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Abstract We introduce a family of weighted conjugate-gradient-type meth-
ods, for strictly convex quadratic functions, whose parameters are determined
by a minimization model based on a convex combination of the objective func-
tion and its gradient norm. This family includes the classical linear conjugate
gradient method and the recently published delayed weighted gradient method
as the extreme cases of the convex combination. The inner cases produce a
merit function that offers a compromise between function-value reduction and
stationarity which is convenient for real applications. We show that each one
of the infinitely many members of the family exhibits g-linear convergence to
the unique solution. Moreover, each one of them enjoys finite termination and
an optimality property related to the combined merit function. In particular,
we prove that if the n x n Hessian of the quadratic function has p < n different
eigenvalues, then each member of the family obtains the unique global mini-
mizer in exactly p iterations. Numerical results are presented that demonstrate
that the proposed family is promising and exhibits a fast convergence behavior
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which motivates the use of preconditioning strategies, as well as its extension
to the numerical solution of general unconstrained optimization problems.

Keywords Gradient methods - Conjugate gradient methods - Quadratic
programming - Strictly convex quadratics - Unconstrained optimization.

1 Introduction

We are interested in solving the following convex quadratic minimization prob-
lem

min f(z) = 1

T A T
min 5% Az —x ' b, (1)

where A € R™ " is a symmetric and positive definite matrix and b € R" is
a given vector. Solving (1) is equivalent to finding the unique solution of the
linear system of equations Ax = b. Many real life applications require to solve
large-scale linear systems of equations whose very large size makes iterative
methods the best choice due to their simplicity and low computational cost. In
addition, problem (1) is a simple setting to design effective methods for more
general unconstrained optimization problems.

One of the fundamental iterative methods for solving (1) is the gradient
method, which generates a sequence of iterates using the following recursive
formula

Tpt1 =z — oV f(xg) for k>0, (2)

where «a > 0 is the step-size. Different ways of choosing ay, > 0 lead to dif-
ferent gradient methods. The classical gradient method to solve (1), originally
proposed by Cauchy [6], computes the step-size in (2) as

IV ()3

SD . —

g = arggl;gf(% —aVf(xg))

3)

The method given by equations (2)—(3) is called the Cauchy method or the
steepest descent (SD) method. Another classical example of step-size selection,
associated with the gradient method (2), is the one that minimizes the gradient
2-norm at xy, given by

_ Vf(zn)TAV f (1)

akMG = arggl;%HVf(xk —QVf(.Tk>>||2 - ||Avf(xk)||% ’ (4)

which is called the minimal gradient (MG) step-size.

The SD and the MG gradient-type methods are very inexpensive and intu-
itive, but they both suffer from a slow rate of convergence towards the unique
solution of (1). In the last few decades, a wide variety of step-size rules have
emerged to improve the efficiency of gradient-type methods, while preserving
their simplicity and low memory requirements; see, e.g., [2,5,7,8,10-17,19, 20,
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22,28,29]. However, the-method-of-choice to solve problem (1) is the classical
conjugate gradient (CG) method proposed by Hestenes and Stiefel [18]. The
main reasons for it to remain as one of the best low-cost options for solving
(1) is its outstanding practical behavior that relies on its A-orthogonality and
optimality properties on an underlying Krylov subspace. As a consequence,
at every k, the CG method generates the iterate xj; as the minimizer of the
objective function f(-) on the k-dimensional already explored subspace. For
a review on the CG method for strictly convex quadratics and its optimality
properties we refer the reader to [21,23,27].

Recently, in [24], a combination of a smoothing technique with a one-step
delayed gradient scheme was developed as an enriched gradient-type method
for solving (1). The so-called delayed weighted gradient method (DWGM)
shows in practice a quite similar convergence behavior to the one observed
in the CG method. Later, in [1], it was established that indeed the DWGM
method has also some key A-orthogonality and some optimality properties,
including the finite termination in at most p iterations, where p is the num-
ber of distinct eigenvalues of the matrix A. The main difference with the CG
method is that, instead of minimizing the objective function f(-) on the entire
explored subspace, the DWGM method minimizes the 2-norm of the gradient
vector on the same subspace. A first attempt to extend the DWGM method
was recently presented by Oviedo et. al. in [25]. In [25], the authors com-
bine the ideas of the general hybrid methods, introduced in [3,4], with the
DWGM method, to obtain the so-called hybrid gradient method (HGM). Un-
fortunately, the convergence analysis in [25] requires a strong hypothesis on
the smallest eigenvalue of the Hessian matrix A.

As a generalization of the DWGM and HGM methods, in this work we
propose a family of low-cost methods that, depending on a real parameter
u € [0,1], goes from the CG method (u = 0) to the DWGM method (u = 1),
keeping for all the infinitely many members of the family some key orthogonal-
ity and optimality properties on a convenient Krylov subspace. The internal
cases, i.e. when p € (0,1), produce iterates that are optimal for a properly
chosen merit function that offers a compromise between function-value reduc-
tion and gradient-norm reduction (i.e., stationarity) which is convenient for
real applications and also for possible extensions to the general unconstrained
minimization framework. Each member of the proposed family computes the
iterates by a two-step process. At the first step, a prediction of the new iterate
is obtained by performing a gradient-type method with a step-size selected
as the argument that minimizes the merit function. Then, the new iterate is
computed by minimizing the merit function but now over the line that con-
nects the prediction and the penultimate iterate. Under mild assumptions we
prove some standard global convergence properties of our proposal. Moreover,
for any member of the family, similar orthogonality properties and some opti-
mal properties that hold for the CG and the DWGM methods are established.
Finally, we benchmark our procedure over a set of sparse problems involving
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real data and large dimension, and compare it with the classical conjugate
gradient method and the DWGM method.

The remainder of this paper is organized as follow. In Section 2, we in-
troduce the new first-order algorithm to deal with problem (1). Section 3 is
devoted to the global convergence analysis of our proposal. In Section 4, addi-
tional orthogonality properties are obtained, including finite termination and
the minimization property of all members of the family on the already explored
affine subspace. Then, in Section 5 several numerical tests are performed to
assess the behavior of our procedure for solving real large-scale systems of
equations. Finally, conclusions are drawn in Section 6.

2 Derivation of the new family of methods

In this section, we derive a new family of first-order iterative methods for
problem (1). First, given a fixed parameter u € [0,1], we introduce a new
merit function

Fu(z) = (1 = w)E(z) + pl|Vf(2)][3, ()

where E(z) := 2 (z—2*)TA(z—2*) = f(z)+1b"2*, and 2* denotes the unique
solution of (1). Hence, F),(z) is essentially a convex combination of the objec-
tive function and its gradient norm. Additionally, observe that z* = A~'b is
the unique minimizer of F),(-), which implies that minimizing f(-) is equivalent

to minimizing (5).

Based on the development of the DWGM in [24], we propose to minimize
the merit function (5) on the linear variety Sy := xp + span{V f(xy), 1 —
xk—1} by a two-step iteration; see also [21, pp. 254-256] for a similar approach
that reproduces the classical CG method for convex quadratics. For that, we
compute first a prediction zx of x4 by performing a gradient method step
(see (2))

2k — X — Oszf(.%‘k),

with the following optimal step-size

o = arggl;%FM(xk —aVf(xg)) (6)
_ vf(xk)TWva(xk) (7)
Vf(ze) "W, AV f ()
_ (1 = p)ai® +2p
= okt ((1—ﬂ)a5“+2u>’ ®)

where we have conveniently introduced the symmetric and positive definite
matrix

W, = (1 — p)I + 2uA.
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Then, we correct this prediction using an over-relaxation scheme with an op-
timal weight, that is

Tpt1 = Brzr + (1 — Br)zr—1, 9)

where we select the weight 5y, in (9), by minimizing the merit function F),(xx41),
ie.,

Br = argmﬁinFu(ﬁzk + (1= B)xr_1) (10)

_ V(1) (= sk + 2uyr) (11)

Yo (1= p)sk + 20yk)
T
_ 7Vf($]fr_1) W#Sk’ (12)
Y Wysk

where sy := 2, — 21 and yg := Vf(z) — Vf(zr_1) = Asi. Notice that the
new iterate can also be written as

Tp1 = Tk — BraxVf(zr) + (Be — ) (2 — Tk-1)- (13)

From (13) we note that this two-step approach can also be seen as an optimal
gradient method with momentum, and therefore the update formula used by
our procedure is very similar to the one used by the CG method. Now we
describe the obtained generalized DWGM (GDWGM) algorithm in detail.

Algorithm 1 Generalized delayed weighted gradient method (GDWGM)

Require: A € R™*"™, € [0,1], W, = (1 — p)I +2pA, b,xo € R®, 2_1 = x0, go = V f(x0),
9-1=90,0<ek 1, k=0.
1: while [|gk|l2 > ¢ do

20 wg = Agg,
3: ap = 75]-’;‘;‘//”% ,
9y Wpwi

4z =T — ARGk,
5. Tk =gk — QpWg,
6: sk =2k — Tk-1,
T Yk =Tk — k-1,
8  Br= —792?1‘/‘/”% )

Y Wusk

9 Tpy1 = Tk—1 + BrSk,
100 gr+t1 = gr—1 + BrYr,
11: k=k+1.

12: end while

Let us observe that if we fix p = 1, then Algorithm 1 reduces to the
DWGM scheme developed in [24]. For the other extreme, it will be established,
at the end of Section 4, that if we fix p = 0 then Algorithm 1 is equivalent
to the CG method for solving (1). It is also worth mentioning that for the
implementation of Algorithm 1 it is neither necessary nor recommendable for
numerical reasons to explicitly build the matrix W,. In fact, note that this
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matrix is only used to update the step-size o and the parameter ;. Thus,
in practice, it is numerically convenient to use the formulas (8) and (11) to
compute oy, and Sy, respectively. However, we present Algorithm 1 using W,
in order to simplify the theoretical analysis of the proposed family of methods.

Remark 1 Note that Algorithm 1 is essentially an exact two-step line-search
method applied to the minimization of F),(-) over R™. In fact, since VF,(z) =
W,V f(z) for all z € R", then in the first phase of the method the search
direction dy = —gj, satisfies

VFu(xr) " de = —(1 = p)l|gell3 — 209, Agr <0, Vk €N,

and hence dy, is a descent direction of F),(-) at z. In the second phase, observe
that using Step 6 in Algorithm 1 and rearranging equation (9) we have

Try1 = 2k + (Br — 1)sg. (14)

Later on we will establish that g}, ,W,s, = 0 for all k (see Lemma 2), and
also that 8y > 1 for all k (see Lemma 4), which combined with Steps 5, 7, 8
in Algorithm 1 yields
VE(z) sk = (1= )V (z1) + 2pAV f(21) " s

=) Wysk = (Y + gx—1) ' Wysk

= g Wys + 911 Ws,

= y,;rWusk — B y,IWMsk =(1-05%) SEAWMsk.
Now, since AW, = W, A is symmetric and positive definite (it is the sum of
two positive definite matrices), then VF,(2x) sk = (1 — Bi) s{ AW,s, < 0,
which implies that sy, is a descent direction for the merit function F,(-) at 2.

Therefore, Algorithm 1 can be seen as an optimization procedure that performs
two optimal line searches per iteration to minimize the merit function (5).

3 Convergence analysis

We now analyze Algorithm 1 by studying the asymptotic behavior of F},(xy)
and ||V f(xr)||2 when k goes to infinity. In the rest of this paper, we will denote
by {A1,A2,..., Ay} the eigenvalues of A, where we assume that

M2 2, >0
The proposition below and its proof provide some key properties.

Proposition 1 Consider the iteration given by (2), then

a. flor — aVf(zr) < flar), Yoy €0,2a5P].

b IV f(zr — axVf(zp)ll2 < [V F(@p)ll2, Yoy € (0,20
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2
c. If ay, = osz in (2) then E(xgy1) < C1E(zy), where Cp = (ii;f\‘z) .

d. If ay = oM in (2) then f(zr — axVf(zk)) < fzk) and ||V f(xy —
apVf(zp))l3 < Cil|Vf(xp)l]3-

Proof (a) Using (1) and the fact that V f(zx) = Az — b we get

a2
Flar — axVf(zx) = far) — arl|VF ()| + fvf(xk)TAVf(xk). (15)

Using the definition of o3P in (3) and (15) we obtain that f(x— oV f(zg)) <
f(zy) for all ay, € [0,2a7P].

(b) By simple algebraic manipulations we have that

IV £ (@r—arV (23 = [IVf(2)l3-200V f (22) T AV f (20)+aR | AV £ (a1)[[3.

(16)
Once again, recalling the definition of a?“ given by (4) we obtain from (16)
that

IV f(zk = axV f@o)llz < [[Vf(zx)ll2 forall ey € [0,2a3").

(¢) The proof of this part appears in detail in [21, Section 7.6].

(d) The first inequality is a direct consequence of (a) and the fact that /¢ <

af D which follows from

(VF(xp)TAV f(zr)? < IV f(zp) 3| AV f(2z1)||3  (Cauchy-Schwarz inequality) .

Therefore, it suffices to prove that ||V f(zr — aprVf(zk))l|l2 < C1||Vf(2k)||2-

Indeed, from (16) and using that ay = o we have

IV f(zr = arV(@))ll3 = (1= &)V f(zx)ll3, (17)

(Vf(zx) " AV f (k)
IV (@)IZIIAV £ (z)]13
in equation (17), we arrive at

where ¢ = . By applying the Kantorovich inequality to ¢

A1 — A
AL+ A

IV Fla — oV I @)l < ( ) 1V £ @)z 18)

which completes the proof.

Lemma 1 Let p € [0,1] and {zx} be a sequence generated by Algorithm 1.
Then {F,(xk)} is a convergent sequence.
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Proof Tt follows from the construction of Algorithm 1, Proposition 1, and the
minimization property (6) that
Fu(wkgr) < Fu(zr)
< F(ar— o)
< (1= wE(zy, —ai'%gi) + pCil|gill3
< (1= p)E(x) + nCillgrll3
< (1= p)E(zy) + pllgrlls = Fu(x). (19)

Thus {F),(zx)} is a monotonically decreasing sequence. Moreover, F},(zx) > 0
for all k € N, therefore we conclude that {F),(xy)} is a convergent sequence.

From Lemma 1, we see that the sequence {F,(zx)} generated by Algorithm
1 converges to the unique solution of (1) whenever F),(zx) goes to zero, since
both sequences {E(zx)} and ||gk||2 are non-negative. The following theorem
establishes the global convergence of Algorithm 1.

Theorem 1 Let p € [0,1] and {xr} be the sequence generated by Algorithm
1. Then the sequence {F,(xy)} converges to zero g-linearly with convergence

2
factor (ii;iz) .
Proof First, observe that the step-size ay in Step 3 of Algorithm 1 can be
written as

T
W
ap = M (20)
9r WiAgs,
In addition, since Ax* = b, note that
1 1
F,(z) = ixTAWHx —z Wb+ ngW#Aflb (21)
1 *\ T *
zi(x—x ) AW, (z —2¥). (22)

From the construction of Algorithm 1, equations (21) and (22), and the mini-
mization property (6) we have

Fu(zp41) < Fu(zk),
= F,(xr — argr)
2
[0
= Fu(zx) — akg;—Wugk + ?kggAngk
«
= F;L(xk) - Tkg;—WMQk
T
ax Gy VV/LQk)
= — =22 7V F (2
(-5 Fo(og) ) P10
= (1 — ) Fpu(zr), (23)

98 Wiug

~ (07
where ¢ = ¢ TREDE
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On the other hand, in view of equations (20) and (22) we obtain

_ (9 Wugr)?
C = T T 1 . (24)
(9 WuAgr)(9, WA~ gr)
Since W, is symmetric and positive definite then it has a symmetric and
positive definite square root W,%/ ? and so W,A = Wﬁ/ 2AWﬁ/ % and WA =

W;}/QA_IW,}/Q, and it follows that

_ (P 1)’
(pi Api) (P A= i)’

(25)

where pp = W,}/QVf(xk). Now, applying the Kantorovich inequality in (25),
we arrive at

~ 4)\n)\1
> . 26
F a2 (26)
Merging equations (23) and (26), we obtain
A=)
Fu(@r1) < (M> Fpu(zp). (27)

It follows immediately that {F),(x)} converges to zero g-linearly with conver-

2
A=A
gence factor (Aﬁ-/\n) .

Remark 2 From Theorem 1, we have that limy_,o F,(zx) = 0, which is the
sum of two positive sequences so they both converge to zero, i.e., limg_, F(zk)
0 and limg_, ||gk||2 = 0. Therefore, from this fact and the positive definite-
ness of A, we conclude that the sequence {x;} tends to the unique global
minimizer of f(-) when k goes to infinity.

4 Finite termination and optimality properties

In this section we establish some key W, -orthogonality properties that add un-
derstanding to the fast practical behavior of the GDWGM family of methods,
including the finite termination. Most of these results can be viewed as gen-
eralizations of the A-orthogonality results established for the DWGM method
in [1], i.e., for the specific case p = 1. In here, the structure and the ordering
of the presentation of the theoretical results follow the same pattern used in
[1]. However, moving from the fixed case of y = 1 to handling infinitely many
cases (u € [0,1]) at once, the required mathematical arguments as well as the
specific details differ from the ones used in [1].

Lemma 2 Let us consider Algorithm 1. Then we have

a. fo =1, and hence x1 = 29, g1 = 70-
The following equalities hold for all k > 0,
b. r];rvvp,gk =0.
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T 2 T
C. T gk = ((17u)5k+2u) Ty Tk
d. ngHW#sk =0.

Proof (a) By Steps 4, 6, and 7 in Algorithm 1 we have that s = z9 — 29 =

—apgo and yo = 19 — go = —pAgo. Hence,
go— o Wuso _  —aoggWugo L (93%90) 1
Yo Wuso —ao(—aogg AW,.90) 90 AW .90

Therefore, we obtain x1 = x_1 + Boso = xo + Boso = o — (20 — o) = 20, and
91 = 9-1+ Boyo = go + Yo = go + 70 — go = To-
(b) Using (a) and the definition of oy we get
i Wagk = (9r — ok Agr) " Wogr = g5 Wugk — argi AW,gx = 0.

(c) Let us define 0 = 2u/((1 — p)ag + 2u). Since (1 — p)ay, + 2u # 0, for all
w € [0, 1], then it follows from (b) that

1— o, +2 =R 1— o
szng<W>7‘;9k=ﬂr;(rk+akwk)+<w>7“;;rgk

(1 —p)ou + 2 — ok + 24
= Arir+ Ay (apw) + (%) i 9
=fir) ( ak+2 )m (2uA + (1 — p))gr
= ( ak+2u> T Wi

(d) Again, by construction of Algorithm 1 we have

Tas 1 Wisk = (gr—1 + Biyr)  Wsk
= gn_1Wusk + Beyp Wask

T
T G Wusk | +

=0 Wysk+ | ————— W, sk =0,
Je—1 "W uSk < y;—W,LSk )yk wSk

which proves the lemma.

Lemma 3 Let {gi} be the sequence of gradient vectors generated by Algorithm
1. Then for all k > 1

gl;-rWugk—l =0. (28)



A family of optimal weighted conjugate-gradient-type methods 11

Proof The proof is by induction. For the case k = 1, we have from Lemma 2
that g W,g0 = rd W,g0 = 0. Let us now assume the inductive hypothesis on
k, namely, that g] W,gr—1 = 0 for all k = p > 2. Now, we consider the next
iteration, £k = p + 1. By applying Lemma 2 and the inductive hypothesis, we
find that

g;_lW#gp = (gp—1+ 5pyp)TWugp
= (gp—1 + Bp(rp — gp,l))TWng
= (1= Bp)gp—1Wugp + Bypry Wygp = 0. (29)

Therefore, we have shown that g;—W#gkfl =0, for all £ > 1, and the proof is
complete.

Lemma 4 In Algorithm 1 the following statements hold for all k > 1

98 W2kt — 2r-1) = g Wz — 21) = 0.
Yk = ASk. - )
y;—Wusk = (l'k — I'kfl)TWHA((Ek — .’Ekfl) — M

g, Wi Agk
9;+1Wuxk+1 = 9/;r+1Wuxk = 9;+1Wuwk71-
I Wik — xr—1) = —(gk — gr—1) Walk — p-1).
Br > 1.

ROICEESTENTIY

Proof (a) From Step 4 in Algorithm 1 and Lemma 3, we have
T _ T _
9 Wi(2h—1 — 2p—1) = —ag—1 (g5 Wugk—1) =0,

and also
gn Wz — 1) = —ak (g1 Wagk) = 0.

(b) Using several steps in Algorithm 1 it follows that
Yk = Tk—9k—1 = Gk—gk—1—kAgr = A(Tp—T—1—argr) = A(2k—T-1) = Asp.
(¢) From Steps 3, 4, 5 and 7 in Algorithm 1 and Lemmas 2 and 3, we obtain

Y Wysk = (rk — gr—1) Walzk — 2k-1)
= (gx — gr—1 — agwy,) ' Wy(zg — 21 — rgi)
= (g — gk—1) Wy(zp — 25-1) — agw, Wyl — o5_1)

—ag(gr — ge—1) Wogr + aqwg Wogk

= (g — gk—1) Wy(zp — 26-1) — agw, Wy(z, — 4—_1)
= (gk — gr—1) Wl — z5-1) — argy Wulge — gr—1)
= (g — gr—1) Wy(og — 26-1) — ar gy Wygn

—( (95 Wuge)*

T
T — Tp— WA.%‘;C—.'L‘;C, — .
1) WLA( 1) 0l W, Ags
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(d) Using Steps 4 and 6 in Algorithm 1, Lemma 2, and Lemma 3 we get
gl;r+1Wu($k —Tpo1) = gl—cr+1W#(5k + argr)
= i1 Wyusk + argpy i Wage = 0.

Hence, g,;r+1W#xk = g,LlW#xk,l. Now, it follows from Step 9 in Algorithm 1
and Lemma 2 that

g,L_lVVH(:Ek_,_l —xp) = g,L_lW/L(qu — ok + Brsk)
= ngHWu(xkq — )+ 5kg;—+1Wu3k

= gp 1 Walzr—1 — ) =0,

which yields
T T T
I Wekt1 = G Wutk = g Wuk-1.

(e) By using the previous item it follows that
0= g;WH(xk — {Ekfl)
= (gk — gr—1 + gr—1) Wo(zr — 25-1)
= (gr — gk—l)TW;t(xk —Tp-1) + gl;r—lwu(xk — Tp_1),

which implies that
Gi1Walzk = zp-1) = —(gk — 1) " Wlay — 21-1). (31)
(f) First, let us note that we can rewrite the parameter gy as follows

g Wler—1 — 2)

Br =
y,;rWusk
g Wkt — k. + argr)
y];rW;Lsk
_ IhaWa(xr—1 — 1) (32)
ykTWusk '
Now combining (30), (31), and (32), we have
B, = (gk = gr—1) "Wo(zp — 241) (33)

(gr = ge—1) "Wk — xp—1) — ar (90 Wagr)’
or equivalently,

B = (zg — xp—1) WAz — T)—1) (34)
(g — zp—1) T W, A(z — z5-1) — ag (g8 Wogk)
Using (b) and (c¢), and the fact that AW, is a symmetric positive definite
matrix, we conclude that the denominator in (34) satisfies

(xg — zk_l)TWHA(xk —Tp_1) — Qg (g,;rVVMgk) = y,;rVVusk = sgAWHSk >0,
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which means that
(xr — xkfl)TW,uA(l'k — Tp—1) > Qg (gl;rWugk) > 0.

Therefore, we conclude that the numerator of Sy in (34) is strictly bigger
than the denominator and they are both positive. Hence 5 > 1 for all k > 1,
and the result is established.

4.1 Finite termination

Our next result plays a fundamental role to establish the finite termination of
the GDWGM family of methods.

Theorem 2 Algorithm 1 generates the sequences {gi} and {ry} such that
a. Fork > 2, g,;rWugj =0, forall -1 < j<k-—2.
b. For k > 2, T;Wugj =0, forall -1 <j<k-—2.

Proof The proof is by induction. Concerning (a), since g_1 = go, 1 = 29 and
ag > 0, using (d) in Lemma 4 and step 4 of Algorithm 1, we have

95 Wug—1 = g2 Wago

1

= 93 Wy(zo — 20) (35)
1

= — gy Wy(zg — 1) =0, (36)
Qg

and the result is obtained for k = 2. Concerning (b), since ap > 0, g_1 = go,
using (a) in Lemma 2, Lemma 3, steps 4 and 5 of GDWGM, equation (36)
and the fact that AW,, = W, A we obtain

1
3 Wigo = P ry Wa(zo — 20)
1 + 1 -
= —ry Wy(x0 — 1) = —— 1y Wy (21 —10) +0
(7)) (75}
1 1
= T;—Wu(xl —x0) + *QQTW;L(M — o)
(7)) (e 75}
1
= — (g2 — r2) " Wp(21 — 20)
o
(&) Q9
= 792TAWM(731 - xO) = 792TWM(91 - 90)
(67} (o))
o
= 070 [g;—WHgl - g;—WHgo] =0.

In addition, since ry W, g_1 = r9 W, go, then the result is established for k = 2.
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Let us now assume, by induction on k, that (a) and (b) hold up to k = k>
3, and consider the next iteration. Hence, we need to show that g’;r 1Wng =0,

and also that rg“W#gj =0, forall -1<5< k—1.

For -1 <5< k—2, using Lemma 3, Steps 7 and 10 in Algorithm 1, and
the inductive hypothesis associated with (a) and (b), we have that

91 Wig5 = (g + Bi(ri = 951)) " Wogj
= (1= 8;) 95, Wugj + Byri Wug; = 0.

For j = k— 1, using step 4, adding and subtracting xj,_,, and then using
the fact that z; , —x;_, = (¥;, — x;_,)/B;_, (obtained from Steps 6 and 9
in Algorithm 1), we get

1
T T
G i Wnbi—1 = _W G Wz — Ti_y)
I T
= _W gicHWM(Zl%A — Ty F Ty~ Tjy)

1 T 1

a; gfc+1W” <5 (@} = Tj_p) + Ty — xi;1>
k-1 k—1
1 1 T

= - TA g,;HWH(x,; _xfcf2)+gfc+1WM(xfc—2 _ml%fl) .
k—1 k—1

Now, adding and subtracting ggﬂWMx,;fl, and using (d) in Lemma 4, we
arrive at

T _
It W1 = —

T T
1 gk+1Wu(33;;—w;;,l)‘*‘g,;_,_lwu(z;;,l _I];,Q)
1 Br

OF

L I T T
T [&9g+1wﬂ(wk1 — T o)+ 9;;+1Wu(1’1;72 - xlfcl):|
k-1 E—1

T
=i g]::+1Wll«(m];_1 - m};_g)v

where v; = (8, — 1)/(oj,_,B;_,) is well-defined since (8, > 1 for all k and

G Wag W20 T (W% g1)

A =

G WuAge (W Pg)TAWL )’

is an inverse Rayleigh-quotient of A, i.e., oy > )\% >0 for all k.

-
+ gfc+1WM(xl%72 - :Cfcl):|

(37)
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By using Steps 5, 7 and 10 in Algorithm 1, Lemma 3, Lemma 4, the in-
ductive hypothesis, and the fact that AW, = W, A, we obtain

9t Wit = i G Wy — 255)
=% (91 + B (g = 95_)) T Walag_y —a4_,)
=YL= B) g Wilz_y — 2 _o) + 9B Waleg_y — 2j)
= B Walz_y — )
=785 (9, — o Agy) " Waleg_, —2j_)
= B4 98 Walzp_y — 2 _5) — B 97 AWy — 2;_,)
= B g AWy — ;)
= =785 9. W91 — 9i_s)
= =By, [gz;TWugfc—l - ggWugf@_z] =0.

Therefore (a) is established for all k > 2 and for —1 < j <k —2.

On the other hand, concerning (b), for —1 < j < k— 1, using Steps 7 and
10 in Algorithm 1, Lemma 3, item (a) which has now been established, and
that 8 > 1 for all k, we obtain

1
T T

r;;+1Wu9j = Wﬂ (i + Bipr — Vi) Wag;

1 51%+1 -1

T YW + ——

T
= gA Wug] = 0
Bfﬁtl ﬁfc+1 F ,

and (b) is also established, which completes the proof.

In summary, combining Lemma 3 with item (a) from Theorem 2, it follows
that for all k, g is W,-orthogonal to all previous gradient vectors, i.e., for all
k>1

geW,g; =0, forall j<k-—1. (38)

Theorem 3 For any initial guess xo € R™, Algorithm 1 generates the iterates
x, k> 1, such that x, = A~ 'b.

Proof Using (38), we have that the first n gradient vectors g (0 < k <n-—1)
generated by Algorithm 1, form a W),-orthogonal set, which implies that they
form a linearly independent set of n vectors in R™. As a consequence, to satisfy
(38), the next gradient vector g, € R™ must be zero. Thus, x,, = A~1b.

Concerning the finite termination of Algorithm 1, as it has been already
established for the extreme cases: u = 0 (CG, see e.g., [23,27]) and u = 1
(DWGM, see [1]), all the infinitely many members of the GDWGM family
actually terminates in at most p < n iterations where p is the number of
distinct eigenvalues of the matrix A. To establish this fundamental result we
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first need to show that for all £ > 1 the vector g generated by GDWGM
belongs to the Krylov subspace

Ki11(A, go) := span{go, Ago, A%go, - - -, A*g0}.
Lemma 5 In Algorithm GDWGM, for all k > 1, gr € Kit1(A, go).

Proof The proof is identical to the proof of Lemma 7 in [1].

Theorem 4 If A has only p < n distinct eigenvalue, then for any initial guess
xo € R™ Algorithm 1 generates the iterates xy, k> 1 such that z, = A7'b.

Proof The proof is identical to the proof of Theorem 9 in [1].

4.2 Minimization of F,(-) on the explored affine subspace

We now focus our attention on the minimization property of the map Fj,(-),
at each iteration, on the already explored affine subspace. For that, we need
to establish for any p € [0,1] the W,-orthogonality of the current gradient
g with all the previously explored search directions, which are given by the
vectors (x; — ;1) for 1 < j < k.

Theorem 5 For any p € [0, 1], Algorithm 1 generates the sequences {gi} and
{z1} such that for k > 2
G Wu(r;—x5_1) =0, for 1<j<k. (39)

Proof The proof is by induction. For k = 2, using (d) in Lemma 4, we have
that
T _ T _
9o W2 — 1) = g Wyu(21 — 1) = 0.

Let us now assume that (39) holds up to k = p, and let us consider the next
iteration. When j = p, using again (d) in Lemma 4 we obtain
9;+1Wu(xp+l - xp) = ngJer,L(xp - xp—l) =0.
It remains to consider 1 < j < p — 1. Using the inductive hypothesis, Steps 7
and 10 in Algorithm 1, and Theorem 2 we have that
oWy = 25-1) = (gp1 + Bpyp) " Wiala; — ;-1)

= —((Bp = V)gp—1 — Byrp) ' Wiulaj — zj-1)

= Bprp Walz; — xj-1)

= Bp(9p — apAgy)  Wyl(wj —aj-1)

= *ﬂpap(Agp)TVVu(zj —zj-1)
_ﬁpapngWuA(xj —zj_1)
—Bpepgy Wilgj — gj-1) = 0.



A family of optimal weighted conjugate-gradient-type methods 17

Let us notice that, at iteration k, the explored affine subspace Vj, is given by

k

Vi=<zeR" | xzxo—l—Zr]j(xj—xj_l) and 7= (n1,m2...,m) € RF
j=1

(40)

Corollary 1 For all k > 1, the iterate xj generated by Algorithm 1, is the
argument that minimizes the merit function F,(-) on Vj.

Proof Let us consider the following convex minimization problem
min F,(z) subject to z €V, CR™ (41)

Clearly, the constrained problem (41) is equivalent to the following uncon-
strained minimization problem

min Gu(n) = Fu(x(n)), (42)

where x : R¥ — R” is a linear function defined by x(n) := x¢ + Z?Zl n;(x; —
xj_1), and n; denotes the j-th entry of 7. Now, observe that the cost function
G () is clearly a strictly convex function in R, This fact implies that (42) has
an unique solution, say n* € R*. Then 7* must satisfy the first-order necessary
optimality conditions

OO _ 7 ) Wy~ 2,0) =0, for 1<j<h,  (43)

on;

which are also sufficient due to the convexity of problem (42).

Hence, it follows that V f(x(n*)) is W,-orthogonal to the subspace gen-

erated by the set {xx — xx_1,...,21 — 2o}. In view of Theorem 5, we have
that gi is also W,-orthogonal to the subspace generated by the set {x; —
Th_1,...,T1 — To}. Moreover, note that selecting n = (1,1,...1) € R* we

obtain that z = x(n) € Vi and also Vf(x(n)) = gr. Therefore, by the
uniqueness of the solution of (42), we find that g, = Vf(x(n*)). Then, apply-
ing the equivalence of the minimization problems (41) and (42), we have that
the iterate x, generated by Algorithm 1, can be written as

k
v =x(") =x0+ »_ 7} (x; — 7 1),
j=1

which completes the proof.

Remark 3 The subspace generated by the vector set {xy —zr_1,...,21 — 2o},
which appears in (40), coincides with the Krylov subspace Ky (A, go). Indeed,
since both subspaces have the same dimension, it suffices to show that

(x; —zj_1) € Kj(A,go) foreach j> 1. (44)
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For j =1, using Lemma 2 and Step 4 in Algorithm 1 we know that
z1 —zo = —aogo € K1(4A, go)-

Let us now assume, by induction on j, that (44) holds up to j = k, and
consider the next iteration. From (13) we have that

Tpp1 — 2k = (Br — 1) (2 — Th—1) — Brarge.

Using now the inductive hypothesis (44) we get that (x —xr_1) € Kir(4, g0),
and using Lemma 5 we obtain that gr € Kr11(A, go). Hence, xx11 — zx €
Kr+1(A4, go). From the fact that the two mentioned subspaces are identical,
combined with Corollary 1, we conclude that for all k£ > 1 the iterate xj gen-
erated by Algorithm 1 is the argument that minimizes the merit function F),(-)
on the affine subspace g + Ki (4, go).

We are now ready to show that the iterate xj, generated by the CG method
for solving (1), coincides at each k with the k-th iterate generated by Algo-
rithm 1 when g = 0, as long as both methods start at the same initial point
xg. For that, let us first recall a couple of key properties of the CG method
for solving (1): at each iteration k, the subspace generated by all the already
explored directions (say span{dy,ds,...,dr—1}) coincides with the Krylov sub-
space Kr(4, go), and also that the iterate xy is the minimizer of the strictly
convex quadratic E(z) = f(z)+ bT2* on the entire explored affine subspace,
i.e., on the affine subspace given by o + Kr(A4, go); see, e.g., [21,23,27].

On the other hand, when p = 0 in Algorithm 1, the merit function F,(-)
reduces to the strictly convex quadratic function E(-), and based on the Re-
mark 3, we conclude that both methods generate iterates that minimize the
same function E(-) on the same affine subspace. Since E(-) is a strictly convex
function then it has a unique global minimizer on that affine subspace, which
imply that if we start the CG method and Algorithm 1 with x4 = 0 from the
same initial guess xg, then they produce the same iterates for all k.

5 Numerical results

In order to give further insight into the GDWGM family of methods we
present the results of some numerical experiments. We test our algorithm
on some well-known real large-scale strictly convex quadratic problems. All
experiments have been performed on a intel(R) CORE(TM) i7-4770, CPU
3.40 GHz with 500GB HD and 16GB RAM. The algorithm was coded in
Matlab (version 2017b) with double precision. The running times are always
given in CPU seconds. The implementation of our algorithm is available in
http://www.optimization-online.org/DB_HTML/2020/09/8039.html.
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Fig. 1 Behavior of Algorithm 1 varying u.

In this section, we consider the application of Algorithm 1 to approxi-
mate the solution of 40 sparse symmetric and positive definite linear sys-
tem of equations Ax = b, where the matrices A € R"*™ are taken from
the SuiteSparse Matrix Collection [9]}, meanwhile the vector b € R™ and
the initial point zy € R™ are generated by the following Matlab commands:
b = A xones(n,1) and xg = zeros(n, 1), respectively. This particular de-
sign of experiments was also considered in [5]. In our numerical tests, we let
all the algorithms run up to K = 150000 iterations and stop them at iter-
ation k < K if ||V f(xr)|l2 < €||Vf(z0)||2, where € = le-6. For comparison
purposes, we compare the numerical performance of our GDWGM family of
methods with the classical conjugate gradient method (CG) and the recently
published delayed weighted gradient method (DWGM). For the GDWGM
family, that depends on the parameter p, we present the numerical results
associated with the best value of p taken exhaustively in the following set
2 ={0,0.05,0.1,0.15,...,0.95,1}.

1 The SuiteSparse Matrix Collection tool-box is available in https://sparse.tamu.edu/
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The numerical results concerning this experiment are summarized in Ta-
ble 1. In this table, “Fres” denotes the final residual objective value, i.e.
Fres = |f(z) — f(z*)|, where & denotes the approximated solution obtained
by each method and z* = A~'b; “CT”and “IT” denote the total computing
time in seconds and the number of iterations, respectively. We also report, in
the last column of Table 1, the value of u € {2, for which GDWGM reaches
the required precision in the gradient norm in the fewest possible number of
iterations. As shown in Table 1, in most cases, both the DWGM and GDWGM
methods reach the desired gradient-norm accuracy, in fewer iterations than the
CG method. However, the CG method obtains a lower value of the residual
Fres than the other methods. This means that DWGM and its generaliza-
tion approach stationarity faster than CG, while CG approaches the optimal
value f(x*) faster than the other two methods. Furthermore, from Table 1, we
see that in most cases, it was possible to find a value of u € (0, 1), for which
GDWGM converges in fewer iterations than the DWGM and the CG methods.

In Figures 1, we illustrate the behavior of Algorithm 1 by varying pu, for
the matrices “1138_bus” and “cfd1”. These figures show that Algorithm 1 can
converge to the solution of the system of linear equations in a different number
of iterations for different values of pu. Additionally, for these two special ma-
trices, we note that values close to g = 1, in Algorithm 1, achieve convergence
in less number of iterations.

On the other hand, in Figures 2 and 3, we plot the convergence history of
CG, DWGM, and GDWGM, from the same initial point, considering the fol-
lowing three measures: | f(zx) — f(z*)|, ||V f(2r)||2 and |F,(zx) — F,,(z*)], for
the instances “apachel” with y = 0.15, and “1138bus” with p = 0.3, respec-
tively. From these figures, we can see that CG is superior to the other methods
minimizing the objective function, DWGM is the best method optimizing the
gradient norm, while GDWGM is superior to the rest of the methods reducing
the merit function F),(-), which agrees with the theoretical result established in
Corollary 1. In addition, we observe that the CG method shows an oscillatory
pattern in terms of reducing ||V f(xy)||2 and |F,(x) — F,(x*)|, and presents
a smooth decrease in terms of reducing f(-), while DWGM and its generalized
version reduce in a smooth way the three considered measures.

6 Concluding remarks and perspectives

We have proposed and analyzed a family of optimal first-order methods for the
minimization of strictly convex quadratic functions. Similar to the CG method,
each member of the family has certain orthogonality properties. Specifically,
we proved that the gradient vector at the current iteration is W,,-orthogonal to
all the previous gradient vectors, which implies directly the finite termination
of the method for all u € [0, 1]. Moreover, we demonstrated that if the matrix
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Fig. 2 Convergence history of all the algorithms using p = 0.15 for the matrix “apachel”.
The y—axis is in logarithmic scale.

A € R™™ has only p < n distinct eigenvalues, then the proposed algorithm
obtains the desired solution in exactly p iterations. In addition, we show that
any member of the family constructs a sequence of points {xy}, such that, xy,
verifies an optimality condition related to the problem of minimizing the merit
function F),(-) over the linear manifold generated by all the explored previous
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Fig. 3 Convergence history of all the algorithms using p = 0.3 for the matrix “1138_bus”.
The y—axis is in logarithmic scale.

search directions. We also establish that the sequence {F),(zx)} converges to
zero g-linearly when k tends to infinity for all x4 € [0, 1], which implies that
the sequence {zj} converges to the unique global minimizer of f(-). Finally,
we have tested our procedure on a variety of real large-scale symmetric pos-
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Table 1 Numerical results for solving linear systems from the SuiteSparse Matrix Collec-

tion.
Name n cG DWGM GDWGM

IT CT Fres IT CT Fres IT CT Fres I

1138_bus 1138 1752 0.02 4.65e-8 1637 0.0281 3.81e-6 1621 0.0244 2.66e-6 0.8
2cubes_sphere | 101492 | 16831  41.6334  1.62e+5 1888 5.6172 1.60e+7 1886 5.5244 1.60e+7  0.05
af_ 0_k101 503625 3009 61.4318  4.17e42 1101 27.3089  4.07e+3 1101  27.8893  4.00e+3  0.25
af_shell3 504855 1450 28.4402 3.30e-3 948 23.328 7.43e-1 944 23.205 7.28e-1 0.55
af_shell7 504855 1441 29.1214 3.40e-3 947 21.0272 7.43e-1 941 22.4374 7.38e-1 0.75
apachel 80800 1490 1.202 2.51e-10 1458 1.6442 1.11e-9 1454 1.5736 6.33e-10  0.15
besstk09 1083 178 0.0055 2.38e-2 168 0.0068 4.41e-1 168 0.0059 4.41e-1 0.05
bcesstk10 1086 1690 0.0348 1.40e-1 1026 0.0267 2.02e+1 1024 0.0232 2.02e+1 0.4
besstk11 1473 1636 0.0526 1.77e+-2 698 0.0266 1.39e+4 697 0.0304 1.39e+4  0.45
besstk13 2003 10542 0.7083 3.06e+5 2239 0.1631 2.19e+7 2212 0.1591 2.19e+7  0.95
besstk14 1806 3096 0.1545 1.23e+3 1212 0.0711 4.67e+5 1209 0.0667 4.67e+5  0.95
bcesstk16 4884 228 0.062 3.79e+1 207 0.0568 4.47e+1 206 0.0637 4.52e+1  0.95
besstk17 10974 9573 3.8372 2.75e+2 4063 2.0702 3.38e+4 4051 2.033 3.38e+4 0.6
besstk21 3600 4173 0.164 1.40e+1 744 0.0445 5.65e+3 743 0.045 5.67e+3 0.1
bcesstk23 3134 780 0.0432  4.34e+10 533 0.0407  5.75e+11 529 0.0392  5.79e+11 0.15
besstk24 3562 993 0.1337 7.7le+7 555 0.0837 7.21e+8 550 0.0776 7.2le+8  0.55
besstk25 15439 1864 0.6184 3.57e+8 857 0.3397 2.27e+9 841 0.331 2.29e4+9  0.55
besstk27 1224 575 0.0291 4.58e-4 477 0.0253 1.98e-2 476 0.0201 1.98e-2 0.6
besstk28 4410 13208 1.9773 2.50e-4 11504  2.1991 3.55e+1 | 11371  2.1131 3.43e+1 0.4
besstk36 23052 14006  21.5351  2.97e+1 3178 5.113 1.43e+3 3163 6.1965 1.42e+3 0.3
bcesstk38 8032 1126 0.343 2.10e+5 328 0.1133 6.71e+6 323 0.1128 6.72e+6  0.45
bcsstm08 1074 38 0.0024 9.86e-1 42 0.002 1.15e+0 41 0.0044 1.04e+0 0.1

besstm11 1473 20 0.0023 9.49¢-6 21 0.0018 9.53e-6 20 0.004 9.49¢-6 0
bcsstm23 3134 947 0.0201 1.23e+0 684 0.0283 3.08e+1 678 0.0259 2.92e+1 0.1
bcsstm?24 3562 692 0.0167 3.23e-1 442 0.0181 3.09e+0 439 0.0201 3.07e+0  0.75

cfdl 70656 1307 2.9433 1.85e-8 1175 3.5296 3.37e-6 1175 3.6709 3.37e-6 1
ex15 6867 956 0.0919 1.45e+2 746 0.0857 1.29e+3 743 0.0858 1.28e+3 0.2
msc04515 4515 3517 0.2737 8.15e-1 2598 0.2444 1.76e+3 2596 0.2597 1.76e+3  0.85
msc23052 25052 14127  21.1266  1.17e+2 3160 5.3699 5.70e+3 3157 5.0011 5.70e+3  0.75
nasa4704 4704 10979 0.9319 1.52e-2 7426 0.7643 1.27e+1 7418 0.7583 1.21e+1 0.4
nasasrb 54870 15354  44.0807  1l.4le+2 3477  11.0308  1.65e+5 3475  11.2238  1.65e+5 0.1
sts4098 4098 5811 0.4112 1.88e+1 1756 0.1559 1.41e+3 1747 0.1561 1.41e+3 0.5
bmwT7st_1 141347 90 0.704 2.47e+10 72 0.6242  4.40e+10 70 0.5982  4.38e+10 0.35
cbuckle 13681 1820 1.2605 5.30e-3 1493 1.1764 1.32e-1 1491 1.3583 1.23e-1 0.95
ct20stif 52329 2084 5.5123 7.19e+5 1082 3.3689 1.11e+7 1077 3.3958 1.11e+7 0.1
ex13 2568 723 0.0451 1.56e+-0 698 0.0481 1.11e+1 696 0.0479 1.12e+1  0.45
gyro 17361 10568  10.7319  1.10e+3 3136 3.5315 2.16e+5 3127 3.5223 2.16e+5 0.2
LFAT5000 19994 | 103883  15.198 7.31e+5 4970 1.076 8.47e+7 4952 1.0496 8.47e+7  0.75
nasal824 1824 3255 0.1019 2.00e-3 2399 0.0848 3.66e-1 2390 0.0844 3.59e-1 0.55
nasa2910 2910 5208 0.6128 1.90e-3 3743 0.494 6.68e-1 3719 0.4914 6.68e-1 0.75

itive definite linear systems of equations, in order to illustrate its performance.

The attractiveness of the proposed family is based mainly on its strong
global convergence properties similar to the mathematical magic that the con-
jugate gradient method has for the minimization of quadratic cost functions,
and its simplicity characterized by low storage requirements and a very low
computational cost per iteration. These good features make each member of
this family a very nice candidate to tackle the solution of large-scale positive
definite linear systems of equations. Another fundamental feature of this novel
approach is that it provides a collection of optimal methods that allows the
user to choose a suitable weight p € (0,1), in order to favor the reduction of
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f(+), or to promote the decrease of gradient norm towards stationarity, accord-
ing to his practical requirements. This special characteristic is very important
since generally, in several practical problems, it is only necessary to obtain an
approximation of the solution z* = A~'b with low precision.

The theoretical result stated in Corollary 1, roughly suggests that each
member of the proposed family is as good as any other method of the fam-
ily, since all the methods satisfy an analogous optimality condition. However,
observe that Algorithm 1 with 4 = 1 (DWGM) has the advantage that it
minimizes the gradient norm, which is precisely the usual stopping rule for
iterative algorithms in the general nonlinear optimization field. This peculiar-
ity can lead the DWGM method to achieve the solution in fewer iterations
than the rest of the choices. On the other hand, the best method in terms of
computational complexity is obtained when g = 0 (CG method), since CG is
the method that requires to compute the fewest number of inner products per
iteration. In this scenario, the selections 1 € (0,1) in Algorithm 1, generate
the worst methods, in terms of the amount of floating-point operations needed
per iteration. Nevertheless, as shown in our numerical experiments, sometimes
a selection of the parameter p € (0,1) can give rise to methods that perform
fewer iterations than the CG and the DWGM methods.

Finally it remains to investigate topics concerning extensions of the pro-
posed algorithm for general unconstrained optimization problems as well as
box-constrained optimization problems. A possible extension can be derived by
incorporating the new scheme within the framework of the trust-region meth-
ods (by following the ideas of Steihaug’s method [26]), while another possible
generalization is suggested by Remark 1, whose extension can be obtained by
performing a couple of inexact line-searches per iteration. These ideas will be
investigated and analyzed in future researches.
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