
Numerical Algorithms manuscript No.
(will be inserted by the editor)

An improved randomized algorithm with noise level
tuning for large-scale noisy unconstrained DFO
problems

Morteza Kimiaei

the date of receipt and acceptance should be inserted later

Abstract In this paper, a new randomized solver (called VRDFON) for noisy uncon-
strained derivative-free optimization (DFO) problems is discussed. Complexity result
in the presence of noise for nonconvex functions is studied. Two effective ingredients
of VRDFON are an improved derivative-free line search algorithm with many heuristic
enhancements and quadratic models in adaptively determined subspaces. Numerical
results show that, on the large scale unconstrained CUTEst test problems contam-
inated by the absolute uniform noise, VRDFON is competitive with state-of-the-art
DFO solvers.

Keywords Noisy derivative-free optimization · heuristic optimization · randomized
line search method · complexity bound · sufficient decrease

2000 AMS Subject Classification: 90C15; 90C30; 90C56.

January 17, 2025

1 Introduction

We consider the problem of finding a minimizer of the unconstrained derivative-free
optimization (DFO) problem

min
x∈Rn

f(x), (1)

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Wien, Aus-
tria
WWW:http://www.mat.univie.ac.at/~kimiaei/
E-mail: kimiaeim83@univie.ac.at

2 Morteza Kimiaei

thoroughly discussed in the books by Audet & Hare [2] and Conn et al. [19]. Here
the smooth real-valued function f : Rn → R is known only by a noisy oracle, which,
for a given x ∈ Rn, gives an approximation f̃(x) to the exact function value f(x),
contaminated by the noise f̃(x) − f(x). This problem is called the noisy DFO
problem. We denote by g(x) the unknown exact gradient vector of f at x and by
g̃(x) its approximation. The algorithm does not use knowledge of g, the Lipschitz
constants of f , the structure of f , or the statistical properties of noise. Noise may
be deterministic (caused by modelling, truncation, and/or discretization errors) or
stochastic (caused by inaccurate measurements or rounding errors).

There are many DFO methods for solving noisy DFO problems of the form (1) (see
the survey paper by Larson et al. [33]):

• Model-based methods approximate f̃ at each trial point by an approximate
quadratic model through fitting or interpolation, find an approximate solution of
this model restricted to a region around the trial point to avoid large steps, and only
accept trial points with low inexact function values.

• Line search methods perform extrapolation steps along random or coordinate
directions or their opposite directions to accept trial points with low inexact function
values by using a line search condition.

• Direct search methods search along coordinate directions, directions from a
fixed poll set, or random directions, using a decrease condition, like the line search
condition, only to accept points with low inexact function values.

• Matrix adaptation evolution strategies repeatedly generate a finite number
of individuals, select some individuals to generate parents, and choose a new mean
for the distribution.

We propose a new randomized algorithm for noisy unconstrained DFO problems,
called Vienna noisy randomized derivative-free optimization (VRDFON). Fol-
lowing the classifications of Larson et al. [33] and Rios & Sahinidis [41], VRDFON is a
local randomized model-based line search-based solver. This solver is an improvement
of the noiseless VRBBO solver (Kimiaei & Neumaier [31]) to handle the variability of
noise intensity.

VRDFON repeatedly performs DS, a decrease search, using MLS, a multi-line search
algorithm. MLS is likely to reduce inexact function values, reaching regions close to
an approximate stationary point, and finally finding an approximate stationary point.
This can be done by performing EP, an extrapolation step, along a finite number of
random directions or their opposite directions, using a line search condition to accept
points with low inexact function values.

An implemented version of VRDFON uses the following new features:

• New heuristics are used to find and update step sizes in an implemented version of
MLS, so that step sizes are neither too small nor too large to avoid line search failure.

• Step sizes of MLS are heuristically changed at the end of an implemented version
of DS if these step sizes are too small. The goal is to avoid getting stuck before an
approximate stationary point is found.

Title Suppressed Due to Excessive Length 3

• Surrogate quadratic models are constructed in adaptively determined subspaces
that can handle medium and large scale problems.

• Several new directions (random approximate coordinate, perturbed random, and
improved trust region) are generated so that an implemented version of MLS can be
performed not only along random scaled directions required to achieve complexity
results but also along these new directions to avoid large steps, which is a source of
line search failure.

Section 2 discusses some concepts and assumptions required to obtain complexity
results for DFO methods. Then, Section 3 explains the VRDFON algorithm and its
subalgorithms (EP, MLS, and DS). In Section 4, a complexity bound on the number
of function evaluations used by VRDFON is found for the nonconvex case, and a prob-
abilistic bound on the unknown gradient norm for one of the points evaluated by
VRDFON is found for all cases (nonconvex, convex, and strongly convex). Section 5
provides a comparison between VRDFON and several state-of-the-art DFO solvers on
the large and very large scale noisy problems obtained from the noiseless uncon-
strained CUTEst test problems from the collection of Gould et al. [24]. In Section 6,
it is shown how VRDFON finds an approximate stationary point of a real-life problem.
Our findings on the features of VRDFON from numerical results are summarized in
Section 7.

2 Preliminaries

In this section, we present a list of known DFO solvers, state the assumptions required
to obtain the complexity results of DFO methods, and summarize some known limit
accuracy and complexity results.

Table 1 includes a list of deterministic or randomized DFO solvers that use at least
one of the model-based, line search-based, direct search, and evolution strategy al-
gorithms. By comparing these solvers, we can see the quality of a new composite
algorithm compared to any single algorithm that forms it or to other solvers that
use a single or composite algorithm. This helps us know how to construct a new com-
posite algorithm efficiently or robustly; for example, NOMAD and MCS use model-based
direct search algorithms that are more robust and efficient than their model-free
versions.

For DFO problems, a point satisfying

f(x) ≤ sup
{

f(y) | y ∈ Rn, f(y) ≤ f(x0), ∥g(y)∥ ≤ ε
}

, (2)

where x0 is an initial point and ∥.∥ is the Euclidean norm, is called an ε-approximate
stationary point for the DFO problem (1). The goal of a DFO solver is to find
such a stationary point. Throughout the paper ε > 0 is a minimum threshold for the
unknown gradient norm in the noiseless case.

To analyze the limit accuracy and the complexity of our algorithm (defined below)
for solving (1), we assume, like other DFO methods, see, e.g., Bergou et al. [10],

4 Morteza Kimiaei

solver model-b
ased

line sea
rch

direc
t sea

rch

evolution stra
teg

y

deter
ministi

c

randomized

Reference
BCDFO + − − − + − Gratton et al. [26]
UOBYQA + − − − + − Powell [39]
NEWUOA + − − − + − Powell [40]
SNOBFIT + − − − + − Huyer & Neumaier [29]
GRID + − − − + − Elster & Neumaier [23]
MCS + − + − + − Huyer & Neumaier [28]
NOMAD + − + − + − [3,4,15,34]
VRDFON + + − − + + present paper
subUOBYQA + − − − + − present paper
subNEWUOA + − − − + − present paper
VRBBO − + − − + + Kimiaei & Neumaier [31]
SDBOX − + − − + − Lucidi & Sciandrone [36]
FMINUNC − + − − + − Matlab Optimization Toolbox
DSPFD − − + − − + Gratton et al. [25]
BFO − − + − + + Porcelli & Toint [38]
NMSMAX − − + − + − Higham [27]
subNMSMAX − − + − + − present paper
CMAES − − − + − + Auger & Hansen [5]
LMMAES − − − + − + Loshchilov et al. [35]
fMAES − − − + − + Beyer [11]
BiPopMAES − − − + − + Beyer & Sendhoff [12]

Table 1: A list of DFO solvers needed in this paper. subUOBYQA, subNEWUOA, and
subNMSMAX are, respectively, UOBYQA, NEWUOA, and NMSMAX in random subspaces to
handle problems in medium and high dimensions.

Gratton et al. [25], and Kimiaei & Neumaier [31], that
(A1) the function f is continuously differentiable on Rn, and its gradient is Lipschitz
continuous with Lipschitz constant L,
(A2) the level set L(x0) := {x ∈ Rn | f(x) ≤ f(x0)} of f at the initial point x0 is
compact, and
(A3) the approximation f̃(x) of f at x ∈ Rn satisfies

|f̃(x) − f(x)| ≤ ω. (3)

(A2) implies that
f̂ := inf{f(x) | x ∈ Rn} = f(x̂) > −∞ (4)

for any global minimizer x̂ of (1).

In the noiseless case ω = 0, (A3) implies f̃ = f . Larson et al. [33, Table 8.1] and
Kimiaei & Neumaier [31, Tables 1–3] summarize the known results on complexity
and corresponding references: To satisfy (2) (under the assumptions (A1) and (A2)),
one needs
• O(ε−2) function evaluations for the general case,

Title Suppressed Due to Excessive Length 5

• O(ε−1) function evaluations for the convex case,
• O(log ε−1) function evaluations for the strongly convex case. In all cases, the factors
are ignored. Randomized algorithms typically have complexity bounds that are a
factor n better than those of deterministic algorithms, see [6].

For noisy DFO problems in the form (1) (ω > 0), a complexity bound of an
algorithm is an upper bound on the number of function evaluations to find an ap-
proximate stationary point x (unknown to us since L and g(x) are unknown) near a
local optimizer whose unknown exact gradient norm is below a given fixed threshold

εω := O(
√

nLω) (5)

(ω > 0 is unknown to us but appears in our complexity bound) and whose function
value f(x) satisfies (2). Under the assumption (A3), we can only expect a gradient
accuracy of at most εω. Therefore, we aim for an εω-approximate stationary point
of the noisy DFO problems (1) with ω > 0.

In the presence of noise, the limit accuracy and complexity of some algorithms
have been investigated by several researchers. We only summarize the results of
line search based algorithms; cf. Table 2. Other useful references for complexity re-
sults of stochastic DFO methods are Chen [17], Dzahini [22], and Blanchet et al.
[13].

type of noise theoretical result
deterministic nonconvex: ∥g∥ = O(

√
ω)

assumptions: (A1)–(A3)
reference Lucidi & Sciandrone [36] and Elster & Neumaier [23]
deterministic strongly convex: f − f̂ = O(ω)
assumptions: (A1)–(A3)
reference: Berahas et al. [8]
stochastic nonconvex: O(ε−2) with E(∥g∥) ≤ ε

convex: O(ε−1) with E(∥g∥) ≤ ε, E(f − f̂) ≤ ε

strongly convex: O(log ε−1) with E(∥g∥) ≤ ε, E(f − f̂) ≤ ε
assumptions: (A1)–(A3) and norm condition:

∥g̃(x) − g(x)∥ ≤ θ∥g(x)∥ for some 0 < θ < 1
reference: Berahas et al. [9]

Table 2: Known limit accuracy and complexity of noisy DFO methods regardless of L
and n. As stated in the introduction, g̃(x) stands for the estimated gradient at x and
f̂ is the function value at any global minimizer x̂. Here E denotes the expectation
value.

6 Morteza Kimiaei

The objective function f is convex if condition

f(y) ≥ f(x) + g(x)T (y − x) + 1
2σ∥y − x∥2 for x, y ∈ Rn (6)

holds for σ = 0 and it is strongly convex if (6) holds for σ > 0.

The following well-known result (cf. [31]) gives a bound for f(x̃) − f̂ in the convex
and strongly convex cases and bounds for ∥x̃ − x̂∥ in the strongly convex case. Here
f̂ = f(x̂) is from (4) and x̃ satisfies

∥g(x̃)∥ = O(ε). (7)

Proposition 1 Assume that (A1) and (A2) hold and assume that

r0 := sup
{

∥x − x̂∥ | x ∈ Rn, f(x) ≤ f(x0)
}

(8)

is finite, where x0 is the initial point and x̂ is the global minimizer. Then, if (7)
holds:
(i) In the convex and strongly convex cases

f(x̃) − f̂ =
{

O(r0ε) convex case,
O(1

2 σ−1ε2) strongly convex case.

(ii) In the strongly convex case

∥x̃ − x̂∥ = O(σ−2ε).

Here f̂ is finite by (A1) and (A2).

3 Proposed VRDFON algorithm

In this section, we describe the VRDFON algorithm and how it works. Until an ap-
proximate stationary point is found, VRDFON repeatedly calls a decrease search (DS),
which has a finite number of calls to a multi-line search (MLS), using an extrapo-
lation step (EP) to leave regions close to the saddle point or maximizer. EP uses a
line search condition (defined in Subsection 3.3) to accept points with low inexact
function values in regions close to an approximate stationary point.

An iteration of EP is called successful if a reduction of f̃ along a given direction is
found and unsuccessful otherwise, while an iteration of MLS is called successful if
EP has a successful iteration either along a given direction or its opposite direction
is found and unsuccessful otherwise. An iteration of DS is called successful if MLS
has at least one successful iteration. An iteration of VRDFON is called successful if
DS has at least one successful iteration.

Title Suppressed Due to Excessive Length 7

We denote by xbest the best point found so far and by f̃best := f̃(xbest) the best
inexact function value so far, i.e., the point with the lowest inexact function value
found by DS in the final iteration. To simplify our algorithms, all tuning parameters
are given once in line 1 of VRDFON and are not mentioned as input for the other
algorithms.

In line 3, VRDFON computes the inexact function value f̃(x0) at the initial point x0

and then initializes the initial best point xbest, its inexact function value f̃best, and
the initial step size δ := δmax > 0, which is a tuning parameter. In each iteration, in
line 5, VRDFON calls DS to find a possible reduction of f̃ . Once δ is below a minimum
threshold 0 < δmin < 1, which is a tuning parameter, in line 6, VRDFON terminates.
Otherwise, if the Boolean variable successDS is false (the current iteration of VRDFON
is unsuccessful), in line 7, VRDFON reduces δ by a factor of Q > 1.

If the condition δ ≤ δmin is satisfied, in theory VRDFON finds an εω-approximate sta-
tionary point (defined in Section 2) xbest that satisfies ∥g(xbest)∥ ≤ εω for a threshold
εω; this cannot be checked numerically since the true gradient is not available.

Algorithm 1 VRDFON, a randomized method for noisy DFO problems
1: Tuning parameters: Q > 1 (factor for reducing δ), 0 < γrd < 1 (parameter for scaling

random directions), 0 < γ < 1 (parameter for line search), γe > 1 (factor for updating step
size inside MLS), 0 < δmin ≤ 1 (the minimum threshold for δ), δmax > δmin > 0 (initial
value for δ), 0 < η < 1

2 (parameter for the number R of random directions in MLS), E ≥ 1
(maximum number of iterations for each extrapolation step), T0 ≥ 1 (number of calls to
MLS by DS).

2: Input: x0 ∈ Rn

3: Compute f̃(x0) and set xbest := x0, f̃best := f̃(x0), and δ := δmax.
4: for k = 1, 2, . . . do
5: [xbest, f̃best, successDS] =DS(xbest, f̃best, δ).
6: if δ ≤ δmin; return; end if
7: if ∼successDS then δ := δ/Q; end if
8: end for
9: Output: xbest and f̃best

Since DS has 1 ≤ T0 < ∞ calls to MLS, for any given 0 < η < 1
2 , MLS uses

R :=
⌈
(T0)−1 log2 η−1

⌉
≥ 1 (9)

random directions in each iteration.

3.1 DS, a decrease search

This subsection discusses DS and how it works. The goal of DS is to find a possible
decrease in f̃ by performing MLS.

In line 1 of DS, DS initially sets the Boolean variable successDS to be false and
initializes its initial best point ybest = xbest and the corresponding function value

8 Morteza Kimiaei

Algorithm 2 DS, a decrease search
function [xbest, f̃best, successDS] = DS(xbest, f̃best, δ)

1: Set successDS := 0, ybest := xbest, and f̃(ybest) := f̃best.
2: for t = 1, . . . , T0 do,
3: [ybest, f̃(ybest), successMLS] = MLS(ybest, f̃(ybest), δ).
4: if successMLS then successDS := 1; end if
5: end for
6: if successDS ▷ at least one reduction of f̃ was found
7: xbest := ybest and f̃best := f̃(ybest).
8: end if

f̃(ybest) = f̃best. Subsequently, DS has T0 calls to MLS to find a possible reduction of
f̃ . If a reduction of f̃ is found by MLS (successMLS = 1), in line 4, DS sets successDS
to be true. After the termination of the for loop, if successDS is true, at least one
reduction of f̃ is found by MLS and hence, in line 7, DS chooses the new best point
and its function value found by MLS. Otherwise, DS has found no decrease in f̃ .

3.2 MLS, a multi line search

This subsection discusses the main component MLS of DS, whose goal is to perform
extrapolation along scaled random directions (discussed below) or their opposite
directions and enter or move along a valley to achieve an approximate stationary
point.

Algorithm 3 MLS, a multi line search
function [ybest, f̃(ybest), successMLS] = MLS(ybest, f̃(ybest), δ)

1: Set α := δ, zbest := ybest, f̃(zbest) := f̃(ybest), and successMLS := 0.
2: for r = 1, . . . , R do
3: Compute the scaled random direction p.
4: [zbest, f̃(zbest), ztrial, f̃trial, success] = EP(zbest, f̃(zbest), α, p).
5: if ∼ success, then
6: p := −p.
7: [zbest, f̃(zbest), ztrial, f̃trial, success] = EP(zbest, f̃(zbest), α, p).
8: if ∼ success, then ▷ the rth iteration is unsuccessful
9: z = z− := ztrial, f̃(z) = f̃(z−) := f̃trial.

10: if r < R then α := α/γe; end if
11: else ▷ the rth iteration is successful
12: z = z− := zbest, f̃(z) = f̃(z−) := f̃(zbest).
13: end if
14: else ▷ the rth iteration is successful
15: z = z+ := zbest, f̃(z) = f̃(z+) := f̃(zbest).
16: end if
17: if success, then successMLS = 1; end if
18: end for
19: if successMLS ▷ at least one reduction of f̃ was found
20: ybest := zbest and f̃(ybest) := f̃(zbest).
21: end if

Title Suppressed Due to Excessive Length 9

We define a standard random direction as a random direction p drawn uniformly
i.i.d. (independent and identically distributed) in [− 1

2 , 1
2]n. A scaled random di-

rection is a standard random direction p scaled by γrd/∥p∥, where 0 < γrd < 1 is a
tiny tuning parameter, resulting in ∥p∥ = γrd. The scaling of the direction p by γrd
is the same as the scaling of the direction p by δ in [31, (17)].

In each iteration r, MLS evaluates

z :=
{

z+ MLS is performed along p,
z− MLS is performed along −p

(10)

and updates f̃(z) in lines 9, 12, and 15. It chooses the initial extrapolation step
size α = δ, the initial best point zbest, its inexact function value f̃(zbest), and the
Boolean variable successMLS as false (no try to find possible reductions of f̃). MLS
includes a for loop. In each iteration r, in line 3, MLS computes the scaled random
direction p. Then, in lines 4 and 7, EP performs extrapolation along at least one of
±p. If a reduction of f̃ is found (i.e., the Boolean variable success is true), EP finds
a reduction of f̃ and generates z in either line 12 or line 15. Otherwise, the trial point
ztrial = zbest + αp is chosen as z in line 9, and the new step size α is obtained by
reducing α by a factor of γe (which is a tuning parameter) in line 10. Once EP finds
a reduction of f̃ , MLS evaluates the Boolean variable successMLS as true in line 17.
After the termination of the for loop, in line 19, if the Boolean variable successMLS
is true (i.e., in either line 4 or line 7, EP has found at least one reduction of f̃), MLS
chooses the last point accepted by EP and its function value as the new best point
and its function value.

3.3 EP, an extrapolation step

This subsection discusses the main component EP of MLS, whose goal is to discard
points located in regions near a saddle point or maximizer and accept points lo-
cated in regions near an approximate minimizer. This can be done by a line search
condition.

A sufficient reduction of f̃ means that the line search condition

f̃(zbest) − f̃(zbest + αp) > γα2

holds, where 0 < γ < 1. We say that a γ-reduction is found along the search
direction p.

The pseudocode of the extrapolation step EP is given in Algorithm 4. EP tries to find
a possible reduction of f̃ . As long as the line search condition holds, extrapolation
step sizes are expanded by the tuning parameter γe > 1 and the new trial points
ztrial = zbest + αp and their inexact function values f̃trial = f̃(ztrial) are computed.
Once no more decrease in f̃ in the current iteration r is found, the line search
condition is violated and EP ends.

10 Morteza Kimiaei

We count by nE the number of iterations for EP. Since in theory f is assumed to be
bounded below, EP is terminated when the line search condition is violated or nE
reaches E. If EP terminates in the first iteration, EP fails and the Boolean variable
success is evaluated as false. Otherwise, EP has at least one reduction of f̃ , but not
in f̃ of the last trial point if nE < E.

The motivation for termination of EP when nE reaches E and the line search condition
still holds is that finding the minimum precisely along a search direction is not
advantageous because the subsequent line search typically takes a totally different
direction. Nevertheless, finding the minimum accurately requires an excessive number
of function evaluations, best utilized in the line searches that follow. However, to
guarantee our complexity results, E is allowed to be ∞.

In practice, if VRDFON is applied to solve DFO problems with unbounded below
objective function, EP and VRDFON end when f̃trial reaches −1012.

After the termination of the while loop in EP, if success is true, nE has reached E or
the line search condition has been violated in the last trial point, and the penultimate
point has been accepted as the new best point in line 7, whose inexact function value
has already been stored in f̃penult in line 3.

Algorithm 4 EP, an extrapolation step
function [zbest, f̃(zbest), ztrial, f̃trial, success] = EP(zbest, f̃(zbest), α, p)

1: Compute ztrial := zbest + αp and f̃trial := f̃(ztrial). Then set nE = 0 and success = 0.
2: while f̃(zbest) − f̃trial > γα2 and nE < E do
3: success := 1, nE = nE + 1; f̃penult := f̃trial, and α := γeα.
4: Compute ztrial := zbest + αp and f̃trial := f̃(ztrial).
5: end while
6: if success then ▷ update the best point
7: α̃ := α/γe, f̃(zbest) := f̃penult, and zbest := zbest + α̃p.
8: end if

4 Accuracy and complexity analysis of VRDFON

In this section, we assume that the following assumption holds.

Assumptions 1 Assume that (A1)–(A3) hold and γδ > 1, Q > 1, 0 < γrd < 1,
γe > 1, 0 < γ < 1, τ > τ > 0, εω > 0, defined by (5),

0 < δmin < δmax < γδδmin, (11)

E ≥ E :=
⌈

log
(

δ−1
min

√
γ−1(f(x0) − f̂ + 2ω)

)
/ log γe

⌉
+ 1, (12)

and
τ
√

ωL−1 ≤ δmin ≤ τ
√

ωL−1. (13)

Title Suppressed Due to Excessive Length 11

The tuning parameter γe > 1 and the step size δ satisfy the condition

γ1−R
e δmin ≥ αmin (14)

for a fixed minimum threshold 0 < αmin < ∞ and a fixed small positive integer R.

The lower bound E of E in (12) can easily be found from δ ≥ δmin, and f̂ ≤ f(ztrial) ≤
f(x0), and since the trial points ztrial evaluated by EP, except the last point, satisfy
the line search condition and the extrapolation step sizes are expanded by γe > 1.

To guarantee our complexity results (see the proof of Proposition 5 for successful
iterations, below), E must satisfy the condition (12), and E is not a large number
because it has a logarithmic form. Since f̂ is unknown to us in practice, E = ∞
works.

Under Assumption 1, we prove that, with a given probability arbitrarily close to 1,
VRDFON terminates after at most O(nL2ε−2

ω) function evaluations in the nonconvex
case and finds a point x satisfying (2) (see Corollary 1 below). Here εω is from
(5) and such a point is unknown to us because gradients and Lipschitz constants
are unknown. The order of ω in our bound is the same as in Berahas et al. [9]. In
contrast to the method of Berahas et al. [9], which uses the norm condition defined
in Table 2, our line search does not use the approximate directional derivative g̃T p

in the line search condition, but γα2 with 0 < γ < 1 because the estimation of the
gradient may be inaccurate in the presence of high noise, leading to failure of the line
search algorithm. However, we estimate the gradient to generate different heuristic
directions in Section 5.2. Therefore, we obtain our complexity bound regardless of
the norm condition, since the nature of the line search algorithms is different. Our
complexity bound is obtained with high probability, while the results of Berahas et
al. [9] are valid in expectation.

4.1 Complexity bound for VRDFON in the nonconvex case

This section discusses complexity bound for VRDFON in the nonconvex case.

The first result (Proposition 3 below) provides a complexity bound on the number
of function evaluations of trial points without a reduction of f̃ evaluated by all
extrapolations for the nonconvex case.

The second result (Proposition 4 below) provides a complexity bound on the num-
ber of function evaluations of trial points with a reduction of f̃ evaluated by all
extrapolations for the nonconvex case.

The third result (Corollary 1 below) provides a complexity bound on the number of
function evaluations of trial points evaluated by all extrapolations for the nonconvex
case.

12 Morteza Kimiaei

After the termination of VRDFON, we define the two index sets of all unsuccessful and
successful iterations of VRDFON, respectively, by

U := {j1, j2, . . . , jK′ } and S := {i1, i2, . . . , iK′′ },

where K ′ = |U | and K ′′ = |S|. Let K be the number of calls to DS by VRDFON.
Therefore, K = K ′ + K ′′ < ∞ and the index set of all iterations of VRDFON is formed
as

U ∪ S := {0, 1, 2, . . . , K − 1}.

Under Assumption 1, we define by

K ′
max :=

⌈
log(δmax/δmin)

log Q

⌉
(15)

the upper bound of K ′ and by

K ′′
max :=

⌈
γ−1τ−2L

(
ω−1(f0 − f̂) + 1

)⌉
(16)

the upper bound of K ′′. Here,

γ := γγ2(1−R)
e > 0 (17)

and all parameters Q, δmin, δmax, γ, γe, τ used in (15)–(17) were defined by Assump-
tion 1, R is from (9), and f̂ is from (4). K ′ = K ′

max since VRDFON ends after exactly
K ′ unsuccessful iterations and K ′ only depends on the number of divisions required
to reach a value < δmin, where δmin, δmax, and Q are well-defined input parameters,
unlike some of the quantities constrained in (15), which results in K ′′ ≤ K ′′

max.

Proposition 2 Assume that Assumption 1 holds,
(i) VRDFON ends after at most K ′

max unsuccessful iterations. Moreover,

δ−1
k ≤ δ−1

min for k ∈ U ∪ S \ {jK′ }, (18)

where δk is the value of δ at the end of iteration k.
(ii) VRDFON ends after at most K ′′

max successful iterations.

Proof (i) From the rule for updating δk in lines 3 and 7 of VRDFON and since δk is
unchanged for k ∈ S, we obtain

δk ≥ Q−kδmax for k ∈ U ∪ S.

Let jK′ be the last unsuccessful iteration. Then,

δj′
K

= Q−K′
δmax ≤ δmin.

This condition results in K ′ ≤ K ′
max and VRDFON ends after at most K ′

max unsuc-
cessful iterations. Hence, the condition

δk ≥ Q−K′+1δmax for k ∈ U ∪ S \ {j′
K} (19)

Title Suppressed Due to Excessive Length 13

results in that condition (18) is obtained from

δ−1
k

(19)
≤ QK′−1δ−1

max
(15)
≤ δ−1

minδmaxδ−1
max = δ−1

min for k ∈ U ∪ S \ {jK′ }.

(ii) For each successful iteration k of VRDFON, there exists an integer value r ∈
{1, 2, . . . , R} such that xk = zbest + αrpr satisfies the condition

f̃k−1 − f̃k > γα2
r . (20)

Here, xk−1 = zbest has been accepted already in line 7 of EP, f̃k−1 = f̃(xk−1) =
f̃(zbest), f̃k = f(xk) = f̃(zbest + αrpr), and αr is the value of α at the beginning of
iteration r of MLS. According to the rule for updating α in lines 1 and 10 of MLS, in
the kth iteration of VRDFON, we have

αr ≥ γ1−R
e δk−1. (21)

Applying (21) into (20), we obtain

f̃k−1 − f̃k > γα2
r ≥ γ(γ1−R

e δk−1)2 = γδ2
k−1. (22)

By taking a sum over S from both sides of (22), we obtain

γ|S| ≤
∑
k∈S

γ =
∑
k∈S

δ−2
k−1(f̃k−1 − f̃k)

(18)
≤ δ−2

min

∑
k∈S

(f̃k−1 − f̃k)

(3)
≤ δ−2

min(f0 − f̂ + ω)
(13)
≤ τ−2Lω−1(f0 − f̂ + ω) = τ−2L(ω−1(f0 − f̂) + 1)

which proves (16). ⊓⊔

We denote by I the index set of all trial points generated by all extrapolations whose
inexact function values are reduced in successful iterations of EP, and by Ic the index
set of other trial points generated by all extrapolations whose inexact function values
cannot be reduced in both successful and unsuccessful iterations of EP. Moreover, we
denote these two sets by Ik and Ic

k, respectively, in the kth iteration of VRDFON.

EP evaluates all trial points and computes their inexact function values, except the
computation of f̃(x0), which is done by VRDFON. Hence, there is no more computation
of function values by VRDFON, DS, and MLS. The sequence {xk}k≥0 is generated based
on trial points {zℓ

trial}ℓ≥0 evaluated and accepted by EP with the line search condition
used in line 2 of EP (resulting in (25), below), whose inexact function values are
reduced. Therefore, the total number of function evaluations of VRDFON is equivalent
to one (for computing f̃(x0)) plus the number of function evaluations of EP without
and with reductions of f̃ in all successful and unsuccessful iterations of EP, i.e.,

Ntotal := 1 + |Ic| + |I|. (23)

14 Morteza Kimiaei

Proposition 3 If Assumption 1 holds, then:
(i) The number of trial points evaluated by all extrapolations without reduction of f̃
in all successful and unsuccessful iterations of EP is

|Ic| = O(Lω−1). (24)

(ii) Let {zℓ
trial}ℓ≥0 be all trial points generated by all extrapolations, and let f̃ℓ :=

f̃(zℓ
trial) and f̃ℓ−1 = f̃(zbest). In the kth successful iteration of VRDFON, for ℓ ∈ Ik,

the condition
f̃ℓ − f̃ℓ−1 > γδ2

k−1 (25)

holds, where γ > 0 is from (17) and δk−1 is the value of δ at the end of (k − 1)th
iteration of VRDFON.

Proof (i) In each successful iteration of EP, EP generates at least two trial points;
the last trial point violates the line search condition (without reduction of f̃) and
therefore EP ends, while in each unsuccessful iteration of EP, EP generates only one
trial point, which violates the line search condition. The trial points evaluated by
all extrapolations without a reduction of f̃ are all points evaluated last by extrap-
olations in successful iterations of EP and all unaccepted trial points evaluated by
extrapolations in unsuccessful iterations of EP. Since VRDFON has at most K ′

max un-
successful iterations and T0 calls to MLS, and MLS has at most 2R calls to EP, the
number of function evaluations of the trial points evaluated by all extrapolations
without reduction of f̃ is bounded by

T0(2R)K ′
max

(15)= O(T0R log δ−1
min) = O

(
log

(
Lω−1))

= O(Lω−1)

in unsuccessful iterations of EP, and by

T0(2R)K ′′
max = O(2T0RLω−1) = O(Lω−1)

in successful iterations of EP since T0 and R are constants. As a consequence, in both
cases,

|Ic| = 2T0R(K ′
max + K ′′

max) = O(Lω−1).

Note that E does not appear in the two terms 2T0RK ′
max and 2T0RK ′′

max because
there is only one function evaluation at the last point generated by each extrapolation
without a reduction of f̃ in each successful iteration of EP and one function evaluation
at the point generated and rejected by each extrapolation without a reduction of f̃
in each unsuccessful iteration of EP.
(ii) Let {zℓ

trial}ℓ∈Ik
be a subsequence of {zℓ

trial}ℓ≥0, including all trial points evaluated
in line 4 of EP, which satisfies the condition

f̃ℓ−1 − f̃ℓ > γα2
r . (26)

This condition is used in line 2 of EP, where zℓ−1 = zbest has already been accepted
in line 7 of EP, f̃ℓ−1 = f̃(xℓ−1) = f̃(zbest), f̃ℓ = f(zℓ

trial) = f̃ ℓ
trial, and αr is the value

of α at the beginning of iteration r of MLS. According to the rule for updating α in
lines 1 and 10 of MLS and (14), in the kth iteration of VRDFON, condition (21) holds.
Applying (21) into (26) results in similarly (25). ⊓⊔

Title Suppressed Due to Excessive Length 15

As can be seen from Proposition 3(i), for all unsuccessful iterations of EP, the fact
that EP terminates with one trial point without a reduction of f̃ together with the
rule of updating δ to compute K ′

max, the number T0 of calls to DS by VRDFON, and
the maximum number 2R of calls to MLS by DS were used to compute |Ic|.

The following result is a result of Proposition 3(ii), counting the total number |I| of
all inexact function values f̃ℓ = f̃(xℓ

trial) at those trial points xℓ
trial with a reduction of

f̃ evaluated by all extrapolations in all successful iterations of EP. Since the sequence
{f̃ℓ}ℓ∈I satisfies the condition (25), the result |I| = O(Lω−1) is obtained below
differently from |Ic|.

Proposition 4 Let {zℓ
trial}ℓ∈I be all trial points generated by all extrapolations whose

inexact function values f̃ℓ := f̃(zℓ
trial) are reduced, satisfying the condition (25) for

all ℓ ∈ I. If Assumption 1 holds, the number of function evaluations of those trial
points with a reduction of f̃ evaluated by all extrapolations in successful iterations of
EP is at most

O(Lω−1)

in the nonconvex case.

Proof We denote by Ik the set I in the kth iteration of VRDFON. The condition

γ|I| =
∑
ℓ∈I

γ
(25)
≤

∑
k∈S

∑
ℓ∈Ik

δ−2
k−1(f̃ℓ−1 − f̃ℓ)

(18)
≤ δ−2

min

∑
k∈S

∑
ℓ∈Ik

(f̃ℓ−1 − f̃ℓ)

(3)
≤ δ−2

min(f0 − f̂ + 2ω)

implies that the result

|I| = O
(

δ−2
min(f0 − f̂ + 2ω)

)
(13)= O

(
Lω−1 + Lω−1(2ω)

)
= O(Lω−1).

Note that E does need to be computed and appeared in |I| because |I| is directly
computed instead of computing the number E of function evaluations of each ex-
trapolation. ⊓⊔

The following result gives complexity for VRDFON for the nonconvex case.

Corollary 1 Under Assumption 1, the total number Ntotal of function evaluations
by VRDFON is at most O(nL2ε−2

ω) function evaluations.

Proof The result

Ntotal
(23)= 1 + |Ic| + |I| = 1 + O(Lω−1) + O(Lω−1) = O(Lω−1) (5)= O(nL2ε−2

ω)

is obtained from Propositions 3(i) and 4. ⊓⊔

16 Morteza Kimiaei

4.2 Bound on gT p

(A1) results in

±αg(zbest)T p − 1
2Lα2∥p∥2 ≤ f(z±) − f(zbest) ≤ ±αg(zbest)T p + 1

2Lα2∥p∥2, (27)

where
z± := zbest ± αp. (28)

The following result shows that, for each iteration of EP, a useful bound for |gT p|
can be found. For successful iterations, E = ∞ is allowed to obtain an upper bound
for |gT p|, while it is not necessary to obtain such a bound for unsuccessful iterations
because for unsuccessful iterations both z− and z+ violate the line search condition,
and from these two violations such a bound can be obtained from (27). For successful
iterations, two points are also needed, violating the line search condition: the last
point discarded by the extrapolation and exactly one of z− or z+ since one of ±z is
accepted and the other is discarded.

Proposition 5 Let zbest be the old best point found by EP. If Assumption 1 holds,
then

|g(zbest)T p| ≤ γe(γ + Lγrd)α + 2ω/α (29)

for any scaled random direction p ∈ Rn.

Proof We distinguish two main cases:
Case 1. For unsuccessful iterations of EP. In this case, since z− and z+ violate the
line search condition, i.e., f̃(z±) − f̃(zbest) ≥ −γα2, where z± is from (28). Then

−γα2 ≤ f̃(z±) − f̃(zbest)
(3)
≤ f(z±) − f(zbest) + 2ω

(27)
≤ ±αg(zbest)T p + 1

2Lα2∥p∥2 + 2ω,

leading to

∓g(zbest)T p ≤ γα + 1
2Lα∥p∥2 + 2ω/α < γα + Lα∥p∥2 + 2ω/α.

Since ∥p∥ = γrd ∈ (0, 1), leading to γ2
rd < γrd, and γe > 1, we obtain

|g(zbest)T p| ≤ γe(γ + Lγrd)α + 2ω/α;

this proves condition (29). Here γe was added into the bound for |g(zbest)T p| since
it appears in the bound of |g(zbest)T p| in the next case.
Case 2. For successful iterations of EP. In this case, we distinguish two cases:
Case 2A. EP accepts z+ = zbest + αp as the new best point satisfying

f̃(z+) − f̃(zbest) < −γα2, (30)

Title Suppressed Due to Excessive Length 17

while it rejects the last point z := zbest + (γeα)p whose function value cannot be
reduced along p, i.e., the condition

f̃(z) − f̃(zbest) ≥ −γγ2
e α2 (31)

holds (according to line 7 of EP, if α is the step size of the point z+ accepted by
EP, the step size of the last point z generated by EP is γeα). From the mean value
theorem, there exists at least one point v on the line between z and zbest such that

g(v)T p ≥ −γ(γeα) (32)

holds from (31). Inserting the two terms ±g(zbest) into (32) leads to(
g(v) − g(zbest) + g(zbest)

)T
p ≥ −γγeα.

Then, by the Lipschitz continuity of g and the Cauchy–Schwarz inequality, we have

L∥v − zbest∥∥p∥ + g(zbest)T p ≥ ∥g(v) − g(zbest)∥∥p∥ + g(zbest)T p

≥ (g(v) − g(zbest))T p + g(zbest)T p ≥ −γγeα,

so that

g(zbest)T p ≥ −γγeα − L∥v − zbest∥∥p∥ = −γγeα − Lγrd∥v − zbest∥. (33)

Since an explicit form for v is needed below and since from the mean value theorem v
is on the line between z = zbest +(γeα)p and zbest, there exists a real value µ ∈ (0, 1)
such that v := zbest + (µγeα)p is defined, where γe > 1. Then, by substituting
∥p∥ = γrd and v into (33), we obtain

g(zbest)T p ≥ −γγeα − Lγrd∥µγeαp∥ > −γγeα − Lαγeγ2
rd − 2ω/α.

Since γ2
rd < γrd ∈ (0, 1) and γe > 1, we obtain

−g(zbest)T p < γe(γ + Lγrd)α + 2ω/α. (34)

On the other hand, by the assumption, the condition (30) holds. From the mean
value theorem, there exists at least one point v+ on the line between z+ and zbest
such that

g(v+)T p < −γα (35)
holds form (30). Inserting the two terms ±g(zbest) into (35) leads to(

g(v+) − g(zbest) + g(zbest)
)T

p < −γα.

From the Lipschitz continuity of g and the Cauchy–Schwarz inequality, we then
obtain

−L∥v+ − zbest∥∥p∥ + g(zbest)T p ≤ −∥g(v+) − g(zbest)∥∥p∥ + g(zbest)T p

≤ (g(v+) − g(zbest))T p + g(zbest)T p < −γα,

resulting in

g(zbest)T p < −γα + L∥v+ − zbest∥∥p∥ < γα + Lγrd∥v+ − zbest∥. (36)

18 Morteza Kimiaei

Since an explicit form for v+ is needed below and since from the mean value theorem
v+ is on the line between z+ = zbest + αp and zbest, there exists a real value λ+ ∈
(0, 1) such that v+ := zbest + (λ+α)p is defined. By inserting ∥p∥ = γrd and v+ into
(36), we have

g(zbest)T p < γα + Lγrd∥λ+αp∥ < γα + Lαγ2
rd + 2ω/α. (37)

Since γ2
rd < γrd ∈ (0, 1) and γe > 1, from (37), we obtain

g(zbest)T p < γe(γ + Lγrd)α + 2ω/α. (38)

From (34) and (38), we conclude that

|g(zbest)T p| < γe(γ + Lγrd)α + 2ω/α;

this proves condition (29).
Case 2B. In this case, EP cannot find a decrease in f̃ along direction p (i.e., the
condition (30) is violated); however, it finds a decrease in f̃ along direction −p, i.e.,
the condition

f̃(z−) − f̃(zbest) < −γα2 (39)

holds, and accepts z− = zbest − αp as the new best point, while it rejects the last
point z := zbest − (γeα)p whose function value cannot be reduced along the search
direction −p, i.e., the condition

f̃(z) − f̃(zbest) ≥ −γγ2
e α2 (40)

holds (according to line 7 of EP, if α is the step size of the point z− accepted by
EP, the step size of the last point z generated by EP is γeα). From the mean value
theorem, there exists at least one point w on the line between z and zbest such that

g(w)T p ≤ γγeα (41)

holds from (40). By inserting the two terms ±g(zbest) into (41), we have(
g(w) − g(zbest) + g(zbest)

)T
p ≤ γγeα.

From the Lipschitz continuity of g and the Cauchy–Schwarz inequality, we then get

−L∥w − zbest∥∥p∥ + g(zbest)T p ≤ −∥g(w) − g(zbest)∥∥p∥ + g(zbest)T p

≤ (g(w) − g(zbest))T p + g(zbest)T p ≤ γγeα,

resulting in

g(zbest)T p ≤ γγeα + L∥w − zbest∥∥p∥ = γγeα + Lγrd∥w − zbest∥. (42)

Since an explicit form for w is needed below and since from the mean value theorem
w is on the line between z = zbest − (γeα)p and zbest, there exists a real value
µ ∈ (0, 1) such that w := zbest − (µγeα)p is defined. Substituting ∥p∥ = γrd and w
into (42) leads to

g(zbest)T p ≤ γγeα + Lγrd∥(µγeα)p∥ < γγeα + Lαγeγ2
rd + 2ω/α.

Title Suppressed Due to Excessive Length 19

From the condition γ2
rd < γrd ∈ (0, 1), we obtain

g(zbest)T p < γe(γ + Lγrd)α + 2ω/α. (43)

On the other hand, by the assumption, the condition (39) holds. From the mean
value theorem, there exists at least one point w− on the line between z− and zbest
such that

g(w−)T p > γα (44)

holds from (39). By inserting the two terms ±g(zbest) into (44), we have

(
g(w−) − g(zbest) + g(zbest)

)T
p > γα.

Using the Lipschitz continuity of g and the Cauchy–Schwarz inequality, we then
obtain

L∥w− − zbest∥∥p∥ + g(zbest)T p ≥ ∥g(w−) − g(zbest)∥∥p∥ + g(zbest)T p

≥ (g(w−) − g(zbest))T p + g(zbest)T p > γα,

so that

g(zbest)T p > γα + L∥w− − zbest∥∥p∥ = γα − Lγrd∥w− − zbest∥. (45)

Since an explicit form for w− is needed below and since from the mean value theorem
w− is on the line between z− = zbest − αp and zbest, there exists a real value
λ− ∈ (0, 1) such that w− := zbest − (λ−α)p is defined. Inserting ∥p∥ = γrd and w−
into (45) results in

g(zbest)T p > γα − Lγrd∥λ−αp∥ > γα − Lαγ2
rd − 2ω/α

> −γα − Lαγ2
rd − 2ω/α.

The conditions γ2
rd < γrd ∈ (0, 1) and γe > 1 lead to

−g(zbest)T p < (γ + Lγrd)α + 2ω/α < γe(γ + Lγrd)α + 2ω/α. (46)

From (43) and (46), we conclude that

|g(zbest)T p| < γe(γ + Lγrd)α + 2ω/α;

this proves condition (29). ⊓⊔

20 Morteza Kimiaei

4.3 Bounds on ∥g∥

We write zr
best for the point among all best points zbest encountered in iterations

≤ r for which ∥g(zbest)∥ is smallest. In practice, we do not know which of the best
points is zr

best, as gradients and Lipschitz constants are unknown.

For any p, x ∈ Rn, we define

w(p, x) := ∥g(x)∥∥p∥
2|g(x)T p|

∈ R ∪ {∞}. (47)

For any scaled random direction p and the best point zbest evaluated by EP, we denote
the value of w(p, zbest) by wEP and the minimum value of all values w(p, zbest) by
wMLS in at most 2R calls to EP by MLS, by wDS in T0 calls to MLS by DS, and by
wVRDFON in K calls to DS by VRDFON.

In Subsections 4.3.1–4.3.4, we find upper bounds on ∥g∥ for one of the points evalu-
ated in EP, MLS, DS, and VRDFON. Moreover, in Subsection 4.3.5, we find a probabilistic
bound on ∥g∥ for one of the points evaluated in VRDFON.

4.3.1 A bound for the gradient of the result of EP

Using Proposition 5, we get an upper bound on ∥g∥ in each iteration of EP.

Proposition 6 Define

L+ := 2γe(γ−1
rd γ + L) = O(L). (48)

If Assumption 1 holds, in each iteration of EP, EP satisfies the condition

∥g(zbest)∥ ≤ wEPΓ (δ) with Γ (δ) := L+γE−1
e δ + 4ω

γrdδ
, (49)

where E ≥ 1 and γe > 1 are tuning parameters.

Proof Because of the rule for updating step size in lines 3 and 7 of EP,

δ ≤ α ≤ γE−1
e δ. (50)

From the definition of the scaled random direction in Section 3.2, ∥p∥ = γrd and
therefore

∥g(zbest)∥ = ∥g(zbest)∥∥p∥
γrd

= ∥g(zbest)∥∥p∥
γrd

2|g(zbest)T p|
2|g(zbest)T p|

(47)= 2γ−1
rd wEP|g(zbest)T p|

(29)
≤ wEP

(
2γe(γ−1

rd γ + L)α + 4ω

γrdα

)
(48)= wEP

(
L+α + 4ω

γrdα

)
(50)
< wEP

(
L+γE−1

e δ + 4ω

γrdδ

)
(49)= wEPΓ (δ)

⊓⊔

Title Suppressed Due to Excessive Length 21

4.3.2 A bound for the gradient of the result of MLS

Here, we prove that one of the following holds:
(i) If MLS has at least one successful iteration, a γ-reduction of f̃ is found.
(ii) An upper bound on the unknown gradient norm of an old best point zbest is
found.

Theorem 1 If Assumption 1 holds, then

min
r=1:R

∥g(zr
best)∥ ≤ wMLSΓ (δ). (51)

Here Γ (δ) is from (49) and zr
best is the best point entering EP at the beginning of

iteration r of MLS. Moreover, if MLS has at least one successful iteration, then f̃

decreases by at least γα2.

Proof We denote by zr (r = 1, 2, . . . , R) the sequence generated in lines 9, 12, 15 of
MLS (zr = zr

trial in line 9, but zr = zr
best in lines 12 and 15). From Proposition 6, for

each iteration r = 1, 2, . . . , R, an upper bound on the true gradient norm at the best
point zr

best is found, that is

∥g(zr
best)∥ ≤ wEPΓ (δ). (52)

Here, all zr
best for r = 1, 2, . . . , R have been evaluated by EP and are not necessarily

distinct, since there is no guarantee that each iteration r of MLS is successful. Using
(52) and the definition of wMLS, condition (51) is obtained.

If MLS has at least one successful iteration, the line search condition

f̃(zbest) − f̃(zbest + α̃p) > γα̃2 ≥ γα2

at the trial point zbest + α̃p holds; here α̃ ≥ α because of expanding step sizes in EP
(see lines 3 and 7 of EP). Consequently, f̃ decreases by at least γα2. ⊓⊔

Such a bound on ∥g∥ can be found in the recent paper by Brilli et al. [14, Proposition
3.2] for a different deterministic derivative-free line search method.

4.3.3 A bound for the gradient of the result of DS

Here, we prove that either a γ-reduction of f̃ is found (if DS has at least one successful
iteration) or an upper bound on the unknown gradient norm of an old best point
ybest is found.

Theorem 2 Let f(x0) be the initial value of f . If Assumption 1 holds, then:

min
t,r

∥g(ztr
best)∥ < wDSΓ (δ). (53)

22 Morteza Kimiaei

Here, Γ (δ) is from (49) and ztr
best is the zr

best in the iteration t of DS. Moreover, if DS

has at least one successful iteration, then it decreases f̃ by at least γδ2, where γ > 0
is from (17).

Proof By Theorem 1, we have

min
r=1:R

∥g(ztr
best)∥

(51)
≤ wMLSΓ (δ). (54)

Therefore, condition (53) is obtained from condition (54) and the definition of wDS.

If DS has at least one successful iteration, there exists a ybest = zbest (see line 20 of
MLS), so that

f̃(ybest) − f̃(ybest + α̃p) = f̃(zbest) − f̃(zbest + α̃p) > γα̃2 ≥ γα2. (55)

By setting (21) into (55), we have

f̃(ybest) − f̃(ybest + α̃p) > γα2 ≥ γ(γ1−R
e δ)2 = γδ2,

where γ = γγ
2(1−R)
e . Consequently, f̃ decreases by at least γδ2. ⊓⊔

4.3.4 A bound for the gradient of the result of VRDFON

This subsection discusses complexity for VRDFON. Under Assumption 1, we prove that
an upper bound for the unknown gradient norm of one of the old best points is found
for the nonconvex case.

The following result is obtained from Theorem 2 and Proposition 2.

Theorem 3 If Assumption 1 holds, then:

min
k,t,r

∥g(zktr
best)∥ ≤ wVRDFON max

k=1:K
Γ (δk−1) (56)

and

min
k,t,r

∥g(zktr
best)∥ = O

(
wVRDFON

√
Lω

)
, (57)

where wVRDFON = min
k=1:K

wk−1
DS , wk−1

DS denotes wDS in iteration k −1 of VRDFON, zktr
best

is the ztr
best in the iteration k of VRDFON, and δk−1 is the value of δ at the end of

(k − 1)th iteration of VRDFON.

Title Suppressed Due to Excessive Length 23

Proof We first show that condition (56) is satisfied. By Proposition 2, VRDFON ends
after at most K iterations (K ′ unsuccessful iterations and K ′′ successful iterations).
From Theorem 2, in the iteration k of VRDFON, we find

min
t,r

∥g(zktr
best)∥ ≤ wk−1

DS Γ (δk−1). (58)

Hence, condition (56) is obtained from condition (58) and the definition of wVRDFON.

We now show that condition (57) is obtained from condition (53), the definition of
wVRDFON, and condition (56). We define c1 := L+γE−1

e , c2 := 4γ−1
rd , and form

max Γ (δ) = max{c1δ + c2ωδ−1 | δ = δ0, . . . , δK−1}
s.t. δmin ≤ δ ≤ δmax.

(59)

Let δ̂ be the maximum point of (59). Since Γ (δ) is a convex function, the maximum
point δ̂ of (59) is either δ0 or δK−1. Therefore, we distinguish three main cases:
Case 1. δmin < δ̂ < δmax. In this case, we distinguish two cases:
Case 1a. δ̂ = δK−1. By the rule of updating δ in lines 3 and 7 of VRDFON, we have

δmin < δ̂ = δK−1 = QδK ≤ Qδmin,

resulting in

Γ (δ̂) = Γ (δK−1) (59)= c1δK−1 + c2ωδ−1
K−1 < c1Qδmin + c2ωδ−1

min.

Case 1b. δ̂ = δ0. Then

Γ (δ̂) (59)= c1δ̂ + c2ωδ̂−1 < c1δmax + c2ωδ−1
min

(11)
< c1γδδmin + c2ωδ−1

min.

Case 2. δ̂ = δmin. Then

Γ (δ̂) (59)= c1δ̂ + c2ωδ̂−1 = c1δmin + c2ωδ−1
min.

Case 3. δ̂ = δmax. Then

Γ (δ̂) (59)= c1δ̂ + c2ωδ̂−1 = c1δmax + c2ωδ−1
max

(11)
< c1γδδmin + c2ωδ−1

min.

Since c2, τ , τ , γδ are positive constants and

O(c1) = O(L+) = O(L), (60)

we conclude from the results of the above three main cases that

Γ (δ̂) = O(c1δmin) + O(ωδ−1
min)

(13)= O(c1τ(ωL−1)1/2) + O(ωτ−1(ωL−1)−1/2)
(60)= O(Lτ(ωL−1)1/2) + O(ωτ−1(ωL−1)−1/2)

= O(
√

Lω) + O(
√

Lω) = O(
√

Lω). (61)

24 Morteza Kimiaei

From (58) and (61), we conclude that

min
k,t,r

∥g(zktr
best)∥ ≤ min

k=1:K
wk−1

DS Γ (δk−1) ≤ min
k=1:K

wk−1
DS max

k=1:K
Γ (δk−1)

= wVRDFON max
k=1:K

Γ (δk−1) = wVRDFON max(Γ (δk−1), Γ (δ0)),

= wVRDFONΓ (δ̂) (61)= O
(

wVRDFON
√

Lω
)

,

which proves both conditions (56) and (57). ⊓⊔

For deterministic algorithms, similar results as (56) and (57) were achieved in [23,
Theorem 2 and Corollary] and [36, Proposition 3]. For the noiseless case (ω = 0),
the two conditions

Γ (δk−1) = L+γE−1
e δk−1, ∥g(xk

best)∥ = O
(

wVRDFONLδk−1

)
are obtained for each iteration k of VRDFON, while δk−1 is reduced in line 7 of VRDFON
by increasing k.

4.3.5 A probabilistic bound

Essential for our complexity bounds is the following result (Proposition 3 in [31]) for
the unknown gradient g(x) of f(x) at x ∈ Rn. It holds for any norm; hence for any
scaling vector s ∈ Rn and shows that scaled random directions satisfy a two-sided
angle condition with probability at least 0.5. We here select si = 1 for all i = 1, . . . , n.

Proposition 7 Any scaled random direction p satisfies the inequality

Pr
(

∥g(x)∥∥p∥ ≤ 2
√

cn|g(x)T p|
)

≥ 1
2 (62)

with a positive constant c ≤ 12.5.

Corollary 2 If p is a scaled random direction and x ∈ Rn, then w(p, x) from (47)
satisfies

Pr
(

w(p, x) >
√

cn
)

<
1
2 (63)

with a positive constant c ≤ 12.5.

Condition (62) is called two-sided angle condition because we cannot check
whether any scaled random direction is a descent direction or not. Hence, instead of
searching along one ray α > 0 only, our line search allows searching the line x + αp
in both directions (α ∈ R).

Title Suppressed Due to Excessive Length 25

Theorem 4 If Assumption 1 holds, for any given 0 < η < 1
2 , VRDFON evaluates f(x̃)

at some x̃ satisfying:
(i) Pr

(
∥g(x̃)∥ = O(εω)

)
≥ 1 − η in the nonconvex, convex, and strongly convex

cases.
(ii) Pr

(
f(x̃) − f̂ = O(r0εω)

)
≥ 1 − η in the convex case.

(iii) Pr
(

f(x̃) − f̂ = O
(
σ−1ε2

ω

))
≥ 1 − η and Pr

(
∥x̃ − x̂∥2 = O

(
σ−2ε2

ω

))
≥ 1 − η

in the strongly convex case.

Proof (i) By Corollary 2 and the definition of wEP, for each iteration of EP

Pr
(

wEP >
√

cn
)

<
1
2 .

Since MLS has at least R calls to EP, we obtain from the definition of wMLS and (63),
for each iteration of MLS,

Pr
(

wMLS >
√

cn
)

=
∏

Pr
(

wEP >
√

cn
)

< 2−R. (64)

Then, since DS has T0 calls to MLS, for each iteration of DS, we obtain from the
definition of wDS and (64)

Pr
(

wDS >
√

cn
)

=
T0∏

t=1

Pr
(

wMLS >
√

cn
)

< 2−RT0 . (65)

Finally, since VRDFON has K calls to DS, we obtain from the definition of wVRDFON
and (65)

Pr
(

wVRDFON >
√

cn
)

=
K∏

k=1

Pr
(

wDS >
√

cn
)

< 2−RT0K .

In other words, by the definition of R in (9), we have

Pr
(

wVRDFON ≤
√

cn
)

≥ 1 − 2−RT0K ≥ 1 − η. (66)

From (57) and (66) and since c is a positive constant, with the probability ≥ 1 − η

min
k,t,r

∥g(zktr
best)∥ = O

(
wVRDFON

√
Lω

)
= O

(√
cn

√
Lω

)
= O

(√
nLω

)
(5)= O(εω)

is obtained. Therefore, x̃ := argmin
k,t,r

∥g(zktr
best)∥ satisfies (i).

26 Morteza Kimiaei

(ii) Now assume that f is convex. Then f̂ ≥ f(x) + g(x)T (x̂ − x) for all x ∈ Rn. We
now conclude that for x̃ ∈ Rn satisfying (i) the condition

f(x̃) − f̂ ≤ g(x̃)T (x̃ − x̂) ≤ ∥g(x̃)∥∥x̃ − x̂∥ (i),(8)= O(εω)r0 = O(r0εω)

holds, which verifies (ii).

(iii) Finally, assume that f is strongly convex. If x is assumed to be fixed, the right-
hand side of (6), that is,

f(y) ≥ f(x) + g(x)T (y − x) + 1
2σ∥y − x∥2 for x, y ∈ Rn

is a convex quadratic function with respect to y whose gradient vanishes at y =
x − σ−1g(x), leading to

f(y) ≥ f(x) − (2σ)−1∥g(x)∥2. (67)

The following results are obtained by substituting x̃ for x and x̂ for y in (67) and x̂
for x and x̃ for y in (6), respectively,

f(x̃) − f̂ ≤ (2σ)−1∥g(x̃)∥2 (i)= O
(
σ−1ε2

ω

)
,

f(x̃) ≥ f̂ + σ

2 ∥x̃ − x̂∥2, (68)

so that

∥x̃ − x̂∥2
(68)
≤ 2σ−1

(
f(x̃) − f̂

)
≤ σ−2∥g(x̃)∥2 (i)= O

(
σ−2ε2

ω

)
holds. Hence, both conditions in (iii) are verified. ⊓⊔

Since gradients and Lipschitz constants are never computed, it is impossible to say
which point satisfies (53), (56), (57), and Theorem 4. However, the result implies that
the final best point has a function value equal to or better than the function value
at some point with a small gradient. When gradients are small, only near a global
optimizer, VRDFON will find a point close to the local optimizer. If some iteration
passes close to a non-global local optimizer or a saddle point, VRDFON may escape its
neighborhood. In such a case, convergence to a point with a small gradient can be
obtained only by a variant of VRDFON with restarts. This has also been discussed in
[31].

The order of ω in the bound obtained in Theorem 4(i) is the same as that in the
conditions from the literature defined in Table 2.

Title Suppressed Due to Excessive Length 27

5 Numerical performance of VRDFON

In this section, we provide numerical experiments on a number of test problems of
dimensions 300 < n ≤ 5000. We used all 96 noiseless problems of large dimensions
300 < n ≤ 1000 and all 90 noiseless problems of very large dimensions 1000 < n ≤
5000. With the different noise levels ω = 10−5, 10−4, 10−3, this produced 3×96 large
noisy problems and 3×90 very large noisy problems. The test environment of Kimiaei
& Neumaier [32] was used to produce these results. The results were averaged over
five runs. We compare VRDFON with the three state-of-the-art DFO solvers, VRBBO,
SDBOX, and LMMAES on noisy large and very large test problems.

5.1 Choice of solvers

Table 1 lists 21 DFO solvers. One is our new solver VRDFON (with default parameters
discussed in impVRDFON.pdf [30]) and 17 others are state-of-the-art solvers from
literature. The 3 remaining solvers subUOBYQA, subNEWUOA, and subNMSMAX were
obtained by modifying the two model-based solvers UOBYQA and NEWUOA, and the
Nelder–Mead solver NMSMAX to proceed in random subspaces.

To select the DFO solvers likely to be competitive, we made some preliminary tests
by comparing all 21 DFO solvers listed in Table 1 on the 192 noiseless unconstrained
CUTEst test problems of small dimensions ≤ 30. With the different noise levels ω =
10−3, 10−2, 0.1, 0.9, this produced 4 × 192 noisy problems.

The nine solvers (NOMAD, UOBYQA, NEWUOA, BCDFO, GRID, SNOBFIT, FMINUNC, DSPFD,
MCS) were ignored for solving noisy medium scale problems since they were not
competitive or were model-based. Indeed, since model-based solvers need a large
number of sample points to construct full quadratic models, they are too slow and
are not recommended to solve noisy medium to very large scale problems.

We then compared the 11 remaining solvers (VRBBO, SDBOX, BiPopMAES, LMMAES,
fMAES, CMAES, BFO, NMSMAX, subUOBYQA, subNEWUOA, subNMSMAX) with VRDFON on all
171 noiseless unconstrained CUTEst test problems of medium dimensions 30 < n ≤
300. With the different noise levels

ω = 10−4, 10−3, 10−2, 0.1,

this produced 4 × 171 noisy problems. The only solvers that remained competitive
were VRDFON, VRBBO, SDBOX, and LMMAES.

VRDFON was found competitive with VRBBO, SDBOX, and LMMAES on the noisy small
and medium scale problems. The other solvers were not competitive on medium
scale problems. Detailed numerical results on 1452 noisy small and medium scale
problems of dimensions 2 to 300 can be found in impVRDFON.pdf from the publicly
available VRDFON package [30]. This file describes details of enhancements, the solvers
compared, and testing and tuning for VRDFON.

28 Morteza Kimiaei

5.2 New practical enhancements

As explained in detail in [30], to improve MLS in the presence of noise, VRDFON uses sev-
eral different directions (scaled random, random approximate coordinate, improved
trust region, and perturbed random), constructs low-dimensional quadratic models,
and changes step sizes in a heuristic way.

To take advantage of both random directions (the complexity of randomized DFO
methods is better than that of deterministic methods by a factor of n in the worst
case; cf. [6]) and coordinate directions (at least one of the coordinate directions
has a good angle with the gradient), random approximate coordinate directions are
generated.

To avoid large steps and algorithm failure, improved trust region directions are found
by minimizing surrogate quadratic models in adaptively determined subspaces within
a trust region.

Because of noise, the approximate gradient may not be a reliable approximation. To
increase the chance of a useful direction, perturbed random directions are pertur-
bations of random directions by scaled approximate steepest descent directions in
adaptively determined subspaces.

The two other improvements for VRDFON are the construction of low-dimensional
surrogate quadratic models and the change of extrapolation step sizes. To handle
medium and large scale problems, VRDFON constructs surrogate quadratic models
in adaptively determined subspaces. Although these models have lower accuracy
in higher dimensions, their usefulness has been confirmed in extensive numerical
experiments in the presence of strong noise. To avoid zero steps, which are one of the
sources of line search failure, VRDFON changes extrapolation step sizes heuristically.

5.3 Starting and stopping

The starting point: As in [31], the starting point x0 := ξ

ξi := (−1)i−1 2
2 + i

, for all i = 1, . . . , n

is chosen, and its inexact function value f̃0 := f̃(x0) is computed, while the other
inexact function values are computed by f̃ℓ := f̃(xℓ + ξ) for all ℓ ≥ 0. The reason for
this choice is that there are some toy problems in the CUTEst library with a simple
solution that can be easily guessed by the solver.

Measure for the convergence speed: The quotients

qs := (fs − fopt)/(f0 − fopt) for s ∈ S (69)

are measures to identify the convergence speed of the solver s to reach a minimum
of the smooth true function f . These quotients are not available in real applications.

Title Suppressed Due to Excessive Length 29

Here
• fs is the best function value found by the solver s,
• f0 is the function value at the starting point (common for all solvers),
• fopt is the function value at the best-known point (in most cases a global minimizer
or at least a better local minimizer) found by running a sequence of gradient-based
and local/global gradient-free solvers; see Appendix B in [31].

Type of noise: In the numerical results reported here, uniform random noise is used,
which is consistent with the assumption (A3). The function values are calculated by
f̃ = f + (2 ∗ rand −1)ω, where f is the true function value and ω ≥ 0 is a noise level
whose size identifies the difficulty of the noisy problems. Here, rand stands for the
uniformly distributed random number on [0, 1].

Stopping: We consider a problem solved by the solver s if qs ≤ εq and neither
the maximum number nfmax of function evaluations nor the maximum allowed time
secmax in seconds was reached, and unsolved otherwise. The following choices were
found valuable for large and very large scale noisy problems:

secmax := 420, nfmax := 500n, εq := 0.05.

εq, secmax and nfmax were chosen so that the best solver can solve more than half
of the problems.

5.4 Profiles

Efficiency and robustness: Efficiency measures the ability of a solver s ∈ S rela-
tive to an ideal solver. The number nf of function evaluations is taken as a suitable
cost measure, and the efficiency relative to this measure is called the nf efficiency.
The robustness of a solver counts the number of problems it solves. A solver with
a high number of solved problems is called robust and a solver with a low relative
cost of function evaluations is called efficient.

Performance and data profile: Two important tools for figuring out which solver
is robust and efficient are the data profile of Moré & Wild [37] and the performance
profile of Dolan & Moré [20], respectively. S denotes the list of compared solvers and
P denotes the list of problems. The fraction of problems that the solver s can solve
with κ groups of np + 1 function evaluations is the data profile of the solver s, i.e.,

δs(κ) := 1
|P|

∣∣∣{p ∈ P
∣∣∣ crp,s := cp,s

np + 1 ≤ κ
}∣∣∣. (70)

Here np is the dimension of the problem p, cp,s is the cost measure of the solver
s to solve the problem p and crp,s is the cost ratio of the solver s to solve the
problem p. The fraction of problems that the performance ratio prp,s is at most τ is
the performance profile of the solver s, i.e.,

ρs(τ) := 1
|P|

∣∣∣{p ∈ P
∣∣∣ prp,s := cp,s

min(cp,s | s ∈ S) ≤ τ
}∣∣∣. (71)

30 Morteza Kimiaei

Note that ρs(1) is the fraction of problems that the solver s wins compared to the
other solvers, while ρs(τ) (δs(κ)) is the fraction of problems for sufficiently large τ
(κ) that the solver s can solve. The data and performance profiles are based on the
problem scales, but not on the noise levels.

Noise profiles: To identify the behavior of the compared solvers in the presence of
low to high noise, we plot the number of problems solved and the efficiency of the
compared solvers against the noise level, yielding two noise profiles for efficiency and
robustness with respect to the noise levels.

5.5 Large scale: 300 < n ≤ 1000

This subsection contains a comparison between VRDFON and the three more robust
and efficient solvers (VRBBO, LMMAES, and SDBOX) on the noisy problems in large
dimensions 300 < n ≤ 1000.

In terms of the number of function evaluations and for the noise levels

ω ∈ {10−5, 10−4, 10−3},

the first row of Figure 1 shows the cumulative (over all noise levels used) performance
and data profiles, while its second row shows noise profiles with respect to the noise
levels.

For all noise levels, VRDFON solved 236 noisy problems out of 288 noisy problems,
while VRBBO, SDBOX, and LMMAES solved 247, 246, and 216 noisy problems out of 288
noisy problems, respectively. In terms of relative cost for nf, VRDFON is the winner
with 44% noisy problems compared to the others. Thus, we conclude that VRDFON is
more efficient than others, while VRBBO and SDBOX are more robust than VRDFON.

Title Suppressed Due to Excessive Length 31

100 101 102 103

Performance ratio,

0

0.2

0.4

0.6

0.8

1

(
):

 P
e

rf
o

rm
a

n
c
e

 p
ro

fi
le

s

0 100 200 300 400 500

Cost ratio,

0

0.2

0.4

0.6

0.8

1

(
):

 D
a

ta
 p

ro
fi
le

s

1e-05 0.0001 0.001

 noise level

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 n
f

e
ff

ic
ie

n
c
y

VRDFON

VRBBO

LMMAES

SDBOX

1e-05 0.0001 0.001

 noise level

0

10

20

30

40

50

60

70

80

90
 n

u
m

b
e
r

o
f

s
o

lv
e
d

 p
ro

b
le

m
s

VRDFON

VRBBO

LMMAES

SDBOX

Fig. 1: First row: Comparison between VRDFON and the effective solvers on the large
scale problems 300 < n ≤ 1000 for the noise levels ω ∈ {10−5, 10−4, 10−3}. Data
profile δ(κ) in dependence of a bound κ on the cost ratio, while performance profile
ρ(τ) in dependence of a bound τ on the performance ratio. Problems solved by no
solver are ignored. Second row: Noisy profiles for more robust and efficient DFO
solvers listed in Table 1 on large scale problems 300 < n ≤ 1000. Here ‘# solved
problems’ counts the number of solved problems.

32 Morteza Kimiaei

5.6 Very large scale: 1000 < n ≤ 5000

100 101 102 103

Performance ratio,

0

0.2

0.4

0.6

0.8

1

(
):

 P
e

rf
o

rm
a

n
c
e

 p
ro

fi
le

s

0 100 200 300 400 500

Cost ratio,

0

0.2

0.4

0.6

0.8

1

(
):

 D
a
ta

 p
ro

fi
le

s

1e-05 0.0001 0.001

 noise level

0

0.1

0.2

0.3

0.4

0.5

0.6

 n
f

e
ff

ic
ie

n
c

y

VRDFON

VRBBO

LMMAES

SDBOX

1e-05 0.0001 0.001

 noise level

0

10

20

30

40

50

60

70

 n
u

m
b

e
r

o
f

s
o

lv
e

d
 p

ro
b

le
m

s

VRDFON

VRBBO

LMMAES

SDBOX

nf efficiency # solved problems

Fig. 2: First row: Comparison between VRDFON and the effective solvers on large
dimensions 1000 < n ≤ 5000 for the noise levels ω ∈ {10−5, 10−4, 10−3}. Data
profile δ(κ) in dependence of a bound κ on the cost ratio, while performance profile
ρ(τ) in dependence of a bound τ on the performance ratio. Problems solved by no
solver are ignored. Second row: Noisy profiles for more robust and efficient DFO
solvers listed in Table 1 on the very large scale problems 1000 < n ≤ 5000. Here ‘#
solved problems’ counts the number of solved problems.

In terms of the number of function evaluations and for the noise levels

ω ∈ {10−5, 10−4, 10−3},

the first row of Figure 2 shows the cumulative (over all noise levels used) performance
and data profiles, while its second row shows noise profiles with respect to the noise

Title Suppressed Due to Excessive Length 33

levels. For all noise levels, VRDFON solved 147 noisy problems out of 270 noisy prob-
lems, while VRBBO, SDBOX, and LMMAES solved 173, 169, and 48 noisy problems out
of 270 noisy problems, respectively. In terms of relative cost for nf, VRDFON is the
winner at 43% noisy problems compared to the others. Hence, we conclude from
these subfigures that VRDFON is more efficient than others, while VRBBO and SDBOX
are more robust than VRDFON.

6 Real-life applications

This section gives a comparison between VRDFON and several stochastic DFO solvers
to solve the real-life problem MM1 from SimOpt by Dong et al. [21], available at

https://github.com/simopt-admin/simopt/wiki,

originally from Cheng & Kleijnen [18].

SimOpt is a test environment for simulation optimization problems and solvers with
the goal of promoting the development and constructive comparison of simulation
optimization solvers. In practice, SimOpt tests the performance of solvers in finite
time rather than the asymptotic results often found in the related literature. It
provides a solvers library with ten solvers, 8 of which are listed in Table 3 (except
the SPSA and GASSO solvers that were not used for our comparison because they
have the lowest performance compared to others), and a problem library with 9 test
problems, where MM1 is the only unconstrained problem. We here compare VRDFON
with VRBBO and 8 solvers listed in Table 3 to solve the MM1 problem. This problem
has 3 variables and describes the parameter estimation in a queueing problem.

As in [21], we choose a simulation budget for finite termination and evaluation be-
tween the compared solvers so that each compared solver can find the estimated best
solution before the budget is reached. One objective function evaluation is calculated
by replicating the simulation r times and averaging the result. The simulation budget
is in terms of the number nf of objective function evaluations (i.e., nf ∗ r simulation
runs). A macroreplication is a single execution of an algorithm on a given problem
instance using the simulation budget. We denote by f(xn) the true objective func-
tion value of the estimated best solution xn visited in the first n objective function
evaluations on a given macroreplication. Since xn is random, f(xn) is a random vari-
able. Conditional on xn, the objective function value f(xn) is not random, but it is
unlikely that we can compute it accurately, since we evaluate the objective function
by simulations.

In our experiments, we follow the testing procedure of [21]. Thus, we perform ad-
ditional replications in a post-processing step to obtain fairly precise estimates of
xn conditional on xn. These replications are not counted in the budget of the al-
gorithm. Since the plot of the f(xn) curve for one macroreplication is of limited
value and the location of the curve is random, it is more informative to run several
macroreplications and average them to obtain a mean performance curve.

To solve the MM1 problem, we performed 15 macroreplications of each algorithm.
For each macroreplication, we used a post-processing step to generate a sequence of

34 Morteza Kimiaei

estimated best solutions xn whose objective function values f(xn) are the average
of a run with r = 1 and a run with r = 30. These post-processing replications are
independent of the replications used to determine the sequence of solutions, and
they use common random numbers for all algorithms. We then averaged the 15
estimates of f(xn) to produce the fmean(xn) curve in the following figures. In these
figures, we computed 95% normal confidence intervals around fmean(x) by plotting
fmean(x)+1.96σ and fmean(x)−1.96σ of the 15 (macroreplication) samples of f(xn),
where σ is the sample standard deviation and the value 1.96 is chosen such that 95%
of N(0, 1) distributed random numbers are in [−1.96, 1.96].

Figure 3 shows a comparison between VRDFON with r = 1 and VRDFON with r = 30
(note that for r = 30 each function value average uses a budget of 30 function
evaluations; hence curves with r = 30 start later). In this figure, VRDFON with r = 1
and VRDFON with r = 30 are independent of each other and each have the three
curves fmean (middle), fmean(x) + 1.96σ (top) and fmean(x) − 1.96σ (bottom). From
this figure, we conclude that, for a sufficiently large budget, VRDFON with r = 30
reaches a better accuracy than VRDFON with r = 1. Consequently, VRDFON with large
replications has better performance than with small replications. This is the result
of the variance reduction effect due to the 30-fold averaging in the oracle for the
objective function.

With r = 1 and r = 30, Figure 4 shows a comparison between VRDFON and VRBBO
and all 8 solvers from Table 3, and Figure 5 shows a comparison between the three
best solvers. From these figures, to reach better accuracy, we conclude that:

• With r = 1, VRDFON is the third best solver, while STRONG and SASGD are the best
and second best solvers, respectively.

• With r = 30, VRDFON is the third best solver, while VRBBO and STRONG are the best
and second best solvers, respectively.

solver algorithm
ANDFER direct search algorithm

for noisy DFO [1]
ASTRDF adaptive sampling trust-region

algorithm for stochastic DFO [42]
SASGD adaptive sampling stochastic

Gradient Descent [21]
SSSGD stopping sampling stochastic

Gradient Descent [21]
KWCDLS Kiefer-Wolfowitz SA with central

differences and line search [21]
NELDMD Nelder-Mead for

simulation optimization [7]
RANDSH random search [21]
STRONG stochastic trust-region

response-surface method [16]

Table 3: The 8 solvers from the solver library of SimOpt.

Title Suppressed Due to Excessive Length 35

10
1

10
2

10
3

10
4

Budget

-1

-0.5

0

0.5

1

1.5

L
o

g
1

0
 O

b
je

c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

VRDFON r=1

VRDFON r=30

Fig. 3: Average performances (mean-confidence interval) fmean with 95% normal con-
fidence intervals (fmean(x)+1.96σ and fmean(x)−1.96σ of the 15 (macroreplication)
samples of f(xn)) around it for VERDFON with r = 1 and VERDFON with r = 30 to
solve the MM1 problem with the dimension n = 3 and nfmax = 10000. Here, σ is
the sample standard deviation. Moreover, VERDFON with r = 1 and VERDFON with
r = 30 were performed independently. In both cases, we show the three curves fmean
(middle), fmean(x) + 1.96σ (top), and fmean(x) − 1.96σ (bottom).

36 Morteza Kimiaei

10
0

10
2

10
4

Budget

-1

-0.5

0

0.5

1

1.5

Lo
g1

0
O

bj
ec

tiv
e

F
un

ct
io

n
V

al
ue

VRDFON r=1

VRBBO r=1

NELDMD r=1

RANDSH r=1

ANDFER r=1

SSSGD r=1

SASGD r=1

STRONG r=1

KWCDLS r=1

ASTRDF r=1

10
2

10
3

10
4

Budget

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Lo
g1

0
O

bj
ec

tiv
e

F
un

ct
io

n
V

al
ue

VRDFON r=30

VRBBO r=30

NELDMD r=30

RANDSH r=30

ANDFER r=30

SSSGD r=30

SASGD r=30

STRONG r=30

KWCDLS r=30

ASTRDF r=30

Fig. 4: For the MM1 problem with the dimension n = 3 and nfmax = 10000, average
performances of all 10 solvers for r = 1 (top) and r = 30 (bottom). Other details are
as in Figure 3.

Title Suppressed Due to Excessive Length 37

10
1

10
2

10
3

10
4

Budget

-1

-0.5

0

0.5

1

1.5

Lo
g1

0
O

bj
ec

tiv
e

F
un

ct
io

n
V

al
ue

VRDFON r=1

STRONG r=1

SASGD r=1

10
2

10
3

10
4

Budget

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Lo
g1

0
O

bj
ec

tiv
e

F
un

ct
io

n
V

al
ue

VRDFON r=30

VRBBO r=30

STRONG r=30

Fig. 5: For the MM1 problem with the dimension n = 3 and nfmax = 10000, average
performances (mean confidence interval) of the 3 best solvers for r = 1 (top) and
r = 30 (bottom). Other details are as in Figure 3.

38 Morteza Kimiaei

7 Conclusion

This paper discusses VRDFON, a generalized randomized line search algorithm for
noisy unconstrained large scale DFO problems. Complexity results for VRDFON in the
nonconvex, convex, and strongly convex cases with a given probability arbitrarily
close to one are proved.

Due to the use of quadratic models in adaptively determined subspaces and other new
heuristic techniques (discussed in impVRDFON.pdf), VRDFON is much more efficient
and robust than VRBBO for small and medium scale problems. As the quality of these
quadratic models decreases with increasing dimension, VRBBO is more robust than
VRDFON, but still more efficient than VRBBO for large problems due to the use of other
heuristic techniques.

As a consequence of our results, VRDFON is highly recommended for solving noisy
unconstrained large scale problems when the computation of the function value is
expensive and efficiency is more important than robustness. It also has good perfor-
mance in solving the real-life problem MM1 [18] with large replications. This is the
result of the variance reduction effect due to the 30-fold averaging in the oracle for
the objective function.

Future work could be to increase the quality of quadratic models in the subspace, so
that a new version of VRDFON can be not only the most efficient, but also the most
robust for large scale DFO problems.

Acknowledgment. Thanks also to Giampaolo Liuzzi for preparing a MEX file for
calling UOBYQA from Matlab and to Arnold Neumaier for useful discussions. The
author appreciates the unknown referee’s valuable and profound comments.

Funding. The author acknowledges the financial support of the Doctoral Program
Vienna Graduate School on Computational Optimization (VGSCO) funded by the
Austrian Science Foundation under Project No W1260-N35.

Data Availability. The VRDFON package is available at [30], CUTEst is available
at https://github.com/ralna/CUTEst, and SimOpt is available at https:
//github.com/simopt-admin/simopt/wiki.

References

1. E. J. Anderson and M. C. Ferris. A direct search algorithm for optimization with noisy
function evaluations. SIAM J. Optim. 11 (January 2001), 837–857.

2. C. Audet and W. Hare. Derivative-Free and Blackbox Optimization. Springer International
Publishing (2017).

3. C. Audet, S. Le Digabel, V. Rochon Montplaisir, and C. Tribes. The NOMAD project.
Software available at https://www.gerad.ca/nomad/.

4. C. Audet, S. Le Digabel, and C. Tribes. The mesh adaptive direct search algorithm for
granular and discrete variables. SIAM J. Optim. 29 (January 2019), 1164–1189.

5. A. Auger and N. Hansen. A restart CMA evolution strategy with increasing population
size. In 2005 IEEE Congress on Evolutionary Computation. IEEE (2005).

Title Suppressed Due to Excessive Length 39

6. A. S. Bandeira, K. Scheinberg, and L. N. Vicente. Convergence of trust-region methods
based on probabilistic models. SIAM J. Optim 24 (January 2014), 1238–1264.

7. R. R. Barton and J. S. Ivey. Nelder-mead simplex modifications for simulation optimiza-
tion. Manag. Sci. 42 (July 1996), 954–973.

8. A. S. Berahas, R. H. Byrd, and J. Nocedal. Derivative-free optimization of noisy functions
via quasi-newton methods. SIAM J. Optim. 29 (January 2019), 965–993.

9. A. S. Berahas, L. Cao, and K. Scheinberg. Global convergence rate analysis of a generic
line search algorithm with noise (2021).

10. E. H. Bergou, E. Gorbunov, and P. Richtárik. Stochastic three points method for uncon-
strained smooth minimization. SIAM J. Optim. 30 (January 2020), 2726–2749.

11. H. G. Beyer. Design principles for matrix adaptation evolution strategies. In Proceedings
of the 2020 Genetic and Evolutionary Computation Conference Companion, GECCO ’20.
ACM (July 2020).

12. H. G. Beyer and B. Sendhoff. Simplify your covariance matrix adaptation evolution strat-
egy. IEEE Trans. Evol. Comput. 21 (October 2017), 746–759.

13. J. Blanchet, C. Cartis, M. Menickelly, and K. Scheinberg. Convergence rate analysis of
a stochastic trust-region method via supermartingales. INFORMS J. Comput. 1 (April
2019), 92–119.

14. A. Brilli, M. Kimiaei, G. Liuzzi, and S. Lucidi. Worst case complexity bounds for
linesearch-type derivative-free algorithms. Accepted for publications in J. Optim. The-
ory Appl., (2024). https://doi.org/10.1007/s10957-024-02519-x

15. J. Dennis, Jr. C. Audet. Mesh adaptive direct search algorithms for constrained optimiza-
tion. SIAM J. Optim. 17 (January 2006), 188–217.

16. K. H. Chang, L. J. Hong, and H. Wan. Stochastic trust-region response-surface method
(strong)–a new response-surface framework for simulation optimization. INFORMS J.
Comput. 25 (May 2013), 230–243.

17. R. Chen. Stochastic Derivative-Free Optimization of Noisy Functions. PhD thesis, Lehigh
University (2015). Theses and Dissertations. 2548.

18. R. C. H. Cheng and J. P. C. Kleijnen. Improved design of queueing simulation experiments
with highly heteroscedastic responses. Oper. Res. 47 (October 1999), 762–777.

19. A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimiza-
tion. Society for Industrial and Applied Mathematics (January 2009).

20. E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance pro-
files. Math. Program. 91 (January 2002), 201–213.

21. N. A. Dong, D. J. Eckman, X. Zhao, S. G. Henderson, and M. Poloczek. Empirically
comparing the finite-time performance of simulation-optimization algorithms. In 2017
Winter Simulation Conference (WSC). IEEE (December 2017).

22. K. J. Dzahini. Expected complexity analysis of stochastic direct-search. Comput. Optim.
Appl. 81 (November 2021), 179–200.

23. C. Elster and A. Neumaier. A grid algorithm for bound constrained optimization of noisy
functions. IMA J. Numer. Anal. 15 (1995), 585–608.

24. N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a constrained and unconstrained
testing environment with safe threads for mathematical optimization. Comput. Optim.
Appl. 60 (2015), 545–557.

25. S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang. Direct search based on probabilistic
descent. SIAM J. Optim 25 (January 2015), 1515–1541.

26. S. Gratton, Ph. L. Toint, and A. Tröltzsch. An active-set trust-region method for
derivative-free nonlinear bound-constrained optimization. Optim. Methods Softw. 26 (Oc-
tober 2011), 873–894.

27. N. J. Higham. Optimization by direct search in matrix computations. SIAM J. Matrix
Anal. Appl. 14 (April 1993), 317–333.

28. W. Huyer and A. Neumaier. Global optimization by multilevel coordinate search. J. Glob.
Optim. 14 (1999), 331–355.

40 Morteza Kimiaei

29. W. Huyer and A. Neumaier. SNOBFIT – stable noisy optimization by branch and fit.
ACM. Trans. Math. Softw. 35 (July 2008), 1–25.

30. M. Kimiaei. The VRDFON solver. Software available at https://github.com/GS1400/
VRDFON.

31. M. Kimiaei and A. Neumaier. Efficient unconstrained black box optimization. Math.
Program. Comput. 14 (February 2022), 365–414.

32. M. Kimiaei and A. Neumaier. Testing and tuning optimization algorithm. Preprint,
Vienna University, Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz
1, A-1090 Wien, Austria (2022).

33. J. Larson, M. Menickelly, and S. M. Wild. Derivative-free optimization methods. Acta
Numer. 28 (May 2019), 287–404.

34. S. Le Digabel. Algorithm 909: Nomad: Nonlinear optimization with the mads algorithm.
ACM. Trans. Math. Softw 37 (February 2011), 1–15.

35. I. Loshchilov, T. Glasmachers, and H. G. Beyer. Large scale black-box optimization by
limited-memory matrix adaptation. IEEE Trans. Evol. Comput. 23 (April 2019), 353–358.

36. S. Lucidi and M. Sciandrone. A derivative-free algorithm for bound constrained optimiza-
tion. Comput. Optim. Appl. 21 (2002), 119–142.

37. J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algorithms. SIAM
J. Optim. 20 (January 2009), 172–191.

38. M. Porcelli and Ph. L. Toint. Exploiting problem structure in derivative free optimization.
ACM. Trans. Math. Softw. 48 (February 2022), 1–25.

39. M. J. D. Powell. UOBYQA: unconstrained optimization by quadratic approximation.
Math. Program. 92 (May 2002), 555–582.

40. M. J. D. Powell. Developments of NEWUOA for minimization without derivatives. IMA.
J. Numer. Anal. 28 (February 2008), 649–664.

41. L. M. Rios and N. V. Sahinidis. Derivative-free optimization: a review of algorithms and
comparison of software implementations. J. Global. Optim. 56 (July 2012), 1247–1293.

42. S. Shashaani, F. S. Hashemi, and R. Pasupathy. ASTRO-DF: A class of adaptive sampling
trust-region algorithms for derivative-free stochastic optimization. SIAM J. Optim. 28
(January 2018), 3145–3176.

