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Abstract

Over the last few years, optimization models for the energy-efficient operation of rail-
way traffic have receivedmore andmore attention, particularly in connectionwith timetable
design. In this work, we study the effect of load management via timetabling. The idea
is to consider trains as time-flexible consumers in the railway power supply network and
to use slight shifts in the departure times from the stations to avoid too many simultan-
eous departures. This limits peak consumption and can help to improve the stability of the
power supply. To this end, we derive efficient formulations for the problem of an optimal
timetable adjustment based on a given timetable draft, two of which even allow for totally
unimodular polyhedral descriptions. The proper choice of the objective function allows to
incorporate either priorities of the train operating companies or the infrastructure manager.
These include the avoidance of large peaks in average or instantaneous consumption and
the improved use of recuperated braking energy. To solve the arising optimization mod-
els efficiently, we develop specially-tailored exact Benders decomposition schemes which
allow for the computation of high-quality solutions within very short time. In an extens-
ive case study for German railway passenger traffic, we show that our methods are capable
of solving the problem on a nationwide scale. We will see that the optimal adjustment of
timetables entails a tremendous potential for reducing energy consumption.

Keywords: Railway Timetabling - Energy-Efficiency - Total Unimodularity - Decomposi-
tion - Mixed-Integer Programming

Mathematics Subject Classification: 90C90 - 90C57 - 49M27 - 90C11

1 Introduction

Traction energy is a major cost factor for any train-operating company. Deutsche Bahn AG,
Germany’s largest railway company, for example, pays an annual electricity bill in the order of
1 billion Euros for traction electricity alone. The largest part of this cost, about 75%, are due the
high overall electricity consumption of railway traffic – in the case of Deutsche Bahn it is around
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11 billion kWh per year. In fact, with about 2% of the total consumption, railway traffic is the
biggest electricity consumer in Germany. However, up to 25% of the annual electricity costs of
Deutsche Bahn AG do not depend on the amount of electricity consumed, but on the temporal
distribution of the consumption. Having a power consumption profile that shows high peaks in
some parts of the day and low valleys in others parts of the day is rather costly, while having a
mostly balanced consumption profile without high peaks over the course of the day is cheapest.
Indeed, pricing schemes which charge both overall consumption and peak demand are very
typical for large electricity consumers, also in the manufacturing industry, for example.

Measures to reschedule variable loads in order to reduce peak power consumption are com-
monly called load management or peak shaving. In the case of railway traffic, this effect may be
achieved by adapting the timetable and thus influencing the departure times of the trains. A
train drawsmost powerwhile accelerating; therefore toomany simultaneous departures should
be avoided in order to keep the overall consumption balanced. On the other hand, synchron-
izing the departure of one train with the arrival of another train is desirable, as the braking
train can feed back its recuperated kinetic energy into the power supply network for the ac-
celerating train to use. If no other train is nearby that could make use of it, this energy is lost.
Altogether, considering electricity consumption when planning the timetable is a worthwhile
consideration for a train-operating company in order to save energy costs.

Although the above numbers suggest a significant benefit by load management in railway
traffic, there have been relatively few publications on the topic so far. The first major work in
this field is that of Sansó and Girard (1997) who study the reduction of instantaneous power
peaks in metro systems by delaying train departures, an approach known as dwell-time control.
To this end, they develop a mixed-integer optimization model incorporating both operational
timetabling constraints as well as the power consumption of the trains. The model is solved
via a decomposition heuristic. Similar timetabling approaches are taken in Kim et al. (2010)
and Kim et al. (2011) who use a rather simplistic model without operational constraints but
allow shifting train departures in both directions and integrate the efficient use of recuperated
energy. In the former paper, they use a local-search algorithm while in the latter the mixed-
integer program (MIP) is solved directly. Albrecht (2010) focuses on running-time control, i.e.
slowing down the trains, instead of dwell-time control to reduce energy consumption as well
as power consumption and finds solutions via a genetic algorithm. Dwell-time control based
on a genetic algorithm is pursued by Chen et al. (2005).

On the general field of energy-saving train operations, there is much more literature avail-
able. This includes energy-efficient driving strategies (see the extensive surveys by Feng et al.
(2013), Scheepmaker et al. (2017) and Yin et al. (2017a)), operational measures (for instance Ra-
gunathan et al. (2014), Hasegawa et al. (2014) and Kimura and Miyatake (2014)) or timetabling
focussed on reducing overall energy consumption (see Su et al. (2013), Peña-Alcaraz et al. (2011),
Li and Lo (2014), Fournier et al. (2012) and Gong et al. (2014)). Bärmann et al. (2020) undertake
polyhedral studies for a clique-based combinatorial optimization problem which is then used
to model and solve optimal timetable adaptation problems including travel time choice for the
trains. Zhou et al. (2017) explicitly combine trajectory optimization and timetabling via a mod-
elling based on shortest paths within a time-expanded network, discretizing space, time and
velocity. The combination of both timetabling and trajectory optimization is also considered by
Wang and Goverde (2019), who do trajectory optimization to redistribute travel times between
different line segments of multiple train routes in order to fine-tune a given timetable. Fur-
ther works in this direction are that of Mo et al. (2019), who also integrate passenger waiting
times into their model, and that of Canca and Zarzo (2017), who consider line frequency and
fleet size as well. Yin et al. (2016) investigate energy-efficient rescheduling of timetables un-
der uncertain passenger demand, while the case of dynamic passenger demand is studied in
Yin et al. (2017b). Optimized train routing, scheduling and control as part of an integrated
real-time traffic management framework have been studied by Luan et al. (2018a) and Luan
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et al. (2018b). For general approaches in railway timetabling, we refer to Cacchiani and Toth
(2012). Optimal load management has also been investigated in other problem contexts, such
as industrial production (see Lorenz et al. (2012) and Nelson et al. (2013), for example).

To the best of our knowledge, there is no prior published work on load management in-
cluding the optimal use of braking energy on the scale of a large national railway network. In
a joint project with Deutsche Bahn AG, Germany’s largest railway company, our motivation
was to explore the cost-saving potential of adapting a given timetable draft in order to achieve
a more balanced expected power consumption profile over the day. The principal measure to
achieve this aim is shifting the departure times of the trains within a certain prescribed range
of plus-minus a few minutes around their departure times stated in the draft. The adapted
timetable shall maintain the key structure of the timetable draft; in particular it shall keep up
the same level of service to the customers and meet all security requirements. Using recupe-
rated energy from braking trains to the fullest possible extent is a key tool to reduce the overall
energy consumption of the train operations in a railway network. Recuperated energy can only
be used if there is another train in the networkwhich accelerates in the samemoment. Thus, we
also strive to synchronize arrivals with departures. To this end, we devise mixed-integer pro-
gramming models for optimized timetabling capturing the above aspects as well as an efficient
decomposition approach to solve country-scale instances.

Our present work continues that of Bärmann et al. (2017), who evaluated optimized time-
tabling with respect to different performance metrics for the power consumption induced by
the timetable. These included reducing 15-minute average peak consumption both with and
without considering recuperated energy as well as reducing fluctuation of consumption meas-
ured in different norms. However, the models used there were not yet able to solve instances of
relevant size. In Bärmann et al. (2018), an analysis of the underlying polytope was carried out
which allowed the reduction of 15-minute average peak consumption formuch larger instances.
However, these approaches still did not consider the optimized use of recuperation energy – a
direction that is relevant especially for reducing the costs of the train-operating company.

In this article, we derive compact and tight timetabling models together with a specially-
tailored Benders decomposition scheme to solve the problem including the efficient use of re-
cuperated energy. In addition, we control instantaneous peak consumption in the optimized
solution in order to ensure stability of the power supply system. We also give a detailed case
study for an optimal adaptation of the Germany-wide Deutsche Bahn timetable for passenger
traffic in which we demonstrate the benefits of our approach.

Our exposition begins with a description of the problem background in Section 2. In Sec-
tion 3, we describe our timetable optimization model as well as two enhanced versions with in-
tegral underlying timetabling polytopes (the non-linearity of the objective functions still makes
the problem NP-hard, however). Furthermore, we develop our Benders decomposition ap-
proach which greatly improves solution quality within the first few minutes of computation
and is able to solve large-scale instances. The detailed case study for German passenger traffic
can be found in Section 4, and our conclusions are given in Section 5.

2 Problem Description

In the following, we explain the technical background governing the operation of the railway
power supply system and the load-dependent costs railway companies usually incur. We also
introduce our assumptions for feasible timetable adaptations to maintain the structure of a
given planning draft with respect to customer service and safety provisions.

3



2.1 Characteristics of Traction Energy Supply in Germany

The German railway network is almost completely owned and operated by DBNetz AG, which
is a subsidiary of Deutsche Bahn AG (DB) and Germany’s most important infrastructure man-
ager (IM). It leases the tracks to the train operating companies (TOCs), of which there are
around 300 in Germany. The major TOCs in passenger traffic are the DB-subsidiaries DB Regio
AG for regional transport and DB Fernverkehr AG for long-distance transport. Private com-
petition exists mostly in regional traffic on local lines and in freight transport, where the DB-
subsidiary DBCargo AG had to suffer from a significant decline inmarket share in recent years.

The traction energy for the trains is provided by DB Energie GmbH, which is itself a sub-
sidiary of DB Netz. The energy is either directly produced from dedicated power plants or
transferred from the public electricity network. For its distribution, DB Energie operates an al-
most nationwide traction power supply network throughoutGermany, separate from the public
power grid, with a total length of more than 7700 km. To minimize energy losses over long dis-
tances, the electricity is transported via the high-voltage transmission layer operated at 110 kV
and a frequency of 16.7 Hz. So-called substations nearby the tracks transform the electricity to
a voltage of 15 kV at which the trains are operating. There are about 180 such substations in
Germany, or one at about every 60 km of electrified track, many being coupling points to the
public power grid. The energy is then fed from the substation to the catenaries, which in turn
power the trains. The newer trains can feed energy back to the catenaries when braking. This
is called recuperation. Recuperated energy can be used by nearby trains for their acceleration,
which reduces the overall energy consumption. The closer the trains are to each other, the less
energy is lost in the transmission.

The workload of the network can change very rapidly – drops and increases of 300 MW
within few minutes are very frequent as trains accelerate and brake. DB Energie has to satisfy
the total demand for traction energy and has to keep the current frequency constant. When
the demand increases, the rotation frequency of the generators in the power plants decreases.
To compensate this effect, the generators need to be supplied with more primary energy. The
opposite effect occurs when the demand drops and primary energy needs to be taken away
from the generators to prevent a frequency increase.

In the following, we describe how optimized timetabling can help to reduce peak power
consumption in the railway system and improve the use of recuperated braking energy.

2.2 Energy-Related Costs in the Railway System

DB Energie charges the TOCs both according to the total energy consumption of the trains they
operate and for theirmaximumpower consumption. For their total consumption, they pay a cer-
tain price per kilowatt-hour to which federal fees and apportionments are added. The second
component is determined by the maximum peak power consumption of all trains over any
15-minute interval in the billing period. It is calculated by summing up the measured power
consumptions of all trains together and then averaging this value over the four 15-minute in-
tervals of the clock. To this end, each locomotive has a built-in counter which measures the
power consumption in every second. The TOC then pays a certain rate per kilowatt which
is multiplied with the highest such average value. For the invoicing, the railway company
can choose between a monthly or a yearly billing period, where the load-dependent charge
is typically somewhat higher in the monthly pricing scheme. The reason for including a load-
dependent charge – which is usual for contracts with big consumers of electricity – is that the
load-dependent charge covers the costs for the layout of the infrastructure. This accounts for
the fact that it is basically the biggest consumer who determines the necessary dimensioning
of the power supply system, as additional generation and transmission capacities cause extra
costs. For feeding back energy to the catenaries, TOCs are rewarded with a fixed price per
kilowatt-hour of recuperated braking energy, which is somewhat lower than what they pay to

4



buy the energy. This recuperated energy is, however, not directly subtracted from the amount
of energy drawn, but is refunded separately.

As a result of this pricing scheme, the TOC has an active interest in keeping its peak con-
sumption as low as possible to save money – the ideal demand pattern in this respect would
be a consumption that is constant over time. Naturally, there exist periods in which there is a
higher demand than at other times. For example, in the morning and afternoon rush hours,
there is much commuter traffic, which, as a result, induces a higher load in the power supply
system than in off-peak hours, when fewer trains are running. As recuperated energy is refun-
ded separately and not subtracted when computing its peak consumption, we neglect it when
taking the point of view of the TOC.

A way to reduce the power-dependent energy costs of a TOC can now be to adjust the
timetable such that too many simultaneous departures, and the resulting energy-intensive ac-
celeration phases, are desynchronized. This can already be achieved by slight shifts in the
departure times of the trains by few minutes in both directions – making use of remaining de-
grees of freedom in the timetable draft before finally publishing it. Figure 1 shows the effect
this can have on the power consumption profile of the TOC at the example of regional traffic in
the German state of Bavaria (cf. instance Bayern in Section 4).

Figure 1: Power consumption profile for regional traffic in Bavaria (instance Bayern, cf. Sec-
tion 4) with 3554 trains between 4 a.m. and 10 p.m., before (left) and after (right) optimization
– instantaneous consumption in red, 15-minute averages in blue

It shows the power consumption profile of all regional trains running in the state between
4 a.m. and 10 p.m. – both before (left) and after (right) an optimal adjustment of the timetable.
In red, we see the combined power consumption of the trains in each second, in blue we see the
resulting 15-minute averages. For this instance, our approach can balance power consumption
especially in themorning hours between 6 a.m. and 8 a.m., wherewe can reduce peak consump-
tion by 11 MW or more than 10%. According to the official price sheet by DB Energie for 2020
(found on their homepage https://www.dbenergie.de), TOCs are charged 110.02 e per
kilowatt in peak demand over a given year. The 105 MW in peak consumption in the unoptim-
ized timetable would thus amount to a power-dependent cost of 11.6 million e for the current
year of planning, compared to 10.3 million e for the 94 MW in the optimized timetable. Thus,
by slightly adjusting the considered timetable, DB Regio could save well over 1 million e an-
nually for this subnetwork alone. This result was achieved by allowing to shift train departures
by not more than ± 3 minutes around their currently-planned departure times.

In a very similar fashion, the IM can use timetable adaptation to reduce peaks in power con-
sumption from the public power supply network (or dedicatedpower plants feeding the railway
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network). The difference is that it needs to take into account recuperated energy from braking
trains which can be reused by other trains in order to lower the overall amount of energy drawn
from the power supply. However, recuperated energy which cannot immediately be used by
other trains is lost, such that a synchronization of braking trains with accelerating trains is ne-
cessary. Consequently, when braking energy does not find a receiving train it cannot be used to
lower the average power consumption over the current 15-minute interval. A further concern
to the IM is to ensure stability in the railway power supply system. To this end, it is also neces-
sary to keep instantaneous peaks in consumption, lasting up to several seconds, under control.

2.3 Modelling Assumptions Concerning the Timetable Adaptation

For the optimal adaptation of a given timetable draft with respect to energy consumption, we
take several modelling assumptions as described in the following. As our planning horizon, we
consider a representative day of the week for which we want to adapt the departure times of
the trains in the stations slightly. In doing so, we want to preserve the structure of the timetable
draft, making use of the remaining degrees of freedom in the current state of planning to come
to favourable energy consumption patterns. Firstly, we only allow that the departures of the
trains at each station can be varied within a short time interval around the currently planned
departure time. The typical value we consider here is a shift of ± 3 minutes, although we also
experiment with smaller and larger values. This already ensures that the frequency at which
stations are serviced remains vastly intact, while enabling the desynchronization of too many
simultaneous departures and the better synchronization of accelerating trains with braking
trains. Secondly, we demand that the dwell time of each train in each station is at least as long
as in the current timetable draft. This ensures that passengers have enough time to get on and
off the train. Thirdly, we require that the order of the departures in a given station in a given
direction be retained as established in the timetable draft. In other words, our model considers
the order in which trains pass the tracks in the network as fixed. In most of the available time-
tabling literature, the order of the trains on the tracks is subject to optimization. Usually this
leads to timetabling models which either use big-M-formulations or act on time-expanded net-
works to take into account conflicts between train departures with respect to safety distances
(see Cacchiani and Toth (2012) for a discussion of these two approaches). In our case, it is not
too conservative to assume fixed orders as the existing timetable draft is to be adapted only
slightly. Furthermore, it will allow for a much more compact model formulation which neither
requires big-M-formulations nor time-expanded networks to model minimum headway time
constraints. The minimum headway time between two trains depends on the track character-
istics and on the types of trains involved. For a fast train following a slow train, it is higher than
the other way round, for example. A given order of the trains on a track implies that we already
know the required minimum headway time by which any two consecutive trains on that track
have to be separated at least. Thus, the usual binary ordering variables in big-M-models can be
considered as fixed in our case. For the incorporation of the safety constraints, we then assume
that it is enough to enforce the minimum headway time at the two terminal stations of the track
to ensure a sufficient separation of the trains. That means we require that the departure times
of two consecutive trains are separated by at least the minimum headway time later than the
preceding train, and similarly for the arrival times in the subsequent station. Finally, we require
that any interchange relations between two trains in the network are maintained as established
in the timetable draft. That means all connecting trains that are reachable from a given train
in a given station have to be reachable after timetable optimization as well. To enforce this,
we use the following rule: whenever one train arrives at a certain station, and a second trains
departs within a certain time interval after that arrival (e.g. between 5 and 15 minutes later) in
the timetable draft, we require that this time window be kept up in the optimized timetable as
well. In addition, we require that the changeover time between the two trains does not change
by too much, e.g. by at most ± 3 minutes. This is to ensure the same degree of service to the
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passenger as in the currently planned timetable.
Using the feasible adaptations of the timetable draft outlined above, we look for a new time-

table that leads to a lower peak power consumption. As a basis for these considerations, we
assume that the power profiles of the trains are known in advance, i.e. the power consumption
over their journey between two stations is given as an input and is independent from the chosen
departure time. Power consumptions are assumed to be given in a resolution of 1 second, which
corresponds to the resolution of the consumption counters in the locomotives.

3 Mathematical Models

In the following, we will introduce two optimization models that try to achieve different goals
with respect to energy efficiency. The first model will take the point of view of a TOC that
wants to reduce its load-dependent charges by the IM. The second model intends to reduce the
overall power that has to be provided by the IM, thus decreasing the power production costs.

Both models optimize over the same feasible set, namely the set of all possible timetable
adaptations, and differ only in their objective functions, which are non-linear in all cases, but
can be linearized by adding further variables and constraints. Nevertheless, we will see that
the first model will be significantly easier to solve, as the linearization of its objective function
is much more lightweight. For the feasible set of the models, we will be able to give totally
unimodular polyhedral descriptions of polynomial size – making them as tight as possible and
compact at the same time.

3.1 Modelling Feasible Timetable Adaptations

We start by describing the feasible set underlying both models, namely the set of possible
timetable adaptations. For this set, we will give three equivalent formulations of which the
last two possess totally unimodular constraint matrices.

3.1.1 Naive Formulation

Let T := {0, 1, . . . , ∆} with ∆ ∈ N be the planning horizon of the problem, i.e. a part of the
considered sample day. We assume that its resolutions is in seconds and that ∆ is divisible
by 900 for ease of exposition when computing power consumption averages over 15-minute-
intervals. Let R be the set of trains running during the planning horizon. Then we denote
by Vr the set of stations from which train r ∈ R departs and by Ar the set of ordered pairs
of subsequently serviced stations. In other words, if (v, w) ∈ Ar, then train r visits station w
directly after station v. Let Jrv ⊆ T be the set of feasible departure times for train r in station
v ∈ Vr. The time train r needs to travel line a = (v, w) ∈ Ar is denoted by Γra, while crw

denotes the minimum dwell time in station w. For each line a = (v, w) between to stations v
and w, we introduce the set La, which contains all ordered pairs (r1, r2) of consecutive trains r1
and r2 on that line (r2 needs to travel the line a after r1). Any two such trains have to respect
a corresponding minimum headway time sr1r2a. Finally, for each station v, we introduce the
set Uv of all ordered pairs (r1, r2) of trains r1 and r2 for which an interchange at station v must
be possible. In this case, the time that may pass between the arrival of train r1 at station v and
the departure of train r2 from that station must be at least ρr1r2v and at most σr1r2v time steps
after the arrival of train r1.

For the decision to have train r ∈ R depart from station v ∈ Vr at instant j ∈ Jrv we intro-
duce the binary variable xrv

j , which takes a value of 1 if this decision is taken, and 0 otherwise.
Furthermore, let V :=

⋃
r∈R Vr denote the set of all stations from which trains depart, and let

A :=
⋃

r∈R Ar denote the set of all lines between to stations travelled in the timetable. A feasible
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timetable adaptation can then be described by the following set of constraints:

∑
j∈Jrv

xrv
j = 1 (∀r ∈ R)(∀v ∈ Vr) (1a)

xrv
j ≤ ∑

h∈Jrw :
h≥j+Γra+crw

xrw
h (∀r ∈ R)(∀a = (v, w) ∈ Ar)(∀j ∈ Jrv) (1b)

xr1v
j ≤ ∑

h∈Jr2v :
h≥j+max{0,Γr1a−Γr2a}+sr1r2a

xr2v
h (∀a = (v, w) ∈ A)(∀(r1, r2) ∈ La)(∀j ∈ Jr1v) (1c)

xr1u
j ≤ ∑

h∈Jr2v :
h≥j+Γr1a+ρr1r2v

h≤j+Γr1a+σr1r2v

xr2w
h

(∀v ∈ V)(∀(r1, r2) ∈ Uv, a = (u, v) ∈ Ar1)
(∀j ∈ Jr1u)

(1d)

xrv
j ∈ {0, 1} (∀r ∈ R)(∀v ∈ Vr)(∀j ∈ Jrv). (1e)

Constraint (1a) ensures that each train departs from each of its stations at exactly one of the
predefined possible departure times. With Constraint (1b) we make sure that the minimum
dwell times in each station are respected. Having train r depart from station v at instant j along
line (v, w) implies that the earliest possible point in time to depart from the next station w is
after the travel time Γra and the dwell time crw have passed. In a similar fashion, Constraint (1c)
enforces the minimum headway time between two successive trains on a line. If train r1 on
line a is followed by a train r2 that is at most as fast as r1, this second train can depart sr1r2a

time steps after r1 at the earliest. If train r2 is faster than r1, then the time that has to pass
after the departure of r1 is at least Γr1a − Γr2a to ensure that r2 arrives at least sr1r2a time steps
after r1 at the next station. We assume that this suffices to guarantee in both cases that the
two trains are separated by at least sr1r2a time steps while passing line a. Next, Constraint (1d)
models the requirement to keep all desired possibilities for interchanges between the trains in
the stations intact. The departure of train r2 from station v has to happen within a certain time
window around the arrival of train r1 in station v if an interchange shall be possible. Finally,
Constraint (1e) requires all x-variables to take binary values only. Note that the sets Jrv are
assumed to contain the currently planned departure times of the corresponding trains from the
corresponding stations, and we assume that these departure times fulfil all the requirements
laid out above. In other words, the timetable draft to be optimized is always a feasible solution
to the above system.

Constraints (1a)–(1e) can be interpreted as the feasible set of a project scheduling problem,
where Constraint (1a) is the requirement to schedule all the tasks, and where the latter three
constraints represent precedences between these jobs. It is known from the literature that this
feasible set can be reformulated such that the constraintmatrix of the corresponding constraints
is totally unimodular (see e.g. Schwindt and Zimmermann (2015)). In a more general sense,
Constraints (1a)–(1e) can be interpreted as a clique problem with multiple-choice constraints
(CPMC). In the recent work Bärmann et al. (2018), the authors study so-called staircase compat-
ibility, a generalization of the precedence structure of a project scheduling problem. It leads to
compatibility graphs for which this clique problem can be modelled by a linear program (LP)
with a totally unimodular constraint matrix. In the following, we will use the reformulations
from Schwindt and Zimmermann (2015); Bärmann et al. (2018) to obtain compact unimodular
formulations for System (1).

3.1.2 Totally Unimodular Formulations

Our second formulation for the set of feasible timetable adaptations results from a lifting of
Constraints (1b)– (1d). In Model (1), their left-hand sides consist of a single variable each. It
models the departure of a certain train from a certain station at a certain point in time. By
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adding all variables on top which correspond to possible later departures of the same train at
the same station, we can strengthen these constraints. This leads to the new system

∑
j∈Jrv

xrv
j = 1 (∀r ∈ R)(∀v ∈ Vr) (2a)

∑
k∈Jrv :

k≥j

xrv
k ≤ ∑

h∈Jrw :
h≥j+Γra+crw

xrw
h (∀r ∈ R)(∀a = (v, w) ∈ Ar)(∀j ∈ Jrv) (2b)

∑
k∈Jr1v :

k≥j

xr1v
k ≤ ∑

h∈Jr2v :
h≥j+max{0,Γr1a−Γr2a}+sr1r2a

xr2v
h

(∀a = (v, w) ∈ A)(∀(r1, r2) ∈ La)
(∀j ∈ Jr1v)

(2c)

∑
k∈Jr1u :

k≥j

xr1u
k ≤ ∑

h∈Jr2v :
h≥j+Γr1a+ρr1r2v

xr2v
h

(∀v ∈ V)(∀(r1, r2) ∈ Uv, a = (u, v) ∈ Ar1)
(∀j ∈ Jr1u)

(2d)

∑
i∈Jr2v :

i≥h

xr2v
i ≤ ∑

j∈Jr1u :
j≥h−Γr1a−σr1r2v

xr1u
j

(∀v ∈ V)(∀(r1, r2) ∈ Uv, a = (u, v) ∈ Ar1)
(∀h ∈ Jr2v)

(2e)

xrv
j ∈ {0, 1} (∀r ∈ R)(∀v ∈ Vr)(∀j ∈ Jrv). (2f)

The validity of these new constraints can easily be verified. Take for example Constraint (2b)
for some r ∈ R, a = (v, w) ∈ Ar and j ∈ Jrv. It arises by considering Constraints (1b) for the
same r and a as well as all k ∈ Jrv with k ≥ j and summing them up, which yields

∑
k∈Jrv :

k≥j

xrv
k ≤ ∑

k∈Jrv :
k≥j

∑
h∈Jrw :

h≥k+Γra+crw

xrw
h = ∑

h∈Jrw :
h≥j+Γra+crw

(h− j− Γra − crw + 1)xrw
h .

Now we observe that the left-hand side can never take a value higher than 1 due to Con-
straint (1a). Moreover, we see above that the right-hand side can be reformulated such that
all x-variables have integer coefficients of value 1 or higher. Changing all these coefficients to 1
does not change the set of binary solutions fulfilling the constraint, as a value of 1 on the right-
hand side is already enough to dominate the left-hand side, which can be either 0 or 1. This
reasoning leads to Constraint (2b). Another way to obtain this strengthened constraint is as a
0-1

2 -cut by suitably combining Constraints (1a) and (1b). In a similar fashion, we can obtain the
remaining constraints of System (2), where for reformulating Constraint (1d) we split it up into

xr1u
j ≤ ∑

h∈Jr2v :
h≥j+Γr1a+ρr1r2v

xr2v
h (∀v ∈ V)(∀(r1, r2) ∈ Uv, a = (u, v) ∈ Ar1)(∀j ∈ Jr1u)

and
xr1u

j ≤ ∑
h∈Jr2v :

h≤j+Γr1a+σr1r2v

xr2v
h (∀v ∈ V)(∀(r1, r2) ∈ Uv, a = (u, v) ∈ Ar1)(∀j ∈ Jr1u).

With the former constraint, we can proceed as before to obtain Constraint (2d). The latter can
be reformulated by fixing some v, (r1, r2) and the according a and then summing over all k ≤ j
for all possible choices of j. A similar consideration for the variable coefficients as above and
exploitingConstraint (1a) on both sides then yieldsConstraint (2e). Altogether, we have derived
a tighter formulation for the set of feasible timetable adjustments. As shown in Bärmann et al.
(2018), this lifting of the constraints leads to a totally unimodular constraint matrix. Therefore,
we can replace Constraint (2f) by

xrv
j ≥ 0 (∀r ∈ R)(∀v ∈ Vr)(∀j ∈ Jrv), (3)
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wherewe use that this constraint together with Constraint (2a) already imply the upper bounds
of 1. We will refer to the formulation above as the totally unimodular formulation (TU) for the
set of feasible timetable adaptations.

From TU, it is possible to obtain a second reformulation by performing a variable substitu-
tion. We introduce new variables yrv

j , r ∈ R, v ∈ Vr, j ∈ Jrv, which are defined via

yrv
j := ∑

k∈Jrv :
k≥j

xrv
k .

Their interpretation is as follows: variable yrv
j takes a value of 1 if train r departs from station v

at minute j or a later feasible point in time. Otherwise, yrv
j takes a value of 0. Replacing the x-

variables in System (2) by these new variables leads to

yrv
min(Jrv) = 1 (∀r ∈ R)(∀v ∈ Vr) (4a)

yrv
j ≤ yrw

h
(∀r ∈ R)(∀a = (v, w) ∈ Ar)
(∀j ∈ Jrv : h := j + Γra + crw ≤ max(Jrw))

(4b)

yrv
j = 0

(∀r ∈ R)(∀a = (v, w) ∈ Ar)
(∀j ∈ Jrv : j + Γra + crw > max(Jrw))

(4c)

yr1v
j ≤ yr2v

h
(∀a = (v, w) ∈ A)(∀(r1, r2) ∈ La)
(∀j ∈ Jr1v : h := j + max{0, Γr1a − Γr2a}+ sr1r2a ≤ max(Jr2v))

(4d)

yr1v
j = 0

(∀a = (v, w) ∈ A)(∀(r1, r2) ∈ La)
(∀j ∈ Jr1v : j + max{0, Γr1a − Γr2a}+ sr1r2a > max(Jr2v))

(4e)

yr1u
j ≤ yr2v

h
(∀v ∈ V)(∀(r1, r2) ∈ Uv, a = (u, v) ∈ Ar1)
(∀j ∈ Jr1u : h := j + Γr1a + ρr1r2v ≤ max(Jr2v))

(4f)

yr1u
j = 0

(∀v ∈ V)(∀(r1, r2) ∈ Uv, a = (u, v) ∈ Ar1)
(∀j ∈ Jr1u : j + Γr1a + ρr1r2v > max(Jr2v))

(4g)

yr2v
h ≤ yr1u

j
(∀v ∈ V)(∀(r1, r2) ∈ Uv, a = (u, v) ∈ Ar1)
(∀h ∈ Jr2v : j := h− Γr1a − σr1r2v ≤ max(Jr1v))

(4h)

yr2v
h = 0

(∀v ∈ V)(∀(r1, r2) ∈ Uv, a = (u, v) ∈ Ar1)
(∀h ∈ Jr2v : h− Γr1a − σr1r2v > max(Jr1v))

(4i)

yrv
j+1 ≤ yrv

j (∀r ∈ R)(∀v ∈ Vr)(∀j ∈ Jrv : j < max(Jrv)) (4j)

yrv
max(Jrv) ≥ 0 (∀r ∈ R)(∀v ∈ Vr), (4k)

where min(Jrv) denotes the earliest possible departure time in that set, and max(Jrv) the latest
possible departure time. Constraints (4j) and (4k) originate from the lower bounds (3) of the
x-variables. System (4) is the feasible set of a dual flow problem, recognizable by the fact that
each row has at most two non-zero entries and each line with two non-zeros has exactly one
coefficient +1 and one coefficient −1. Accordingly, we refer to System (4) as the dual-flow for-
mulation (DF). By its nature, the constraint matrix corresponding to this formulation is totally
unimodular, too. The simplex method in an MIP solver can usually benefit from the sparsity
of the constraints in formulation (DF). Indeed, our results in Section 4will strongly confirm this.

Although we have now found totally unimodular formulations for the set of feasible time-
table adaptations, we will see in the following that finding optimal adaptations with respect to
reducing peak consumption is still a hard problem.

3.2 Modelling the Reduction of Peak Power Consumption

In this section, we present two optimization models for the reduction of peak power consump-
tion – one focussed on reducing the energy costs of the TOCs, the other focussing on the cost of

10



energy provision by the IM as well as stability of supply. For both models, we can use all three
formulations for feasible timetable adaptations from above. In doing so, we will use the set X
for the integral solutions of either Formulation (1) or (2) (where both are used interchangeably
in this section, as they live in the same space of variables and contain the same integer points).
Accordingly, we will use the set Y for the integral solutions of Formulation (4).

3.2.1 Reducing the Peak Power Charge of TOCs

We start with a model for minimizing the component of the energy bill of a TOC that depends
on peak power consumption. Its main purpose is the desynchronization of too many simul-
taneous train departures (involving trains of that company). To this end, let prat ∈ R be the
consumption of train r ∈ R on line a = (v, w) ∈ Ar at instant 0 ≤ t ≤ Γra after departure.
Shifting the departure time of the train amounts to shifting the occurrence of the resulting
power consumption in time. Thus, if train r departs from station v at time j, its consumption at
instant t ∈ T is given by

p̄rat
j :=

{
prat, 0 ≤ t− j ≤ Γra

0, otherwise.

By summing over all the trains of a TOC running at a given point in time t ∈ T according to a
feasible timetable x ∈ X, we obtain its total gross power consumption

P+(x, t) := ∑
r∈R

∑
a=(v,w)∈Ar

∑
j∈Jrv

max{ p̄rat
j , 0}xrv

j , (5)

where we cut off negative consumption values as recuperated energy is refunded separately.
Now, the peak consumption charge is not computed from the instantaneous consumption val-
ues but from the average consumption values over 15-minute intervals. Therefore, we intro-
duce the set T15 := {[900 · i, 900 · [i + 1] | i ∈ {0, . . . , ∆

900 − 1}} of all consecutive 15-minute (=
900-second) intervals in the planning horizon T. The gross energy consumption over one such
interval I ∈ T15 under a chosen timetable x ∈ X is then given by

E+(x, I) =
1
2
(P+(x, t0(I)) + P+(x, t900(I))) + ∑

t∈I:
t 6=t0(I)∧
t 6=t900(I)

P+(x, t), (6)

where t0(I) and t900(I) denote the first and the last second of that interval respectively. The
above formula assumes that the actual power consumption profile, for which we know the val-
ues at the points t ∈ T, is a continuous function, such that it is reasonable to approximate the
area between its graph and the horizontal axis via the trapezoidal rule. Altogether, the optim-
ization problem of finding a feasible timetable adaptation which minimizes the maximum av-
erage gross power consumption over any 15-minute interval in the planning horizon can be
stated as

1
900
·min

x∈X
max
I∈T15

E+(x, I).

We denote this problem by (TTMAPBR), as it tries to find a TimeTable with a minimal Max-
imum Average Power Consumption Before Recuperation. By introducing variables for the
power consumption in each second, this problem can easily linearized. An important observa-
tion is now that in Equation (6) the summation over t interchanges with the summations over
r, v and j in Equation (5). Thus, the computation of E+(x, I) can be dramatically simplified to

E+(x, I) = ∑
r∈R

∑
a=(v,w)∈Ar

∑
j∈Jrv

E+,trip(r, v, j, I)xrv
j ,
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where the portion of the gross energy consumption E+,trip(r, v, j, I) of train r on line a that falls
into interval I when departing at instant j can be precomputed as

E+,trip(r, v, j, I) =
1
2

(
max{ p̄rat0(I)

j , 0}+ max{ p̄rat900(I)
j , 0}

)
+ ∑

t∈I:
t 6=t0(I)∧
t 6=t900(I)

max{ p̄rat
j , 0}.

This leads to a much lower number of variables and constraints necessary for the linearization
of Problem (TTMAPBR). Indeed, we only need one additional variable z for the linearization
of the objective function, with which the problem can be stated as the following MIP:

min z (7a)
s.t. ∑

r∈R
∑

a=(v,w)∈Ar
∑

j∈Jrv

E+,trip(r, v, j, I)xrv
j ≤ 900z (∀I ∈ T15) (7b)

x ∈ X. (7c)

Alternatively, we can also use the representation of the set of feasible timetables in the y-
variables and write the problem as

min z (8a)

s.t.
1

900
· ∑

r∈R
∑

a=(v,w)∈Ar
∑

j∈Jrv

E+,trip(r, v, j, I)(yrv
j − yrv

j+1) ≤ z (∀I ∈ T15) (8b)

y ∈ Y, (8c)

where we define yrv
max(Jrv)+1 := 0 for all r ∈ R, v ∈ Vr.

Remark 3.1. Note that the gross energy consumption of a train r on line a that falls into interval I,
depending on the the chosen departure time j, can also be written as

E+,trip(r, v, min(Jrv), I) + ∑
j∈Jrv :

j>min(Jrv)

(E+,trip(r, v, j, I)− E+,trip(r, v, j− 1, I))yrv
j ,

where we use that yrv
min(Jrv) = 1 holds according to System (4). Thus, we can interpret the change from

the x- to the y-variables as the change between the multiple-choice method and the incremental method
for modelling piecewise-linear functions. Constraints (4j) and (4k) together can be recognized as a filling
condition in this context. See Vielma et al. (2010); Bärmann et al. (2018); Liers and Merkert (2016) for
a broader discussion of this aspect. The incorporation of the piecewise-linear function representing the
power consumption of the trains was the reason for choosing time-discretized variables in the first place.

The fact that the solution of either Model (7) or Model (8) amounts to the optimization of a
piecewise-linear function over a totally unimodular systemmight suggest that this timetabling
problem is easy to solve. However, this is not the case, as we show in the following.

Theorem 3.2 (Personal communication with Zhu (2014)). Problem (TTMAPBR) is weakly NP-
hard, even if there is only one departure to schedule per train, there are only two possible departure times
to choose from, and the power consumption values are positive integers.

Proof. We show the claim by a reduction from the partition problem (see Garey and Johnson
(1979), Problem SP12). Let S be some index set and as ∈ N for s ∈ S be positive integers.
To decide whether there are two disjoint subsets S1, S2 ⊆ S with S = S1 ∪ S2 and ∑s∈S1

as =

∑s∈S2
as, we can solve the following instance of (TTMAPBR): Let T = {0, 1} be the planning

horizon and assume for the sake of simplicity that the intervals to average the consumption
over are only one second long each. Interpret S as the set of trains of which each has one
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departure to be scheduled, i.e. |As| = 1 for all s ∈ S, and assume that these departures can be
scheduled independently. Let all the trains have the same set of two possible departure times,
namely, Js = {0, 1} for all s ∈ S. Furthermore, assume that the travel time of each train s on
the trip to be scheduled is only one second, and that the corresponding power consumption
value in that second is as. Then solving (TTMAPBR) for this instance essentially amounts to
solving the original partition instance, as (TTMAPBR)will try to find the schedule that perfectly
balances the power consumptions between the two instants of the planning horizon. If a perfect
balancing is possible, this indicates the existence of a feasible partition, otherwise there is no
such partition. This proves the claim.

3.2.2 Reducing the Energy Provision Costs of the IM

Minimizing the costs of providing traction energy to the TOCs from the point of view of the
IM leads to an optimization problem very similar to (TTMAPBR). The important difference is
that the IM is very interested in ensuring effective use of the energy recuperated from braking
to reduce peaks in power consumption from the public power supply network. This requires
to take negative power consumption values into account, too, as laid out in the following.

Wedefine the net power consumption of all trains running according to a given timetable x ∈
X at instant t ∈ T as

P(x, t) := max

(
∑
r∈R

∑
a=(v,w)∈Ar

∑
j∈Jrv

p̄rat
j xrv

j , 0

)
. (9)

The difference to the gross power consumption P+(x, t) is that we do not cut off negative con-
tributions, but balance them against positive contributions instead. If at any instant there is
more recuperated energy than can be used by trains for their traction, this energy is lost, which
explains the maximum in Equation (9). The net energy consumption over an interval I ∈ T15 is
then given by

E(x, I) =
1
2
(P(x, t0(I)) + P(x, t900(I))) + ∑

t∈I:
t 6=t0(I)∧
t 6=t900(I)

P(x, t).

Here we cannot simplify the computation of the energy consumption as before, as the involved
summations do not interchange. This is the main reason why the problem of minimizing the
average net power consumption, to which we refer as (TTMAP) for TimeTabling with respect
to Maximum Average Power Consumption, is much harder to solve. It can be written as

1
900
·min

x∈X
max
I∈T15

E(x, I).

A similar linearization as before now requires continuous variables wt ∈ R for the net power
consumption in each instant t ∈ T, in addition to variable z for linearizing the objective function.
Problem (TTMAP) can then be written as the following MIP:

min z (10a)

s.t.
1
2
(wt0(I) + wt900(I)) + ∑

t∈I
wt ≤ 900z (∀I ∈ T15) (10b)

∑
r∈R

∑
a=(v,w)∈Ar

∑
j∈Jrv

p̄rat
j xrv

j ≤ wt (∀t ∈ T) (10c)

wt ≥ 0 (∀t ∈ T) (10d)
x ∈ X. (10e)
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Within Formulation (DF), Constraint (10b) can be stated as

∑
r∈R

∑
a=(v,w)∈Ar

 p̄rat
min(Jrv)y

rv
min(Jrv) + ∑

j∈Jrv :
j<max(Jrv)

( p̄rat
j+1 − p̄rat

j )yrv
j

 ≤ wt (∀t ∈ T). (11)

An important consideration for the IM is not only to reduce average peak consumption but also
to limit instantaneous power consumption. As the solutions produced by Model (10) might
increase instantaneous power consumption, we also consider a variant of the model providing
an upper limit. More precisely, if U ∈ R is the maximum power consumption occurring in the
initial timetable in any instant during the planning horizon, we add the following constraint
ensuring that this value is never exceeded:

wt ≤ U (∀t ∈ T). (12)

We will see that the addition of this constraint empirically does not significantly limit the solu-
tion space of feasible timetables, such that we retain most of the potential reduction in max-
imum average power consumption. In the following, we will refer to Problem (TTMAP) to-
gether with Constraint (12) for limiting Instantaneous power consumption (TTMAPI).

3.2.3 Solving Problems (TTMAP) and (TTMAPI) via Benders Decomposition

Note that independent from the choice of variables, our models for (TTMAP) require signi-
ficantly more auxiliary variables and constraints than those for (TTMAPBR). This is why we
could solve (TTMAPBR) within very short time using standard methods when applying our
totally unimodular reformulations, even for very large-scale instances. This was not the case
for (TTMAP) as needs it to assess the total power consumption in every second, compared to
assessing only each 15-minute interval in (TTMAPBR).Moreover, Constraint (10b) and its refor-
mulation (11) are both very dense inequalities, with potentially tens of thousands of non-zero
entries for each t ∈ T in an instance of realistic size. As this slows down the simplex method
considerably, we now give a Benders reformulation of Model (10) with which we could signi-
ficantly improve our results on large-scale instances (see Section 4). The idea is to project out
the continuous w-variables to obtain a master problem which is basically formulated in the
timetable variables only.

Assume that we are already given a feasible timetable x̄ ∈ X. The remaining subproblem
is then to compute the actual objective value of x̄ in Model (10):

min z (13a)

s.t.
1
2
(wt0(I) + wt900(I)) + ∑

t∈I
wt ≤ 900z (∀I ∈ T15) (13b)

∑
r∈R

∑
a=(v,w)∈Ar

∑
j∈Jrv

p̄rat
j x̄rv

j ≤ wt (∀t ∈ T) (13c)

wt ≥ 0 (∀t ∈ T). (13d)
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The corresponding dual subproblem is given by

max ∑
t∈T

(
∑
r∈R

∑
a=(v,w)∈Ar

∑
j∈Jrv

p̄rat
j x̄rv

j

)
βt (14a)

s.t. βt − αI(t) ≤ 0 (∀t ∈ T1) (14b)

βt −
1
2

αI1(t) −
1
2

αI2(t) ≤ 0 (∀t ∈ T2) (14c)

βt −
1
2

αI(t) ≤ 0 (t = 0∨ t = ∆) (14d)

900 ∑
I∈T15

αI = 1 (14e)

αI ≥ 0 (∀I ∈ T15) (14f)
βt ≥ 0 (∀t ∈ T), (14g)

where the newly-introduced symbols have the following meanings: α is the dual variable to
Constraint (13b) and β that to Constraint (13c), I(t) denotes the interval in T15 to which second t
belongs, using I1(t) and I2(t) for the earlier and the later such interval, respectively, if t belongs
to both, while T1 := {t ∈ T | t mod 900 6= 0} and T2 := {t ∈ T | t mod 900 = 0 ∧ t 6= 0, ∆}. In
an optimal solution to Model (14), each βt will take a value that is as high as possible whenever
its objective function coefficient is positive, which means that the corresponding constraint out
of (14b)– (14d) is fulfilled with equality in this case. Thus, the model can be simplified to

max ∑
t∈T1

P(x, t)αI(t) +
1
2 ∑

t∈T2

P(x, t)(αI1(t) + αI2(t)) +
1
2
(P(x, 0)αI(0) + P(x, ∆)αI(∆)) (15a)

900 ∑
I∈T15

αI = 1 (15b)

αI ≥ 0 (∀I ∈ T15). (15c)

This remainingmodel is solvable by inspection, as clearly the αI with the highest objective func-
tion coefficient will be set to 1

900 and the others to 0. Let this index I be denoted by Imax(x̄) under
timetable x̄. Then Imax(x̄) is precisely the interval with the highest average power consumption.
If I+max(x̄) denotes the instants t ∈ Imax(x̄) for which the power consumption P(x, t) is positive,
we can derive the following Benders cut for x̄:

∑
t∈I+max(x̄)

∑
r∈R

∑
a=(v,w)∈Ar

∑
j∈Jrv

p̄rat
j xrv

j ≤ 900z. (16)

Inequality (16) computes the correct objective function value z̄ for any given timetable x̄ ∈ X.
For any timetable close in structure to x̄, it can be expected to give a meaningful lower bound
for the objective value of that timetable. This can be exploited by eliminating Constraints (10b),
(10c) and (10d) fromModel (10) to initialize the restricted Benders master problem and to sep-
arate Inequality (16) in a Benders fashion until an optimal timetable is found. In order to have
reasonably good bounds for the objective value from the start, we add cutting planes similar
to (7b) to the initial Benders master problem. To this end, we compute the values

Etrip(r, v, j, I) =
1
2
( p̄rat0(I)

j + p̄rat900(I)
j ) + ∑

t∈I:
t 6=t0(I)∧
t 6=t900(I)

p̄rat
j ,

which are a lower bound for the net energy consumption that train r on line a contributes in
time interval I when departing at instant j. It differs from E+,trip(r, v, j, I) in that we do not cut
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off negative contributions. The inequality

∑
r∈R

∑
a=(v,w)∈Ar

∑
j∈Jrv

Etrip(r, v, j, I)xrv
j ≤ 900z (∀I ∈ T15)

thus yields a valid lower bound for the objective value of any feasible timetable x ∈ X. They
showed a significant benefit in speeding up our Benders scheme. We also compute the actual
objective function value of any solution x̄ cut off by the Benders cut (16) and propose it to the
solver again, this time with the correct value for z. This way, we do not have to wait until the
solution is found again.

In the case of Problem (TTMAPI), which limits instantaneous power consumption while
minimizing average peak consumption, we can reformulate Constraint (12) to fit into this Bend-
ers scheme. The dual subproblem taking into account Constraint (12) and its corresponding
dual variable γ takes the form

max ∑
t∈T

(
∑
r∈R

∑
a=(v,w)∈Ar

∑
j∈Jrv

p̄rat
j x̄rv

j

)
βt −U ∑

t∈T
γt (17a)

s.t. βt − γt − αI(t) ≤ 0 (∀t ∈ T1) (17b)

βt − γt −
1
2

αI1(t) −
1
2

αI2(t) ≤ 0 (∀t ∈ T2) (17c)

βt − γt −
1
2

αI(t) ≤ 0 (t = 0∨ t = ∆) (17d)

900 ∑
I∈T15

αI = 1 (17e)

αI ≥ 0 (∀I ∈ T15) (17f)
βt ≥ 0 (∀t ∈ T). (17g)
γt ≥ 0 (∀t ∈ T). (17h)

We can directly see that whenever there is a t ∈ T for which the inequality(
∑
r∈R

∑
a=(v,w)∈Ar

∑
j∈Jrv

p̄rat
j x̄rv

j

)
≤ U (18)

is violated, the problem is unbounded and its feasible set contains an unbounded ray with
βt = γt = 1. Therefore, it is precisely the Benders feasibility cut (18) which cuts of this unboun-
ded ray and removes the corresponding cause of infeasibility in the restricted Benders master
problem. Note that all the above considerations can similarly be applied to the timetable for-
mulation in the y-variables to obtain an analogous Benders scheme which can profit from the
higher sparsity of (DF). It will indeed be this version of the algorithm which we will use in our
computational experiments.

4 A Case Study for German Passenger Traffic

In this section, we present a real-world case study for a significant part of German railway
traffic. It demonstrates energy-efficient timetable adaptation based on our optimizationmodels
for the complete passenger traffic operated by Deutsche Bahn AG. First, we will describe the
problem instances we created based on their data. Then we will compare the computational
performance of the models and algorithms we have established to solve the problem. Finally,
we will analyse the solutions we have obtained with respect to the reduction in energy costs as
well as timetable performance.
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All computations have been carried out on a server with Intel Xeon E5-2690v2 3.00 GHz
processors and 128 GB RAM, using 5 cores and a specified time limit. We always first state
results for a time limit of 10 minutes in order to demonstrate that most instances can be solved
satisfactorily within rather short time. For the more difficult instances, we also state the result
after 10 hours to show that they can be solved overnight. Our implementation uses the Python-
API of Gurobi 8.1.1 (Gurobi Optimization, Inc. (2019)). Note that we always pass the timetable
draft to be optimized as an initial solution to the solver as it is feasible for all models under
consideration.

4.1 Instance Compilation

For our computational study, we created instances based on real-world data provided by our
industry partner Deutsche Bahn AG. They are derived from the German railway passenger
timetable for 2015 for the trains operated by DB Regio AG and DB Fernverkehr AG, which
represents about 80% of passenger traffic in Germany.

All instances we created contain the traffic between 4 a.m. and 10 p.m. on a typical working
day and differ only in the trains selected from the timetable. They mostly describe different
regions of Germany and can be grouped into three types according to their scope. The first
type are instances where for a given station all trains with at least one trip starting or ending
there within the planning interval are considered (both regional and long-distance traffic). We
call these the local instances. The stations these instances are based on range from smaller sta-
tions where no transfer is possible to big hubs in the network. The second type are the regional
instances, which comprise regional traffic according to the regional subdivisions of DB Regio
AG as of 2015. Finally, we consider a set of national instances, which are one instance for all
regional traffic in Germany (Regionalverkehr), one instance for the German long-distance traffic
(Fernverkehr) and one instance for the completeGerman passenger trafficwith both regional and
long-distance traffic combined (Deutschland). Altogether, we have 18 local instances, 10 regional
instances and 3 national instances, or 31 in total.

For each train and each of its trips in a given instance, we created a representative power
profile depending on the type of train, the travel time and the heights of start and end station. To
this end, we grouped the trains into four classes, which we name in short after their main rep-
resentative train type. These classes are the long-distance trains Intercity-Express (ICE), the two
regional train types Regional-Express (RE) and Regionalbahn (RB) as well as the urban trains
S-Bahn (S). The two classes RB and RE differ in that the former stops at every station, while
the latter only stops at somewhat bigger stations. The power profiles we generated take into
account typical train characteristics according to this classification and incorporate the neces-
sary acceleration power (based on simplified velocity profiles), the power required to overcome
the downhill force (based on the average slope from the start to the end of each trip) as well as
the power required to overcome the rolling and the air friction. Note that absent any data on
the locomotives used on the individual lines, we have assumed all trains to use electric traction
and to be able to recuperate energy. In this sense, the results we present in this study represent
a best-case scenario. A typical velocity and power consumption profile for an ICE train as we
have used it for our computations is shown in Figure 2.
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Figure 2: The velocity profile (blue) and the power consumption profile (red) for an ICE train
running on an even track (i.e. start and end station are on the same height) and a journey time
of 30 minutes

As we had no data on the physical railway network, we took the assumption that the trains
travel on tracks directly connecting the stations they service consecutively. This construction
leads to the artefact that regional trains and long-distance trains travel on separate sets of tracks
in many cases, as the former have many intermediate stops between large stations which the
latter have not. However, we consider our instances as sufficiently accurate to assess the poten-
tial of the overall approach. Note that this assumption only pertains to our interpretation of the
available data, not to our optimization models. The latter can handle the case of mixed track
use if we stipulate that the optimization leave the assignment of trains to tracks untouched; for
practical computations this requires, of course, to have an ordered list of all trains passing a
certain track during the planning horizon.

In Figure 3, we show the connections between the stations established in the timetable. To
find an optimal adjustment of the timetable, we allowed to shift each train departure by up
to ± 3 minutes in steps of full minutes compared to the original departure time. However,
we did not allow the departure or arrival of a train to be shifted outside of the considered
planning interval. The departure times for trips starting before 4 a.m. and extending into the
planning interval as well as those starting in the planning interval and extending past 10 p.m.
were considered as fixed. In this case, the part of their power consumption which falls inside
the planning interval was added to the consumption of the variable trains as a fixed base load.

Theminimumdwell time for each train in each of its stationwas chosen as the time between
arrival and departure in the current timetable. The minimum headway times were taken from
(Pachl, 2016, Table 5.4) and rounded up to full minutes. They are displayed in Table 1, subsum-
ing class S under RB.
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Figure 3: The connections between the railway stations established in the timetable – regional
traffic in light orange and long-distance traffic in dark orange, train stations in blue

ICE RE RB

ICE 4 3 3
RE 7 4 4
RB 9 7 4

Table 1: Minimum headway times for each pair of train types in minutes. The columns refer to
the train departing earlier, while the columns refer to the following train.

Finally, for a given train arriving at a station, we consider all trains departing between 5 and
15 minutes after this arrival in the current timetable as connecting trains. For such a pairing,
we require that the current transfer time be changed by at most± 3 minutes and stay between 5
and 15 minutes.

4.2 Computational Results for Problem (TTMAPBR)

As a first step, we compare the performance of the three timetabling formulations introduced in
Section 3.1 for solving Problem (TTMAPBR) – i.e. theminimization ofmaximum average power
consumption neglecting regenerative braking, as we consider it to be the point of view of the
TOC. Table 2 shows the number of trains and the number of trips to schedule in each instance,
the computation time of the instance according to the naive (NA), totally unimodular (TU) and
the dual-flow (DF) formulation as well as the achieved savings in energy cost in the optimal
solution.
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Time [s] / Gap [%] Saving [%]
Instance #Trains #Trips NA TU DF DF

Zeil 42 762 11.59 s 2.75 s 0.76 s 14.89%
Bayreuth Hbf 68 327 0.80 s 0.41 s 0.21 s 22.18%
Passau 75 1040 366.75 s 124.49 s 7.91 s 14.48%
Jena Paradies 78 1102 113.79 s 21.94 s 6.00 s 12.46%
Lichtenfels 113 1650 261.73 s 100.81 s 8.46 s 15.25%
Erlangen 142 2969 1.02% 272.40 s 24.22 s 15.28%
Bamberg 209 3644 0.55% 73.49 s 27.51 s 13.08%
Aschaffenburg 245 3463 77.73 s 3.01 s 2.74 s 12.95%
Kiel Hbf 297 2130 94.26 s 5.90 s 2.31 s 11.20%
Leipzig Hbf (tief) 369 6810 3.34 s 3.71 s 0.57 s 6.40%
Würzburg Hbf 371 4456 0.57% 0.03% 0.01% 8.32%
Dresden 422 6936 0.74% 442.72 s 59.89 s 9.30%
Ulm Hbf 468 5729 0.02% 24.19 s 4.49 s 11.23%
Stuttgart Hbf (tief) 628 11594 1.00% 348.22 s 11.43 s 0.93%
Berlin Hbf (S-Bahn) 639 16114 19.39 s 23.05 s 13.15 s 2.97%
Hamburg-Altona(S) 722 12373 0.10% 130.91 s 10.00 s 1.29%
Frankfurt(Main)Hbf 728 8626 1.06% 71.85 s 19.13 s 9.34%
Nürnberg 951 12189 22.71% 43.39 s 5.82 s 7.10%

S-Bahn Hamburg 1208 17533 3.56% 275.16 s 18.53 s 2.36%
Regio Nord 1476 13379 77.00 s 20.68 s 7.92 s 12.79%
Regio Nordost 1494 16496 15.56% 28.68 s 10.05 s 15.50%
Regio Hessen 1547 25092 26.67 s 31.29 s 10.57 s 5.65%
Regio Südwest 1863 24191 87.99 s 65.58 s 10.22 s 13.00%
Regio Südost 2357 31917 8.96% 72.39 s 17.71 s 8.96%
Regio BW 2382 30172 14.30% 287.12 s 22.19 s 13.36%
S-Bahn Berlin 2578 53353 84.41 s 195.45 s 83.50 s 1.73%
Regio NRW 2826 47026 26.03% - 28.27 s 5.13%
Regio Bayern 3554 49262 519.73 s 94.28 s 41.86 s 10.73%

Fernverkehr 667 7053 149.87 s 21.56 s 12.28 s 5.38%
Regionalverkehr 21288 308472 - - - -
Deutschland 21955 315525 5.06% - 482.30 s 5.05%

Table 2: Computational results for Problem (TTMAPBR) on our 31 instances, stating the com-
putation times or the gap of the three different formulations for a feasible timetable adjustment
and the potential for saving energy costs in a (close to) optimal solution. A dash (‘-’) indicates
hitting the time limit of 10 minutes and no feasible solution and/or bound found. Instance Re-
gionalverkehr can be solved to optimality within 1.5 hours via formulation DF, yielding energy
savings of 9.53%.

Formulation NA only solves 14 instances to optimality, often leaving large optimality gaps
for the unsolved ones. In contrast, TU yields an optimal solution for almost twice as many in-
stances, as the total unimodularity of its underlying timetabling polytope reduces the branch-
ing effort. Recall that the overall problem is not totally unimodular as the piecewise-linear
objective function to be optimized destroys this property. However, it is visible at first sight
that DF outperforms the other two formulations significantly, as it solves all but one instance
within the time limit. Using this formulation with its much sparser constraints saves an order
of magnitude in computation time on many instances, as the node relaxations in the branch-
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and-bound tree are solved much faster.
Instance Würzburg resulted to be the most difficult of the smaller instances, which we as-

sume is due to the long-drawn-out phase of high power consumption in the afternoon that
makes many of the objective function constraints binding. A striking reduction in solution
time can be seen for instance Nürnberg, where DF is solved within 6 seconds, while NA still
has a gap of 22% after 10 minutes. The reason seemed to be that NA had to cope with nu-
merical instabilities while solving the root relaxation here, unlike the two totally unimodular
formulations. Finally, the Germany-wide Deutschland instance, arguably the most interesting
one, could be solvedwithin about 6 minutes by DF. NA, on the other hand, leaves an optimality
gap of 5% after reaching the time limit. With more available computation time, NA is able to
solve the instance within 3 hours, which means that DF could reduce the solution time by a
factor of 30. To provide some more context, we remark that the Deutschland instance could be
represented with 380,296 constraints, 173,922 variables and 951,047 non-zero coefficients after
preprocessing of formulation DF. Optimization was done almost immediately after solving the
corresponding root relaxation. Altogether, this result is very encouraging, as it points to the
possibility of giving decision support for nationwide timetabling in close to real time.

When assessing the reduction in peak power consumption, we see that the smaller instances
tend to profitmore, percentagewise. Themost likely explanation is that shifting few departures
already has a high impact here. In the larger instances, many individual acceleration phases
already average out via the much higher number of trains. This also explains why the solution
times of DF only growsmoderatelywhen passing to the larger instances: the LP bounds remain
very tight (cf. Tables 9 and 10 in the appendix), and it does not require excessive branching on
individual departures to close the gap. The reductions which can be obtained for the larger
instances are still tremendous, given the high peak consumption charges. For the regional in-
stances, they lie between 5% and 16%, with the exception of those five instances encompassing
(parts of) the urban traffic of Stuttgart, Hamburg and Berlin, as the dense schedules there do not
provide much room for improvement. The three nationwide instances allow savings between
5% and 10% (when allowing more computation time for instance Regionalverkehr). Altogether,
Table 2 shows that for all instances peak consumption could be reduced compared to the initial
timetable, with improvements ranging from 0.93% to 22.18%.

In the following, we investigate the potential for savings, also financial ones, more closely
for some selected instances. Instance Fernverkehr contains all ICE and IC trains, which are the
most energy demanding ones. The average peak consumption of 335.66 MW for the initial
timetable can be reduced to 317.59 MW by our optimization. Applying the official cost factor
of 110.02 e per kilowatt peak consumption (see Section 2.2) shows that the responsible TOC
(DB Fernverkehr) could save almost 2 million e per year when using the optimized timetables.

Instance Regionalverkehr contains all regional trains, which run between closeby cities and
villages. Formulation DF was able to reduce the maximum average peak consumption from
601.58 MW to 544.27 MW. This improvement by 57.31 MWwould mean cost savings of 6.3 mil-
lion e for the operating company DB Regio.

Instance Deutschland, for which the result is shown in Figure 4, comprises both the trains
in Fernverkehr and Regionalverkehr. As such, it has two about equally high consumption peaks
in the morning and in the evening, both of which can be balanced by the optimization. Peak
consumption can be reduced by 44.44 MW in this combined instance – less than possible for
the individual two instances, due to effects discussed before. Nevertheless, the benefit of a
combined optimization of German regional and long-distance traffic could be savings in the
order of 5 million e per year.

For the Germany-wide instance, we carried out an additional study where we varied the
size of the interval within which the departures can be shifted. The results are given in Table 3.
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Figure 4: Power consumption profile of instance Deutschland before (left) and after (right) op-
timization according to (TTMAPBR)

Max. shift [min] Solution time [s] Optimized [MW] Abs. red. [MW] Rel. red. [%]

± 1 425.21 849.20 31.28 3.55
± 2 6,319.82 839.60 40.88 4.64
± 3 482.30 836.04 44.44 5.05
± 5 233.61 833.32 47.16 5.36
± 10 408.07 831.15 49.33 5.60

Table 3: Average peak load reduction according to (TTMAPBR) for instance Deutschland. The
initial timetable had a maximum average peak consumption of 880.48 MW

Its columns show the maximum allowed shift in each case, the solution time of formula-
tion DF, the peak consumption in the optimized timetable as well as the absolute and relat-
ive reduction compared to the initial timetable respectively. We see that shifts of up to only
1 minute already allow for a significant reduction of 3.55 %. With increasing freedom to shift
departures, the possible reduction increases to 5.60% for shifts of up to 10 minutes.

For the same instance, we also looked at the effect of the optimization on the timetable
performance itself. Table 4 shows for each maximally-allowed shift which percentage of trains
are shifted by which absolute amount and how the average departure from and dwell time in
a station is affected.

% of departures shifted by [min] Average deviation [min]

Max. shift [min] 0 1 2 3 4–5 6–10 Abs. dep. Dep. Dwell

± 1 63 37 - - - - 0.37 0.06 0.08
± 2 60 24 16 - - - 0.56 0.08 0.12
± 3 62 20 10 8 - - 0.63 0.02 0.14
± 5 61 19 9 5 6 - 0.78 0.07 0.16
± 10 61 18 9 5 4 4 0.97 0.00 0.21

Table 4: Statistics for departure time shifts and dwell time increases according to (TTMAPBR)
for instance Deutschland in an optimal solution

The interesting conclusion is that in all cases, the number of unchanged departures in the
timetable stays approximately the same, namely around 60%. The other 40% are drawn-out
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over the other the allowed departure intervals. Column Abs. dep. shows the absolute average
of the number of minutes by which departures are shifted. While a general trend is that less
and less trains use the additional freedom for larger intervals, the average shift increases nev-
ertheless. In Column Dep. we see the signed averages of the departure time shifts. It becomes
visible that about as many trains are shifted to later departure times than are shifted to earlier
departure times, independent from the size of the allowed shift interval. Finally, ColumnDwell
contains the average increase in dwell time over all stations (note that it can not decrease, as we
use the current dwell time as the minimum dwell time in our computations). We see that aver-
age dwell times increase only slightly in all cases. Overall, it becomes visible that shifts of up
to 3 minutes are a reasonable choice, as they allow for the realization of most of the potential
savings while largely maintaining the initial timetable.

4.3 Computational Results for Problem (TTMAP)

Now we describe our results for Problem (TTMAP). It reduces the highest 15-minute average
peak consumption value like (TTMAPBR), but in addition it is able use recuperation energy
to increase the effect and even tends to reduce the overall energy consumption in the process.
We see the IM as most interested in solving this problem in order to reduce the costs of energy
provision.

As DF was vastly superior in solving (TTMAPBR), we only state the results of this formu-
lation here. Table 5 summarizes the solution times and peak reductions for solving (TTMAP)
via three different methods after 10 minutes of computation. The first one is a baseline heur-
istic which solves Model (TTMAPBR) instead of (TTMAP) in order to make use of the short
solution times of the former. It simply ignores that the power profiles contain time steps with
negative consumption (i.e. recuperation) and uses the simplified reformulation of the objective
function in Section 3.2.1 for the derivation of (TTMAPBR). Of course, this leads to an error in
the computation of the actual peak power consumption, because interchanging summation and
the averaging as done there are not valid when negative consumption values are present. This
renders the approach a heuristic only. The second method is the plain solution of (TTMAP) as
the MIP presented in Section 3.2.2, and the last one is the Benders decomposition developed in
Section 3.2.3.
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Time [s] / Gap [%] Saving [%]
Instance Heuristic MIP Benders Heuristic MIP Benders

Zeil 1.91 s 44.46% 32.99% 9.26% 20.55% 36.95%
Bayreuth Hbf 23.80 s 21.37% 15.49% 5.99% 19.29% 27.02%
Passau 13.88 s 27.65% 8.75% 15.18% 8.13% 26.69%
Jena Paradies 201.77 s 0.73% 0.08% 8.47% 14.93% 15.33%
Lichtenfels 6.67 s 5.29% 84.24 s 22.71% 22.37% 26.31%
Erlangen 5.36 s 98.23% 0.01% 19.34% 0.00% 25.98%
Bamberg 284.79 s 20.96% 0.05% 16.27% 0.00% 20.84%
Aschaffenburg 0.09% 3.42% 0.16% 8.90% 13.01% 15.84%
Kiel Hbf 63.84 s 99.50% 0.39% 17.51% 0.00% 24.16%
Leipzig Hbf (tief) 0.69 s 0.57% 294.47 s 3.88% 19.96% 20.12%
Würzburg Hbf 0.05% 18.53% 0.08% 14.79% 0.00% 18.42%
Dresden 0.05% 98.30% 0.89% 13.37% 0.00% 22.44%
Ulm Hbf 0.03% 96.56% 0.18% 9.31% 0.00% 17.41%
Stuttgart Hbf (tief) 9.96 s 4.37% 55.55 s 6.41% 7.54% 9.88%
Berlin Hbf (S-Bahn) 12.90 s 0.25% 0.86% 2.35% 9.22% 8.93%
Hamburg-Altona(S) 10.41 s 11.73% 0.28% 3.40% 4.63% 10.98%
Frankfurt(Main)Hbf 0.01% 15.47% 272.46 s 15.46% 0.00% 15.46%
Nürnberg 380.17 s 98.45% 0.02% 13.94% 0.00% 14.22%

S-Bahn Hamburg 19.49 s 16.84% 0.30% 9.41% 0.00% 13.68%
Regio Nord 0.01% 97.64% 4.14% -15.41% 0.00% 11.67%
Regio Nordost 0.02% 99.74% 5.18% 4.82% 0.00% 25.63%
Regio Hessen 12.44 s 97.77% 2.08% -10.61% 0.00% 15.54%
Regio Südwest 0.03% 99.98% 7.75% -8.26% 0.00% 11.16%
Regio Südost 126.14 s 99.38% 5.10% 3.46% 0.00% 21.53%
Regio BW 600.06 s - 5.69% 7.46% - 18.23%
S-Bahn Berlin 87.49 s - 1.70% -2.13% - 4.33%
Regio NRW 239.64 s - 3.85% 3.74% - 15.53%
Regio Bayern 65.08 s - 2.40% 7.22% - 20.35%

Fernverkehr 0.01% 97.26% 0.02% 10.24% 0.00% 10.24%
Regionalverkehr - - - - - -
Deutschland - - - - - -

Table 5: Computational results for (TTMAP) solved via a heuristic, an MIP and Benders de-
composition for a time limit of 10 minutes

As expected, the heuristic had the lowest solution times or gaps on almost all instances.
However, it generally led to largely suboptimal solutions, sometimes even much worse than
the initial timetable. Only in two cases (Frankfurt and Fernverkehr) it was able to produce the
optimal solution, and for Nürnberg a solution at least close to optimal. The high proportion
of long-distance traffic in these instances might have helped the heuristic, as overall negative
consumptions are not as relevant here.

Among the two exact methods, the Benders decomposition performed much better. It had
the smaller solution time or gap on all but one of the local instances and on all of the regional
instances. For these two sets of instances the attained reduction in peak consumptionwasmuch
higher accordingly, very often by a factor of 2 or more. From the national instances, we only
obtained an improved solution for instance Fernverkehrwithin 10minutes. The Benders decom-
position almost solved it to optimality, vastly outperforming the pure MIP solution, where the
latter was not able to reduce peak consumption.

24



We repeated the experiment with an extended time limit of 10 hours for all instances where
the Benders decomposition left an optimality gap of more than 5% (a reasonable optimality
target in large-scale practical problems) as well as for all national instances. The result is shown
in Table 6.

Time [s] / Gap [%] Saving [%]
Instance Heuristic MIP Benders Heuristic MIP Benders

Zeil 1.88 s 29.86% 26.74% 9.26% 36.53% 40.04%
Bayreuth Hbf 23.90 s 5.98% 10.77% 5.99% 29.10% 29.32%
Passau 13.78 s 6.03% 4.50% 15.18% 27.59% 29.14%

Regio Nordost 6123.60 s 0.34% 1.29% 4.41% 28.55% 28.19%
Regio Südwest 3273.60 s 0.18% 1.08% -7.32% 16.66% 16.21%
Regio Südost 126.62 s 0.11% 0.65% 3.46% 25.07% 24.76%
Regio BW 604.91 s 0.66% 0.82% 7.46% 21.89% 21.96%

Fernverkehr 17,717.13 s 0.10% 26458.22 s 10.24% 10.16% 10.24%
Regionalverkehr 6122.06 s - 0.90% 0.29% - 16.36%
Deutschland 9315.04 s - 3483.42 s 7.67% - 9.38%

Table 6: Computational results for (TTMAP) solved with a heuristic, an MIP and Benders de-
composition with a time limit of 10 hours for selected instances

The heuristic does not become much more viable as solution times in the previously un-
solved instances are relatively high and solution does not improvemuch. TheMIP and Benders
decomposition performmuch better than the heuristic and, for the local and regional instances,
about equally well among each other. For the national instances, Benders decomposition again
shows its strength, solving Fernverkehr and Deutschland to optimality as well well as Regional-
verkehr to an optimality gap below 1%. In contrast, MIP solves none of them to optimality and
still does not find improved solutions for Regionalverkehr and Deutschland.

We highlight the effects of the optimization for instance Deutschland in Figure 5, based on
the globally optimal solution obtained by Benders decomposition. Average peak consumption

Figure 5: Power consumption profile of instance Deutschland before (left) and after (right) op-
timization according to (TTMAP)

reduced from 452.69 MW to 410.23 MW, which is an improvement of 42.46 MW or over 9%;
again considerable savings on a countrywide scale. Although we cannot provide a similar of-
ficial cost factor as for the TOCs, the savings in energy cost would again be significant. What
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we also observe is that instantaneous peaks might be higher in the optimized solution accord-
ing to Problem (TTMAP). This is why we also study Problem (TTMAPI), which limits these
instantaneous peak to the maximum such peak in the initial timetable.

4.4 Computational Results for Problem (TTMAPI)

Finally, we present the results for Problem (TTMAPI), which, in addition to minimizing max-
imum average peak consumption, also keeps instantaneous peak consumption under control.
The heuristic from before is not feasible here, because it cannot guarantee not to exceed the
maximum instantaneous peak consumption induced by the initial timetable. Thus, Table 7 only
compares the results obtained byMIP andBenders decomposition for a time limit of 10minutes.

Time [s] / Gap [%] Saving [%]
Instance MIP Benders MIP Benders

Zeil 44.47% 32.48% 20.55% 36.86%
Bayreuth Hbf 22.94% 15.02% 17.70% 27.29%
Passau 33.54% 10.23% 0.00% 25.77%
Jena Paradies 0.77% 0.15% 14.88% 15.28%
Lichtenfels 97.34% 149.15 s 0.00% 26.31%
Erlangen 97.79% 0.01% 0.00% 25.98%
Bamberg 99.51% 0.06% 0.00% 20.83%
Aschaffenburg 94.48% 0.13% 0.00% 15.87%
Kiel Hbf 99.50% 0.65% 0.00% 23.98%
Leipzig Hbf 0.73% 0.01% 19.84% 20.12%
Würzburg Hbf 96.84% 0.13% 0.00% 18.36%
Dresden 98.30% 1.22% 0.00% 22.22%
Ulm Hbf 95.52% 0.20% 0.00% 17.41%
Stuttgart Hbf (tief) 4.54% 65.07 s 7.48% 9.88%
Berlin Hbf (S-Bahn) 0.10% 0.74% 9.30% 8.87%
Hamburg-Altona(S) 15.98% 0.36% 0.00% 10.99%
Frankfurt(Main)Hbf 99.41% 418.39 s 0.00% 15.46%
Nürnberg 98.33% 0.02% 0.00% 14.22%

S-Bahn Hamburg 97.50% 2.21% 0.00% 13.51%
Regio Nord 97.64% 16.46% 0.00% 0.06%
Regio Nordost 99.74% 16.51% 0.00% 16.16%
Regio Hessen 97.74% 1.94% 0.00% 15.45%
Regio Südwest 99.98% 18.38% 0.00% 0.00%
Regio Südost - 13.98% - 13.84%
Regio BW - 11.79% - 12.70%
S-Bahn Berlin - 1.38% - 4.56%
Regio NRW - 4.03% - 15.38%
Regio Bayern - 7.37% - 16.07%

Fernverkehr 97.26% 0.01% 0.00% 10.24%
Regionalverkehr - - - -
Deutschland - - - -

Table 7: Computational results for (TTMAPI) solved with an MIP and Benders decomposition
with a time limit of 10 minutes

As for (TTMAP), Benders decomposition clearly outperforms MIP, both in solution time /
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gap and peak reduction. It is very interesting that the additional constraint in (TTMAPI) only
moderately increases the computational complexity. Furthermore, it still allows for themajority
of the savings that could be obtained without it.

We again allowed a higher computation time of 10 hours, selecting the instances according
to the same criterion as above. The results in Table 8, lead to the same conclusions as before:
both methods are equally able to use the additional time to improve the obtained reductions in
peak consumption, and Benders is the only method able to solve the national instances (close)
to optimality.

Time [s] / Gap [%] Saving [%]
Instance MIP Benders MIP Benders

Zeil 37.11% 26.05% 29.56% 40.85%
Bayreuth Hbf 7.83% 10.22% 28.27% 29.69%
Passau 6.01% 5.82% 27.74% 28.29%

Regio Nord 0.31% 2.85% 14.27% 14.04%
Regio Nordost 0.36% 1.33% 28.47% 28.06%
Regio Südwest 0.19% 1.05% 16.57% 16.10%
Regio Südost 0.22% 0.73% 24.87% 24.59%
Regio BW 0.61% 0.80% 21.91% 21.91%
Regio Bayern 0.08% 0.13% 21.66% 21.66%

Fernverkehr 0.02% 2581.79 s 10.23% 10.24%
Regionalverkehr - 1.88% - 15.37%
Deutschland - 5132.47 s - 9.32%

Table 8: Computational results for (TTMAPI) solved with an MIP and Benders decomposition
with a time limit of 10 hours for selected instances

We showcase the benefits of the optimization for instanceDeutschlandwith all German long-
distance and regional passenger traffic operated by Deutsche Bahn. Peaks in consumption are

Figure 6: Power consumption profile of instance Deutschland before (left) and after (right) op-
timization according to (TTMAPI) after 10 hours of computation via Benders decompostion

smoothed in the morning and, to a larger extent, in the evening. We obtain reductions in aver-
age peak consumption of 42.18 MW or over 9% while not increasing maximum instantaneous
peak consumption.
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5 Conclusions

We have presented mathematical methods for the optimization of railway timetables accor-
ding to energy-efficiency, more precisely for reducing maximum average peak consumption by
shifting departure times of the trains. Improving on previous results in this field, we are able
to solve the problem for large networks of a countrywide scale, enabling also the improved use
of recuperated energy and limiting instantaneous peak consumption. This was possible by de-
riving tight, compact polyhedral formulations for the set of feasible timetable adaptations and
by devising an efficient, specially-tailored Benders decomposition scheme. Our results show
that high-quality solutions, in many cases even optimal solutions, can be obtained for networks
of local, regional and national instances alike. They point to significant savings in energy costs
which are achievable for both the train operating companies as well as the infrastructure mana-
ger, which makes the approach very promising for use in practice.
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A Further Computational Statistics

In this appendix, we give some further computational statistics on the solution process of our
models and algorithms as well as results for varying the upper bound on instantaneous peak
consumption in Problem (TTMAPI).

Tables 9 and 10 detail the computational behaviour of formulations NA, TU and DF for
Problem (TTMAPBR), distinguishable by Column Form.. Column BB shows the number of
branch-of-bounds nodes solved while Column Root-IP gap shows the gap between the value of
the root LP relaxation and the best integer solution foundwithin a time limit of 10minutes in per
cent. Column Next sol. shows the time which passed until Gurobi finds a solution improving
upon the initial timetable, which was passed to Gurobi as the first incumbent. Column Next
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sav. then shows the savings achieved with this improved solution, and, finally, Column Best
sav. shows the best savings achieved by the best solution found within 10 minutes.

We see that the gap between the LP relaxation and the best solution foundwithin 10minutes
by the two totally unimodular formulations TU and DF is always smaller than the produced
by NA. On several of the regional and national instances, (Regio Nordost, Regio Südost, Regio
BW, S-Bahn Hamburg and Deutschland), a significant gap remains when using formulation NA,
whereas TU and DF close the gap (almost) completely. Furthermore, it becomes apparent the
next better found solution for all formulations already brings large savings in most cases and
is almost always already close to the savings in the optimal solution. However, we see that the
totally unimodular formulations generally produce these improved solutions much faster in
comparison toNA,withDFbeing far superior. The sameholds for the number of solved branch-
and-bound nodes. Note that the sparsity of DF gives it an additional edge in both respects, as
Gurobi’s heuristics take less time to execute and the LP relaxations can be solved much faster.
In summary, these statistics explain very well why DF performed best in our computations.
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Instance Form. #BB Root-IP gap [%] Next sol. [s] Next sav. [%] Best sav. [%]

Zeil NA 1,297 0.33 0 7.57 14.89
Zeil TU 19 0.32 0 6.80 14.89
Zeil DF 14 0.32 0 11.04 14.89
Bayreuth Hbf NA 1 0.65 0 18.24 22.18
Bayreuth Hbf TU 31 0.65 0 18.99 22.18
Bayreuth Hbf DF 1 0.65 0 19.71 22.18
Passau NA 40,638 1.57 0 6.54 14.48
Passau TU 65,317 0.30 0 10.95 14.48
Passau DF 4,806 0.30 0 11.82 14.48
Jena Paradies NA 12,068 0.56 2 6.90 12.46
Jena Paradies TU 5,294 0.13 0 10.98 12.46
Jena Paradies DF 2,887 0.13 0 10.94 12.46
Lichtenfels NA 14,750 0.90 1 9.60 15.25
Lichtenfels TU 10,117 0.29 1 13.76 15.25
Lichtenfels DF 2,016 0.29 0 14.34 15.25
Erlangen NA 1,384 2.45 10 7.13 14.83
Erlangen TU 21,091 0.18 6 14.29 15.28
Erlangen DF 3,523 0.18 2 14.90 15.28
Bamberg NA 972 0.89 6 4.95 12.97
Bamberg TU 5,203 0.05 4 11.46 13.07
Bamberg DF 1,496 0.05 1 12.69 13.08
Aschaffenburg NA 6,233 0.02 5 11.51 12.95
Aschaffenburg TU 1 0.01 2 12.54 12.95
Aschaffenburg DF 1 0.01 1 12.40 12.95
Kiel Hbf NA 3,440 0.07 2 4.20 11.20
Kiel Hbf TU 1 0.01 2 10.54 11.19
Kiel Hbf DF 1 0.01 0 10.84 11.20
Leipzig Hbf (tief) NA 1 2.25 3 5.13 6.40
Leipzig Hbf (tief) TU 1 0.69 3 5.13 6.40
Leipzig Hbf (tief) DF 1 0.58 0 5.13 6.40
Würzburg Hbf NA 1,840 0.60 16 0.97 7.85
Würzburg Hbf TU 12,089 0.03 8 8.08 8.31
Würzburg Hbf DF 34,801 0.02 3 8.00 8.32
Dresden NA 1 0.82 123 6.35 8.81
Dresden TU 21,596 0.06 30 8.48 9.29
Dresden DF 5,330 0.05 3 8.48 9.30
Ulm Hbf NA 26 0.02 26 5.95 11.22
Ulm Hbf TU 1 0.01 7 10.77 11.23
Ulm Hbf DF 1 0.01 3 11.03 11.23
Stuttgart Hbf (tief) NA 1 1.10 538 0.70 0.93
Stuttgart Hbf (tief) TU 75 0.13 121 0.66 0.93
Stuttgart Hbf (tief) DF 23 0.13 9 0.80 0.93
Berlin Hbf (S-Bahn) NA 0 0.00 19 2.97 2.97
Berlin Hbf (S-Bahn) TU 0 0.00 23 2.97 2.97
Berlin Hbf (S-Bahn) DF 0 0.00 13 2.97 2.97
Hamburg-Altona(S) NA 1 1.73 533 0.44 1.29
Hamburg-Altona(S) TU 1 0.06 129 1.25 1.29
Hamburg-Altona(S) DF 1 0.06 9 1.25 1.29
Frankfurt(Main)Hbf NA 81 1.14 136 4.10 9.34
Frankfurt(Main)Hbf TU 1,213 0.01 23 10.09 10.28
Frankfurt(Main)Hbf DF 32 0.01 5 10.09 10.28
Nürnberg NA 0 - - - -
Nürnberg TU 1 0.01 43 7.10 7.10
Nürnberg DF 1 0.01 5 6.92 7.10

Table 9: Statistics on the solution process for the local instances for the different formulations of
Problem (TTMAPBR). A dash (‘-’) indicates hitting the time limit of 10 minutes and no feasible
solution and/or bound found.
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Instance Form. #BB Root-IP gap [%] Next sol. [s] Next sav. [%] Best sav. [%]
S-Bahn Hamburg NA 0 4.47 - - -
S-Bahn Hamburg TU 1 0.03 273 2.28 2.36
S-Bahn Hamburg DF 1 0.04 18 2.27 2.36
Regio Nord NA 1 0.12 68 10.94 12.79
Regio Nord TU 1 0.01 20 12.78 12.79
Regio Nord DF 1 0.01 7 12.43 12.79
Regio Nordost NA 47 15.59 - - -
Regio Nordost TU 1 0.01 28 15.50 15.50
Regio Nordost DF 1 0.01 9 15.39 15.50
Regio Hessen NA 1 0.01 26 5.64 5.64
Regio Hessen TU 1 0.01 31 5.12 5.65
Regio Hessen DF 1 0.01 10 5.61 5.64
Regio Südwest NA 1 0.06 85 12.98 13.00
Regio Südwest TU 1 0.01 65 12.95 13.00
Regio Südwest DF 1 0.01 10 12.88 13.00
Regio Südost NA 5,930 8.96 - - -
Regio Südost TU 1 0.00 72 8.81 8.96
Regio Südost DF 1 0.01 17 8.86 8.95
Regio BW NA 0 14.30 - - -
Regio BW TU 1 0.01 286 13.09 13.35
Regio BW DF 1 0.00 22 13.34 13.36
S-Bahn Berlin NA 1 0.01 84 1.30 1.73
S-Bahn Berlin TU 1 0.01 195 1.55 1.73
S-Bahn Berlin DF 1 0.01 83 1.67 1.73
Regio NRW NA 0 - - - -
Regio NRW TU 0 - - - -
Regio NRW DF 1 0.01 28 5.08 5.13
Regio Bayern NA 1 0.21 513 10.65 10.73
Regio Bayern TU 1 0.01 94 10.72 10.72
Regio Bayern DF 1 0.01 41 10.60 10.72

Fernverkehr NA 1 0.01 59 2.93 5.38
Fernverkehr TU 1 0.01 17 5.38 5.38
Fernverkehr DF 1 0.01 11 5.24 5.38
Regionalverkehr NA 0 - - - -
Regionalverkehr TU 0 - - - -
Regionalverkehr DF 0 - - - -
Deutschland NA 0 5.06 - - -
Deutschland TU 0 - - - -
Deutschland DF 1 0.01 481 5.02 5.05

Table 10: Statistics on the solution process for the regional and national instances for the dif-
ferent formulations of Problem (TTMAPBR). A dash (‘-’) indicates hitting the time limit of 10
minutes and no feasible solution and/or bound found.

Tables 11 and 12 give the same statistics as before for Problem (TTMAPI), comparing meth-
ods MIP and Benders over a time limit of 10 hours. The results can be seen as exemplary for
(TTMAP) as well. We see that Benders can always produce the first improved solution faster
than MIP, often by one or two orders of magnitude. For the local instances, Benders finds su-
perior first improving solutions in addition. On the other hand, the first improving solution
found by MIP for the regional instances is usually much better than the one found by Bend-
ers. For instances Regionalverkehr and Deutschland, we see that only Benders is able to produce
an improving solution at all. In general, Benders can afford to solve many more branch-and-
bound nodes within the time limit due to the reduced problem size. For the local instances, this
leads to a better overall performance. For the regional instances, MIP takes a long time to solve
the root LP relaxation, but then the information gained there is superior to that obtained by
Benders, and better first improving solutions are found. However, for instances Regionalverkehr
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andDeutschland, MIP cannot solve the root relaxation within 10 hours, while Benders performs
much better. Altogether, the reduction of problem size by Benders enables us to find very good
LP bounds and solutions early on, while after 10 hours the MIP is able to catch up on all but
the largest two instances.

Instance Method #BB Root-IP gap [%] Next sol. [s] Next sav. [%] Best sav. [%]

Zeil MIP 149 37.42 257 7.93 29.56
Zeil Benders 1,076,763 29.98 2 13.96 40.85
Bayreuth Hbf MIP 18,549 12.42 49 15.92 28.27
Bayreuth Hbf Benders 3,616,285 16.15 2 7.23 29.69
Passau MIP 9,372 8.02 674 8.13 27.74
Passau Benders 966,406 9.71 18 10.02 28.29
Jena Paradies MIP 41,932 0.41 307 12.17 15.23
Jena Paradies Benders 1,461,635 0.43 1 13.52 15.32
Lichtenfels MIP 3,970 0.29 1,347 21.72 26.31
Lichtenfels Benders 37,287 0.49 1 18.91 26.31
Erlangen MIP 4,746 0.37 1,552 21.90 25.98
Erlangen Benders 1,337,382 0.50 6 22.32 25.98
Bamberg MIP 42,640 0.15 2,857 18.26 20.84
Bamberg Benders 1,356,763 0.22 4 17.23 20.85
Aschaffenburg MIP 22,916 0.15 5,710 13.01 15.85
Aschaffenburg Benders 2,115,654 0.17 11 13.91 15.90
Kiel Hbf MIP 23,397 0.63 2,772 14.12 24.07
Kiel Hbf Benders 3,112,494 0.57 8 21.01 24.24
Leipzig Hbf (tief) MIP 6,422 1.08 169 10.77 20.12
Leipzig Hbf (tief) Benders 34,916,658 3.04 5 5.71 20.12
Würzburg Hbf MIP 13,659 0.22 8,174 15.83 18.33
Würzburg Hbf Benders 1,283,635 0.24 15 17.09 18.37
Dresden MIP 5,780 0.59 11,717 18.79 22.64
Dresden Benders 556,324 0.84 33 12.19 22.80
Ulm Hbf MIP 7,687 0.15 15,153 13.30 17.45
Ulm Hbf Benders 1,264,683 0.13 11 14.13 17.52
Stuttgart Hbf (tief) MIP 363 2.00 596 7.48 9.88
Stuttgart Hbf (tief) Benders 37 3.05 18 6.54 9.88
Berlin Hbf (S-Bahn) MIP 15,272 0.42 103 7.74 9.30
Berlin Hbf (S-Bahn) Benders 22,488,370 4.50 20 2.10 9.30
Hamburg-Altona(S) MIP 3,811 5.61 631 4.39 10.99
Hamburg-Altona(S) Benders 1,461,544 9.80 19 3.32 10.99
Frankfurt(Main)Hbf MIP 4,034 0.01 2,600 15.13 15.46
Frankfurt(Main)Hbf Benders 6,230 0.01 30 15.43 15.46
Nürnberg MIP 23,062 0.04 3,696 13.18 14.21
Nürnberg Benders 394,527 0.03 31 13.49 14.22

Table 11: Statistics on the solution process for the regional and national instances for the differ-
ent formulations of Problem (TTMAPBR) over a time limit of 10 hours
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Instance Method #BB Root-IP gap [%] Next sol. [s] Next sav. [%] Best sav. [%]

S-Bahn Hamburg MIP 1,428 3.63 1,321 10.30 13.70
S-Bahn Hamburg Benders 71,830 7.51 63 11.01 13.70
Regio Nord MIP 5,854 0.31 5,262 11.95 14.27
Regio Nord Benders 260,334 2.98 283 0.06 14.04
Regio Nordost MIP 5,863 0.36 7,093 28.17 28.47
Regio Nordost Benders 91,600 2.87 357 0.83 28.06
Regio Hessen MIP 23,000 0.20 1,789 13.86 16.52
Regio Hessen Benders 358,009 1.94 85 5.11 16.44
Regio Südwest MIP 5,451 0.19 6,944 14.38 16.57
Regio Südwest Benders 22,069 3.13 663 2.78 16.10
Regio Südost MIP 1,045 0.22 10,081 23.99 24.87
Regio Südost Benders 18,994 1.71 362 5.22 24.59
Regio BW MIP 5 0.61 10,854 19.71 21.91
Regio BW Benders 9,693 1.40 191 5.64 21.91
S-Bahn Berlin MIP 75,450 0.12 1,192 4.46 5.07
S-Bahn Berlin Benders 1,077,974 8.31 192 1.13 5.04
Regio NRW MIP 5,972 0.29 9,786 14.14 18.18
Regio NRW Benders 340,403 1.06 178 1.98 18.08
Regio Bayern MIP 3,540 0.08 13,456 20.88 21.66
Regio Bayern Benders 44,497 1.68 147 4.63 21.66

Fernverkehr MIP 5,914 0.02 11,572 9.61 10.23
Fernverkehr Benders 31,656 0.01 118 10.22 10.24
Regionalverkehr MIP 0 - - - -
Regionalverkehr Benders 5,803 3.28 6,504 3.66 15.37
Deutschland MIP 0 - - - -
Deutschland Benders 1 0.09 3,082 4.22 9.32

Table 12: Statistics on the solution process for the regional and national instances for the dif-
ferent formulations of Problem (TTMAPBR). A dash (‘-’) indicates hitting the time limit of 10
hours and no feasible solution and/or bound found.

For instanceDeutschland, we finally present an additional studywith different values for the
allowable upper bound on instantaneous peak power consumption, see Table 13. Here, we took
the largest power consumption in any second of the planning horizon, which was 774.42 MW,
and multiplied it by different factors (see Column Factor) to obtain the value for U. The res-
ulting maximally allowed instantaneous power consumption is shown in Column Max U. In
Column Max U solution, we compare it to the maximum instantaneous power consumption
actually occurring in the resulting solution. Column Savings shows the achieved reduction
in maximum average peak consumption compared to the initial timetable, and Column Time
shows the solution time needed by Benders. It becomes clear that it is possible to reduce the
maximum instantaneous power consumption significantly while only loosing little in the sav-
ings with respect to maximum average power consumption. We also see that with smaller
values for U, it becomes more difficult to solve the resulting instances. Our experiments show
that it becomes increasingly difficult to find a first feasible solution, which is to be expected, as
the search space shrinks considerably. We suspect that for even smaller factors than 0.87, the
problem is infeasible.

Figure 7 shows that, indeed, both aims of reducing maximum peak consumption and in-
stantaneous consumption can be realized in Germany-wide railway traffic. The depicted solu-
tion reduces the former by 9.16% and the latter by 13%.
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Instance Factor Max U [MW] Max. U solution [MW] Savings [%] Time [s]

Deutschland 0.87 673.75 673.71 9.16 19,339
Deutschland 0.88 681.49 681.46 9.18 15,593
Deutschland 0.90 696.98 696.97 9.22 12,627
Deutschland 1.00 774.42 774.39 9.32 5,132
Deutschland 1.10 851.87 851.75 9.36 4,216
Deutschland 1.20 929.31 928.95 9.38 3,679
Deutschland no limit - 1,001.91 9.38 3,483

Table 13: Statistics for the solutions of Problem (TTMAPI) for instanceDeutschland for different
values of U using Benders decomposition.

Figure 7: Power consumption profile of instance Deutschland before (left) and after (right) op-
timization according to (TTMAPI) with a peak reduction factor of 0.87 after 10 hours of com-
putation via Benders decomposition
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