, ckl) for all (k, l) ∈ L. (3g)
ckl = clk, tkl = −tlk for all (k, l) ∈ L, (3h)
p2

kl + q2
kl ≤ (d+

kl)
2 for all (k, l) ∈ L, (3i)

(pg
k)− ≤ pg

k ≤ (pg
k)+ for all k ∈ U, (3j)

(qg
k)− ≤ qg

k ≤ (qg
k)+ for all k ∈ U, (3k)

(|Vk|−)2 ≤ ckk ≤ (|Vk|+)2 for all k ∈ B, (3l)
θ−

kl ≤ θk − θl ≤ θ+
kl for all (k, l) ∈ L, (3m)

pg, qg ∈ R|U |, θ ∈ R|B|, c ∈ R|B|+|L|, t, p, q ∈ R|L|. (3n)

The constraints (3b) and (3c) guarantee the conservation of active and reactive power
at the buses of the network. Commonly, the real and reactive power flow pkl and qkl

are described as in (3d) and (3e). Additionally, we bound the apparent power dkl on
line (k, l) ∈ L by d+

kl. Since d2
kl = p2

kl + q2
kl, we ensure this restriction by (3i). We point

out that one of the variables θk is set to zero at a reference node. The nonlinear part
of the AC OPF model (3) is (3f)–(3g) and (3i).

Finally, we remark that −π/2 < θl − θk < π/2 holds in practice for a lot of test
instances. Under this assumption, we can reformulate the discontinuous constraint (3g)
by

ckl tan(θl − θk) = tkl. (4)
The latter is much easier to handle than (3g) because of the discontinuity of the
two-argument arcus tangent. If there are no bounds on the voltage angle differences
or if they are not small enough, we can replace (3g) by

ckl sin(θl − θk) = tkl cos(θl − θk). (5)

2.2. SOCP Relaxation of the Extended Conic Quadratic Formulation. As
pointed out in [33, 35], we can easily obtain a SOCP relaxation of (3) by dropping
constraint (3g) and substituting (3f) with

c2
kl + t2

kl ≤ ckkcll for all (k, l) ∈ L. (6)
The constraints (6) denote SOCP cones that are the convex hulls of (3f). We will use
this relaxation in our solution framework to obtain tight dual bounds for the AC
OPF problem (3).

3. Extension to Discrete Decisions

In this section, we show how to extend the NLP model from Section 2 to an MINLP
for several scenarios that contain discrete decisions. We focus on the extended conic
quadratic formulation (3).
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3.1. Transmission Line Switching. Let st
kl ∈ {0, 1} denote the switching status of

a transmission line (k, l) ∈ L. The switching constraints of a line can be modeled by
pkl = (−Gkl(ckk − ckl)−Hkltkl)st

kl, (7a)
qkl = (Hkl(ckk − ckl)−Gkltkl)st

kl, (7b)
(c2

kl + t2
kl − ckkcll)st

kl = 0, (7c)
(ckl tan(θl − θk)− tkl)st

kl = 0 (7d)
for all (k, l) ∈ L. Equation (7a) and (7b) guarantees that the power flow on line
(k, l) ∈ L is set to zero if the line is switched off. The nonlinear constraints (3f)–(3g) are
only active if the transmission edge is switched on. This is achieved by (7c) and (7d).

The model (7) contains several products of continuous and binary variables. In order
to reduce the number of such bilinear products, we follow [34] and instead introduce
additional variables c̃kl := ckkst

kl for every line (k, l) ∈ L and model the transmission
switching via

pkl = −Gkl(c̃kl − ckl)−Hkltkl, (8a)
qkl = Hkl(c̃kl − ckl)−Gkltkl, (8b)
c2

kl + t2
kl = c̃klc̃lk, (8c)

ckl tan(θl − θk) = tkl, (8d)
c̃kl = ckkst

kl, (8e)
c−

kls
t
kl ≤ ckl ≤ c+

kls
t
kl, (8f)

t−
kls

t
kl ≤ tkl ≤ t+

kls
t
kl (8g)

for every transmission line (k, l) ∈ L. The parameters c−
kl, c+

kl and t−
kl, t+

kl denote the
lower and upper bounds for the decision variables ckl and tkl for all lines (k, l) ∈ L.
These bounds are not initially stated in problem (2) and usually not part of given
input parameters. We can use in (8f)–(8g) the trivial bounds

c−
kl = − |Vk|+ |Vl|+, c+

kl = |Vk|+ |Vl|+

t−
kl = − |Vk|+ |Vl|+, t+

kl = |Vk|+ |Vl|+.

It is easy to verify that (7) and (8) are equivalent.
The MINLP model for AC OPF with transmission line switching can be obtained

by exchanging (3d)–(3g) with (8) and introducing the additional variables st ∈ {0, 1}|L|

and c̃kl ≥ 0 for all lines (k, l) ∈ L.

3.2. Generator Switching. In order to integrate the switching status of a generator,
we introduce the binary variable sg

k ∈ {0, 1} for every generator bus k ∈ U. We model
the switching of a generator with

sg
k(pg

k)− ≤ pg
k ≤ sg

k(pg
k)+, (10a)

sg
k(qg

k)− ≤ qg
k ≤ sg

k(qg
k)+. (10b)

These constraints ensure that both active and reactive power generation are set to zero
if the power production is switched off. Otherwise, the active and reactive generator
feed-in is continuously controllable inside the bounds.
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Because there are no cost associated to switched-off production units, we change the
objective function (1) for the AC OPF with generator switching to∑

k∈U

(
Ck,1(pg

k)2 + Ck,2pg
k + Ck,3sg

k

)
.

We receive the MINLP model for generator switching by exchanging the already
mentioned objective function, constraints (3j)–(3k)with(10a)–(10b)and binary variables
sg ∈ {0, 1}|U |.

3.3. Curtailment of Renewables. In practice, the feed-in from renewables is often
regulated in discrete steps. We denote with U c ⊆ B the nodes with power injection
from renewables. If necessary, the feed-in is curtailed to a certain percentage of the
installed active power capacity pinst

k ≥ 0, for every node k ∈ U c, that is the intended
full-load sustained energy production. To do this, we introduce discrete decision
variables sc

k ∈ Sc
k ⊆ [0, 1], k ∈ U c, which we refer to as curtailment factors from the

discrete set Sc
k of curtailment options. In practice, sets with few discrete levels are

common. Typical steps are for example {0, 0.3, 0.6, 1} or {0, 0.1, ..., 0.9, 1}. At a node
k ∈ U c, the active power fed into the network cannot exceed sc

kpinst
k ∈ [0, pinst

k ] . Any
feed-in above this value is cut off.
As in [2], we model this by

pc,in
k = min(pc

k, sc
kpinst

k ) =
{

pc
k if pc

k ≤ sc
kpinst

k ,

sc
kpinst

k else,
(11)

where pc
k ≥ 0 denotes the active power production from renewables on node k ∈ U c

and pc,in
k ∈ [0, pc

k] the (curtailed) active power from renewables fed into the network.
This minimum expression could be linearized by introducing auxiliary mixed-integer
variables and linear constraints. As the active power production from renewables is a
constant input parameter in our setting, we can avoid dealing with minimum terms in
(11). Therefore, we compute the possible absolute curtailment options

pc,in
k ∈ {min(pc

k, sc
kpinst

k ) : sc
k ∈ Sk} (12)

and integrate them in the model as the sum of auxiliary binaries with special ordered
set constraints (of type 1).
We assume a constant power factor cos(ϕ) ∈ (0, 1] for the feed-in such that the reactive
power is given by

qc,in
k =

√
1− cos(ϕ)2

cos(ϕ)2 pc,in
k . (13)

Since the disposal of renewable energy should be avoided and may also lead to
compensation payments for the electricity network operators, the amount of curtailed
active power must be penalized in the objective function. We replace the objective
function in (3) by∑

k∈U

(
Ck,1(pg

k)2 + Ck,2pg
k + Ck,3

)
+

∑
k∈Uc

Cc
k(pc

k − pc,in
k ), (14)

where the constant Cc
k ≥ 0 is the cost coefficient assigned to curtailment costs. Here,

we assume linear costs to obtain again a univariate convex quadratic objective function.
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This also coincides with the pricing of compensation costs through curtailment in
practice. For an abbreviated notation, let pc,in

k = 0 for all nodes k ∈ B \ U c. We
integrate the curtailment model in the AC OPF by exchanging (3b) and (3c) with

pg
k + pc,in

k − pd
k = gkk(ckk) +

∑
l∈δ(k)

pkl,

qg
k + qc,in

k − qd
k = −hkk(ckk) +

∑
l∈δ(k)

qkl,

together with (12)–(13) for all nodes k ∈ B.

Remark 3.1 (MISOCP Relaxation). As in Section 2.2, we can relax the nonlinearities
analogously to construct a convex relaxation for the nonlinear parts of each extended
model. Due to the appearance of discrete variables this relaxation forms an MISOCP,
which can be solved by standard software. This is integrated in our solution approach
by adding the SOCP constraints to the piecewise linear MIP relaxations.

4. Solution Framework

Our goal is to obtain globally optimal solutions for AC OPF with discrete decisions.
Most global approaches for AC OPF use some sort of relaxations in combination
with a local NLP solver, where convergence to the global optimal solution is not
always guaranteed. The situation becomes even more challenging if we include integral
variables.

4.1. The Algorithm. We consider the method proposed in [11] and improved in [10],
where MINLPs are solved to global optimality by solving a series of MIPs. The main
idea is to use piecewise linear functions to construct MIP relaxations of the underlying
MINLP. Then, an algorithm is developed to find a global optimum by iteratively
solving these relaxations, which are adaptively refined. Algorithm 1 gives a schematic
overview of the approach, which is also applicable for solving general MINLPs.

The main benefit of using relaxations is that we can embed this procedure into
a primal-dual approach. Whenever a relaxation is infeasible, we can immediately
conclude that the MINLP itself is infeasible because of the relaxation property.
Moreover, any dual objective bound of an MIP relaxation delivers a dual objective
bound for the MINLP problem.

At the same time, MIP relaxations preserve the discrete structure of the MINLP,
since only the nonlinear part is relaxed. This is exploited as follows: Whenever a
feasible solution of an MIP relaxation is found, all discrete variables of the MINLP are
fixed according to the respective solution of the MIP relaxation. Solving the resulting
NLP to local optimality delivers feasible solutions for the MINLP in many cases.
This heuristic is contained in Step (2)-(ii) of Algorithm 1. For problems where the
discrete decisions strongly affect the overall difficulty, the preservation of the discrete
structure is very advantageous in the course of finding integer-feasible solutions. This
is mainly due to the fact that the discrete part of the problem is tackled by mature
MIP technology. It has been demonstrated in [11] and [10] in the context of gas
network optimization. We are therefore confident to build our approach on the same
solution framework, as we are interested in globally optimal solutions for AC OPF
with (potentially difficult) discrete decisions.
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Algorithm 1: Adaptive MIP-based algorithm for solving MINLPs
Input: An MINLP problem P with continuous nonlinearities and bounded

variables, a run time limit T , and parameters ϵ0, ϵfinal, ϵgap and nglob.
Output: If P is feasible, the algorithm returns an optimal solution of an MIP

relaxation of P with an accuracy of ϵfinal or terminates if the time
limit T is reached.

(1) Initialization:
Construct an initial MIP relaxation Π0 of P using piecewise linear
relaxations of the nonlinearities with an accuracy of ϵ0.

Main Loop: (i← −1),
repeat

i← i + 1

(2) Solve Relaxation:

(i) if i ≡ 0 mod nglob then
Solve Πi to global optimality with optimal solution x∗.

else
Solve Πi with relative gap (PB − DB)/(2PB), if primal and dual
bounds PB and DB are available, or ϵgap otherwise.
Denote the best found solution by x∗.

end
(ii) For each found solution xi of Πi fix all discrete variables of P according

to xi.
Solve the resulting NLPs to local optimality.
Construct feasible solutions for P from the solutions of the NLPs.

(3) Refine Relaxation:
Construct Πi+1 by refining the piecewise linear relaxations of the non-
linearities on the segments that contain the best found solution x∗ of Πi.

until The global optimal solution x∗ of Πi (i ≡ 0 mod nglob) has
accuracy ϵfinal or run time limit T is reached.

The piecewise linear relaxations are modeled with the help of the well-known
incremental method. In this work, we focus on this method because it is known
that the corresponding models can be optimized efficiently in practice, see [17, 25]
and again [11]. However, there is a variety of MIP-based models for piecewise linear
relaxations. A detailed overview is given by [53].

For a continuous one-dimensional function f : [x̄0, x̄n] → R, x 7→ y := f(x), we
model a piecewise linear approximation of f with linearization points (x̄i, ȳi) as

x = x̄0 +
n∑

i=1
(x̄i − x̄i−1)δi, (16a)
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y = ȳ0 +
n∑

i=1
(ȳi − ȳi−1)δi, (16b)

0 ≤ δi ≤ 1 for i = 1, . . . , n, (16c)
zi ≥ δi+1 for i = 1, . . . , n− 1, (16d)
zi ≤ δi for i = 1, . . . , n− 1, (16e)
zi ∈ {0, 1} for i = 1, . . . , n− 1. (16f)

Constraints (16d) and (16e) ensure that the δ-variables satisfy the filling condition,
which states that if δi > 0 then δi−1 = 1 must hold. This means that δi can only be
positive if for all previous j = 1, . . . , i− 1 the variables δj are equal to one.

Let ϵu(f, i) be the maximum underestimation and ϵo(f, i) the maximum overesti-
mation of f by the piecewise linear approximation on the segment [x̄i−1, x̄i]. Then,
we obtain a piecewise linear relaxation of f by simply replacing (16b) with

y = ȳ0 +
n∑

i=1
(ȳi − ȳi−1)δi + e,

while e ∈ R and adding the inequalities

ϵu(f, 1) +
n−1∑
i=1

zi(ϵu(f, i + 1)− ϵu(f, i)) ≥ e,

−ϵo(f, 1)−
n−1∑
i=1

zi(ϵo(f, i + 1)− ϵo(f, i)) ≤ e.

For results concerning the computation of the approximation errors ϵu(f, i), ϵo(f, i),
and a generalization of this model to higher dimensions, we again refer to [11]. As we
will see below, in our case, we only need the modeling for one-dimensional functions.

In the following, we present some algorithmic extensions to Algorithm 1 and give
an overview of the enhanced method afterwards, which partially contains problem
specific extensions.

4.2. Algorithmic Enhancements. Algorithm 1 is applicable for solving MINLPs
to global optimality. To improve computing time and quality of solutions various
extensions like adding valid cutting planes, presolve strategies, and heuristics are at
hand. We group these in problem-specific and general valid enhancements, which we
discuss first. In the following paragraphs, we also explain if and how the approaches
can be applied for more general problem classes.

4.2.1. Preprocessing: Bound Tightening. The number of segments required to achieve
a certain approximation quality in the linearization of nonlinear terms usually increases
strongly with the domain size.

Before entering the main loop in Algorithm 1, we use the root relaxation of the initial
MIP relaxation Π0 and exchange its objective with the minimization or maximization
of the variable we want to tighten. The resulting linear problems can be efficiently
solved to global optimality and the optimal objective value of these auxiliary problems
deliver often tight variable bounds, see [26]. This and similar known bound tightening
procedures can be applied for general optimization problems. In the concrete context
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of AC OPF, we choose to tighten the bounds of ckl, skl and θk − θl. These variables
are part of the nonlinear expressions and therefore tighter bounds have a large impact
on the overall problem.

4.2.2. Univariate Reformulation of Bivariate Terms. One of the most common non-
linearities are a bivariate product xy with continuous variables x and y. A bivariate
relaxation of f(x, y) = xy requires a two-dimensional triangulation of the domain of f .
To counteract the curse of dimensionality, we exploit the equality

xy = 1
2((x + y)2 − x2 − y2)

and substitute each term xy in our MINLP model with 1
2(z2 − x2 − y2) and add the

linear constraint z = x + y. Thus, we now only have univariate terms in our model.
We strengthen the piecewise linear relaxation of these univariate nonlinearities by
adding the well-known linear McCormick inequalities [44]

1
2(z̃ − x̃− ỹ) ≥ x−y + xy− − x−y−,

1
2(z̃ − x̃− ỹ) ≥ x+y + xy+ − x+y+,

1
2(z̃ − x̃− ỹ) ≤ x+y + xy− − x+y−,

1
2(z̃ − x̃− ỹ) ≤ xy+ + x−y − x−y+,

where z̃ = z2, x̃ = x2, ỹ = y2 and x−, y− and x+, y+ again denote the lower and upper
bounds of the variables x, y.

The univariate reformulation in combination with the McCormick inequalities
can be applied for any nonlinear optimization problem including bilinear products.
Preliminary computations on AC OPF instances show that for a given approximation
accuracy for xy, the univariate reformulation yields a piecewise linear relaxation that
requires significantly less binary variables than the bivariate formulation. Hence, the
MISOCP relaxations in our algorithm have a smaller number of binary variables,
while the tightness remains of the same quality.

4.2.3. Lower Linear Cutting Plane for Quadratic Terms. Another very common non-
linearity in optimization models are one dimensional quadratic expressions z = x2. If
the solution of a piecewise linear relaxation underestimates this constraint, we can
introduce a lower linear cutting plane to strengthen the relaxation instead of subdi-
viding a segment of the piecewise linear relaxation. We assume that the best found
solution of relaxation Πi in Step (2) of Algorithm 1 underestimates constraint z = x2,
i.e., z∗ < (x∗)2. Instead of refining the linear relaxation by adding a linearization
point for Πi+1, we introduce the linear cutting plane

z ≥ 2x∗(x− x∗) + (x∗)2.

This new constraint ensures that the current MIP solution is not feasible for the
refined relaxation Πi+1 and therefore cut off, see Figure 1. Hereby, a strengthening of
the relaxation can be achieved without further break points in the linearization. This
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Figure 1. A lower linear cutting plane (dashed set) that separates a
solution that underestimates z = x2 from the feasible region.

x

z = x2

• (x∗, z∗)

• (x∗, (x∗)2)

avoids the introduction of an additional binary variable for the relaxation. This is
applicable for all nonlinear models with quadratic expressions.

4.2.4. Refine Until Solution Is Cut Off. In the refinement Step (3) of Algorithm 1 it
is not guaranteed that the best found MIP solution x∗ is cut off in further iterations.
In order to strengthen the refined MIP relaxation Πi+1, we continue refining the
piecewise linear relaxations on the corresponding segments until x∗ is infeasible for
the next iteration. This refinement strategy is applicable for any nonlinear model.

4.2.5. Primal Heuristic: No-good Cuts. Inspired by [34], we incorporate the classical
no-good cuts into our algorithm, see [6] and [46]. Let S be the set of all binary decision
variables. For a binary solution s∗ ∈ {0, 1}|S| that shall be cut off, we obtain the
corresponding no-good cut by∑

{i:s∗
i =1}

(1− si) +
∑

{i:s∗
i =0}

si ≥ 1.

First, we use these cuts to strengthen the primal heuristic that is already proposed
in Step (2)-(ii) of Algorithm 1. In this step, we utilize the discrete part of all found
MIP solutions in order to obtain MINLP solutions with the help of a local NLP solver.
Initially, the algorithm starts with a rather coarse MIP relaxation of accuracy ϵ0.
Thus, for a specific assignment s∗ of the discrete variables, the first relaxations have
a much larger feasible set of the continuous variables than the MINLP. It turns
out that in numerous cases, s∗ is feasible for these MIP relaxations, although it is
infeasible for the MINLP. As a consequence, many refinement steps are necessary
until s∗ is excluded in the subsequent MIP relaxations. By adding no-good cuts, we
can avoid unfavorable binary solutions at an earlier stage. As a drawback, however,
we risk to cut off optimal solutions. Therefore, the optimal objective of a relaxation
that includes no-good cuts provides no longer a valid dual bound for the original
problem. In order to preserve the correctness of the approach, we omit these cuts in
every nglobth iteration, i.e., only the iterations i ̸≡ 0 mod nglob contain no-good cuts.
This heuristic in combination with a local search algorithm can be applied for general
mixed-integer nonlinear optimization problems.
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4.2.6. Tight Dual Bounds. For many AC OPF instances the problem specific SOCP
relaxation described in Subsection 2.2 delivers very strong, and sometimes even optimal,
dual bounds ([32]). We therefore extend the MIP relaxations in our algorithm by
adding the constraints (6) and solve the resulting MISOCPs to global optimality. In
most cases the benefit of these tighter bounds outweighs the additional complexity of
the (convex) SOCPs.

Similar to [11], we solve a MISOCP relaxation with a large but fixed number
of linearization points in parallel to the main algorithm. Although this problem
may not be solved within a reasonable run time, the dual bounds we obtain while
solving the MISOCP also yield dual bounds for the original discrete AC OPF
problem. In some cases, however, the high accuracy MISOCP relaxation is solved
to optimality. Hence, we solve a series of such large MISOCP relaxations with an
increasing approximation accuracy of the piecewise linear functions. In contrast to
the main algorithm, where in each iteration we only refine locally some segments to
keep the relaxations computationally more tractable, we now refine simultaneously at
each segment of the piecewise linear relaxations. The solution of relaxations with high
approximation accuracy can deliver tight dual bound and is applicable for general
optimization problems.

4.2.7. Outer Approximation of Transmission Limits. Constraints (3i) are convex qua-
dratic and the set

Dkl := {(pkl, qkl) ∈ R2 | p2
kl + q2

kl ≤ (d+
kl)

2}

is convex for all transmission lines (k, l) ∈ L. More precisely, the set describes the
closed circular disk with the origin as center and radius d+

kl > 0.
Instead of constructing piecewise linear relaxations for these nonlinear constraints in
Π0, we choose a discrete subset of vectors

(pj
kl, qj

kl)j∈J ⊆ {(pkl, qkl) ∈ R2 | p2
kl + q2

kl = (d+
kl)

2}

with index set J ⊆ N and use them for a linear outer approximation⋂
j∈J

{(pkl, qkl) ∈ R2 | pj
klpkl + qj

klqkl ≤ (d+
kl)

2}

of Dkl. Figure 2 shows exemplarily the linear outer approximation with equidistantly
chosen approximations points.
The refinement of the linear outer approximation can be easily incorporated in Step (3)
of Algorithm 1. In case the best found solution of MIP Πi is not feasible for the
transmission limit (3i), i.e., (p∗

kl)
2 +(q∗

kl)
2 > (d+

kl)2 for some line (k, l) ∈ L, we construct
a refined MIP relaxation Πi+1 by adding

p∗
klpkl + q∗

klqkl ≤
√

(p∗
kl)

2 + (q∗
kl)

2(d+
kl)

2

to the existing linear outer approximation cutting planes of Πi. In general, such valid
linear inequalities can be derived for all problems with single convex constraints.
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Figure 2. Outer approximation with eight equidistantly chosen ap-
proximations points (left) and refinement procedure for infeasible points
(right), where a linear cutting plane separates (p∗

kl, q∗
kl) from the feasible

region.

pkl

qkl

•

• •

•

••

• •

pkl

qkl

• (p∗
kl, q∗
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4.2.8. Primal Heuristic: DC OPF. As an additional problem-specific heuristic, we
use the well-known approximative DC model to generate candidate solutions for
the AC model that can be used as starting points for local search algorithms. This
approximation assumes fixed voltage magnitudes and small phase angle differences in
the network. The reactive part of electrical power is neglected and removed from the
model. The corresponding nonlinear terms in the AC OPF are approximated by

|Vk| ≈ 1,

sin(θk − θl) ≈ θk − θl,

cos(θk − θl) ≈ 1,

see [14] for details. In particular, in model (3), we remove (3c), (3e)–(3g) and (3k).
Additionally, we impose the constraints

ckk = 1 ∀k ∈ B,

ckl = 1 ∀(k, l) ∈ L,

tkl = θl − θk ∀(k, l) ∈ L.

Transmission limits (3i) are replaced by

pkl ≤ d+
kl, pkl ≥ −d+

kl ∀(k, l) ∈ L.

The resulting MIP is much easier to solve and often preserves the discrete struc-
ture of the discrete AC OPF problem such that a DC solution provides a feasible
assignment of binaries for a local nonlinear solver. We can therefore utilize the same
scheme as in Step (2)-(ii) of Algorithm 1 and use DC solutions for the construction
of NLPs to local optimality. Furthermore, we solve a series of DC MIPs that we
construct by iteratively adding no-good cuts for all found feasible DC solutions.
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4.2.9. Primal Heuristic: Curtailment of Renewables. In case of curtailment of renew-
ables, we include problem-specific primal cutting planes with the goal of obtaining
high-quality feasible solutions quickly. Let x̂ be an incumbent MINLP solution. The
idea is to add constraints inside a primal heuristic that temporarily enforce larger
feed-ins from renewables than in the solution x̂, i.e., a lower curtailment of the feed-ins.

With x̂, we calculate for all nodes with discrete curtailment k ∈ U c ⊆ B the minimal
amount of additionally injectable feed-in ∆p̂c,in

k := min{pc,in
k − p̂c,in

k : pc,in
k > p̂c,in

k }. The
discrete steps of pc,in

k are defined in (12). Adding the constraints∑
k

pc,in
k ≥

∑
k

p̂c,in
k + min

k∈Uc
∆p̂c,in

k , (17a)
∑

k

pc,in
k ≤

∑
k

p̂c,in
k + max

k∈Uc
∆p̂c,in

k , (17b)

help to find the “next best” solution as a lower curtailment leads to a better objective.
Please note that the constraints (17) lead to a smaller search space. As a result,

feasible solutions can be found more quickly. The downside is that the global optimum
might be cut off temporarily as constraint (17b) limits a higher feed-in from renewables.
However, we omit these constraints in each iteration i ≡ 0 mod nglob, which again
enables us to find the global optimum of the MINLP and guarantees the correctness
of the approach.

4.2.10. The Enhanced Algorithm. Algorithm 2 incorporates all previously mentioned
extensions to Algorithm 1.

4.3. Convergence Result. Finally, we prove that Algorithm 2 is both correct and
convergent. We first show that the following convergence result from [11] is applicable
to our framework.
Definition 4.1. The refinement procedure in Algorithm 1 is called δ-precise, if for
an arbitrary sequence Si ∈ Ti of simplices that are refined by the refinement procedure
with initial triangulation T0 of Df and given δ > 0, there exists an index N ∈ N such
that

diam(SN ) < δ

holds, whereby diam(SN ) := supx′,x′′∈SN {∥x′ − x′′∥}.
Proposition 4.2 (Theorem 3.6, [11]). If the refinement procedure in Algorithm 1 is
δ-precise for every δ > 0 and T =∞, then Algorithm 1 is correct and terminates after
a finite number of steps.

As in [11], we use the classical longest-edge bisection as refinement procedure in
Algorithm 2, which is shown to be δ-precise for every δ > 0. The refinement of a
simplex by the longest-edge bisection adds a linearization point in the middle of the
longest side face. In the one-dimensional case this reduces to the center of an interval.

There are two main ingredients for the proof of Proposition 4.2: the continuity of
the nonlinear functions f of the underlying MINLP and the compactness of their
corresponding domains Df .
Observation 4.3. All variables in every (discrete) AC OPF problem are bounded.
The nonlinear functions of the underlying MINLP are continuous and their domains
are compact.
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Algorithm 2: Adaptive MISOCP-based algorithm for discrete AC OPF
Input: A discrete AC OPF problem P , a relative optimality gap ϵopt, a run time

limit T , and parameters ϵ0, ϵgap, nDC and nglob.
Output: A feasible solution of P with optimality gap below ϵopt or termination if the

time limit T is reached.

(0) Primal DC-based Heuristic:
for k = 1 to nDC do

Solve the discrete DC OPF approximation Ωi of P from Section 4.2.8.
For each found feasible solution xi of Ωi fix all discrete variables of P according
to xi and add a discrete no-good-cut for xi to Ωi+1.
Solve the resulting NLPs to local optimality.
Construct feasible solutions for P from the solutions of the NLPs.

end

(1) Initialization:
Construct an initial MIP relaxation Π0 of P using piecewise linear relaxations of
the nonlinearities with an accuracy of ϵ0.

Main Loop: (i← −1)
repeat

i← i + 1

(2) Solve Relaxation:

(i) if i ≡ 0 mod nglob then
Construct an MISOCP relaxation Π̃i of P by adding the constraints (6)
to Πi.
Solve Π̃i to global optimality with optimal solution x∗.

else
Add a discrete no-good-cut for each vector in the set CNG to Πi and cur-
tailment constraints as in (17) corresponding to the incumbent MINLP
solution.
Solve Πi with relative gap (PB−DB)/(2PB), if primal and dual bounds PB
and DB are available, or ϵgap otherwise.
Denote the best found solution by x∗.

end
(ii) For each found feasible solution xi of Πi fix all discrete variables of P

according to xi.
Solve the resulting NLPs to local optimality.
Construct feasible solutions for P from the solutions of the NLPs.
Add xi to the set CNG of no-good-cut solutions for the next iteration.

(3) Refine Relaxation:
Construct Πi+1 by refining the piecewise linear relaxations of the nonlinearities
on the segments that contain the best found solution x∗ of Πi.

until Relative optimality gap is below ϵopt or run time limit T is reached.
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The nonlinearities are stated in constraints (3a), (3f), (3g) and (3i). As in (9), we can
derive trivial bounds for the variables ckl, tkl for all (k, l) ∈ L that have no bounds.
The same holds for the active and reactive power flow on line (k, l) ∈ L with trivial
bounds

p−
kl := −d+

kl, p+
kl := d+

kl,

q−
kl := −d+

kl, q+
kl := d+

kl.

As discussed in Section 2.1, we replace the discontinuous constraint (3g) by (4) or (5)
based on the given bounds for the voltage angle difference θk − θl on transmission line
(k, l) ∈ L. These constraints contain continuous nonlinearities. Since all variables are
bounded, every nonlinear expression has a compact domain.

Therefore, Proposition 4.2 directly translates to Algorithm 2. Precisely speaking,
however, the original version of Algorithm 1 does not deliver a global optimal solution
for the underlying MINLP problem. It only guarantees to find a global optimal
solution of an MIP relaxation with a (nonlinear) feasibility tolerance of ϵfinal.

With the following supplementary contribution to the convergence results from [11],
we also obtain convergence of our approach to a global optimal solution. We state the
result for Algorithm 1, since it directly translates to Algorithm 2.

Theorem 4.4. Let the refinement procedure in Algorithm 1 (as in [11]) be δ-precise for
every δ > 0. If ϵfinal tends to zero and T =∞, then the global optimal solution obtained
by Algorithm 1 converges to a global optimal solution of the MINLP problem P iff P
is feasible.

Proof. Proof. First, it is clear that if Algorithm 1 converges to an optimal solution of
the MINLP problem P , then P must be feasible.

Let us now assume that P is feasible. Then, any MIP relaxation of P is feasible. We
consider a sequence (ϵfinal/2i) of constantly decreasing final approximation accuracies
with limit 0. For each of these sequence elements, we obtain a global optimal solution of
an MIP relaxation that satisfies the corresponding approximation accuracy due to the
δ-preciseness of the refinement procedure and Proposition 4.2. This yields a sequence
of global optimal solutions (xi) of some MIP relaxations that meet the approximation
accuracy ϵfinal/2i. Under the assumption that the domain Df is compact for each
nonlinear function f of the underlying MINLP, there is a convergent subsequence of
(xi) with a limit x̃ and a corresponding approximation accuracy of 0. Consequently, x̃
is feasible for P , because the approximation error is 0 and P is feasible. Moreover, x̃ is
the global optimal solution of an MIP relaxation of P , from which it directly follows
that x̃ is global optimal for P due to the relaxation property. □

The proof in Theorem 4.4 works equivalently if we use MISOCP relaxations instead
of MIP relaxations of the underlying MINLP, which is a discrete AC OPF problem
in our case. With the longest-edge bisection as refinement procedure, the continuity
of the nonlinear functions f of a discrete AC OPF problem and the compactness of
their corresponding domains Df , and Theorem 4.4, we can finally conclude:

Corollary 4.5. Algorithm 2 is both correct and convergent.
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5. Numerical Results

In this section, we present numerical results that demonstrate the applicability
of Algorithm 2 for the discrete AC OPF problems from Section 3. We address the
mentioned discrete AC OPF problems by running Algorithm 2 on all 20 instances of
the NESTA benchmark set (v0.7.0) with up to 300 buses, see [16]. These instances are
subdivided into three operating conditions: standard, active power increase (api), and
small angle difference (sad). This results in a total amount of 59 instances, since for
the case “nesta_case_6_ww” no active power increase instance is given. We compare
the results of our approach to [31] and [34] in case of transmission line switching.

All computations are carried out using a Python implementation of Algorithm 2 on
a cluster using 4 cores of a machine with two Xeon E3-1240 v6 “Kaby Lake” chips (4
cores, HT disabled) running at 3.7 GHz with 32 GB of RAM. The run time limit is set
to 2 hours for each instance with a global relative optimality gap of 0.01 %. We utilize
Gurobi 9.0.2 as MIP/MISOCP solver, see [30], and CONOPT3 within GAMS 33.2.0,
see [24].

We use the following abbreviations in the subsequent computations:
IG: Initial Gap,
FG: Final Gap,
#LO: Number of lines that are switched off,
#GO: Number of generators that are switched off,
CT: Total amount of curtailed feed-in (percentage of produced solar power),
T: run time in seconds.

We refer the (relative) initial gap (IG) to the optimality gap that we compute using
the current best MINLP solution and the dual bound obtained after solving the first
MISOCP relaxation Π̃0 in Step (2)-(i) of Algorithm 2. The (relative) optimality gap
reported at the end of our method is called final gap (FG). We calculate the (relative)
optimality gap via

GAP = |PB−DB|
PB , (18)

with PB as the objective value of the best found MINLP solution and DB the dual
bound. If our method was not able to find a feasible solution we report ’no sol’.
If the test case is proven infeasible, we report ’infeas’. The number of switched off
transmission lines and generators in the best found solution of the algorithm is denoted
by #LO and #GO. For instances that include the discrete curtailment, we compute
the percentage of lost power (CT) with

CT =
∑

k∈Uc(pc
k − pc,in

k )∑
k∈Uc pc

k

.

5.1. Transmission Line Switching. The discrete AC OPF problem that is mostly
addressed in the literature is transmission line switching. Table 1 illustrates the results
of our method for the transmission line switching problem from Section 3.1 performed
on the NESTA instances.

Our approach solves 19 out of 59 instances to global optimality, while 37 instances
have a proven gap below 1 %. On average, we obtain for the final optimality gap 1.54 %
as arithmetic and 0.17 % as geometric mean. Strong MISOCP relaxations are a crucial
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Table 1. Results summary for the transmission line switching AC
OPF.

nesta_case_ standard api sad
IG (%) FG (%) #LO T (s) IG (%) FG (%) #LO T (s) IG (%) FG (%) #LO T (s)

3_lmbd 1.45 0.01 0 18.82 0.86 0.01 0 20.26 0.56 0.01 0 15.75
4_gs 0.01 0.01 0 5.64 0.64 0.01 0 70.42 6.04 0.01 0 4 881.25
5_pjm 1.13 0.01 1 2 770.82 0.05 0.01 1 87.50 3.58 0.01 0 328.95
6_ww 0.09 0.01 2 224.11 0.14 0.01 2 58.87
6_c 0.02 0.01 1 98.24 0.34 0.01 0 233.42 0.47 0.60 0 289.92
9_wscc 0.14 0.01 0 114.94 0.03 0.01 0 32.17 0.74 0.01 0 328.07
14_ieee 0.11 0.02 0 7 194.81 0.82 0.66 2 7 235.85 0.10 0.01 0 1 291.44
24_ieee_rts 0.02 0.01 0 7 173.88 7.32 4.12 5 7 260.81 3.51 2.44 4 7 225.63
29_edin 0.12 0.10 8 7 027.07 0.20 0.20 26 7 005.76 25.42 23.68 8 7 287.59
30_as 0.37 0.11 0 6 699.55 1.58 0.89 6 7 283.88 5.53 0.45 1 7 296.34
30_ieee 13.78 8.56 3 7 269.63 0.93 0.40 1 7 163.83 8.51 1.84 2 7 201.71
30_fsr 1.62 0.17 0 3 436.42 2.46 0.05 3 6 540.46 1.67 0.07 3 7 044.20
39_epri 0.05 0.01 2 7 212.06 1.44 0.40 2 7 163.55 0.05 0.02 2 7 295.66
57_ieee 0.07 0.07 6 7 236.72 0.12 0.12 6 7 204.03 0.06 0.06 3 6 614.83
73_ieee_rts 0.26 0.03 0 7 222.82 6.50 1.63 5 7 227.85 3.51 1.93 15 7 205.45
89_pegase 0.28 0.28 0 6 956.26 19.02 1.26 15 7 210.44 0.30 0.18 14 6 757.23
118_ieee 1.86 1.77 12 7 299.19 9.59 9.59 26 6 784.67 3.42 3.31 30 7 203.02
162_ieee_dtc 3.77 3.75 3 7 251.04 1.04 1.04 10 7 208.36 4.76 4.74 0 7 236.49
189_edin 2.22 2.22 29 7 260.39 3.16 3.16 0 7 200.22 2.57 2.57 27 6 802.37
300_ieee 2.97 2.96 0 7 230.80 no sol. 2.22 26 7 231.40 2.98 2.87 0 7 232.54

factor. In most cases, the initial MISOCP relaxations and consequently the initial
gaps IG are already very tight. This coincides with observations from the literature,
see for example [34].

The previously mentioned publication [31] and the authors of [34] also cover the
transmission line switching problem. We compare our results by computing the
average gap via the arithmetic and geometric mean. The number of instances that
are considered in all three papers is 14. Please note that hardware, software and time
limit are different across the compared approaches. For instance, in [31] a time limit
of 10h and in [34] an iteration limit of 5 is used, while we impose a time limit of 2h.

Table 2. Comparison of average optimality gaps with [34] and [31]
for optimal transmission switching

arithmetic mean geometric mean
Our Method 1.18% 0.18%
[34] 1.21% 0.22%
[31] 1.48% 0.62%

In Table 2 it can be seen that our approach delivers optimality gaps that are slightly
better than [34]. In comparison with [31], the results are even more convincing. The
difference between the two columns can be explained by a few outliers with a higher
optimality gap. This is due to fact that the classic (MI)SOCP relaxation is not tight
for these instances and more linearization points for the piecewise linear relaxation are
required to obtain a tighter relaxation. In summary, our algorithm is very competitive
in case of transmission line switching.

5.2. Generator Switching. The NESTA instances are in their current version not
suitable for the generator switching problem of Section 3.2. In most of the cases the
active power production minimum (pg

k)− on a generator bus k ∈ U is zero or very low.
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The same holds for the reactive power. This means that it is not necessary to switch
off a generator for these instances and the discrete variables have no effect on the AC
OPF. To overcome this issue, we set the lower bounds for active power production as

(pg
k)− = 0.20(pg

k)+ for all k ∈ U.

A lower bound of 20 % is a common minimum production value of various power
stations, e.g., gas or nuclear power plants. Different settings and even individual ones
are also possible. Higher minimum power value would lead to more infeasible test
cases.

As we can see in Table 3, we are able to solve 17 out of 59 instances to global
optimality. Five test cases are proven infeasible. In total, 37 instances have a proven
gap below 1 %. On average, we obtain for the final optimality gap 2.63 % as arithmetic
and 0.19 % as geometric mean. Again in many cases, the initial MISOCP relaxations
together with the current best solution are already of high quality. However, there are
some instances for which our approach reduces the optimality gap during computation
significantly.

Table 3. Results summary for the generator switching AC OPF.

nesta_case_ standard api sad
IG (%) FG (%) #GO T (s) IG (%) FG (%) #GO T (s) IG (%) FG (%) #GO T (s)

3_lmbd infeas. infeas. 0 2.44 0.96 0.01 0 18.82 infeas. infeas. 0 2.38
4_gs 0.01 0.01 0 3.85 0.64 0.01 0 57.52 1.54 0.01 0 19.01
5_pjm 14.47 0.14 1 7 235.03 0.27 0.01 0 320.07 1.43 0.01 0 103.28
6_ww 0.92 0.01 0 106.20 0.75 0.01 0 50.42
6_c infeas. infeas. 0 4.80 0.34 0.01 0 248.21 infeas. infeas. 0 4.56
9_wscc 0.44 0.01 0 69.57 0.03 0.01 0 25.10 0.80 0.01 0 215.15
14_ieee 0.11 0.01 0 548.46 1.27 0.34 0 7 219.52 0.10 0.01 0 168.49
24_ieee_rts 0.02 0.01 11 7 293.27 8.78 0.92 14 7 233.12 5.18 0.80 8 7 234.73
29_edin 0.10 0.07 30 7 061.30 0.34 0.27 5 7 249.70 27.27 7.83 15 7 175.87
30_as 0.93 0.02 0 7 279.68 4.55 1.56 0 7 116.31 6.02 0.51 0 7 131.89
30_ieee 8.17 0.46 0 7 277.53 0.88 0.71 0 7 183.99 3.52 0.44 0 7 157.63
30_fsr 1.96 0.24 0 7 244.99 42.53 25.67 1 7 215.95 1.86 0.08 0 7 221.89
39_epri 0.06 0.01 0 7 208.01 2.57 0.42 0 7 137.72 0.09 0.01 0 4 065.54
57_ieee 0.07 0.05 0 7 198.66 0.21 0.11 0 7 029.47 0.06 0.03 0 7 052.60
73_ieee_rts 0.87 0.06 34 7 228.94 9.72 9.50 25 7 156.30 8.87 6.12 22 7 111.63
89_pegase 0.17 0.17 0 7 130.29 21.21 21.21 3 7 077.96 0.16 0.13 0 7 206.14
118_ieee 2.42 1.36 5 7 014.05 45.12 42.55 0 7 001.44 7.65 3.25 4 6 666.54
162_ieee_dtc 3.91 3.75 1 7 202.97 1.50 1.31 0 7 157.84 4.64 4.49 0 7 206.84
189_edin 1.96 1.96 14 7 121.85 infeas. infeas. 0 836.96 2.16 2.16 15 6 902.23
300_ieee 1.33 1.29 5 7 241.52 0.76 0.76 10 7 244.15 1.31 1.29 5 7 235.38

5.3. Discrete Curtailment. The test cases from the NESTA archive do not contain
power generation with discrete curtailment steps. In order to test the model from
Section 3.3, we add on every second network node, i.e., on each node with an odd
ID number, feed-in from renewables, e.g., solar or wind. Consequently, we obtain
|U c| = ⌈0.5|B|⌉. At the remaining network nodes, we set the income from renewables
to zero. The input parameters for the additional power production consist of the
installed capacity pinst

k , the produced active power pc
k, and the discrete curtailment

steps Sk that are available for all nodes k ∈ U c. To compute the reactive power, we
assume a constant power ratio cos(ϕ) and define

pinst
k = 2.5 ∑

k∈B pd
k

|U c|
, pc

k = 0.8pinst
k , Sk = {0, 0.3, 0.6, 1}, cos(ϕ) = 0.9,
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for every bus k ∈ U c. Other relevant combinations of pinst (from 1.0 to 3.0) and
pc deliver characteristically very similar results. The assumption that pc = 0.8pinst

simulates solar energy production during a sunny day in the summer. We want to
point out that values for the installed capacity smaller than one times or greater than
three times the total demand lead in most cases to no or a complete curtailment of
renewables.
For the inclusion of curtailment costs, we set in (14) the cost factor

Cc
k =

∑
k∈U Ck,1(p∗)2 + Ck,2p∗ + Ck,3

|U c|
, p∗ :=

∑
k∈Uc pc

k

|U |
.

In this way, we achieve that the curtailment costs are approximately as high as the
production costs for the total amount of produced power from renewables distributed
to all generators.

Table 4 shows the results for the discrete curtailment. Our approach solves 15 out
of 59 instances to global optimality. In total, 15 instances have a proven gap below
1 % and 30 below 10 %. On average, we obtain for the final optimality gap 13.79 %
as arithmetic and 2.19 % as geometric mean. These problems turn out to be more
difficult to solve than generator and transmission line switching.

Table 4. Results summary for the discrete curtailment AC OPF.

nesta_case_ standard api sad
IG (%) FG (%) CT (%) T (s) IG (%) FG (%) CT (%) T (s) IG (%) FG (%) CT (%) T (s)

3_lmbd 12.97 0.01 62.50 28.02 0.12 0.01 62.50 12.47 12.61 0.01 62.50 18.01
4_gs 0.01 0.01 50.00 5.34 0.01 0.01 62.50 5.21 0.62 0.01 62.50 25.00
5_pjm 0.01 0.01 50.00 16.57 12.54 0.01 75.00 72.26 22.54 0.01 62.50 76.19
6_ww 6.13 0.01 87.50 12.47 0.02 0.01 87.50 7.56
6_c 22.21 5.61 50.01 7 273.25 17.59 0.01 50.00 151.65 17.25 0.01 50.01 222.73
9_wscc 3.07 1.65 55.00 7 196.19 1.76 0.01 50.00 394.64 3.04 0.01 55.00 860.95
14_ieee 23.99 22.50 60.71 7 252.48 14.27 14.20 50.00 7 228.97 21.78 18.06 60.71 7 246.31
24_ieee_rts 4.17 3.53 67.71 7 126.82 4.69 3.43 58.33 7 258.87 4.79 2.75 69.79 7 265.80
29_edin 11.45 8.68 50.00 7 154.62 5.94 5.33 70.83 7 285.59 7.96 7.95 55.83 7 291.79
30_as 17.07 11.73 70.00 7 171.89 38.66 9.67 58.33 7 192.10 16.21 6.72 70.83 7 250.70
30_ieee 17.54 14.82 50.00 7 238.05 24.75 21.22 54.17 7 280.28 17.38 15.37 50.83 7 273.68
30_fsr 28.28 19.44 50.84 7 281.09 29.88 19.54 55.00 7 209.06 52.75 9.59 51.67 7 228.73
39_epri 31.19 19.36 69.37 7 256.95 2.36 1.85 51.25 7 133.33 33.54 27.23 81.25 7 097.50
57_ieee 51.83 43.30 77.15 7 293.96 54.83 53.10 96.55 7 284.55 42.09 39.34 91.81 7 097.30
73_ieee_rts 5.25 4.55 68.92 7 061.84 24.43 19.16 76.35 7 153.75 11.91 9.08 76.69 7 275.76
89_pegase 8.04 6.32 63.66 6 681.22 18.55 16.40 50.00 7 221.67 30.78 29.85 94.44 6 806.40
118_ieee 22.41 17.44 49.36 7 285.80 20.69 13.60 50.42 7 210.12 21.05 15.87 50.21 7 258.33
162_ieee_dtc 37.65 36.23 93.67 7 228.76 38.78 36.80 91.98 7 147.03 33.09 30.38 85.80 7 220.62
189_edin 43.75 42.32 90.53 7 075.34 18.14 15.28 49.34 7 201.87 17.79 16.22 50.00 7 209.95
300_ieee 39.20 35.08 90.71 7 230.51 37.52 35.51 88.16 7 188.88 35.59 33.83 88.90 7 220.90

5.4. Full Discrete. We now present the results of Algorithm 2 for the full discrete
AC OPF. This problem includes generator and transmission line switching together
with the discrete curtailment of renewables. This, as we will see hardest among the
discussed problems, has - to the best of our knowledge - not yet been discussed in the
literature. We adjust the input data the same way as in Subsection 5.2 and 5.3 to
generate reasonable test cases.

Table 5 depicts the corresponding results. Our method solves 11 out of 59 instances
to global optimality. Two test cases are proven infeasible. Unfortunately, Algorithm 2
was not able to find any feasible solution for three instances. In total, 11 instances
have a proven gap below 1 % and 14 below 10 %. On average, we obtain for the
final optimality gap 22.98 % as arithmetic and 5.16 % as geometric mean. Naturally,
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these problems are the most difficult to solve since they combine all discrete decisions.
However, even for these very challenging optimization problems, we are able to compute
solutions with a reasonable optimality gap.

Table 5. Results summary for the full discrete AC OPF.

nesta_case_ standard api sad
IG (%) FG (%) #LO #GO CT (%) T (s) IG (%) FG (%) #LO #GO CT (%) T (s) IG (%) FG (%) #LO #GO CT (%) T (s)

3_lmbd infeas. infeas. 0 0 0.00 2.47 15.11 0.01 0 0 81.25 32.03 infeas. infeas. 0 0 0.00 2.58
4_gs 0.01 0.01 0 1 62.50 17.53 17.70 0.01 0 0 81.25 161.71 0.10 0.01 0 1 62.50 5.75
5_pjm 4.22 0.01 0 3 54.17 7 290.54 0.23 0.01 0 2 75.00 394.52 4.16 0.01 0 2 62.50 93.78
6_ww 0.36 0.01 2 1 75.00 288.36 0.01 0.01 2 1 75.00 321.22
6_c 18.80 2.67 1 1 54.17 7 293.61 17.82 0.01 0 1 62.50 1 029.93 18.84 0.01 0 1 62.51 3 668.15
9_wscc 10.29 9.69 3 2 57.50 7 285.08 11.46 9.84 1 2 57.50 7 231.04 13.25 12.84 2 2 62.50 7 258.54
14_ieee 22.06 19.87 2 1 57.14 7 166.12 21.80 19.02 1 1 55.36 7 178.35 38.23 21.12 5 1 60.71 7 096.10
24_ieee_rts 30.37 16.81 4 18 68.75 7 202.15 24.19 12.34 2 22 65.63 7 244.10 32.39 22.76 2 13 77.08 7 270.62
29_edin 22.79 17.34 10 49 60.00 6 901.41 21.29 15.06 0 5 85.83 7 210.87 11.78 11.75 39 49 59.17 7 284.00
30_as 43.95 22.86 0 3 61.67 7 298.97 40.43 32.02 0 0 77.50 7 035.66 42.29 42.00 0 0 95.00 7 000.73
30_ieee 45.73 36.55 0 0 79.17 7 251.24 48.45 44.67 0 0 85.83 7 297.71 20.46 20.38 10 1 54.17 7 298.74
30_fsr 41.17 27.82 0 2 62.50 7 195.53 44.99 21.53 6 4 56.66 7 112.79 45.40 35.71 3 2 78.34 7 296.47
39_epri 36.05 35.00 0 0 94.37 7 104.41 25.55 14.33 1 3 64.38 7 297.52 33.98 33.97 0 0 92.50 7 231.75
57_ieee 46.71 45.50 0 0 93.97 7 133.02 50.68 47.78 1 0 91.81 7 071.31 44.49 43.41 0 0 93.97 7 146.65
73_ieee_rts 30.91 29.86 0 14 92.91 7 233.45 27.15 25.29 0 43 79.73 7 264.07 33.39 33.02 0 8 94.93 7 261.94
89_pegase 38.97 38.60 0 0 92.36 6 982.46 41.53 41.41 0 0 94.44 7 172.11 42.39 38.87 0 0 93.06 6 474.09
118_ieee 45.75 44.79 0 0 92.58 7 213.77 41.46 37.53 0 0 85.80 7 082.23 47.71 46.45 0 0 95.34 7 218.47
162_ieee_dtc 39.13 36.05 0 0 94.91 7 216.56 40.26 37.21 0 0 94.60 7 204.50 36.98 35.79 0 0 94.60 7 233.21
189_edin no sol. no sol. 0 0 0.00 2 633.07 no sol. no sol. 0 0 0.00 2 640.53 no sol. no sol. 0 0 0.00 2 618.90
300_ieee 36.72 34.88 0 0 92.52 6 959.67 36.23 33.38 0 0 89.23 7 256.31 39.32 32.98 0 0 88.98 7 203.86

5.5. Results at Short Run Time. In addition to the question of how good solutions
are obtained with no or large time limit, it is also relevant which solution quality is
to be expected for a short run time. In Table 6, we give an overview of the average
optimality gaps provided by our method for the five different models after a run time
of 15 minutes and two hours. The overview shows that our approach is able to find
feasible solutions with a high quality after a relatively short time. In many cases the
main computational run time is needed to strengthen the dual bound in order to prove
optimality.

Table 6. Average gap (arithmetic and geometric mean) reported after
a run time of 15 minutes and 2 hours for different models.

arithmetic mean geometric mean
15min 2h 15min 2h

transmission line switching (3.1) 4.19% 1.53% 0.30% 0.16%
generator switching (3.2) 6.97% 2.63% 0.33% 0.19%
curtailment (3.3) 16.9% 13.79% 2.61% 2.19%
full discrete (5.4) 26.64% 22.98% 7.44% 5.16%

5.6. Effect of the Algorithmic Enhancements. In this Subsection, we examine
the effect of the algorithmic enhancements of Section 4.2 on the performance of
Algorithm 2. To this end, we repeat the numerical experiments for the full discrete
instances, while skipping one of the extensions of the algorithm each time. We focus on
these instances because they are the most challenging for our approach. We measure
the average final optimality gap that is achieved by omitting the improvements from
Section 4.2 and show the number of instances where a feasible solution could be
found during preprocessing (start) and after termination (end). Since it is not always
possible to find a solution for every instance, we calculate the average gap of the 47
test cases from 59 for which solutions could be found after termination even without
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enhancements. Table 7 displays the effect of the algorithmic improvements. Please
note that for consistency, we have indicated both arithmetic and geometric means.
However, since the arithmetic mean is strongly influenced by very large outliers, we
measure the effects of an enhancement from Section 4.2 preferable using the geometric
mean.

Table 7. Effect of the algorithmic enhancements on the number of
instances where no solution was found after the first iteration (start)
and after termination (end) as well as on the final gap measured with
arithmetic and geometric mean.

#no sol. final gap
Algorithm 2... start end arithm. geom.
with all extensions (4.2) 3 3 22.02% 4.79%
without bound tightening (4.2.1) 7 7 22.52% 4.77%
without univariate reformulation (4.2.2) 7 5 26.78% 15.89%
without lower cuts (4.2.3) 4 4 21.86% 5.36%
without refinement strategy (4.2.4) 3 3 22.25% 5.47%
without no-good cuts (4.2.5) 3 3 22.42% 4.90%
without SOCP (4.2.6) 3 3 20.75% 6.10%
without outer approximation (4.2.7) 4 4 22.54% 4.80%
without DC heuristic (4.2.8) 44 3 23.74% 5.11%
without curtailment cuts (4.2.9) 4 4 21.51% 5.33%

We can see that the number of cases in which no solution was found varies. For
example, without bound tightening from Section 4.2.1 it is not possible to find a
feasible solution for seven instances instead of three. The univariate reformulation of
bilinear products in combination with the McCormick constraints has by far the largest
impact on the solution quality. By reducing the number of binaries with a comparable
approximation quality, the run time of Algorithm 2 is shortened and therefore more
iterations are performed in the same time. The SOCP constraints (4.2.6) and the DC
heuristic (4.2.8) also contribute significantly to the performance of our approach. These
improvements are most noticeable, because already the first relaxation is strongly
enhanced by tighter primal and dual bounds. All other enhancements from Section 4.2
increase the solution quality only by a smaller proportion.

Finally, we compare the performance scalability of the two best enhancements: the
univariate reformulation of bilinear products in combination with the McCormick con-
straints and the SOCP constraints (4.2.6). Figure 3 depicts the relative improvement
on dual bounds in dependence of network size after a run time limit of 2 hours.

As the network size increases, the benefit of the univariate reformulation seems to
decrease dramatically, while the benefit of the SOCP constraints (4.2.6) increases
slightly. This phenomenon can be explained as follows. During the solution of the
MISOCP relaxations in Algorithm 2, the advantage of the SOCP constraints (4.2.6)
is apparent from the first node in the branch-and-cut tree. In contrast, the univariate
reformulation results in fewer binary variables and thus generally requires fewer
branching steps to solve the MISOCP relaxations. However, to capture the advantage
of the univariate reformulation, a certain number of branching steps is required. This
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Figure 3. Average relative improvement of the univariate reformu-
lation of bilinear products and SOCP relaxation on dual bounds in
dependence of network size after a run time limit of 2 hours.
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number grows as the network size increases, and consequently a higher run time limit
is needed to benefit from the univariate reformulation.

5.7. Comparison with other MINLP Solvers. In this part, we use the same
NESTA instances as in the full discrete case to compare our approach more extensively
with state-of-the-art MINLP solvers. Since most MINLP solvers do not support
trigonometric functions, we use the rectangular model that we describe in the Appen-
dix 8. We utilize as such solvers Antigone 1.1, Baron 20.10.16, and SCIP 7.0, all again
within GAMS 33.2.0. For the solver Couenne 0.5, we used GAMS 31.2.0. Note that for
a fair comparison, the MINLP/MIQCP solvers also have 4 cores available and run
in parallel.

We compare relative optimality gaps (see formula (18)) using performance profiles
as proposed by [19]. Let gp,s be the best gap obtained by solver s for problem p after
a certain time limit. With the performance ratio rp,s = gp,s/ min

s
gp,s, the performance

profile ρs(τ) is the percentage of problems solved by approach s such that the ratios rp,s

are within a factor τ ∈ R of the best possible ratios. An instance is considered to be
solved as soon as the gap is less than 0.0001, which is the default value of most solvers.
For the performance profile, we set gp,s = 0.0001 for solved instances to prevent a
division by zero. All performance profiles are generated with the help of Perprof-py;
see [50].

Figure 4 compares relative optimality gaps for the rectangular version of the discrete
AC OPF problem from Section 5.4 performed on the NESTA instances. We can clearly
see that our method outperforms all other state-of-the-art MINLP solvers. In more
than 80 % of all cases, we obtain the tightest gaps with our approach. Furthermore,
we find feasible solutions for roughly 90 % of all instances. All other solvers yield the
best gaps for less than about 25 % of all cases. Regarding feasible solutions, Baron
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Figure 4. Performance profile for our method (Novel AC OPF),
Antigone, Baron, Couenne, and SCIP comparing relative optimality gaps
obtained after a run time limit of 2 hours for the rectangular model
from Appendix 8.
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is the best of the MINLP solvers and computes solutions for roughly 60 % of the
instances.

To gain a better understanding of the performance profile in Figure 4 that compares
relative optimality gaps, we separately compare both primal and dual bounds in
Figure 5. In case of primal bounds, gp,s is now the best objective value corresponding
to the best feasible solution obtained by solver s for problem p after a certain time
limit. For dual bounds, we define gp,s := 1/dp,s, where dp,s is the best dual bound
found by solver s for problem p.

As we can see, our method delivers by far the best primal bounds. With the
exception of Baron, all other MINLP solvers struggle even to find feasible solutions.
Our approach also yields the tightest dual bounds, while all other MINLP solvers
compute dual bounds that are roughly 30 % weaker than ours. In conclusion, our
method provides the best gaps because it finds by far the best feasible solutions and
delivers the tightest dual bounds.

Finally, we perform a comparison of our approach to state-of-the-art MINLP
solvers on the basis of the extended conic quadratic formulation from Section 2. To
this end, we relax the involved trigonometric functions due to the non-compatibility
of classical MINLP solvers with trigonometric terms. We replace these terms with
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a piecewise linear relaxation that consists of one simplex for each trigonometric
function as in Section 4.1. Consequently, we obtain for each problem instance a mixed-
integer quadratically constrained program (MIQCP) that we use for the comparison.
The approximation of the trigonometric expressions are not further refined in the
experiments of this section. Please note, that in addition to the experiments at the
beginning of this subsection, we now include Gurobi 9.1.0 within GAMS 33.2.0 to
the set of MINLP solvers, since it is capable of solving the corresponding MIQCP
problems.

Figure 6 compares relative optimality gaps for the MIQCP relaxation of the full
discrete AC OPF problem from Section 5.4 performed on the 59 NESTA instances.
We see a very similar picture to the one in the comparison based on the rectangular
formulation. In about 70 % of all cases, we obtain the tightest gaps with our approach
and we find feasible solutions for roughly 90 % of all instances.

To obtain a more in-depth look at the gaps, we again separately compare both
primal and dual bounds in Figure 7. As in the comparison with the rectangular
formulation, our method computes significantly better primal bounds. Baron manages
to find comparatively good feasible solutions, followed by Antigone in third place. All
other MINLP solvers again struggle to find any feasible solutions. Compared to the
rectangular model, the performance of the MINLP solvers is somewhat better with
respect to dual bounds. SCIP yields approximately the same bounds as our approach,
with Gurobi in third place. All other MINLP solvers, however, deliver dual bounds
that are about 40 % weaker than ours. Altogether, our method again computes the
best gaps since it finds by far the best feasible solutions and delivers dual bounds that
are among the tightest.

Additionally, the constructed MIQCP problems in this subsection are very similar
to the full discrete AC OPF problems from Subsection 5.4 as our approach delivers
very similar gaps. On average, for these MIQCPs, we obtain an optimality gap of
22.13% as arithmetic and 5.42% as geometric mean, which is almost identical to the
values from Table 5. These numerical results again illustrate that the novel approach
is very efficient, can solve the instances much faster than the available methods, and
can be easily applied in the area of discrete AC OPF.

5.8. Discussion. In summary, the results show that our approach is very well suited
to solve AC OPF with discrete decisions to global optimality. In the majority of the
test cases, we are able to find high-quality solutions and reduce the optimality gap
significantly. Even with a short run time, our method is capable of finding solutions
of reasonable quality in most cases. For the transmission line and generator switching,
the difficulty of the problem seems to be dominated by the NLP part, since adding
the SOCP constraints from Section 4.2.6 has a crucial impact on the quality of
the solutions. Our method delivers comparable results to other approaches for the
transmission line switching from the literature.

The incorporation of the discrete curtailment, however, immensely affects the overall
difficulty. For these cases, it is more challenging to find reasonable integer-feasible
solutions and the convex SOCP relaxation is not as tight as in the other cases. This
indicates that the complexity of these problems shifts from the NLP part to the
discrete part. As mentioned before, our relaxation approach preserves the discrete
structure of the problem. It turns out that the relaxation solutions allows us to find
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integer-feasible solutions more easily since we can utilize mature MIP technology to
obtain very good starting values for a local NLP search. Without these starting values
it may be difficult to find feasible MINLP solutions at all. This claim is supported
by the promising numerical results for the full discrete AC OPF problem and the
comparison with state-of-the-art MINLP solvers for the rectangular formulation and
the MIQCP relaxation of the extended conic quadratic formulation.

Our framework can be further extended to different applications like unit commit-
ment problems with AC OPF constraints. The discrete curtailment instances can be
seen as an example for general electricity network problems with discrete generator
feed-in. We have covered an example of this with the curtailment of renewables,
which is being implemented in discrete steps in Germany under the Renewable Energy
Sources Act (EEG). With transmission line switching, we can also model network
expansion problems, where typically for each line an extension is possible in a certain
number of given modules which leads to discrete decisions in the flavor of the tasks
studied here.

6. Conclusion

In this paper, we presented a general purpose approach for solving AC OPF
problems with discrete decision to global optimality. It is based on the MINLP
solution framework proposed in [11] that essentially solves an MINLP by solving
a series of MIP relaxations and has been used successfully in the context of gas
network optimization. We enhanced this method by both general and problem specific
extensions, while maintaining convergence to an global optimum. In this regard, the
univariate reformulation of bivariate terms and the SOCP constraints of the extended
conic quadratic AC OPF model delivered the most benefit.

We presented models for incorporating discrete decisions and demonstrated the
applicability of our approach by extensive numerical results. Furthermore, we observed
that different discrete decisions are associated with varying degrees of difficulty, while
the problems with the discrete curtailment of renewables poses by far the greatest
challenge. In many cases, our method was able to find near-global optimal solutions.
Even with a short run time, it delivered high-quality solutions in most cases. Our
approach preserves the discrete structure of the problem, while it only relaxes its
nonlinearities. Consequently, the discrete part of the problem is essentially tackled by
mature MIP technology. We therefore believe that our solution framework is suitable
for AC OPF problems with various types of discrete decisions, including those that
are not covered in this paper.

There is, of course, still room for improvements. Besides a more sophisticated
preprocessing or further heuristic approaches, we believe that the combination of
several relaxation techniques is a very promising direction to further improve the
solution of optimization problems in power system analysis.
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8. Rectangular Formulation

8.1. The AC OPF Model. The complex voltage on a bus k ∈ B is given by
Vk = ek + ifk, where ek = ℜ(Vk) is the real part of the voltage and fk = ℑ(Vk)
the imaginary part, respectively. Given the extended conic quadratic formulation in
Section 2.1 one express the power flow constraints in the rectangular coordinates using
the reformulations

ckk = e2
k + f2

k ,

ckl = ekel + fkfl,

tkl = ekfl − elfk.

We obtain the rectangular power flow constraints

pg
k − p̂d

k = gkk(e2
k + f2

k ) +
∑

l∈δ(k)
pkl for all k ∈ B,

qg
k − q̂d

k = −bkk(e2
k + f2

k ) +
∑

l∈δ(k)
qkl for all k ∈ B,

pkl = −Gkl(e2
k + f2

k − ekel − fkfl)−Bkl(ekfl − elfk) for all (k, l) ∈ L,

qkl = Bkl(e2
k + f2

k − ekel − fkfl)−Gkl(ekfl − elfk) for all (k, l) ∈ L.

We point out that one of the variables fk needs to be set to zero as the voltage angle at
a reference node is fixed at zero. The voltage magnitude bounds (3l) can be expressed
with

(|Vk|−)2 ≤ e2
k + f2

k ≤ (|Vk|+)2 for all k ∈ B.

We remark that −π/2 < θl − θk < π/2 holds in practice for a lot of test instances.
Under this assumption, we can reformulate the voltage angle bound (3m) equivalently
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by

tan θ−
kl ≤

elfk − ekfl

ekel + fkfl
≤ tan θ+

kl for all (k, l) ∈ L.

In conclusion, the rectangular AC OPF flow model can be formulated as

min
pg ,qg ,e,f

∑
k∈U

Ck(pg
k)

s.t. pg
k − pd

k = gkk(e2
k + f2

k ) +
∑

l∈δ(k)
pkl for all k ∈ B,

qg
k − qd

k = −hkk(e2
k + f2

k ) +
∑

l∈δ(k)
qkl for all k ∈ B,

pkl = −Gkl(e2
k + f2

k − ekel − fkfl)−Bkl(ekfl − elfk) for all (k, l) ∈ L,

qkl = Bkl(e2
k + f2

k − ekel − fkfl)−Gkl(ekfl − elfk) for all (k, l) ∈ L,

p2
kl + q2

kl ≤ (d+
kl)

2 for all (k, l) ∈ L,

(pg
k)− ≤ pg

k ≤ (pg
k)+ for all k ∈ U,

(qg
k)− ≤ qg

k ≤ (qg
k)+ for all k ∈ U,

(|Vk|−)2 ≤ e2
k + f2

k ≤ (|Vk|+)2 for all k ∈ B,

tan θ−
kl(ekel + fkfl) ≤ elfk − ekfl ≤ tan θ+

kl(ekel + fkfl) for all (k, l) ∈ L,

ekel + fkfl ≥ 0 for all (k, l) ∈ L,

pg, qg ∈ R|U |, e, f ∈ R|B|.

8.2. Extension to Discrete Decisions. The generator switching 5.2 and the discrete
curtailment of renewables 5.3 can be directly integrated into the rectangular AC OPF
model. In order to model the switching of transmission lines, we follow again [34] and
introduce additional variables c̃kl := ckkst

kl for every line (k, l) ∈ L, where st
kl ∈ {0, 1}

denotes the switching status of a transmission line (k, l) ∈ L. The switching constraints
of a line read

pkl = −Gkl(c̃kl − ckl)−Hkltkl, (20a)
qkl = Hkl(c̃kl − ckl)−Gkltkl, (20b)
ckk = e2

k + f2
k , (20c)

ckl = (ekel + fkfl)st
kl, (20d)

tkl = (ekfl − elfk)st
kl, (20e)

c̃kl = ckkst
kl. (20f)

The constraints (20d) and (20e) contain trilinear expressions involving the binary
variables st

kl. With additional mixed-integer constraints (big-M reformulation) one
can reduce the complexity of the nonlinearities to bivariate expressions. However, in
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our numerical experiments the set of constraints (20) lead to the best results when
using state-of-the-art MINLP solvers.
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Cauerstr. 11, 91058 Erlangen, Germany
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Figure 5. Performance profiles for our method (Novel AC OPF),
Antigone, Baron, Couenne, and SCIP comparing primal bounds (upper)
and dual bounds (lower) obtained after a run time limit of 2 hours for
the rectangular model from Appendix 8.
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Figure 6. Performance profile for our method (Novel AC OPF),
Antigone, Baron, Couenne, Gurobi, and SCIP comparing relative opti-
mality gaps obtained after a run time limit of 2 hours for the extended
conic quadratic formulation from Section 2.
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Figure 7. Performance profiles for our method (Novel AC OPF),
Antigone, Baron, Couenne, Gurobi, and SCIP comparing primal bounds
(upper) and dual bounds (lower) obtained after a run time limit of 2
hours for the extended conic quadratic formulation from Section 2.
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