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1 Introduction

We consider the problem of finding a minimizer of the unconstrained derivative-free opti-
mization (DFO) problem

min
x∈Rn

f(x), (1)

thoroughly discussed in the books by Audet & Hare [1] and Conn et al. [3]. Here the
smooth real-valued function f : Rn → R is known only by a noisy oracle which, for a given
x ∈ Rn, gives an approximation f̃(x) to the exact function value f(x), contaminated by
the noise f̃(x) − f(x). This problem is called the noisy DFO problem. We denote by
g(x) the unknown exact gradient vector of f at x and by g̃(x) its approximation. The
algorithm does not use knowledge of g, the Lipschitz constants of f , the structure of f ,
or the statistical properties of noise. Noise may be deterministic (caused by modelling,
truncation, and/or discretization errors) or stochastic (caused by inaccurate measurements
or rounding errors).

There are many DFO methods for solving noisy DFO problems of the form (1) (see the
survey paper by Larson et al. [4]):
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• Model-based methods approximate f̃ at each trial point by an approximate quadratic
model through fitting or interpolation, find an approximate solution of this model restricted
to a region around the trial point to avoid large steps, and only accept trial points with low
inexact function values.

• Line search methods perform extrapolation steps along random or coordinate directions
or their opposite directions with the goal of accepting trial points with low inexact function
values by using a line search condition.

• Direct search methods search along coordinate directions, directions from a fixed poll
set, or random directions, using a decrease condition, like the line search condition, only to
accept points with low inexact function values.

• Matrix adaptation evolution strategy methods repeatedly generate a finite number
of individuals, select some individuals to generate parents, and choose a new mean for the
distribution.

We propose a new randomized algorithm for noisy unconstrained DFO problems – called
Vienna noisy randomized derivative-free optimization (VRDFON). Following the clas-
sifications of Larson et al. [4] and Rios & Sahinidis [5], VRDFON is a local randomized model-
based line search-based solver. This solver is an improvement of the noiseless VRBBO solver
(Kimiaei & Neumaier [6]) to handle the variability of noise intensity.

VRDFON repeatedly performs DS, a decrease search, using MLS, a multi-line search algorithm.
MLS is likely to reduce inexact function values, reaching regions close to an approximate
stationary point, and finally finding an approximate stationary point. This can be done by
performing EP, an extrapolation step, along a finite number of random directions or their
opposite directions, using a line search condition to accept points with low inexact function
values.

An implemented version of VRDFON uses the following new features:

• New heuristics are used to find and update step sizes in an implemented version of MLS,
so that step sizes are neither too small nor too large to avoid line search failure.

• Step sizes of MLS are heuristically changed at the end of an implemented version of DS
if these step sizes are too small. The goal is to avoid getting stuck before an approximate
stationary point is found.

• Surrogate quadratic models are constructed in adaptively determined subspaces that can
handle medium and large scale problems.

• Several new directions (random approximate coordinate, perturbed random, and improved
trust region) are generated so that an implemented version of MLS can be performed not
only along random scaled directions required to achieve complexity results, but also along
these new directions to avoid large steps, which is a source of line search failure.

Section 2 discusses some concepts and assumptions required to obtain complexity results
for DFO methods. Then, Section 3 explains the VRDFON algorithm and its subalgorithms
(EP, MLS, and DS). In Section 4, complexity bound on the number of function evaluations
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used by VRDFON is found for the nonconvex case and a probabilistic bound on the unknown
gradient norm for one of the points evaluated by VRDFON is found for all cases (nonconvex,
convex, and strongly convex). Section 5 provides a comparison between VRDFON and several
state-of-the-art DFO solvers on the large and very large scale noisy problems obtained from
the noiseless unconstrained CUTEst test problems from the collection of Gould et al. [7]. In
Section 6, it is shown that how VRDFON finds an approximate stationary point of a real-life
problem. Our findings on the features of VRDFON from numerical results are summarized in
Section 7.

2 Preliminaries

In this section, we present a list of known DFO solvers, state the assumptions required to
obtain the complexity results of DFO methods and summarize some known limit accuracy
and complexity results.

Table 1 includes a list of deterministic or randomized DFO solvers which use at least one
of model-based, line search-based, direct search, and evolution strategy algorithms. By
comparing these solvers, we can see the quality of a new composite algorithm compared
to any single algorithm that forms it, or to other solvers that use a single or composite
algorithm. This helps us know how to construct a new composite algorithm efficiently or
robustly; for example, NOMAD and MCS use model-based direct search algorithms that are
more robust and efficient than their model-free versions.

For DFO problems, a point satisfying

f(x) ≤ sup
{
f(y) | y ∈ Rn, f(y) ≤ f(x0), ∥g(y)∥ ≤ ε

}
, (2)

where ∥.∥ is the Euclidean norm, is called an ε-approximate stationary point for the
DFO problem (1). The goal of a DFO solver is to find such a stationary point. Throughout
the paper ε > 0 is a minimum threshold for the unknown gradient norm in the noiseless
case.

To analyze the limit accuracy and the complexity of our algorithm (defined below) for solv-
ing (1), we assume, like other DFO methods, see, e.g., Bergou et al. [26], Gratton et al.
[19], and Kimiaei & Neumaier [6], that
(A1) the function f is continuously differentiable on Rn, and its gradient is Lipschitz con-
tinuous with Lipschitz constant L,
(A2) the level set L(x0) := {x ∈ Rn | f(x) ≤ f(x0)} of f at x0 is compact, and
(A3) the approximation f̃(x) of f at x ∈ Rn satisfies

|f̃(x) − f(x)| ≤ ω. (3)

(A2) implies that
f̂ := inf{f(x) | x ∈ Rn} = f(x̂) > −∞ (4)

for any global minimizer x̂ of (1).
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solver model-b
ased

line search

direc
t search

evolution stra
tegy

deter
ministic

randomized

Reference
BCDFO + − − − + − Gratton et al. [8]
UOBYQA + − − − + − Powell [9]
NEWUOA + − − − + − Powell [10]
SNOBFIT + − − − + − Huyer & Neumaier [11]
GRID + − − − + − Elster & Neumaier [12]
MCS + − + − + − Huyer & Neumaier [13]
NOMAD + − + − + − [14, 15, 16, 17]
VRDFON + + − − + + present paper
subUOBYQA + − − − + − present paper
subNEWUOA + − − − + − present paper
VRBBO − + − − + + Kimiaei & Neumaier [6]
SDBOX − + − − + − Lucidi & Sciandrone [18]
FMINUNC − + − − + − Matlab Optimization Toolbox
DSPFD − − + − − + Gratton et al. [19]
BFO − − + − + + Porcelli & Toint [20]
NMSMAX − − + − + − Higham [21]
subNMSMAX − − + − + − present paper
CMAES − − − + − + Auger & Hansen [22]
LMMAES − − − + − + Loshchilov et al. [23]
fMAES − − − + − + Beyer [24]
BiPopMAES − − − + − + Beyer & Sendhoff [25]

Table 1: A list of DFO solvers needed in this paper. subUOBYQA, subNEWUOA, and subNMSMAX
are, respectively, UOBYQA, NEWUOA, and NMSMAX in random subspaces to handle problems in
medium and high dimensions.
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In the noiseless case ω = 0, (A3) implies f̃ = f . Larson et al. [4, Table 8.1] and Kimiaei
& Neumaier [6, Tables 1–3] summarize the known results on complexity and corresponding
references: To satisfy (2) (under the assumptions (A1) and (A2)), one needs
• O(ε−2) function evaluations for the general case,
• O(ε−1) function evaluations for the convex case,
• O(log ε−1) function evaluations for the strongly convex case. In all cases, the factors
are ignored. Randomized algorithms typically have complexity bounds that are a factor n
better than those of deterministic algorithms, see [27].

For noisy DFO problems in the form (1) (ω > 0), a complexity bound of an algorithm is
an upper bound on the number of function evaluations to find an approximate stationary
point x (unknown to us since L and g(x) are unknown) near a local optimizer whose
unknown exact gradient norm is below a given fixed threshold

εω := O(L
√

nω) (5)

(ω > 0 is unknown to us but appearing in our complexity bound) and whose function value
f(x) satisfies (2). Under the assumption (A3), we can only expect a gradient accuracy of
at most εω. Therefore we aim for an εω-approximate stationary point of the noisy DFO
problems (1) with ω > 0.

In the presence of noise, the limit accuracy and complexity results of some algorithms have
been investigated by several researchers. We only summarize the results of line search based
algorithms; cf. Table 2. Other useful references for complexity results of stochastic DFO
methods are Chen [28], Dzahini [29], and Blanchet et al. [30].

type of noise theoretical result
deterministic nonconvex: ∥g∥ = O(

√
ω)

assumptions: (A1)–(A3)
reference Lucidi & Sciandrone [18] and Elster & Neumaier [12]
deterministic strongly convex: f − f̂ = O(ω)
assumptions: (A1)–(A3)
reference: Berahas et al. [31]
stochastic nonconvex: O(ε−2) with E(∥g∥) ≤ ε

convex: O(ε−1) with E(∥g∥) ≤ ε, E(f − f̂) ≤ ε

strongly convex: O(log ε−1) with E(∥g∥) ≤ ε, E(f − f̂) ≤ ε
assumptions: (A1)–(A3) and norm condition:

∥g̃(x) − g(x)∥ ≤ θ∥g(x)∥ for some 0 < θ < 1
reference: Berahas et al. [32]

Table 2: Known limit accuracy and complexity noisy DFO methods regardless of L and
n. As stated in the introduction, g̃(x) stands for the estimated gradient at x and f̂ is the
function value at any global minimizer x̂. Here E denotes the expectation value.
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The objective function f is convex if condition

f(y) ≥ f(x) + g(x)T (y − x) + 1
2σ∥y − x∥2 for x, y ∈ Rn (6)

holds for σ = 0 and it is strongly convex if (6) holds for σ > 0.

The following well-known result (e.g., see [26, 6]) gives a bound for f(x̃) − f̂ in the convex
and strongly convex cases and bounds for ∥x̃−x̂∥ in the strongly convex case. Here f̂ = f(x̂)
is from (4) and x̃ satisfies

∥g(x̃)∥ = O(ε). (7)

2.1 Proposition. Under (A1) and (A2), if (7) holds, then:
(i) In the convex and strongly convex cases

f(x̃) − f̂ =
{O(ε) convex case,

O(ε2) strongly convex case, (8)

where r0 is given by

r0 := sup
{
∥x − x̂∥ | x ∈ Rn, f(x) ≤ f(x0)

}
< ∞, (9)

where x0 is the initial point.
(ii) In the strongly convex case

∥x̃ − x̂∥ = O(ε). (10)
Here f̂ is finite by (A1) and (A2).

Proof. (i) Now assume that f is convex. Then

f̂ ≥ f(x) + g(x)T (x̂ − x) for all x ∈ Rn.
We now conclude that for one x̃ of the old best points the condition

f(x̃) − f̂ ≤ g(x̃)T (x̃ − x̂) ≤ ∥g(x̃)∥∥x̃ − x̂∥ (7),(9)= r0O(ε) = O(ε)
holds.

Finally, assume that f is strongly convex. If x is assumed to be fixed, the right-hand side
of (6) is a convex quadratic function with respect to y whose gradient in the components
vanishes at yi = xi − σ−1gi(x) for i = 1, . . . , n, leading to

f(y) ≥ f(x) − 1
2σ

∥g(x)∥2.

We now obtain
f(x̃) − f̂ ≤ 1

2σ
∥g(x̃)∥2 (7)= O(ε2).

(ii) Substituting x̂ for x and x̃ for y into (6), we get f(x̃) ≥ f(x̂) + σ

2 ∥x̃ − x̂∥2 such that (i)
leads to the fact that the condition

∥x̃ − x̂∥2 ≤ 2
σ

(
f(x̃) − f̂

)
≤ 1

σ2 ∥g(x̃)∥2 (7)= O(ε2)

holds. ⊓⊔
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3 Proposed VRDFON algorithm

In this section we describe the VRDFON algorithm and how it works. Until an approximate
stationary point is found, VRDFON repeatedly calls a decrease search (DS), which has a finite
number of calls to a multi line search (MLS), using an extrapolation step (EP) to leave regions
close to saddle point or maximizer. EP uses a line search condition (defined in Subsection
3.3) to accept points with low inexact function values in regions close to an approximate
stationary point.

An iteration of EP is called successful if a reduction of f̃ along a given direction is found
and unsuccessful otherwise, while an iteration of MLS is called successful if EP has a
successful iteration either along a given direction or its opposite direction is found and
unsuccessful otherwise. An iteration of DS is called successful if MLS has at least one
successful iteration. An iteration of VRDFON is called successful if DS has at least one
successful iteration.

We denote by xbest the best point found so far and by f̃best := f̃(xbest) the best inexact
function value so far, i.e., the point with the lowest inexact function value found by DS
in the final iteration. To simplify our algorithms, all tuning parameters are given once in
line 1 of VRDFON and are not mentioned as input for the other algorithms.

In line 3, VRDFON computes the inexact function value f̃(x0) at the initial point x0 and then
initializes the initial best point xbest, its inexact function value f̃best, and the initial step
size δ := δmax > 0, which is a tuning parameter. In each iteration, in line 5, VRDFON calls
DS to find a possible reduction of f̃ . Once δ is below a minimum threshold 0 < δmin < 1,
which is a tuning parameter, in line 6, VRDFON terminates. Otherwise, if the Boolean variable
successDS is false (the current iteration of VRDFON is unsuccessful), in line 7, VRDFON reduces
δ by a factor of Q > 1.

If the condition δ ≤ δmin is satisfied, in theory VRDFON finds an εω-approximate stationary
point (defined in Section 2) xbest that satisfies ∥g(xbest)∥ ≤ εω for a threshold εω; this cannot
be checked numerically since the true gradient is not available.
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Algorithm 1 VRDFON, a randomized method for noisy DFO problems
1: Tuning parameters: Q > 1 (factor for reducing δ), 0 < γrd < 1 (parameter for scaling

random directions), 0 < γ < 1 (parameter for line search), γe > 1 (factor for updating
step size inside MLS), 0 < δmin ≤ 1 (minimum threshold for δ), δmax > δmin > 0 (initial
value for δ), 0 < η < 1

2 (parameter for R), R ≥ 2 (number of random direction in each
MLS), T0 ≥ 1 (number of calls to MLS by DS).

2: Input: x0 ∈ Rn

3: Compute f̃(x0) and set xbest := x0, f̃best := f̃(x0), and δ := δmax.
4: for k = 1, 2, . . . do
5: [xbest, f̃best, successDS] =DS(xbest, f̃best, δ).
6: if δ ≤ δmin; return; end if
7: if ∼successDS then δ := δ/Q; end if
8: end for
9: Output: xbest and f̃best

Since VRDFON has 1 ≤ K < ∞ calls to DS and DS has 1 ≤ T0 < ∞ calls to MLS, VRDFON has
KT0 calls to MLS. For any given 0 < η < 1

2 , MLS uses

R =
⌈
(T0K)−1 log2 η−1

⌉
≥ 2 (11)

random directions in each iteration of MLS.

3.1 DS, a decrease search

This subsection discusses DS and how it works. The goal of DS is to find a possible decrease
in f̃ by performing MLS.

Algorithm 2 DS, a decrease search
function [xbest, f̃best, successDS] = DS(xbest, f̃best, δ)

1: Set successDS := 0, ybest := xbest, and f̃(ybest) := f̃best.
2: for t = 1, . . . , T0 do,
3: [ybest, f̃(ybest), successMLS] = MLS(ybest, f̃(ybest), δ).
4: if successMLS then successDS := 1; end if
5: end for
6: if successDS ▷ at least one reduction of f̃ was found
7: xbest := ybest and f̃best := f̃(ybest).
8: end if

In line 1 of DS, DS initially evaluates the Boolean variable successDS as false and initializes
its initial best point ybest = xbest and the corresponding function value f̃(ybest) = f̃best.
Subsequently, DS has T0 calls to MLS to find a possible reduction of f̃ . If a reduction of f̃
is found by MLS (successMLS = 1), in line 4, DS evaluates successDS as true. After the
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termination of the for loop, if successDS is true, at least one reduction of f̃ is found by
MLS and hence, in line 7, DS chooses the new best point and its function value found by
MLS. Otherwise, DS has found no decease in f̃ .

3.2 MLS, a multi line search

This subsection discusses the main component MLS of DS, whose goal is to perform extrap-
olation along scaled random directions (discussed below) or their opposite directions and
enter or move along a valley to achieve an approximate stationary point.

Algorithm 3 MLS, a multi line search
function [ybest, f̃(ybest), successMLS] = MLS(ybest, f̃(ybest), δ)

1: Set α := δ, zbest := ybest, f̃(zbest) := f̃(ybest), and successMLS := 0.
2: for r = 1, . . . , R do
3: Compute the scaled random direction p.
4: [zbest, f̃(zbest), ztrial, f̃trial, success] = EP(zbest, f̃(zbest), α, p).
5: if ∼ success, then
6: p := −p.
7: [zbest, f̃(zbest), ztrial, f̃trial, success] = EP(zbest, f̃(zbest), α, p).
8: if ∼ success, then ▷ the rth iteration is unsuccessful
9: z = z− := ztrial, f̃(z) = f̃(z−) := f̃trial.

10: if r < R then α := α/γe; end if
11: else ▷ the rth iteration is successful
12: z = z− := zbest, f̃(z) = f̃(z−) := f̃(zbest).
13: end if
14: else ▷ the rth iteration is successful
15: z = z+ := zbest, f̃(z) = f̃(z+) := f̃(zbest).
16: end if
17: if success, then successMLS = 1; end if
18: end for
19: if successMLS ▷ at least one reduction of f̃ was found
20: ybest := zbest and f̃(ybest) := f̃(zbest).
21: end if

We define a standard random direction as a random direction p drawn uniformly i.i.d.
(independent and identically distributed) in [−1

2 , 1
2 ]n. A scaled random direction is

a standard random direction p scaled by γrd/∥p∥, where 0 < γrd < 1 is a tiny tuning
parameter, resulting in ∥p∥ = γrd. The scaling of the direction p by γrd is the same as the
scaling of the direction p by δ in [6, (17)]. Therefore, our scaled random direction is the
scaled random direction of [6, (17)].

In each iteration r, MLS evaluates

z :=
{

z+ MLS is performed along p,
z− MLS is performed along −p

(12)
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and computes f̃(z) in lines 9, 12, 15. It chooses the initial extrapolation step size α = δ,
the initial best point zbest, its inexact function value f̃(zbest), and the Boolean variable
successMLS as false (no try to find possible reductions of f̃). MLS includes a for loop. In
each iteration r, in line 3, MLS computes the scaled random direction p. Then, in lines 4 and
7, EP performs extrapolation along at least one of ±p. If a reduction of f̃ is found (i.e., the
Boolean variable success is true), EP finds a reduction of f̃ and generates z in either line
12 or line 15. Otherwise, the trial point ztrial = zbest + αp is chosen as z in line 9 and the
new step size α is obtained by reducing α by a factor of γe (which is a tuning parameter)
in line 10. Once EP finds a reduction of f̃ , MLS evaluates the Boolean variable successMLS
as true in line 17. After the termination of the for loop, in line 19, if the Boolean variable
successMLS is true (i.e., in either line 4 or line 7 EP has found at least one reduction of f̃),
MLS chooses the last point accepted by EP and its function value as the new best point and
its function value.

3.3 EP, an extrapolation step

This subsection discusses the main component EP of MLS, whose goal is to discard points
located in regions near a saddle point or maximizer and accept points located in regions
near an approximate minimizer. This can be done by a line search condition.

A sufficient reduction of f̃ means that the line search condition

f̃(zbest) − f̃(zbest + αp) > γα2

holds, where 0 < γ < 1. We say that a γ-reduction is found along the search direction p.

EP tries to find a possible reduction of f̃ . As long as the line search condition holds,
extrapolation step sizes are expanded by the tuning parameter γe > 1 and the new trial
points ztrial = zbest + αp and their inexact function values f̃trial = f̃(ztrial) are computed.
Once, no more decrease in f̃ in the current iteration r is found, the line search condition is
violated and EP ends.

Since in theory f is assumed to be bounded below, EP is terminated when the line search
condition is violated. If the line search condition is violated in the first iteration, EP fails
and the Boolean variable success is evaluated as false. Otherwise, EP has at least one
reduction of f̃ , but not in f̃ of the last trial point. In this case, EP is terminated. After the
termination of EP, VRDFON is also terminated.

In practice, if VRDFON is applied to solve DFO problems with unbounded below objective
function, EP and VRDFON end when f̃trial reaches −1012.

After the termination of the while loop in EP, if success is true, the line search condition
has been violated in the last trial point and the penultimate point has been accepted as the
new best point in line 7, whose inexact function value has already been stored in f̃penult in
line 3.
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Algorithm 4 EP, an extrapolation step
function [zbest, f̃(zbest), ztrial, f̃trial, success] = EP(zbest, f̃(zbest), α, p)

1: Compute ztrial := zbest + αp and f̃trial := f̃(ztrial). Then set success = 0.
2: while f̃(zbest) − f̃trial > γα2 do
3: success := 1, f̃penult := f̃trial, and α := γeα.
4: Compute ztrial := zbest + αp and f̃trial := f̃(ztrial).
5: end while
6: if success then ▷ update the best point
7: α̃ := α/γe, f̃(zbest) := f̃penult, and zbest := zbest + α̃p.
8: end if

4 Accuracy and complexity analysis of VRDFON

In this section, we assume that the following assumptions holds.

4.1 Assumptions. Assume that (A1)–(A3) hold and δmax > δmin > 0, Q > 1, 0 < γrd < 1,
γe > 1, 0 < γ < 1, τ > τ > 0, εω > 0, defined by (5), and

τ
√

ωL−1 ≤ δmin ≤ τ
√

ωL−1. (13)

The tuning parameter γe > 1 and δ satisfy the condition

γ1−R
e δ ≥ αmin (14)

for a fixed minimum threshold 0 < αmin < ∞ and a fixed small positive integer R.

Under Assumptions 4.1, we prove that, with a given probability arbitrarily close to 1,
VRDFON terminates after at most O(nL3ε−2

ω ) function evaluations in the nonconvex case
and finds a point x satisfying (2) (see Corollary 4.6 below). Here εω is from (5) and such
a point is unknown to us because gradients and Lipschitz constants are unknown. The
order of ω in our bound is the same as in Berahas et al. [32]. In contrast to the method of
Berahas et al. [32], which uses the norm condition defined in Table 2, our line search does
not use the approximate directional derivative g̃T p in the line search condition, but γα2 with
0 < γ < 1 because the estimation of the gradient may be inaccurate in the presence of high
noise, leading to failure of the line search algorithm. However, we estimate the gradient to
generate different heuristic directions in Section 5.2. Therefore, we obtain our complexity
bound regardless of the norm condition since the nature of the line search algorithms is
different. Our bound is obtained with high probability, while the results of Berahas et al.
[32] are valid in expectation.

4.1 Complexity bound for VRDFON in the nonconvex case

This section discusses complexity bound for VRDFON in the nonconvex case.
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The first result (Proposition 4.4 below) provides complexity bound on the number of func-
tion evaluations of trial points with a reduction of f̃ evaluated by all extrapolations for the
nonconvex case.

The second result (Proposition 4.5 below) provides complexity bound on the number of
function evaluations of trial points without a reduction of f̃ evaluated by all extrapolations
for the nonconvex case.

The third result (Theorem 4.6 below) provides complexity bound on the number of function
evaluations of trial points evaluated by all extrapolations for the nonconvex case.

In the kth iteration of VRDFON, we denote by Sk := Sk
VRDFON the index set of successful

iterations of VRDFON and by Uk := Uk
VRDFON the index set of unsuccessful iterations of

it. After the termination of VRDFON, we define the two index sets of all unsuccessful and
successful iterations of VRDFON, respectively, by

Uk ⊆ U := {j1, j2, . . . , jK′} and Sk ⊆ S := {i1, i2, . . . , iK′′}.

Here K ′ = |U | (defined by (15), below) and K ′′ = |S|. As defined before (11), K is the
number of calls to DS by VRDFON and therefore K = K ′ + K ′′ < ∞. Then, the index set of
all iterations of VRDFON is formed as

U ∪ S := {k1, k2, . . . , kK}.

4.2 Proposition. Given the tuning parameter Q > 1 and a given threshold 0 < δmin < 1,
VRDFON ends after at most

K ′ :=
⌈

log(δmax/δmin)
log Q

⌉
(15)

unsuccessful iterations. Moreover,

δ−1
k = O(δ−1

min) for k ∈ U ∪ S. (16)

Proof. From the rule for updating δk in lines 3, 8, 10 of Algorithm 1 and since δk is
unchanged for k ∈ S, we obtain

δk ≥ Q−kδmax ≥ δmin for k ∈ U ∪ S.

Let jK′ be the last unsuccessful iteration. Then,

δjK′ = Q−K′
δmax ≤ δmin.

This condition results in (15) and VRDFON ends after K ′ unsuccessful iterations. Hence, the
condition

δk ≥ Q−K′
δmax for k ∈ U ∪ S

results in that condition (16) is obtained from

δ−1
k = O(QK′) (15)= O(δ−1

min) for k ∈ U ∪ S.
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⊓⊔

We denote by I the index set of all trial points generated by all extrapolations whose inexact
function values are reduced and by Ic the index set of other trial points generated by all
extrapolations whose inexact function values cannot be reduced. Moreover, we denote these
two sets by Ik and Ic

k, respectively, in the kth iterations of VRDFON.

4.3 Proposition. Let {xkℓ}ℓ≥0 be the sequence generated by VRDFON. Moreover, for ℓ ∈
I ∪ Ic, let fkℓ

:= f(xkℓ), f̃kℓ
:= f̃(xkℓ), and gkℓ

:= g(xkℓ). If Assumptions 4.1 hold then:
(i) The number of trial points of all extrapolations without reduction of f̃ is

|Ic| = O(K ′T0R). (17)

(ii) The sequence {fkℓ
}ℓ∈I satisfies

f̃kℓ
− f̃kℓ−1 > γδ2

kℓ−1
, (18)

where γ = γγ2(2−R)
e > 0.

Proof. (i) holds since VRDFON has K ′ unsuccessful iterations and T0 calls to MLS, and MLS
has R calls to EP.
(ii) Since no reduction of f̃ is found at the last points generated by all extrapolations, the
corresponding indices are not in I. From the structures of Algorithms 1–4, for each ℓ ∈ I,
there are three indices kℓ ≥ 0, rℓ ∈ {1, . . . , R} and tℓ ∈ {1, . . . , T0} satisfying

xkℓ−1 = x
kℓ−1
best = y

tℓ−1
best = z

rℓ−1
best , xkℓ = xkℓ

best = ytℓ
best = zrℓ

best = z
rℓ−1
best + αrℓ

prℓ .

According to the rule for updating α in lines 1 and 10 of MLS and (14),

αrℓ
≥ γ1−R

e δkℓ−1 . (19)

Using (19) and since kℓ is a successful iteration for VRDFON, we obtain

f̃kℓ
− f̃kℓ−1 = f̃kℓ−1 − f̃kℓ

> γα2
rℓ

≥ γ(γ1−R
e δkℓ−1)2 = γδ2

kℓ−1
.

⊓⊔

4.4 Proposition. If Assumptions 4.1 hold, the number N of function evaluations those
trial points with a reduction of f̃ evaluated by all extrapolations is at most O

(
Lω−1

)
in

the nonconvex case.

Proof. Let {xkℓ}ℓ≥0 be the sequence generated by VRDFON. The result

N = |I| = O
(
δ−2

min

)
= O

(
Lω−1

)

13



is obtained from

γ|I| ≤
∑
ℓ∈I

γ
(18)
≤

∑
k∈S

∑
ℓ∈Ik

f̃kℓ−1 − f̃kℓ

δ2
kℓ−1

(16)
≤ δ−2

min
∑
k∈S

∑
ℓ∈Ik

(f̃kℓ−1 − f̃kℓ
)

(3)
≤ δ−2

min(f0 − f̂ + 2ω).

⊓⊔

4.5 Proposition. Under Assumptions 4.1, the number N of function evaluations of all
last points generated by all extrapolations is at most O(T0R log ω−1).

Proof. Since VRDFON has at most K ′ unsuccessful iterations with at most 2T0R calls to EP,

N
(17)= O(|Ic|) = O(T0RK ′) (15)= O(T0R log δ−1

min) = O(T0R log ω−1).

⊓⊔

The following result gives complexity for VRDFON for the nonconvex case.

4.6 Corollary. Under Assumptions 4.1, the total number Ntotal of function evaluations by
VRDFON is at most O(nL3ε−2

ω ) function evaluations.

Proof. Let Ntotal = 1 + N + N . Here the first term of Ntotal is for computing f̃(x0). From
Propositions 4.4 and 4.5, the results are obtained from

Ntotal = 1 + O(Lω−1) + O(RT0 log ω−1) = O(Lω−1) (5)= O(nL3ε−2
ω ).

⊓⊔

4.2 Bound on gT p

For z± := zbest ± αp, (A1) results in

±αg(zbest)T p − 1
2Lα2∥p∥2 ≤ f(z±) − f(zbest) ≤ ±αg(zbest)T p + 1

2Lα2∥p∥2. (20)

We use (20) to generalize Proposition 2 of [6] to the noisy case. The following result shows
that if the rth iteration of MLS is unsuccessful, a useful bound for the directional derivative
can be found.

4.7 Proposition. If Assumptions 4.1 hold, then for all z ∈ Rn evaluated by (12) and
p ∈ Rn at least one of the following holds:
(i) f̃(z+) < f̃(zbest) − γα2, where z+ = zbest + αp.

14



(ii) f̃(z+) > f̃(zbest) + γα2 and f̃(z−) < f̃(zbest) − γα2, where z− = zbest − αp.

(iii) |g(zbest)T p| ≤ γα + 2ω/α + 1
2Lα∥p∥2.

Here, zbest is the old best point found by MLS.

Proof. We assume that (iii) is violated. Then, for both signs, we have

±αg(zbest)T p + 1
2Lα2∥p∥2 + 2ω < −γα2. (21)

We distinguish two cases:
Case 1. If g(zbest)T p ≤ 0, then

f̃(z+) − f̃(zbest)
(3)
≤ f(z+) − f(zbest) + 2ω

(20)
≤ αg(zbest)T p + 1

2Lα2∥p∥2 + 2ω
(21)
< −γα2 (22)

and (i) must hold.
Case 2. If g(zbest)T p ≥ 0, then

f̃(z−) − f̃(zbest)
(3)
≤ f(z−) − f(zbest) + 2ω

(20)
≤ g(zbest)T (−αp) + 1

2Lα2∥p∥2 + 2ω
(21)
< −γα2. (23)

Therefore, the second inequality in (ii) holds and the first half

f̃(z+) − f̃(zbest)
(3)
≥ f(z+) − f(zbest) − 2ω

(20)
≥ αg(zbest)T p − 1

2Lα2∥p∥2 − 2ω
(21)
> γα2

is satisfied. Hence the first inequality in (ii) holds. ⊓⊔

4.3 Bounds on ∥g∥

We write zr
best for the point among all best points zbest encountered in iterations ≤ r for

which ∥g(zbest)∥ is smallest. In practice, we do not know which of the best points is zr
best,

as gradients and Lipschitz constants are unknown.

For any p, x ∈ Rn, we define

w(p, x) := ∥g(x)∥∥p∥
2|g(x)T p|

∈ R ∪ {∞}. (24)

wEP denotes the value of w(p, x) for the search direction p and the point x evaluated in EP.
The point x is either the accepted point in each successful iteration of EP or the unaccepted
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point in each unsuccessful iteration of EP. Then, in R calls to EP by MLS, wMLS denotes the
minimum value of all values w(p, x) for the search directions p and the points x evaluated
in EP. In T0 calls to MLS by DS, wDS denotes the minimum value of all values w(p, x) for
the search directions p and the points x evaluated in EP and, in K calls to DS by VRDFON,
wVRDFON denotes the minimum value of all values w(p, x) for the search directions p and
the points evaluated in EP.

In Subsections 4.3.1–4.3.4, we find upper bounds on ∥g∥ for one of the points evaluated in
EP, MLS, DS, and VRDFON. Moreover, in Subsection 4.3.5, we find a probabilistic bound on
∥g∥ for one of the points evaluated in VRDFON.

4.3.1 A bound for the gradient of the result of EP

We first use Proposition 4.7 to get an upper bound on ∥g∥ in each unsuccessful iteration of
EP.

4.8 Lemma. In each unsuccessful iteration, EP satisfies the condition

∥g(zbest)∥ ≤ wEPΓ+(δ) with Γ+(δ) := L+δ + γR−1
e

4ω

γrdδ
. (25)

Proof. Let ∆+(α) := L+α+4ω/(γrdα). The extrapolation step size αr in iteration r satisfies

α1 := max
r=1:R

αr = δ > αR := min
r=1:R

{αr} = γ1−R
e δ

because of the rule for updating step size in line 3 of EP and since γe > 1 and R ≥ 2 from
(11). The fact that ∆+(α) for α > 0 is a convex function results in

∆+(α) ≤ max{∆+(α1), ∆+(αR)} < L+α1 + 4ω

γrdαR

= L+δ + γR−1
e

4ω

γrdδ
= Γ+(δ). (26)

Since f̃(z±) does not decrease by more than γα2 for each unsuccessful iteration of EP and
∥p∥ = γrd from the definition of the scaled random direction in Section 3.2, Proposition
4.7(iii) applies and gives

|g(zbest)T p| ≤ γα + 2ω/α + L

2 α∥p∥2 = γα + 2ω/α + L

2 γ2
rdα.

Hence

∥g(zbest)∥ = 2γ−1
rd wEP|g(zbest)T p| ≤ wEP

(
L+α + 4ω

γrdα

)

≤ wEP∆+(α)
(26)
< wEPΓ+(δ).

⊓⊔
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4.9 Proposition. Define

L− := Lγrd − 2γ/γrd = O(L), L+ := Lγrd + 2γ/γrd = O(L). (27)

If Assumptions 4.1 hold, then, in each iteration of EP, EP ends after at most

E :=
⌈(

log
√

(f(x0) − f̂ + 2ω)(δ−2γ−1)
)

/ log γe

⌉
+ 1 (28)

iterations, and satisfies the condition

∥g(zbest)∥ ≤ wEPΓ(δ) with Γ(δ) := γmax(R,E)−1
e

(
L+δ + 4ω

γrdδ

)
. (29)

Here R is from (11). Moreover, if the iteration is unsuccessful (success is false), EP ends
after one iteration (E = 1).

Proof. Put z± := zbest ± αp. We first show that EP ends with at most E iterations. From
(4), the function is bounded below and therefore extrapolation must be terminated after at
most j iterations. Since in extrapolation α is expanded by γe > 1, we have

f̃(zbest) − f̃(zbest + γj−1
e δ) ≥ γγ2(j−1)

e δ2,

so that

γ2(j−1)
e ≤ f̃(zbest) − f̃(zbest + γj−1

e δ)
δ2γ

≤ f(x0) − f̂ + 2ω

δ2γ
.

Therefore EP ends after at most 1 ≤ j ≤ E iterations; hence E computed by (28) is verified.

We now show that EP satisfies condition

∥g(zbest)∥ ≤ wEPΓ−(δ) with Γ−(δ) := L−γE−1
e δ+

4ω

γrdδ
. (30)

To do so, we define
∆−(α) := L−α + 4ω/(γrdα) (31)

and then show that
∆−(α) < Γ−(δ). (32)

The extrapolation step size αr in iteration r satisfies

αE−1 := max
r=1:R

αr = γE−1
e δ > α1 := min

r=1:R
αr = δ

because of the rule for updating step size in line 3 of EP and since γe > 1. If L− > 0, since
∆−(α) for α > 0 is a convex function, (32) is obtained from

∆−(α) ≤ max{∆−(α1), ∆−(αE−1)} < L−αE−1 + 4ω

γrdα1

= L−γE−1
e δ + 4ω

γrdδ
= Γ−(δ),
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Otherwise, L− ≤ 0 holds. Since ∆−(α) for α > 0 is a concave function, it can be easily
seen that ∆−(α) does not has a maximizer. In this case, (32) is obtained from

∆−(α) = L−α + 4ω/(γrdα) < 4ω/(γrdα) ≤ 4ω/(γrdα1) = 4ω/(γrdδ) < Γ−(δ).

In each successful iteration of EP, one of the following two cases happens:
Case 1. f̃(z+) − f̃(zbest) < −γα2, where z+ = zbest + αp is the new best point found by
EP. Then, we obtain from (20)

αg(zbest)T p − 1
2Lα2∥p∥2 ≤ f(z+) − f(zbest)

(3)
≤ f̃(z+) − f̃(zbest) + 2ω < 2ω − γα2,

so that
|g(zbest)T p| < −γα + 2ω/α + L

2 α∥p∥2 = −γα + 2ω/α + L

2 γ2
rdα. (33)

Here ∥p∥ = γrd is from the definition of the scaled random direction in Section 3.2.
Case 2. f̃(z−) − f̃(zbest) < −γα2, where z− := zbest − αp is the new best point found by
EP. Then, we obtain from (20)

−αg(zbest)T p − 1
2Lα2∥p∥2 ≤ f(z−) − f(zbest)

(3)
≤ f̃(z−) − f̃(zbest) + 2ω < 2ω − γα2,

so that condition (33) holds.

In both cases, we conclude from (24) that

∥g(zbest)∥ = ∥g(zbest)∥∥p∥
γrd

= ∥g(zbest)∥∥p∥
γrd

2|g(zbest)T p|
2|g(zbest)T p|

= 2γ−1
rd wEP|g(zbest)T p|

≤ wEP

(
L−α + 4ω

γrdα

)
= wEP∆−(α)

(32)
< wEPΓ−(δ);

hence condition (30) holds.

Together with Lemma 4.8, EP satisfies condition (29): Since L+ = max(L−, L+), (30) and
(25) imply that in each iteration

∥g(zbest)∥ ≤ wEP max(Γ+(δ), Γ−(δ)) < wEP

(
L+γE−1

e δ + γR−1
e

4ω

γrdδ

)

≤ wEPγmax(E,R)−1
e

(
L+δ + 4ω

γrdδ

)
= wEPΓ(δ),

giving condition (29). ⊓⊔

4.3.2 A bound for the gradient of the result of MLS

Here, we prove that one of the following holds:
(i) If MLS has at least one successful iteration, a γ-reduction of f̃ is found.
(ii) An upper bound on the unknown gradient norm of an old best point zbest is found.
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4.10 Theorem. If Assumptions 4.1 hold, then

min
r=1:R

∥g(zr
best)∥ ≤ wMLSΓ(δ). (34)

Here R is from (11) and Γ(δ) is from (29). Moreover, if MLS has at least one successful
iteration, then f̃ decreases by at least γα2.

Proof. We denote by zr (r = 1, 2, . . . , R) the sequence generated by MLS. For each iteration
r = 1, 2, . . . , R, we obtain from Proposition 4.9

∥g(zr−1
best)∥ ≤ wEPΓ(δ), (35)

where all zr−1
best for r = 1, 2, . . . , R have been evaluated by EP and are not necessarily distinct

since there is no guarantee that each iteration r of EP is successful. Using (35) and the
definition of wMLS, condition (34) is obtained.

If MLS has at least one successful iteration, the line search condition

f̃(zbest) − f̃(zbest + α̃p) > γα̃2 ≥ γα2

at the trial point zbest + α̃p holds; here α̃ ≥ α because of expanding step sizes in EP, see
lines 3 and 7 of EP. Consequently, f̃ decreases by at least γα2. ⊓⊔

Such a bound on ∥g∥ can be found in the recent paper by Brilli et al. [2, Proposition 3.2]
for a different deterministic derivative-free line search method.

4.3.3 A bound for the gradient of the result of DS

Here, we prove that either a γ-reduction of f̃ is found (if DS has at least one successful
iteration) or an upper bound on the unknown gradient norm of an old best point ybest is
found.

4.11 Theorem. Let f(x0) be the initial value of f . If Assumptions 4.1 hold, then:

min
t=1:T0

∥g(yt
best)∥ < wDSΓ(δ). (36)

Here, Γ(δ) is from (29). Moreover, if DS has at least one successful iteration, then it decreases
f̃ by at least γδ2, where γ := γγ2(2−R)

e > 0.

Proof. By Theorem 4.10, for any fixed t = 1, . . . , T0, we have

∥g(yt
best)∥ = min

r=1:R
∥g(zr

best)∥ ≤ wMLSΓ(δ).

Here all zr
best for r = 1, . . . , R have been evaluated by MLS, one of which with the smallest

f̃ has been chosen as yt
best for each iteration t of DS; see line 20 of MLS and line 3 of DS.

Therefore, condition (36) is obtained from condition (34) and the definition of wDS.
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If DS has at least one successful iteration, there exists a ybest = zbest (see line 20 of MLS), so
that

f̃(ybest) − f̃(ybest + α̃p) = f̃(zbest) − f̃(zbest + α̃p) > γα̃2 ≥ γα2. (37)

By setting (19) into (37), we have

f̃(ybest) − f̃(ybest + α̃p) > γα2 ≥ γ(γ1−R
e δ)2 = γδ2,

where γ := γγ2(1−R)
e . Consequently, f̃ decreases by at least γδ2.

⊓⊔

4.3.4 A bound for the gradient of the result of VRDFON

This subsection discusses complexity for VRDFON. Under Assumptions 4.1, we prove that an
upper bound for the unknown gradient norm of one of the old best point is found for the
nonconvex case.

The following result is obtained from Theorem 4.11 and Proposition 4.2.

4.12 Theorem. If Assumptions 4.1 hold, then:

min
k=0:K

∥g(xk
best)∥ = O

(
wVRDFONL

√
ω
)
. (38)

Proof. Let {xk}k≥0 be the sequence generated by VRDFON. By Theorem 4.2, VRDFON ends
after at most K iterations (K ′ unsuccessful iterations and K ′′ successful iterations). From
Theorem 4.11 for any fixed t = 1, . . . , T0, we have

∥g(xk
best)∥ = min

t=1:T0
∥g(yt

best)∥ ≤ wDSΓ(δ).

Here all yt
best for t = 1, . . . , T0 have been evaluated by DS, one of which with the smallest f̃

has been chosen as xk
best for each iteration k of VRDFON; see line 7 of DS and line 5 of VRDFON.

Therefore, condition (38) is obtained from condition (36), the definition of wVRDFON, and

min
k=0:K

∥g(xk
best)∥ ≤ wVRDFON min

k=1:K+1
Γ(δk−1). (39)

Let jK′ ∈ U be the last unsuccessful iteration of VRDFON. Then, we have

Γ(δk−1) = min
k=1:K+1

Γ(δk−1) ≤ Γ(δjK′ −1). (40)

We now reformulate condition (29) as

Γ(δk−1) := γ
max (R,Ek)−1
e ∆(δk−1) with ∆(δk−1) = L+δk−1 + 4ω

γrdδk−1
.
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Put cf :=
√

γ−1(f(x0) − f̂ + 2ω) = O(
√

ω). Since δj′
K

is the smallest value for δk for
k ∈ U ∪ S, δ−1

k−1 ≤ δ−1
j′

K−1 is obtained. Then, using conditions (16) and (28), we obtain

γ
max (R,Ek)−1
e =

O
(√

ωδ−1
j′

K−1

)
if Ek > R,

γR−1
e otherwise.

(41)

We distinguish two cases:

Case 1. The first term L+δk−1 in ∆(δk−1) dominates the second term 4ω

γrdδk−1
. Then

∆(δk−1) = O(L+δk−1)
(27)= O(Lδk−1) = O(Lδmax) = O(L).

Here δk−1 ≤ δmax holds according to the rule of updating for δk in lines 3, 8, 10 of VRDFON.

Case 2. The second term 4ω

γrdδk−1
in Γ(δk−1) dominates the first term. Then

∆(δk−1) = O(ωδ−1
k−1)

(16)= O(ωδ−1
min) (13)= O(

√
Lω).

From (41), if Ek > R, then

γ
max (R,Ek)−1
e = O

(√
ωδ−1

j′
K−1

) (16)= O(
√

ωδ−1
min) (13)= O(

√
L);

otherwise, γ
max (R,Ek)−1
e = γR−1

e is a constant. Therefore

Γ(δk−1) = γ
max (R,Ek)−1
e ∆(δk−1) = O(

√
L

√
Lω) = O(L

√
ω). (42)

which verifies (38). From (39), (40), and (42), we obtain

min
k=0:K

∥g(xk
best)∥ ≤ wVRDFON min

k=1:K+1
Γ(δk−1)

= wVRDFONΓ(δk−1) = O
(
wVRDFONL

√
ω
)
,

which verifies (38). ⊓⊔

4.3.5 A probabilistic bound

Essential for our complexity bounds is the following result (Proposition 2 in [6]) for the
unknown gradient g(x) of f(x) at x ∈ Rn. It holds for any norm; hence for any scaling
vector s ∈ Rn and shows that scaled random directions satisfy a two-sided angle condition
with probability at least 0.5.
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4.13 Proposition. Any scaled random direction p satisfies the inequality

Pr
(
∥g(x)∥∥p∥ ≤ 2

√
cn|g(x)T p|

)
≥ 1

2 (43)

with a positive constant c ≤ 12.5.

4.14 Corollary. If p is a scaled random direction and x ∈ Rn, then w(p, x) from (24)
satisfies

Pr
(
w(p, x) >

√
cn
)

<
1
2 (44)

with a positive constant c ≤ 12.5.

The condition (43) is called two-sided angle condition because we cannot check whether
any scaled random direction is a descent direction or not. Hence, instead of searching along
one ray α > 0 only, our line search allows to search the line x + αp in both directions
(α ∈ R).

4.15 Theorem. If Assumptions 4.1 hold, then for any given 0 < η < 1
2 the bound (38)

is of order O(εω) with probability ≥ 1 − η. Moreover, the bound (8) for the convex and
strongly convex cases and the bound (10) for the strongly convex case are obtained with
probability ≥ 1 − η.

Proof. By Corollary 4.14 and the definition of wEP, for each iteration of EP

Pr
(
wEP >

√
cn
)

<
1
2 .

Since MLS has R calls to DS, we obtain from the definition of wMLS and (44), for each
iteration of MLS,

Pr
(
wMLS >

√
cn
)

=
R∏

r=1
Pr
(
wEP >

√
cn
)

< 2−R. (45)

Then, since DS has T0 calls to MLS, we obtain from the definition of wDS and (45), for each
iteration of DS,

Pr
(
wDS >

√
cn
)

=
T0∏

t=1
Pr
(
wMLS >

√
cn
)

< 2−RT0 . (46)

Finally, since VRDFON has K calls to DS, we obtain from the definition of wVRDFON and (46)

Pr
(
wVRDFON >

√
cn
)

=
K∏

k=1
Pr
(
wDS >

√
cn
)

< 2−RT0K .

In other words, by the definition of R in (11), we have

Pr
(
wVRDFON ≤

√
cn
)

≥ 1 − 2−RT0K ≥ 1 − η. (47)
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From (47) and (38), the first result follows. The second and third results are obtained by
applying the first result in (8) and (10), respectively. ⊓⊔

The order of ω in the bound (38) is the same as that in the conditions from the literature
defined in Table 2.

5 Numerical performance of VRDFON

In this section, we provide numerical experiments on a number of test problems of dimen-
sions 300 < n ≤ 5000. We used all 96 noiseless problems of large dimensions 300 < n ≤ 1000
and all 90 noiseless problems of very large dimensions 1000 < n ≤ 5000. With the different
noise levels ω = 10−5, 10−4, 10−3, this produced 3 × 96 large noisy problems and 3 × 90
very large noisy problems. The test environment of Kimiaei & Neumaier [33] was used to
produce these results. The results were averaged over five runs. We compare VRDFON with
the three state-of-the-art DFO solvers, VRBBO, SDBOX, and LMMAES on noisy large and very
large test problems.

5.1 Choice of solvers

Table 1 lists 21 DFO solvers. One is our new solver VRDFON and 17 others are state-of-the-
art solvers from literature. The 3 remaing solvers subUOBYQA, subNEWUOA, and subNMSMAX
were obtained by modifying the two model-based solvers UOBYQA and NEWUOA, and the
Nelder–Mead solver NMSMAX to proceed in random subspaces.

To select the DFO solvers likely to be competitive, we made some preliminary tests by com-
paring all 21 DFO solvers listed in Table 1 on the 192 noiseless unconstrained CUTEst test
problems of small dimensions ≤ 30. With the different noise levels ω = 10−3, 10−2, 0.1, 0.9,
this produced 4 × 192 noisy problems.

The nine solvers (NOMAD, UOBYQA, NEWUOA, BCDFO, GRID, SNOBFIT, FMINUNC, DSPFD, MCS) were
ignored for solving noisy medium scale problems since they were not competitive competi-
tive or were model-based. Indeed, since model-based solvers need a large number of sample
points to construct full quadratic models, they are too slow and are not recommended to
solve noisy medium to very large scale problems.

We then compared the 11 remaining solvers (VRBBO, SDBOX, BiPopMAES, LMMAES, fMAES,
CMAES, BFO, NMSMAX, subUOBYQA, subNEWUOA, subNMSMAX) with VRDFON on all 171 noiseless
unconstrained CUTEst test problems of medium dimensions 30 < n ≤ 300. With the
different noise levels ω = 10−4, 10−3, 10−2, 0.1, this produced 4 × 171 noisy problems. The
only solvers that remained competitive were VRDFON, VRBBO, SDBOX, and LMMAES.

VRDFON was found competitive with VRBBO, SDBOX, and LMMAES on the noisy small and
medium scale problems. The other solvers were not competitive on medium scale problems.
Detailed numerical results on 1452 noisy small and mediums scale problems of dimensions

23



2 to 300 can be found in impVRDFON.pdf from the publicly available VRDFON package [34].
This file describes details of enhancements, the solvers compared, and testing and tuning
for VRDFON.

5.2 New practical enhancements

As explained in detail in [34], VRDFON uses several different directions to enrich MLS in
the presence of noise. It is well known that the complexity of randomized DFO meth-
ods is better than that of deterministic methods by a factor of n in the worst case (cf.
[27]); therefore, using random directions seems preferable to using deterministic ones. Even
better directions than random directions are random approximate coordinate directions.
Improved trust region directions are found by minimizing surrogate quadratic models in
adaptively determined subspaces within a trust region. Perturbed random directions are
perturbations of random directions by scaled approximate descent directions in adaptively
determined subspaces. VRDFON constructs surrogate quadratic models in adaptively deter-
mined subspaces that can handle medium and large scale problems. Although these models
have lower accuracy in higher dimensions, their usefulness has been confirmed in exten-
sive numerical experiments in the presence of strong noise. VRDFON changes extrapolation
step sizes heuristically when they become too small in the presence of substantial noise to
prevent generating zero steps.

5.3 Starting and stopping

The starting point: As in [6], the starting point x0 := ξ

ξi := (−1)i−1 2
2 + i

, for all i = 1, . . . , n

is chosen and the initial inexact function value f̃0 := f̃(x0), while we compute the other
inexact function values by f̃ℓ := f̃(xℓ + ξ) for all ℓ ≥ 0. The reason for this choice is that
there are some toy problems in the CUTEst library with a simple solution whose solution
can be easily guessed by the solver.

Measure for the convergence speed: The quotients

qs := (fs − fopt)/(f0 − fopt) for s ∈ S (48)

are measures to identify the convergence speed of the solver s to reach a minimum of the
smooth true function f . These quotients are not available in real applications. Here
• fs is the best function value found by the solver s,
• f0 is the function value at the starting point (common for all solvers),
• fopt is the function value at the best known point (in most cases a global minimizer or
at least a better local minimizer) found by running a sequence of gradient-based and lo-
cal/global gradient free solvers; see Appendix B in [6].
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Type of noise: In the numerical results reported here, uniform random noise is used,
which is consistent with the assumption (A3). The function values are calculated by f̃ =
f + (2 ∗ rand −1)ω, where f is the true function value and ω ≥ 0 is a noise level whose size
identifies the difficulty of the noisy problems. Here rand stands for the uniformly distributed
random number on [0, 1].

Stopping: We consider a problem solved by the solver s if qs ≤ εq and neither the
maximum number nfmax of function evaluations nor the maximum allowed time secmax in
seconds was reached, and unsolved otherwise. The following choices were found valuable
for large and very large scale noisy problems:

secmax := 420, nfmax := 500n, εq := 0.05.

εq, secmax and nfmax were chosen so that the best solver can solve more than half of the
problems.

5.4 Profiles

Efficiency and robustness: Efficiency measures the ability of a solver s ∈ S relative to
an ideal solver. The number nf of function evaluations is taken as a suitable cost measure,
and the efficiency relative to this measure is called the nf efficiency. The robustness of
a solver counts the number of problems it solves. A solver with a high number of solved
problems is called robust and a solver with a low relative cost of function evaluations is
called efficient.

Performance and data profile: Two important tools for figuring out which solver is
robust and efficient are the data profile of Moré & Wild [35] and the performance profile
of Dolan & Moré [36], respectively. S denotes the list of compared solvers and P denotes
the list of problems. The fraction of problems that the solver s can solve with κ groups of
np + 1 function evaluations is the data profile of the solver s, i.e.,

δs(κ) := 1
|P|

∣∣∣{p ∈ P
∣∣∣ crp,s := cp,s

np + 1 ≤ κ
}∣∣∣. (49)

Here np is the dimension of the problem p, cp,s is the cost measure of the solver s to
solve the problem p and crp,s is the cost ratio of the solver s to solve the problem p. The
fraction of problems that the performance ratio prp,s is at most τ is the performance profile
of the solver s, i.e.,

ρs(τ) := 1
|P|

∣∣∣{p ∈ P
∣∣∣ prp,s := cp,s

min(cp,s | s ∈ S) ≤ τ
}∣∣∣. (50)

Note that ρs(1) is the fraction of problems that the solver s wins compared to the other
solvers, while ρs(τ) (δs(κ)) is the fraction of problems for sufficiently large τ (κ) that the
solver s can solve. The data and performance profiles are based on the problem scales, but
not on the noise levels.
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Noise profiles: To identify the behaviour of the compared solvers in the presence of low
to high noise, we plot the number of problems solved and the efficiency of the compared
solvers against the noise level, yielding two noise profiles for efficiency and robustness with
respect to the noise levels.

5.5 Large scale: 300 < n ≤ 1000
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Figure 1: First row: Comparison between VRDFON and the effective solvers on the large scale
problems 300 < n ≤ 1000 for the noise levels ω ∈ {10−5, 10−4, 10−3}. Data profile δ(κ) in
dependence of a bound κ on the cost ratio while performance profile ρ(τ) in dependence
of a bound τ on the performance ratio. Problems solved by no solver are ignored. Second
row: Noisy profiles for more robust and efficient DFO solvers listed in Table 1 on large scale
problems 300 < n ≤ 1000. Here ‘# solved problems’ counts the number of solved problems
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This subsection contains a comparison between VRDFON and the three more robust and
efficient solvers (VRBBO, LMMAES, and SDBOX) on the noisy problems in large dimensions
300 < n ≤ 1000.

In terms of the number of function evaluations and for the noise levels ω ∈ {10−5, 10−4, 10−3},
The first row of Figure 1 shows the cumulative (over all noise levels used) performance and
data profiles, while its second row shows noise profiles with respect to the noise levels.

For all noise levels, VRDFON solved 236 noisy problems out of 288 noisy problems, while
VRBBO, SDBOX, and LMMAES solved 247, 246, and 216 noisy problems out of 288 noisy prob-
lems, respectively. In terms of relative cost for nf, VRDFON is the winner with 44% noisy
problems compared to the others. Thus, we conclude that VRDFON is more efficient than
others, while VRBBO and SDBOX are more robust than VRDFON.

5.6 Very large scale: 1000 < n ≤ 5000

In terms of the number of function evaluations and for the noise levels ω ∈ {10−5, 10−4, 10−3},
the first row of Figure 2 shows the cumulative (over all noise levels used) performance and
data profiles, while its second row shows noise profiles with respect to the noise levels. For
all noise levels, VRDFON solved 147 noisy problems out of 270 noisy problems, while VRBBO,
SDBOX, and LMMAES solved 173, 169, and 48 noisy problems out of 270 noisy problems, re-
spectively. In terms of relative cost for nf, VRDFON is the winner at 43% noisy problems
compared to the others. Hence, we conclude from these subfigures that VRDFON is more
efficient than others, while VRBBO and SDBOX are more robust than VRDFON.
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Figure 2: First row: Comparison between VRDFON and the effective solvers on large dimen-
sions 1000 < n ≤ 5000 for the noise levels ω ∈ {10−5, 10−4, 10−3}. Data profile δ(κ) in
dependence of a bound κ on the cost ratio while performance profile ρ(τ) in dependence
of a bound τ on the performance ratio. Problems solved by no solver are ignored. Second
row: Noisy profiles for more robust and efficient DFO solvers listed in Table 1 on the very
large scale problems 1000 < n ≤ 5000. Here ‘# solved problems’ counts the number of
solved problems.
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6 Real-life applications

This section gives a comparison between VRDFON and several stochastic DFO solvers to solve
the real-life problem MM1 from SimOpt by Dong et al. [37], available at

https://github.com/simopt-admin/simopt/wiki,

originally from Cheng & Kleijnen [38].

SimOpt is a test environment for simulation optimization problems and solvers with the
goal of promoting the development and constructive comparison of simulation optimization
solvers. In practice, SimOpt tests the performance of solvers in finite time rather than
the asymptotic results often found in the related literature. It provides a solvers library
with ten solvers, 8 of which are listed in Table 3 (except the SPSA and GASSO solvers that
were not used for our comparison because they have the lowest performance compared to
others), and a problem library with 9 test problems, where MM1 is the only unconstrained
problem. We here compare VRDFON with VRBBO and 8 solvers listed in Table 3 to solve the
MM1 problem. This problem has 3 variables and describes the parameter estimation in a
queueing problem.

As in [37], we choose a simulation budget for finite termination and evaluation between the
compared solvers so that each compared solver can find the estimated best solution before
the budget is reached. One objective function evaluation is calculated by replicating the
simulation r times and averaging the result. The simulation budget is in terms of the number
nf of objective function evaluations (i.e., nf∗ r simulation runs). A macroreplication is a
single execution of an algorithm on a given problem instance using the simulation budget.
We denote by f(xn) the true objective function value of the estimated best solution xn

visited in the first n objective function evaluations on a given macroreplication. Since xn is
random, f(xn) is a random variable. Conditional on xn, the objective function value f(xn)
is not random, but it is unlikely that we can compute it accurately, since we evaluate the
objective function by simulations.

In our experiments, we follow the testing procedure of [37]. Thus, we perform additional
replications in a post-processing step to obtain fairly precise estimates of xn conditional on
xn. These replications are not counted in the budget of the algorithm. Since the plot of
the f(xn) curve for one macroreplication is of limited value and the location of the curve is
random, it is more informative to run several macroreplications and average them to obtain
a mean performance curve.

To solve the MM1 problem, we performed 15 macroreplications of each algorithm. For each
macroreplication, we used a post-processing step to generate a sequence of estimated best
solutions xn whose objective function values f(xn) are the average of a run with r = 1 and
a run with r = 30. These post-processing replications are independent of the replications
used to determine the sequence of solutions, and they use common random numbers for all
algorithms. We then averaged the 15 estimates of f(xn) to produce the fmean(xn) curve in
the following figures. In these figures, we computed 95% normal confidence intervals around
fmean(x) by plotting fmean(x) + 1.96σ and fmean(x) − 1.96σ of the 15 (macroreplication)
samples of f(xn), where σ is the sample standard deviation and the value 1.96 is chosen
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such that 95% of N(0, 1) distributed random numbers are in [−1.96, 1.96].

Figure 3 shows a comparison between VRDFON with r = 1 and VRDFON with r = 30 (note
that for r = 30 each function value average uses a budget of 30 function evaluations;
hence curves with r = 30 start later). In this figure, VRDFON with r = 1 and VRDFON
with r = 30 are independent of each other and each have the three curves fmean (middle),
fmean(x) + 1.96σ (top) and fmean(x) − 1.96σ (bottom). From this figure, we conclude that,
for a sufficiently large budget, VRDFON with r = 30 reaches a better accuracy than VRDFON
with r = 1. Consequently, VRDFON with large replications has better performance than with
small replications. This is the result of the variance reduction effect due to the 30-fold
averaging in the oracle for the objective function.

With r = 1 and r = 30, Figure 4 shows a comparison between VRDFON and VRBBO and all 8
solvers from Table 3, and Figure 5 shows a comparison between three best solvers. From
these figures, to reach a better accuracy, we conclude that:

• With r = 1, VRDFON is the third best solver, while STRONG and SASGD are the best and
second best solvers, respectively.

• With r = 30, VRDFON is the third best solver, while VRBBO and STRONG are the best and
second best solvers, respectively.

solver algorithm
ANDFER direct search algorithm

for noisy DFO [39]
ASTRDF adaptive sampling trust-region

algorithm for stochastic DFO [40]
SASGD adaptive sampling stochastic

Gradient Descent [37]
SSSGD stopping sampling stochastic

Gradient Descent [37]
KWCDLS Kiefer-Wolfowitz SA with central

differences and line search [37]
NELDMD Nelder-Mead for

simulation optimization [41]
RANDSH random search [37]
STRONG stochastic trust-region

response-surface method [42]

Table 3: The 8 solvers from the solver library of SimOpt.
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Figure 3: Average performances (mean-confidence interval) fmean with 95% normal con-
fidence intervals (fmean(x) + λσ and fmean(x) − λσ of the 15 (macroreplication) samples
of f(xn)) around it for VERDFON with r = 1 and VERDFON with r = 30 to solve the MM1
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Figure 3.
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Figure 5: For the MM1 problem with the dimension n = 3 and nfmax = 10000, average
performances (mean confidence interval) of the 3 best solvers for r = 1 (top) and r = 30
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7 Conclusion

This paper discusses VRDFON, a generalized randomized line search algorithm for noisy
unconstrained large scale DFO problems. Complexity results for VRDFON in the nonconvex,
convex, and strongly convex cases with a given probability arbitrarily close to one are
proved.

Due to the use of quadratic models in adaptively determined subspaces and other new
heuristic techniques (discussed in impVRDFON.pdf), VRDFON is much more efficient and ro-
bust than VRBBO for small and medium scale problems. As the quality of these quadratic
models decreases with increasing dimension, VRBBO is more robust than VRDFON, but still
more efficient than VRBBO for large problems due to the use of other heuristic techniques.

As a consequence of our results, VRDFON is highly recommended for solving noisy uncon-
strained large scale problems when the computation of the function value is expensive and
efficiency is more important than robustness. It also has good performance in solving the
real-life problem MM1 [38] with large replications. This is the result of the variance reduction
effect due to the 30-fold averaging in the oracle for the objective function.

Future work could be to increase the quality of quadratic models in the subspace, so that
a new version of VRDFON can be not only the most efficient, but also the most robust for
large scale DFO problems.
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[8] S. Gratton, P. L. Toint, A. Tröltzsch, An active-set trust-region method for derivative-
free nonlinear bound-constrained optimization, Optim. Methods Softw. 26 (4-5) (2011)
873–894. doi:10.1080/10556788.2010.549231.

[9] M. J. D. Powell, UOBYQA: unconstrained optimization by quadratic approximation,
Math. Program. 92 (3) (2002) 555–582. doi:10.1007/s101070100290.

[10] M. J. D. Powell, Developments of NEWUOA for minimization without derivatives,
IMA. J. Numer. Anal. 28 (4) (2008) 649–664. doi:10.1093/imanum/drm047.

[11] W. Huyer, A. Neumaier, SNOBFIT – stable noisy optimization by branch and fit,
ACM. Trans. Math. Softw. 35 (2) (2008) 1–25. doi:10.1145/1377612.1377613.

[12] C. Elster, A. Neumaier, A grid algorithm for bound constrained optimization of noisy
functions, IMA J. Numer. Anal. 15 (4) (1995) 585–608. doi:10.1093/imanum/15.4.585.

[13] W. Huyer, A. Neumaier, Global optimization by multilevel coordinate search, J. Glob.
Optim. 14 (4) (1999) 331–355. doi:10.1023/a:1008382309369.

[14] C. Audet, J. Dennis, Jr., Mesh adaptive direct search algorithms for constrained opti-
mization, SIAM J. Optim. 17 (1) (2006) 188–217. doi:doi:10.1137/040603371.

[15] C. Audet, S. Le Digabel, V. Rochon Montplaisir, C. Tribes, The NOMAD project,
Software available at https://www.gerad.ca/nomad/.

[16] C. Audet, S. Le Digabel, C. Tribes, The Mesh Adaptive Direct Search Algorithm
for Granular and Discrete Variables, SIAM J. Optim. 29 (2) (2019) 1164–1189.
doi:10.1137/18M1175872.

[17] S. Le Digabel, Algorithm 909: NOMAD: Nonlinear optimization with the MADS al-
gorithm, ACM. Trans. Math. Softw. 37 (4) (2011) 1–15. doi:10.1145/1916461.1916468.

[18] S. Lucidi, M. Sciandrone, A derivative-free algorithm for bound constrained optimiza-
tion, Comput. Optim. Appl. 21 (2) (2002) 119–142. doi:10.1023/a:1013735414984.

[19] S. Gratton, C. W. Royer, L. N. Vicente, Z. Zhang, Direct search based on probabilistic
descent, SIAM J. Optim 25 (3) (2015) 1515–1541. doi:10.1137/140961602.

[20] M. Porcelli, P. L. Toint, Exploiting problem structure in derivative free optimization,
ACM. Trans. Math. Softw. 48 (1) (2022) 1–25. doi:10.1145/3474054.

35



[21] N. J. Higham, Optimization by direct search in matrix computations, SIAM J. Matrix
Anal. Appl. 14 (2) (1993) 317–333. doi:10.1137/0614023.

[22] A. Auger, N. Hansen, A restart CMA evolution strategy with increasing population
size, in: 2005 IEEE Congress on Evolutionary Computation, IEEE, Edinburgh, UK,
2005. doi:10.1109/cec.2005.1554902.

[23] I. Loshchilov, T. Glasmachers, H. G. Beyer, Large scale black-box optimization by
limited-memory matrix adaptation, IEEE Trans. Evol. Comput. 23 (2) (2019) 353–
358. doi:10.1109/tevc.2018.2855049.

[24] H. G. Beyer, Design principles for matrix adaptation evolution strategies, in: Proceed-
ings of the 2020 Genetic and Evolutionary Computation Conference Companion, 2020,
pp. 682–700. doi:10.1145/3377929.3389870.

[25] H. G. Beyer, B. Sendhoff, Simplify your covariance matrix adaptation evolution strat-
egy, IEEE Trans. Evol. Comput. 21 (5) (2017) 746–759. doi:10.1109/tevc.2017.2680320.

[26] E. H. Bergou, E. Gorbunov, P. Richtárik, Stochastic three points method for
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