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Abstract

In this article we examine a specific version of the temporal bin packing problem (TBPP) that
occurs in job-to-server scheduling. The TBPP represents a generalization of the well-known bin
packing problem (BPP) with respect to an additional time dimension, and it requires to find the
minimum number of bins (servers) to accommodate a given list of items (jobs) at any instant of
time. In addition to this goal, recent publications suggest to also incorporate the number fire-
ups of the respective servers as an important factor in sustainable and energy-efficient overall
operation. Addressing both these objectives by a weighted sum method typically increases the
modeling complexity, thus leading to challenging ILP formulations, two of which have already
been described in the literature. It has been shown that the parameter used to weight the two
objectives strongly influences the applicability of heuristics and, therefore, the difficulty of the
overall problem, so that only favorable choices can be handled so far. But also for these tailored
scenarios, the current approaches already fail to compute an exact solution of many moderately-
sized instances in reasonable times. For this reason, we propose various new preprocessing
techniques to strengthen the LP bound and/or to reduce the numbers of variables or constraints
appearing in the existing ILP formulations as well as one alternative modeling approach for
the problem under consideration. Based on numerical tests with differently characterized sets
of benchmark instances, the new and improved formulations are shown to lead (on average)
to better performances (than compact state-of-the-art models) in terms of instances solved to
optimality and computation times.

Keywords: Cutting and Packing, Temporal Bin Packing Problem, Fire-Ups, Integer
Programming, Reduction Methods

1. Introduction

The bin packing problem (BPP) is a widely studied combinatorial optimization problem, and it
has been carefully investigated in numerous scientific articles, see [28, Fig. 1] for an illustrated
statistical overview or [29] for a general survey and further references. Given a bin capacity
C ∈ N and a list of n ∈ N items, each being characterized by some integer size ci ≤ C,
i ∈ I := {1, . . . ,n}, the BPP aims to find the minimum number of bins required to accommodate
all items without violating the capacity constraint of a single bin. Special interest arises from
a wide variety of real-life applications in scheduling or logistics [7, 22], of which the closest
connection is certainly with the cutting stock problem (CSP), see [29, 54, 57]. Over time, a
large number of different exact modeling frameworks for this problem has been described in the
literature. Starting with early publications on assignment-based integer linear programs (ILPs)
[39], nowadays’ more sophisticated approaches typically involve column-generation [33, 34, 58],
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pseudo-polynomial formulations [12, 27, 51, 57], or branch-and-bound based techniques [10, 56,
60, 61]. Due to the NP-hardness of the BPP [48], a significant body of works also deals with
approximation algorithms and their mathematical properties [18, 19, 30, 37].

In this article, we examine a particular version of the temporal bin packing problem (TBPP).
The TBPP adds a time dimension to the ordinary BPP, meaning that any item i ∈ I is equipped
with its item size ci and a lifespan [si, ei), where si ∈ Z+ and ei ∈ Z+ denote the start and end
time, respectively, see Fig. 1 for an example. Typically, the aim is to find a feasible assignment
of jobs to as few bins as possible, so that the capacity restriction of every bin is respected for
any instant of time.
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Figure 1: An examplary instance of the TBPP containing five items. The horizontal axis specifies the time
instants, while the vertical grid measures the item sizes. (A corresponding solution will be illustrated in Fig. 3.)

The TBPP represents a relatively new field of research, whose mathematical origins can be
motivated in at least three different ways:

• The TBPP is a natural generalization of the temporal knapsack problem (TKP), which
requires to select a subset of objects that will fit into a single bin of given capacity at
any given time, while generating maximum profit. Leaving out the investigation of some
special cases (like [3]), the general problem was introduced first in [9] to address resource
allocation in high-performance computing, and it was solved by a decomposition method
generating a tree of subproblems each of which being easier to handle (than the original
problem). Moreover, the authors investigated the benefits of additional cuts and different
strategies to select the next subproblem to be considered and obtained results that were (on
average) competitive with the general-purpose solvers of that time. Meanwhile, the TKP
has also been thoroughly studied from a mathematical point of view, the most significant
contributions of which are especially due to [14, 15], where the authors applied a Dantzig-
Wolfe reformulation and solved the problem under consideration within a branch-and-price
algorithm.

• Alternatively, the TBPP can be modeled as a special case of a higher-dimensional vector
packing problem (VPP), see [16, 35, 55] and references therein for a good overview on
the general topic and some important solution techniques. More precisely, with T :=⋃
i∈I{si, ei} denoting the instants of time to be considered, we could equip any item i ∈ I

with a time-dependent weight cit equalling ci if and only if t ∈ [si, ei) holds (otherwise,
we set cit = 0). This directly leads to a one-to-one correspondence between the TBPP
and a VPP of dimension |T |, where every instant of time refers to a separate dimension.
However, since this approach significantly increases the complexity of the initial problem,
we cannot expect that this relationship can be used profitably here.

• To some extent, the TBPP also shares some similarities with classical two-dimensional
packing problems, see [36, 43] for comprehensive survey articles. To be more precise,
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assigning rectangular-shaped items (here the rectangles consist of one geometric and one
temporal dimension) to a minimum amount of “material” is somewhat reminiscent of the
two-dimensional strip packing problem (SPP), see [21, 41, 47]. However, note there are
two main differences between both formulations: In the TBPP, the items (i) have a fixed
position with respect to the temporal dimension (whereas the placement for the SPP is
much less restricted), and, more importantly, (ii) can make use of different portions of the
bins at every instant of time (while, for the SPP, any item always has to be placed as
a connected rectangle, meaning that it will not change the units covered on the vertical
axis). We refer the interested reader to [26, Sect. 3] for a more detailed and illustrative
description of these differences.

Due to its novelty, only a few works from the literature directly deal with the TBPP itself.
More precisely, its first scientific investigation is based on an application in computer science
trying to manage the workload consolidation in data centers [24]. Given the steadily increasing
importance of cloud computing (see Fig. 2), the energy demand of large-scale data centers or
server clusters is expected to grow considerably in the next decade [1, 2, 42], contributing to up
to 13 percent of the worldwide energy consumption in 2030, see [38] for a general overview.

Figure 2: Predicted development of the data center IP traffic according to [8]. (The abbreviation CAGR refers
to the compound annual growth rate.)

It is clear that managing this enormous traffic inevitably requires a very high number of active
servers, most of which are usually underutilized (for fear of not being able to guarantee high
availability at peak times), as several independent studies have shown [23, 46, 53]. Overall,
this alarming development of energy consumption has caused deep concerns in industry and
scientific communities [13, 31, 40, 45], so that addressing the problem examined here (that
is, the TBPP) shall contribute to move towards balancing the supply of and the demand for
computing resources as a key issue to obtain energy-efficient server consolidations. Of course,
the TBPP (like any other mathematical model, too) can only reflect partial aspects of what is in
reality a much more complex allocation problem. We would therefore like to inform the reader
that there are many neighboring approaches that focus on other characteristic features (e.g., the
uncertainty in terms of item sizes [20, 50, 52]), see [44] for a very thorough and well-structured
overview.

From a mathematical point of view, the TBPP was extensively investigated in [26] for the first
time. In that article, the authors present several methods to obtain lower and upper bounds,
as well as two ILP formulations (one of which is based on a pattern structure, while the other
uses classical assignment variables). Furthermore, some preprocessing techniques are described
and connections or dominance relations between these approaches are manifested by theoretical
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results. Based on all these contributions, a branch-and-price algorithm is formed showing a very
convincing computational performance for a large set of test instances.

While the previous paper only addressed the minimization of the number of required bins (or
servers), another critical aspect of energy-efficient scheduling, that is the number of fire-ups1,
was very recently identified by the authors of [4]. To reiterate, in addition to the mere number of
servers in use, the operating mode (in particular the switch-on and switch-off processes) is also
of great relevance for the energy consumption of the overall cluster. Taking into account both
objectives, the authors introduced two ILP formulations merging the two goals in a weighted-
sum fashion, thus establishing a multiobjective version of the TBPP, hereinafter referred to as
the temporal bin packing problem with fire-ups (TBPP-FU), see Fig. 3.
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Figure 3: An optimal solution (with respect to both, the TBPP and the TBPP-FU) for the instance from Fig.
1. This assignment requires two bins (servers) and causes three fire-ups, leading to an objective value of 5 (in
case of equal weights).

For both these modeling approaches, the quality of the LP bounds is studied and some pre-
processing methods to obtain less complex integer programs are already discussed. By way of
example, we mention that the information of an adapted material bound can be used to already
preallocate some servers. Contrary to that, we would like to stress that the applicability of
heuristics to also establish upper bounds for the total number of required servers strongly de-
pends on the choice of the parameter γ > 0 used to weight the two objectives. More precisely,
in [4, Sect. 2], it has been proved that for γ ≤ 1/n the number of servers in an optimal solution
(of the TBPP-FU) is equal to the minimum number of servers needed to accommodate all jobs
obtained by solving a traditional TBPP (i.e., without considering any fire-ups). In particular,
this means that all the techniques to obtain upper bounds for the TBPP, see [26], can be used
to reduce the set of possible servers in advance, so that much fewer feasible points (and much
fewer symmetric solutions) have to be dealt with. Contrary to this, [4, Example 2.2] illustrates
that such observations do not hold for larger values of γ. For this reason the authors of [4] only
deal with the favorable case (that is, choosing γ = 1/n), which enables them to significantly
simplify the ILP model by heuristic-based preprocessing techniques. The present work therefore
aims in particular to cope with the general (and more difficult) case where bounding the number
of required servers from above is not possible with the information provided by the ordinary
TBPP. Although not being limited to this assumption, we will usually assume γ = 1 throughout
the article, meaning that both objectives are weighted equally.

Altogether, after having repeated some important definitions and notations in Sect. 2, the
present work shall foster theoretical approaches contributing to further increase the size of in-
stances (of the TBPP-FU) that can be solved in a reasonable amount of time. More precisely,
the main achievements (together with the structure and contents of this manuscript) are the
following:

1A server that is currently not in use can be temporarily switched off, but it must be reactivated later in case
it is used again. This process will be counted as a fire-up.
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• We present several reduction techniques for the two state-of-the-art models from [4] and
discuss their theoretical benefits (→ Sect. 3).

• We introduce a new assignment model having significantly fewer variables than the for-
mulations from [4] and adapt the previously established reduction strategies to this new
approach (→ Sect. 4).

• We theoretically show that there are no dominance relations between the (rounded-up) LP
bounds of the three approaches (→ Sect. 4).

• Based on extensive numerical tests, involving different benchmark sets, the computational
benefits of our methods are verified (→ Sect. 5).

2. Preliminaries and Assignment Models from the Literature

Let us consider a list of n ∈ N items (jobs), specified by an item size (resource demand) ci
and an activity interval (lifespan) [si, ei), i ∈ I, a sufficiently large number of homogeneous bins
(servers) of capacity C, and a weighting parameter γ > 0 (as mentioned earlier, we will only use
γ = 1 in the computational part). We will refer to si and ei by the starting time and ending
time (or terminating time), respectively. Without loss of generality, all input data are assumed
to be integers. Moreover, we demand ci ≤ C for all i ∈ I, because the problem would become
infeasible otherwise. Then, the TBBP-FU requires to find a job-to-server assignment minimizing
the weighted sum of the number of servers required to accommodate all jobs and the number of
fire-ups caused by the specific item sequence on every server. Consequently, an instance of the
problem under consideration can be completely described by the tuple E = (n,C, c, s, e, γ) where
c, s, and e are n-dimensional vectors collecting the input-data (size, starting time, terminating
time) of the items. Typically, we refer to the set of time instants by T :=

⋃
i∈I{si, ei}, and

address the set of starting times by TS =
⋃
i∈I{si}. Then, a subset of jobs can feasibly be

assigned to a single server, if and only if for any t ∈ T the capacity of this server is respected.

Minimizing the number of fire-ups and servers required is a very new aspect in the context of
energy-efficient job-to-server scheduling introduced in [4]. In that article, this holistic goal has
been addressed by two ILP formulations each of which being based on assignment variables and
the well-known Kantorovich-type structure [39]. In what follows, we briefly present these two
approaches and discuss their relationships as well as reduction methods already applied in the
literature.

Let K := {1, . . . ,n} denote the set of servers. Then, the first model introduced in [4] requires
four different types of variables:

• The decision whether server k ∈ K is used at all will be reflected by the binary variable
zk ∈ {0, 1}.

• For any (i, k) ∈ I×K we define a classical assignment variable xik ∈ {0, 1} stating whether
job i ∈ I is performed on server k ∈ K (xik = 1) or not (xik = 0).

• To display the activity of server k ∈ K at time t ∈ T the decision variables ytk ∈ {0, 1}
will be used in the sense that ytk = 1 represents a positive load on server k at time t.

• The continuous variables wtk ≥ 0 with k ∈ K and t ∈ T contain information about the
fact whether server k has been switched on at time t or not. (As we will see in a moment,
these variables are decreased to either 0 or 1 in any optimal solution of the integer model,
so that the fire-ups can be easily reconstructed.)
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Moreover, we compute a parameter ait ∈ {0, 1} for any i ∈ I and t ∈ T telling us whether job i
is active at time t or not. More formally, we have ait = 1 if and only if t ∈ [si, ei) holds. Then,
according to [4], we obtain the

Assignment Model Type 1 (Model 1)

z(1) = γ ·
∑
k∈K

∑
t∈T

wtk +
∑
k∈K

zk → min

s.t. ytk ≤
∑
i∈I

ci · ait · xik ≤ ytk · C, k ∈ K, t ∈ T , (1)∑
k∈K

xik = 1, i ∈ I, (2)

xik ≤ ysi,k, i ∈ I, k ∈ K, (3)

ytk ≤ zk, k ∈ K, t ∈ T , (4)

ytk − yt−1,k ≤ wtk, k ∈ K, t ∈ TS , (5)

xik ∈ {0, 1}, i ∈ I, k ∈ K, (6)

ytk ∈ {0, 1}, k ∈ K, t ∈ T , (7)

wtk ≥ 0, k ∈ K, t ∈ T , (8)

zk ∈ {0, 1}, k ∈ K. (9)

The objective function minimizes a weighted sum of the number of all fire-ups (first term) and
all used servers (second term). Moreover, the following conditions are required:

• The inequality on the right side in (1) requests that the capacity condition is met on a
server k ∈ K activated at time t ∈ T (i.e., for ytk = 1). However, this still allows to
leave an actually empty server activated in order to save an additional fire-up later. The
inequality on the left side, therefore, requires that at least one job must be allocated to
a server activated at time t ∈ T or (in the opposite direction) that an empty server must
definitely be switched off (ytk = 0).

• Constraints (2) guarantee that each job will be executed on exactly one server.

• Conditions (3) couple the x- and y-variables in the following way: When job i is running
on server k, this specific server must be active especially at the start time t = si ∈ TS of
job i ∈ I (i.e., we have ysi,k = 1).

• Constraints (4) couple the y- and z-variables. If server k is active at some instant of time
t ∈ T , it must also be counted as a used server in the objective function (i.e., zk = 1).

• Restrictions (5) couple the y- and w-variables. A fire-up for server k ∈ K must be registered
at time t ∈ T if this server was inactive at the previous2 instant of time (i.e., yt−1,k = 0)
and has been switched on at time t (i.e., ytk = 1). For any optimal solution, only in this
case wtk is assigned the value 1 (in all other cases we will have the value 0), since the
objective function is minimized.

Remark 1. In the unit commitment problem (UCP), the operation mode of thermal units has
to be optimized, see [59] for a comprehensive survey, under constraints that can be seen as a
generalization of (5). More precisely, for the UCP, whenever a unit was switched off it has
to remain inactive for a given minimum amount of time (called the minimum down-time), see

2For simplicity, here the predecessor of t in the set T is denoted by t− 1, even if the actual difference between
both instants of time is greater than one. Moreover, for the very first element t := tmin in the (chronologically
ordered) set T , we will use yt−1,k := 0 for all k ∈ K as an initializing boundary condition.
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[5, 6, 32]. Likewise, a unit that was activated at least has to stay in this mode for a period specified
by a given minimum up-time. Moreover, one has to keep in mind that many other conditions
have to be met (for the UCP) and these typically lead to nonlinear optimization problems. One
such additional condition is, for example, that after switching on the unit, the entire power of a
unit is not immediately available or, in the opposite direction, a unit cannot be switched from full
load to idle operation (referred to as a ramp-up or ramp-down constraint, respectively). While
all these additional conditions may also be important for job-to-server scheduling, we will only
consider the original formulation of the problem from [4] here, but would like to keep an eye on
the aforementioned extensions if the practical framework of the problem requires it in the future.

Altogether, with |I| = n and |K| = n (for the case with γ > 1/n we consider), we obtain

nvar = |I| · |K|+ 2|K| · |T |+ |K| = n2 + 2n|T |+ n = n2 + n · (2|T |+ 1) ≤ 5n2 + n,

ncon = |K| · |T |+ |I|+ |I| · |K|+ |K| · |TS | = n|T |+ n+ n2 + n|TS |
= n2 + n · (|T |+ |TS |+ 1) ≤ 4n2 + n

for the numbers of variables and constraints (thanks to |T | ≤ 2n and |TS | ≤ n).

The motivation behind the second approach proposed in [4] is to invest a little more effort in
preprocessing in order to (mostly) have fewer variables and constraints in the ILP formulation
itself. In particular, the temporal aspect of the optimization problem will then be addressed in a
less direct manner in the model. To this end, we sort all jobs according to non-decreasing start
times si (where ties are broken in an arbitrary way) and define the following two sets

δi := {j < i | si < ej} ,

δ+
i := {j < i | si ≤ ej} ,

for each i ∈ I. For given i ∈ I, the first set collects all jobs j ∈ I, j 6= i, which are active at the
start time of i, whereas the second set gathers all jobs that are still active at the start time of
i or that have just stopped at that moment. Compared to Model 1, we can now get rid of the
y-variables and only require the w-variables at the possible starting times t ∈ TS (instead of the
whole set T ). More precisely, we obtain the

Assignment Model Type 2 (Model 2)

z(2) = γ ·
∑
k∈K

∑
t∈TS

wtk +
∑
k∈K

zk → min

s.t.
∑
j∈δi

cjxjk + cixik ≤ C · zk, i ∈ I, k ∈ K (10)

∑
k∈K

xik = 1, i ∈ I, (11)

xik ≤ zk, i ∈ I, k ∈ K, (12)∑
j∈δ+i

xjk − xik + wsi,k ≥ 0, i ∈ I, k ∈ K, (13)

xik ∈ {0, 1}, i ∈ I, k ∈ K, (14)

wtk ≥ 0, t ∈ TS , k ∈ K, (15)

zk ∈ {0, 1}, k ∈ K. (16)

Again, the objective function displays the weighted sum over all fire-ups (first term) and all
servers in use (second term). The following applies to the conditions:

• Constraints (10) require the jobs not to overload the servers’ capacities. If server k ∈ K
is used (i.e., zk = 1), then the jobs running parallel to i ∈ I (that is, the set δi) together
with i must never exceed the capacity of the server. (Since this is demanded for any i ∈ I,
the time dimension is indirectly covered here.).
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• Conditions (11) make sure that each job is assigned exactly once.

• Restrictions (12) couple the x- and z-variables in a sense that, whenever a job i ∈ I is
assigned to some server k ∈ K, this server has to be counted in the objective function.
Note that this condition is redundant for the integer program, but it improves the LP
bound3.

• Constraints (13) are responsible for registering a fire-up (wsi,k = 1) only in those cases
where server k did not possess any load precisely before the starting time of job i (i.e., we
have xjk = 0 for all j ∈ δ+

i ) and, in addition, xik = 1 is true (i.e., the job i then causes
the fire-up).

Due to

nvar = |I| · |K|+ |TS | · |K|+ |K| = n2 + n · |TS |+ n = n2 + n · (|TS |+ 1) ≤ 2n2 + n,

Model 2 always has fewer variables than Model 1. As far as the number of constraints is
concerned, we first count them

ncon = |I| · |K|+ |I|+ |I| · |K|+ |K| · |I| = 3n2 + n,

and then find that a typical instance generally leads to smaller values for Model 2 due to |T | ≈ 2n
and |TS | ≈ n. However, on the other hand, it can be shown that Model 2 provides worse LP
bounds, see [4, Prop. 4.1], so that it is usually not considered in the computational experiments.

Remark 2. Although [4, Prop. 4.1] also states an example, where the LP values z
(1),?
LP and

z
(2),?
LP of both models are different (more precisely, we had z

(1),?
LP = 8/3 and z

(2),?
LP = 7/3), the

rounded-up integer values obtained from these bounds are the same. To overcome this slight
weakness, here we present a better example showing that even the integer-valued LP bounds can
be different. Let us consider the instance E described by n = 4, C = 3, and the data contained
in Tab. 1.

i 1 2 3 4
si 1 1 1 3
ei 2 2 2 4
ci 2 2 2 2

Table 1: An exemplary instance leading to different integer-valued LP bounds for Model 1 and Model 2

Obviously, the set TS of starting times is given by TS = {1, 3}. Then, we obtain the optimal
value z(1),? = 5 for Model 1 using two servers (i.e., z1 = z2 = 1) and three fire-ups, caused by
the decisions displayed in Tab. 2.

xik 1 2
1 1/2 1/2
2 0 1
3 1 0
4 0 1

wtk 1 2
1 1 1
3 0 1

Table 2: An optimal solution of Model 1 (represented by the most important variables only)

Contrary to this, we can find feasible points for Model 2 with two servers and only two fire-ups
(meaning that z(2),? ≤ 4 holds), as listed in Tab. 3.

3Having xik = 1 for some (i, k) ∈ I ×K in the LP relaxation now leads to zk = 1. Without Conditions (12),
the choice xik = 1 normally just implies zk ≥ ci/C thanks to (10).
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xik 1 2
1 3/14 11/14
2 6/14 8/14
3 12/14 2/14
4 11/14 3/14

wtk 1 2
1 3/14 11/14
3 11/14 3/14

Table 3: An optimal solution of Model 2 (represented by the most important variables only)

Hence, the second model will lead to a worse (rounded-up) LP bound for the discrete optimal
value.

The reason for the different behavior of the LP bounds is mainly related to the different ways
the variables are coupled within the two models. In the first model, a good server utilization (in
terms of capacity) already leads to relatively large y-values (due to Conditions (1)), which in
turn directly influence the w-variables. Thanks to Constraints (5), particularly the first fire-up
of a server is then connected to a relatively large w-variable. Since, in the second model, only the
x-variables influence the w-variables (and not the capacity utilization of the servers), the latter
can often attain much smaller values as to be clearly seen in our previous exemplary instance.

In the following we would like to present some possible improvements for both formulations, the
aim of which is to harmonize the LP bounds so that the lower complexity of the second model
might lead to certain advantages in the numerical experiments after all. Afterwards, a new ILP
approach will be introduced, and the applicability of reduction techniques will be studied also
with respect to this formulation.

3. Reduction Methods

Obviously, the two ILP formulations are somewhat based on assignment models of Kantorovich-
type for the ordinary bin packing problem. It is a well known fact that such approaches are
equipped with two main drawbacks:

• Typically, the LP bound is rather poor, meaning that it can be arbitrarily far away from
the true optimal value (of the ILP).

• The feasible region includes a large number of symmetric solutions, which leads to signifi-
cant additional efforts for branch-and-bound based solution techniques.

To tackle these challenging aspects, two ideas were already introduced in [4]:

(Lit-A) A lower bound h ∈ N for the number of active servers can be implemented to raise the LP
value. More precisely, the authors of [4] suggest to use

h0 =

⌈
max
t∈T

{∑
i∈I aitci

C

}⌉
, (17)

which could be termed as the material bound, and add the constraint z1 + . . .+zh0
= h0 to

the ILP model. Note that this lower bound also appears in [26, Property 1] for the ordinary
TBPP, where it is derived from a decomposition strategy with respect to the temporal
dimension. Moreover, it is shown that this bound can be obtained in O(n · log(n)), see
[26, Property 2].

(Lit-B) The servers can be sorted with respect to their “activity level” by using zk ≥ zk+1 for
k = 1, . . . , |K|−1. This helps to reduce the number of possible permutations we can apply
to feasible points without changing their objective value.

Note that these techniques (and also the general modeling) can be made a bit more efficient.
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• Basically, it would be sufficient to only consider starting times t ∈ TS to find the maximum
value in (17), since the total load on all servers definitely decreases when dealing with
an end time t ∈ T \ TS . Apart from this, however, the use of better lower bounds is
recommended, in general. Research has shown that the material bound h0 is dominated
by a lower bound h := hCG obtained from solving the LP relaxation of a pattern-based
model for the traditional TBPP by means of column generation, see [26, Property 4]. Since
this typically better value can also be calculated in a very short time, as was reported in
[26], we strictly follow the implementation details specified in [26, Subsect. 6.1] here and
apply a general-purpose solver4 to the arising subproblems (that is, a TKP, see [26, Eq.
(17)]).

• On the other hand, after having installed the lower bound h, we only need to demand zk ≥
zk+1 for k = h+ 1, . . . , |K| − 1 because all other inequalities of this type are automatically
satisfied.

• In addition, we also assume the w-variables to be binary since this has lead to slight
numerical advantages in our internal precalculations. On the one hand, we attribute this
observation to the reduction of the search space, but more importantly, binary w-variables
can be chosen for branching (wtk = 0 vs. wtk = 1), where at least in the latter case the
objective value (i.e., the bounds) of the subproblems are likely to increase.

Altogether, we will refer to this refined version of the state-of-the-art version of Model 1 by the
abbreviation (Lit).

To further improve the first model, we propose the following additional steps:

(R1) Reducing variables and symmetries: In addition to the efforts made in (Lit-B),
a quite efficient way to limit the number of symmetric solutions is given by an implicit
renumbering of the active servers. More precisely, we can demand that job i = 1 is assigned
to server k = 1. Then, job i = 2 can either be processed on the same (k = 1) or on a new
server (k = 2), and so on. In general, any job i can only be assigned to the servers k ≤ i,
so that we can considerably reduce the set of x-variables from (i, k) ∈ I ×K to (i, k) ∈ ∆
with ∆ := {(i, k) ∈ I × K | k ≤ i}. By doing so, roughly half of the x-variables (i.e., a
quadratic number with respect to n) can be removed from the ILP formulation.

Moreover, we mention that the “triangular structure” of the x-variables also influences
some of the other variable types. The introduction of set ∆ entails that it is no longer
possible to arrange each job on any arbitrary server. Consequently, the times in general
and, particularly, the starting times that have to be modeled on each server are now
different, which is addressed by the server-dependent sets

T (k) = {t ∈ T | ∃i ∈ I : t ∈ {si, ei}, (i, k) ∈ ∆} =
⋃
i≥k

{si, ei},

TS(k) = {t ∈ TS | ∃i ∈ I : t = si, (i, k) ∈ ∆} =
⋃
i≥k

{si}.

Based on these definitions, we can restrict the sets of variables to wtk with k ∈ K, t ∈ TS(k),
and ytk with k ∈ K, t ∈ T (k). But then, we have to pay attention that – depending on
the specific server k – our simplified notation t− 1 can refer to different instants of time,
because we now have to take the predecessor of t in T (k).

(R2) Valid inequalities: To improve the LP bound feasible cuts can be added to the integer
problem. These constraints do not affect the optimal value of the integer problem, but

4As will be explained later in Sect. 5 when reporting about the computational experiments, we use Gurobi
for this.
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they can lead to better values if continuous variables are considered. More precisely, the
following inequalities5 can be applied:

(a) Any activated server has to produce at least one fire-up meaning that we can demand

zk ≤
∑

t∈TS(k)

wtk (18)

for any k ∈ K.

(b) Whenever a fire-up is noticed on server k ∈ K, then it has to be caused by one specific
job that has been assigned to this server. Hence, we can demand∑

t∈TS(k)

wtk ≤
∑

i∈I:(i,k)∈∆

xik (19)

for any k ∈ K.

(c) An activated server has to accommodate at least one job, meaning that

zk ≤
∑

i∈I:(i,k)∈∆

xik (20)

has to hold for any k ∈ K. (Note that this valid inequality is implied by the previous
two classes.)

(d) A server that is counted in the objective function has to be activated at least once
during the time horizon considered. So, we can add the condition

zk ≤
∑
t∈T (k)

ytk (21)

for all k ∈ K.

(R3) Lifting: The term lifting describes a traditional preprocessing concept in cutting and
packing [11, 17], see [26, Sect. 4] for two ideas related to the TBPP. Roughly speaking, the

aim of this procedure is to transform a given instance E into another instance Ẽ having
the same set of integer feasible solutions, but possessing computational advantages (e.g.,
in terms of the LP relaxation). In our setting, we apply the first strategy from [26] to
increase the item sizes ci, i ∈ I. To be more precise, we first define the sets

A(i) := {j ∈ I \ {i} | [si, ei) ∩ [sj , ej) 6= ∅}

for i ∈ I, denoting all jobs that overlap with i in a temporal sense. Based on this, we
compute

ε(i) := max

 ∑
p∈A(i)

cpxp

∣∣∣∣∣∣
∑
p∈A(i)

cpxp ≤ C − ci, xp ∈ {0, 1} for all p ∈ A(i)

 ,

i.e., the maximum capacity required (on a single server) by a feasible assignment that
contains job i. Whenever ε(i) < C − ci is observed, the parameter ci can be enlarged to
c̃i := ci + (C − ci − ε(i)) = C − ε(i). Basically, the effects of this technique are twofold:

5In our final computations, we will mostly apply all possible reductions together to obtain the most promising
ILP formulation. Due to this reason, here we do not formulate the valid inequalities for the original version (Lit)
of Model 1. Instead, we already include the reductions described in the previous point (R1).
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(a) Rising the parameters ci can lead to an increased material bound h0, so that more
variables can be fixed prior to the optimization. However, since we directly use the
better lower bound h (obtained by column generation), this fact is not significant for
our calculations.

(b) More importantly, increasing the parameters ci means that some of the coefficients in
Constraints (1) become larger, so that (for the LP relaxation) the conditions become
more restrictive and may lead to a better LP value.

In a first step, we highlight the important facts that

• any of the proposed individual reductions can already be beneficial to rise the LP value,

• combining all the reductions can additionally boost the performance.

Example 1. Let us consider an instance E defined by n = 4, C = 3 and the data contained
in Tab. 4. For the sake of a better readability, we also provide a graphical visualization of this
instance in Fig. 4.

i 1 2 3 4
si 1 1 3 3
ei 3 2 4 4
ci 2 3 1 3

Table 4: An exemplary instance to show the benefits of the various reduction methods

1

2

3

4

Figure 4: Illustration of the instance E

Note that the optimal value of this instance is given by z(1),? = 5 (caused by two servers and
three fire-ups). In Tab. 5, we just collect the optimal values of the LP relaxation for different
steps of reduction. The corresponding optimal solutions can be found in AppendixA.

formulation z
(1),?
LP

(Lit) 11/3
(Lit) + (R1) 4
(Lit) + (R2) 4
(Lit) + (R3) 4
(Lit) + (R1)-(R3) 5

Table 5: Optimal LP value for the instance from Tab. 4
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As to be clearly seen, any single reduction leads to an improved LP value, while gathering all
improvements already gives an integer optimal solution.

Remark 3. In our internal precalculations, we noticed that only Conditions (18) lead to any
benefits in terms of the LP value. Although this may seem surprising at the first glance, the
reasons for this behavior are quite well understandable. To be more precise, the objective function
of Model 1 aims at keeping the values of the z- and the w-variables small. Consequently, valid
inequalities can rise the LP value particularly in those cases, where lower bounds for any of
these variables are imposed. The only class of cuts proposed in (R2) contributing to this goal is
given by (18). Hence, we will only use this set of inequalities in the final numerical experiments,
while the others, i.e., categories (19)-(21), are intended to remain in the list for the sake of
completeness.

In terms of the second ILP formulation (Model 2), no reductions have previously been presented
in the literature. However, all the methods introduced for Model 1 can also be applied to Model
2 in a more or less straightforward way. To this end, here we only briefly collect the various
steps of improvements:

(R0) Off-the-shelf reductions from Model 1: The first step contains three techniques that
are a direct consequence of the reductions proposed for the first ILP formulation in [4]. To
be more precise, here we also make use of

• the lower bound h to fix the value of some z-variables,

• the sorting zk ≥ zk+1 for k = h+ 1, . . . , |K| − 1 to partly avoid symmetries,

• binary w-variables to reduce the search space.

(R1) Reducing variables and symmetries: It is again sufficient to only consider the
combinations (i, k) ∈ ∆ which also means that the index set of the w-variables can be
changed to k ∈ K, t ∈ TS(k). Note that, due to the absence of the y-variables, this does
not entail further reductions.

(R2) Valid inequalities: Also the second ILP formulation allows for several classes of valid
inequalities. However, as observed earlier, those cuts imposing lower bounds on the vari-
ables appearing in the objective function are particularly promising. Due to this reason,
here we only mention a single set of additional constraints, namely Conditions (18) pre-
sented above, but not without pointing out that further valid inequalities can easily be
obtained, while they did not lead to any gains in our internal test.

(R3) Lifting: This technique can be executed in precisely the same manner as before.

Moreover, the second ILP formulation allows for two additional modifications which will be
termed as (R4) and (R5):

(R4) Strengthening Constraints (13): Let us consider the definition of the sets δ+
i that

are used in Conditions (13), and assume that there are two (or more) jobs p, q ∈ I having
the same starting time (see Tab. 1 for an example). Then, depending on the sorting, we
either have p, q ∈ δ+

p or p, q ∈ δ+
q , where the latter is chosen here without loss of generality.

Hence, for some server k ∈ K, the constraints of type (13) belonging to i = p and i = q
would be as follows

i = p : wtk ≥ xpk −
∑
j∈δ+p

xjk,

i = q : wtk ≥ xqk −
∑
j∈δ+q

xjk = xqk −
∑
j∈δ+p

xjk − xpk,
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where t = sp = sq describes the joint starting time of both jobs. In particular, the condition
for i = q also depends on the item p, but this item is not relevant to check whether q causes
a fire-up at time t. Hence, we can get rid of xpk in the corresponding condition of type
(13). Observe that this may lead to a stronger inequality (for the LP relaxation) and to
fewer nonzero elements in the constraint matrices. Altogether, we recommend to modify
the previous definition of δ+

i (from the literature) as follows

δ+
i := {j < i | si ≤ ej , si 6= sj} (22)

to exclude items having the same starting time from the summation appearing in Condi-
tions (13).

(R5) Temporal dominance: If we can find two directly successive starting times t1 < t2 ∈ TS
(with t2 /∈

⋃
i∈I{ei} not representing an end time) in the chronologically ordered set T ,

then we know that all jobs, that are active at t1, are still active at t2. Under these
conditions, we say that t2 dominates t1, because the capacity constraint (10) for t = t2
already implies that of t = t1 (as no job is terminating in the interval [t1, t2]). Let us define

TndS :=

{
t ∈ TS

∣∣∣∣∣ succT (t) ∈
⋃
i∈I
{ei}

}
,

with succT (t) indicating the successor of t in T , then TndS ⊆ TS represents the set of non-
dominated starting times, see also [26, Sect. 3]. Hence, considering Conditions (10) for
i ∈ I with si ∈ TndS is sufficient.

Altogether, the structure of the second formulation allows for additional reductions which may
possibly counterbalance the numerical drawbacks (previously reported in [4]) of this approach.
This issue will be thoroughly investigated in the numerical part of this paper.

4. A New Compact ILP Formulation

As a second main contribution of this article, we would like to present a new ILP formulation
(offering further reduction potentials) that requires to rephrase the verbal interpretation of
the assignment variables previously used. To this end, instead of addressing a job-to-server
scheduling, we now focus on a job-to-job correspondence by defining xik ∈ {0, 1} with xik = 1
if and only if job i is executed on a server that was initialized by job k. By initialized we mean
that job k was the first job (in a temporal sense) assigned to the respective server, so that
job k definitely contributed to a fire-up6. By this new interpretation, we indirectly attached a
temporal relationship to the assignment variables, so that they are obviously only required for
index pairs (i, k) ∈ ∆. For the sake of simplicity, xkk, k ∈ I, should always be understood as
the decision whether job k initializes a server or not.

Remark 4. Note that, originally, ∆ has been introduced as a subset of I ×K. Although now
collecting elements of I × I, we keep the same symbol since the essential part of the defini-
tion (that is, k ≤ i) does not change. Moreover, as we cannot reduce the number of possible
servers by heuristic approaches in advance, we always have I = K in our scenarios, so that no
misunderstanding will be caused by this notation.

6If there are several jobs with the same starting time on the same server and if this starting time is connected
to a fire-up on the considered server, then the lowest-indexed job will be chosen (by the structure of the model)
to cause the fire-up.
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Similarly, also the number and the interpretation of the w-variables changes. More precisely, we
define wi ∈ {0, 1}, i ∈ I, with wi = 1 indicating that job i caused a fire-up on whatever server.
As a consequence of this new point of view, we formulate the

Assignment Model Type 3 (Model 3)

z(3) = γ ·
∑
i∈I

wi +
∑
k∈I

xkk → min

s.t.
∑
j∈δi

cjxjk + cixik ≤ C · xkk, (i, k) ∈ ∆ (23)

∑
k∈I:(i,k)∈∆

xik = 1, i ∈ I, (24)

xik ≤ xkk, (i, k) ∈ ∆, i 6= k, (25)∑
j∈δ+i

xjk − xik + wi ≥ 0, (i, k) ∈ ∆, (26)

xik ∈ {0, 1}, (i, k) ∈ ∆, (27)

wi ∈ {0, 1}, i ∈ I. (28)

In comparison to Model 1 and Model 2, it can immediately be noticed that

• there is no symmetry (even in the unimproved setting),

• only a linear number of w-variables is required,

• we can get rid of the z-variables,

so that we end up with

nvar = |∆|+ |I| = n(n+ 1)

2
+ n,

ncon = |∆|+ |I|+ (|∆| − |I|) + |∆| = 3|∆| = 3

2
· n(n+ 1),

i.e., a (mostly) considerably less complex ILP formulation. On top of that, the applicability of
further reductions will be discussed in the following list. Since Model 3 already starts with a
certain “lead” (in terms of complexity), not all the previous reductions can still be applied. We
will see that some have become obsolete due to the new variable interpretation, while others
require significant changes. In the latter case, we use the symbol ? to distinguish this reduction
(which is named in the same way as before, but in detail is different) from the previous terms.

(R0) Off-the-shelf reductions from Model 1: Here we can only make use of the lower
bound h by demanding

h ≤
∑
k∈I

xkk.

Observe that the sorting of the z-variables is no longer possible, while the w-variables were
already introduced as binary decisions.

(R1?) Reducing variables and symmetries: The original reductions (related to the in-
troduction of the set ∆) are now automatically included already by definition. However,
due to the new job-to-job assignment, further improvements are possible because a pair
(i, k) ∈ ∆ with i 6= k can only be executed on the same server if both jobs (i and k) do not
overlap or if they do not exceed the capacity C of the server. More formally, considering

∆red := {(i, k) ∈ ∆ | 〈i 6= k, [sk, ek) ∩ [si, ei) 6= ∅ =⇒ ci + ck ≤ C〉} (29)
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is sufficient. All other index pairs from ∆ would automatically lead to a zero variable, so
they do not have to be considered. This reduction is particularly promising if there are
lots of (temporal) interactions between the jobs and if the corresponding item sizes are
relatively large.

(R2?) Valid inequalities: The only useful valid inequality, previously termed as Conditions
(18), could now be written as

xkk ≤ wk (30)

for any k ∈ I, because we know that a server which has been initialized by job k has to
count a fire-up precisely caused by that item. Observe that the right hand side of (30) only
contains one specific term from the sum that previously appeared in (18), thus describing
a stronger inequality. Moreover, this much more direct connection between the x- and the
w-variables could also contribute to easier subproblems in the branching trees. While up
to now (in Model 1 and Model 2), we had to know that wtk = 0 holds for all t ∈ TS(k)
to conclude zk = 0 (or in the reverse direction, zk = 1 did not specify the value of a
single w-variable), now already wk = 0 implies xkk = 0 (or, alternatively, xkk = 1 entails
wk = 1). Consequently, after having chosen a variable to branch it now becomes more
likely that additional variables directly obtain integer values.

(R3) Lifting: This technique can be executed in precisely the same manner as before.

(R4) Strengthening Constraints (26): Here it is not possible to exclude the items having
the same starting time from the definition of δ+

i . In order to better understand this, we
take the following case as an example: Let i < j ∈ I with si = sj be given and assume
that both jobs have been attached to some initializing job k ∈ I, meaning that we have
xik = xjk = 1. Then, we would obtain δ+

i = δ+
j for the sets defined according to (22). If

these two sets are empty (or, more generally, if the sum of the corresponding x-variables is
zero), then Constraints (26) would lead to wi = wj = 1, i.e., two fire-ups would be counted
which is not correct. Hence, we cannot use this type of reduction here.

(R5?) Temporal dominance: Since we have completely deleted the temporal aspect from
the variable indices, referring to non-dominated starting times is not reasonable for the
current model. Instead, the following implication can easily be verified

i < j ∈ I, si = sj =⇒ {i} ∪ δi ⊆ {j} ∪ δj , (31)

so that (for any suitably chosen k ∈ I) the left hand side of (23) for (i, k) ∈ ∆red is
completely contained in the left hand side of (23) for (j, k) ∈ ∆red, while the right hand side
does not change. Consequently, the capacity constraint corresponding to (j, k) dominates
the condition associated with (i, k). Roughly spoken, if there are two (or more) jobs having
the same starting time, and both of them are allowed to be executed together with a fixed
initializing job k ∈ I, then the capacity constraint only has to be satisfied for the highest-
indexed job (with respect to the chronologically sorted list that was required to define the
sets δi and δ+

i ). More formally, we state: Let k ∈ I be fixed. If there are two jobs i, j ∈ I
with k < i < j, (i, k), (j, k) ∈ ∆red and si = sj , then (j, k) dominates (i, k). To be able to
represent this observation as easily as possible in mathematical language, we use the set
∆nd
red ⊆ ∆red to refer to the non-dominated index pairs.

To account for the fact that this compact model is completely new, we explicitly formulate it in
its maximally reduced shape as the

(Reduced) Assignment Model Type 3 (Model 3)

z(3) = γ ·
∑
i∈I

wi +
∑
k∈I

xkk → min
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s.t.
∑

j∈δi:(j,k)∈∆red

cjxjk + cixik ≤ C · xkk, (i, k) ∈ ∆nd
red, i 6= k, (32)

∑
k∈I:(i,k)∈∆red

xik = 1, i ∈ I, (33)

xik ≤ xkk, (i, k) ∈ ∆red, i 6= k, (34)∑
j∈δ+i

xjk − xik + wi ≥ 0, (i, k) ∈ ∆red, (35)

xik ∈ {0, 1}, (i, k) ∈ ∆red, (36)

wi ∈ {0, 1}, i ∈ I. (37)

Note that we exclude the possibility i = k in Conditions (32), because this constellation always
leads to trivial inequalities of type cixkk ≤ Cxkk. Indeed, for i = k, conditions j ∈ δ+

k and
(j, k) ∈ ∆red become incompatible, as the first requires j < k while the latter demands j ≥ k.
Consequently, the index set of the sum appearing in (32) is empty for precisely those cases,
and we do not need to generate the respective constraint. For the sake of completeness, we
also highlight that this observation is responsible for demanding k < i in the definition of non-
dominated index pairs, because the diagonal elements (k, k) (for appropriately chosen k ∈ K)
can be ignored due to the aforementioned explanation.

Whenever there are different modeling approaches for one and the same optimization problem,
an important question deals with the strength of the (integer-valued) bounds obtained from the
corresponding LP relaxations. It is well known that the tightness of a relaxation is a crucial
factor in the size of branch-and-bound trees, because it significantly influences the efforts to solve
the ILP. Hence, before concluding the current section, we present several very small exemplary
instances to show that there are no dominance relations between the three LP relaxations (ob-
tained from the three reduced assignment models). For the sake of simplicity, we partly refer to
the models by their respective abbreviations M1, M2, and M3. These symbols will also appear
later in the computational part, see Sect. 5.

Theorem 5. There are no dominance relations between the rounded-up (optimal) LP values of
M1, M2, and M3.

Proof. We proof this claim by three different examples:

• Let us consider an instance with C = 2 and n = 3 items characterized by s = (1, 1, 3),
e = (2, 4, 4), and c = (1, 2, 1), see the leftmost picture in Fig. 5. Here, we obtain⌈
z

(1),?
LP

⌉
=
⌈
z

(2),?
LP

⌉
= 5 and

⌈
z

(3),?
LP

⌉
= 4.

• Let us consider an instance with C = 2 and n = 4 items characterized by s = (1, 1, 1, 3),
e = (2, 4, 2, 4), and c = (1, 1, 2, 2), see the middle picture in Fig. 5. Here, we obtain⌈
z

(1),?
LP

⌉
=
⌈
z

(3),?
LP

⌉
= 5 and

⌈
z

(2),?
LP

⌉
= 4.

• Let us consider an instance with C = 3 and n = 3 items characterized by s = (1, 1, 3),
e = (2, 4, 4), and c = (2, 3, 3), see the rightmost picture in Fig. 5. Here, we obtain⌈
z

(2),?
LP

⌉
=
⌈
z

(3),?
LP

⌉
= 5 and

⌈
z

(1),?
LP

⌉
= 4.

The corresponding solutions of all LP relaxations can be found in AppendixB.

We would like to point out in particular that – in contrast to the situation for the unimproved
models (see Remark 2) – the dominance (in terms of the LP bound) between M1 and M2 no
longer applies, so that our reductions eliminated an additional drawback of the second assignment
model.
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Figure 5: Illustrations of the instances used within the proof of Theorem 5.

5. Numerical Experiments

In this section, we collect the results of our computational experiments which have been con-
ducted to compare the numerical properties and performances of the approaches presented be-
fore. To this end, we coded the three formulations in Python (version 3.7.7) and used its Gurobi
(version 9.0.2) interface to solve the corresponding ILP models. All the experiments were run
on an AMD A10-5800K processor with 16 GB RAM. Moreover, following the conventions of [4],
a time limit of tmax = 30 minutes was chosen if not stated otherwise.

5.1. Data Sets and Methodology

Since the TBPP is a relatively young field of research, there is not yet a comprehensive collection
of associated benchmark instances. However, in the relevant literature, two major data sets have
been introduced to study the behavior of exact approaches. Even if they were not specifically
designed for the TBBP-FU, we will consider the following instance categories:

(A) In [4, Sect. 5], the authors presented 160 instances divided into 32 groups having 5
instances each. Any of these groups is determined by the bin capacity C = 100, a fixed
number n ∈ {50, 100, 150, 200} of items, and three additional indicators:

• Time horizon: It is assumed that the starting times si, i ∈ I, are uniformly
distributed on [0, s̄]∩Z+, where s̄ ∈ {n, 1.2n} either represents a rather dense (s̄ = n)
or a more relaxed (s̄ = 1.2n) scenario with respect to possible temporal interactions
of the items.

• Duration: The item durations di := ei − si, i ∈ I, either correspond to a short
(i.e., di ∈ [10, 30] ∩ Z+) or long (i.e., di ∈ [20, 60] ∩ Z+) scenario. For the sake of
simplicity, these constellations will briefly be referred to as dS (for ’short’) and dL
(for ’large’) in the upcoming tables and explanations.

• Item sizes: To also account for a certain variety with respect to the capacity
dimension, instances can be equipped with a low (i.e., ci ∈ [25, 50] ∩ Z+) or a high
(i.e., ci ∈ [25, 75] ∩ Z+) resource demand. In the following, we will refer to these
scenarios by cL (for ’low’) and cH (for ’high’).

For the sake of completeness, we note that further instances (with much larger values
of n) are described in [4], but these are solved exclusively heuristically, since addressing
the exact solution is expected to be too difficult. Therefore we will not consider these
additional instances here.
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(B) The instances presented in [31, Sect. 7] use C = 100, uniformly distributed item sizes
ci ∈ [10, 100], and they are based on a testbed originally introduced for the temporal
knapsack problem in [14]. While the full details of this construction can be found in
[31], here we only state that these instances particularly focus on the number of different
instants of time |T |. More precisely, for any |T | ∈ {5, 10, 15, 20, 30, . . . , 150}, a set of 100
instances7 has been considered that are further divided into 10 classes (from I to X) of 10
instances each. The classes mainly differ in two ways:

• For any time step, the number of active items is drawn from a uniform distribution
on [an, amax] ∩Z+.

• For any time step (except for the very first one), a percentage uniformly distributed in
[bn, bmax]∩Z+ is selected to indicate how many jobs are ’inherited’ from the previous
time step.

Roughly speaking, the first decision manages the degree of parallelization while the second
one indirectly influences the duration of the items. The full details regarding the precise
choices of the parameters an, amax, bn, and bmax in the ten different classes are given in
[31, Tab. 1].

5.2. Complexity of the ILP Formulations for Category (A)

At first, we would like to focus on the complexity of the various approaches measured by the
numbers of variables (nvar), constraints (ncon), and nonzero elements (nnz) in the matrix formed
by all restrictions. In a first experiment, we list the results for a subset8 of the instances from
Category (A) to obtain an overview on the effects of our reduction methods applied to the
state-of-the-art models from the literature, see Tab. 6.

Remark 6. As already explained in the theoretical part of our paper, the abbreviation (Lit)
refers to a formulation that only contains the reductions previously presented in the literature,
whereas (Red) includes all the additional improvements reported in Sect. 3. By way of example,
for Model 1 (abbreviated by M1), the term (Red) is equivalent to (R1)-(R3), while for Model 2
(abbreviated by M2), it gathers all five steps of reduction, i.e., (R1)-(R5).

Given the large number of instances attempted, we just provide average numbers instead of
referring to every single instance individually. Remember that for Category (A) these averages
are formed by the data obtained from five instances each. The main observations based on Tab.
6 are the following:

• Comparing the versions from the literature, we can obviously support the claim from
[4] stating that Model 2 is considerably less complex than Model 1. This relation is also
inherited by the reduced versions, so that the improved variant of Model 2 always possesses
the most promising properties (i.e., the lowest numbers).

• For each of the three indicators (nvar, ncon, and nnz), we see the large savings that resulted
from our proposed reductions. More precisely, roughly 50% of the variables are saved for
M2 (which is mainly caused by the triangular structure of the x-variables), while an even
larger decrease can be observed for M1 (because, here, also the y-variables can be reduced
significantly). In terms of constraints, we see that the reductions for Model 1 are typically
slightly below 50%, whereas up to 58% fewer restrictions can be obtained for Model 2.
This difference is mainly connected with the additional temporal dominance (R5) which
can be formulated only for the second formulation.

7Note that we will not make use of all these 1700 instances, since they were designed for another optimization
problem and sometimes only the approximate solution was addressed. Consequently, in the light of [31, Tab. 6]
dealing with exact approaches for the TBPP, we mainly focus on those instances having moderate sets of time
steps.

8The full details can be found in Tab. C.12 in AppendixC.
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• By and large, we do not see any significant differences for the numbers of variables and
constraints, when n and the specific model is fixed. As reported in Sect. 2 and Sect. 3, for
a given model, these two numbers are mainly determined by the number n of jobs. Slight
variations may, however, appear due to the specific input data of an instance, since they
can influence the success of some of the reductions (like (R1) or (R5)).

• However, the number of nonzeros is typically much higher for dL (compared to dS), because
there we have much more temporal interactions between the jobs so that, for example, the
sets δi and δ+

i become larger (for Model 2), or we have more nonzero parameters ait (in
Model 1), so that more coefficients have to be stored in Constraints (1). In contrast,
changing the size of the items (cL vs. cH) has almost no effect on the number of nonzeros,
if the parameters are otherwise the same.

Altogether, we can summarize that the improved Model 2 seems to have the best properties in
terms of complexity. To this end, we now use this formulation as a reference for the comparison
with our new approach (i.e., Model 3, abbreviated by M3), see Tab. 7. Note that, again, we
just selected a few subsets of Category (A), while the full details are shifted to Tab. C.12 in
AppendixC.

nvar ncon nnz

M2 M3 M2 M3 M2 M3
n s̄ di ci (Red) (Red) (Red) (Red) (Red) (Red)

100 100 dS cL 8.4 5.2 13.8 13.4 168.1 160.7
cH 8.3 4.4 14.1 9.8 173.5 125.6

dL cL 8.4 5.2 13.7 13.4 243.0 232.8
cH 8.3 3.8 13.7 9.0 249.7 147.5

120 dS cL 8.6 5.2 13.9 13.6 147.1 144.0
cH 8.6 4.5 13.7 10.0 145.1 116.1

dL cL 8.6 5.2 13.8 13.6 219.9 213.1
cH 8.7 3.9 13.5 9.2 219.3 144.6

200 200 dS cL 33.4 20.3 54.9 53.4 742.4 711.9
cH 33.1 18.7 56.2 41.0 747.6 607.6

dL cL 33.4 20.3 55.3 53.4 1249.6 1185.6
cH 32.9 17.2 54.9 39.2 1227.0 924.9

240 dS cL 34.0 20.3 54.2 53.9 627.5 622.9
cH 34.4 18.9 54.2 42.3 634.3 563.6

dL cL 34.2 20.3 54.7 54.2 1063.9 1049.2
cH 34.1 17.7 55.0 40.7 1060.9 852.0

Table 7: Structural comparison involving the new formulations. The numbers listed in the table indicate units
of 103, and the best number per category is printed in boldface.

We would like to especially mention the following observations:

• Obviously, for any of the three indicators, the reduced version of M2 is worse than the new
compact formulation M3.

• In terms of variables, we see that the new job-to-job correspondence applied to construct
Model 3 roughly causes (at least) an additional 40% of reduction compared to Model 2.
Moreover, we see that the improvement is particularly successful for large item sizes (cH),
because then many pairs (i, k) do not appear in ∆red, because they exceed the capacity
when executed on the same server.

• Considering the number of constraints, we see that the difference between M2 and M3 is
only significant for large item sizes, because then the capacity constraints (of M3) only
have to be formulated for much fewer feasible pairs (i, k) (due to the incompatibility of
the item pairs given by (R1?)).
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5.3. Computational Results for Category (A)

After having dealt with some structural properties of the various ILP formulations in the previous
subsection, we now investigate their practical performance in more details. To this end, we
first study the computational behavior for the instances of Category (A), and we will use the
results obtained from these experiments to later define a reasonable test environment for the
second instance category. As stated earlier, the maximum solution time is set to 1800 seconds.
Moreover, observe that whenever an instance could not be solved within this amount of time, we
will use t = 1800s (and the best feasible point obtained so far) within the respective averages.
In Tab. 8, we report about the average computation times and the number of instances solved
to proven optimality for the 32 subsets (each of which containing five instances) from Category
(A). Due to the large benefits of applying the reduction methods (see Tab. 6), here we do not
provide the results for the unimproved formulations. However, since the raw version of Model
1 represents the only competitor from the existing literature, we include an additional column
termed ’(Lit)’ to give an overview of the results obtained in [4, Tab. 10] and, thus, enable a
rough comparison to our proposed ILP formulations. Moreover, we will use boldface to indicate
the best formulation. By best we mean that the respective approach could solve the largest
number of instances, where ties are broken by the smaller time required.

Remark 7. The average times in [4, Tab. 10] only included the data from the instances at-
tempted successfully which differs from our strategy explained before. To facilitate the compari-
son, we therefore recalculated the values from the literature in a sense that each unsolved instance
contributes with the time limit of 1800 seconds (which was also used in [4]).

Among others, the following important observations can be made based on the results collected
in Tab. 8:

• From an overall point of view, any of the new or improved formulations was better than
the state-of-the-art model from the literature. In fact, any of our approaches could solve
at least 10 instances more than the unimproved version of M1 (see column ’(Lit)’). In
particular, the improvements of Model 1 lead to a remarkable number of 22 additional
instances that were solved to proven optimality.

• Only for four specific parameter constellations, the original model from [4] performed best.
In two of these cases, however, note that also the reduced variant of M1 was able to solve
all instances, but with a moderately larger average time. We attribute this observation to
the fact that different computational environments have been used, and that, in addition,
the solvers apply highly randomized solution strategies.

• Any of the assignment models showed the best performance for at least one subset of
instances. The low complexity of M2 and M3 leads to very convincing results especially
for the smaller instances with n = 50 items. In fact, M3 is the only compact formulation
that is able to cope with all the 40 instances and, on top of that, required the smallest
computation time for most of them. For medium instance sizes (with n ∈ {100, 150} items),
M1 is on average slightly better than the other formulations, but any of the approaches is
the winner in four sub-categories of 5 instances each. Only for the largest instances (with
n = 200) the better performance of M1 becomes a bit more apparent.

To get some further insights, we additionally report on the objective values obtained by the three
formulations (for both, the ILP and the LP relaxation) in Tab. 9. Remember that, whenever
an instances could not be solved to optimality within the given time limit, the best objective
value found so far was used as an upper bound for the true optimal value. Based on Tab. 9, we
highlight the following interesting results:

• First of all, let us state that any of the LP relaxations could be solved in (much) less than
400 seconds. Moreover, in all these calculations, the LP values of the three assignment
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M1 (Red) M2 (Red) M3 (Red) (Lit) = [4]
n s̄ di ci t opt t opt t opt t opt

50 50 dS cL 7.4 (5) 6.3 (5) 3.6 (5) 36.6 (5)
cH 8.6 (5) 2.8 (5) 3.7 (5) 35.7 (5)

dL cL 367.8 (4) 71.9 (5) 17.0 (5) 1453.8 (1)
cH 12.3 (5) 5.0 (5) 0.2 (5) 481.5 (5)

60 dS cL 14.0 (5) 3.3 (5) 4.6 (5) 368.5 (4)
cH 37.8 (5) 363.1 (4) 3.2 (5) 412.3 (4)

dL cL 251.2 (5) 5.6 (5) 1.1 (5) 1125.4 (2)
cH 5.7 (5) 2.2 (5) 0.3 (5) 554.2 (4)

Average (Sum) 88.1 (39) 57.5 (39) 4.2 (40) 558.5 (30)

100 100 dS cL 22.1 (5) 4.2 (5) 46.8 (5) 785.0 (3)
cH 738.6 (4) 956.7 (3) 1128.7 (3) 479.3 (5)

dL cL 1457.9 (1) 1800.0 (0) 1447.4 (1) 1800.0 (0)
cH 1500.4 (1) 1555.6 (1) 1443.4 (1) 1800.0 (0)

120 dS cL 91.2 (5) 152.7 (5) 381.8 (4) 855.4 (3)
cH 1042.8 (3) 1800.0 (0) 1800.0 (0) 641.4 (5)

dL cL 850.4 (3) 803.8 (3) 635.2 (4) 1800.0 (0)
cH 1481.0 (1) 1329.9 (2) 733.3 (3) 1800.0 (0)

Average (Sum) 898.0 (23) 1050.4 (19) 952.1 (21) 1245.1 (16)

150 150 dS cL 462.4 (4) 404.5 (4) 601.1 (4) 659.4 (4)
cH 1800.0 (0) 1800.0 (0) 1800.0 (0) 1800.0 (0)

dL cL 1502.3 (1) 1800.0 (0) 1726.6 (1) 1800.0 (0)
cH 1517.8 (1) 1800.0 (0) 1628.7 (1) 1800.0 (0)

180 dS cL 93.7 (5) 377.7 (4) 634.1 (4) 290.0 (5)
cH 1682.6 (2) 1800.0 (0) 1800.0 (0) 1283.7 (2)

dL cL 1800.0 (0) 1620.0 (1) 1800.0 (0) 1800.0 (0)
cH 1800.0 (0) 1649.1 (1) 1797.6 (1) 1800.0 (0)

Average (Sum) 1332.3 (13) 1406.4 (10) 1473.5 (11) 1404.1 (11)

200 200 dS cL 582.8 (4) 730.5 (3) 1595.9 (2) 1794.3 (1)
cH 1800.0 (0) 1800.0 (0) 1800.0 (0) 1800.0 (0)

dL cL 1574.1 (1) 1800.0 (0) 1800.0 (0) 1800.0 (0)
cH 1800.0 (0) 1800.0 (0) 1800.0 (0) 1800.0 (0)

240 dS cL 220.1 (5) 1083.7 (2) 1144.1 (2) 180.1 (5)
cH 1800.0 (0) 1800.0 (0) 1800.0 (0) 1800.0 (0)

dL cL 1800.0 (0) 1800.0 (0) 1800.0 (0) 1800.0 (0)
cH 1800.0 (0) 1800.0 (0) 1800.0 (0) 1800.0 (0)

Average (Sum) 1422.1 (10) 1576.8 (5) 1692.5 (4) 1596.8 (6)

Total: Average (Sum) 935.2 (85) 1022.8 (73) 1030.6 (76) 1201.1 (63)

Table 8: Number opt of instances solved to optimality and required (average) computation times t (in seconds)
for Category (A).
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z zLP

M1 M2 M3 M1 M2 M3
n s̄ di ci (Red) (Red) (Red) (Red) (Red) (Red)

50 50 dS cL 19.6 19.6 19.6 19.6 19.6 19.6
cH 25.8 25.8 25.8 25.6 25.6 25.6

dL cL 30.4 30.0 30.0 30.0 30.0 30.0
cH 46.0 46.0 46.0 46.0 46.0 46.0

60 dS cL 16.8 16.8 16.8 16.8 16.8 16.8
cH 24.0 24.0 24.0 23.6 23.6 23.6

dL cL 29.6 29.6 29.6 29.6 29.6 29.6
cH 41.6 41.6 41.6 41.6 41.6 41.6

Average 29.2 29.2 29.2 29.1 29.1 29.1

100 100 dS cL 22.4 22.4 22.4 22.4 22.4 22.4
cH 34.8 35.4 35.4 33.6 33.6 33.6

dL cL 36.8 37.6 36.0 34.4 34.4 34.4
cH 54.0 51.6 51.0 49.2 49.2 49.2

120 dS cL 20.0 20.0 20.2 20.0 20.0 20.0
cH 30.6 31.0 31.0 27.2 27.2 27.2

dL cL 31.6 31.6 31.2 30.8 30.8 30.8
cH 47.8 46.6 45.6 44.4 44.4 44.4

Average 34.7 34.5 34.1 32.8 32.8 32.8

150 150 dS cL 22.0 22.0 22.0 21.6 21.6 21.6
cH 53.8 42.8 46.8 34.0 34.0 34.0

dL cL 43.2 40.8 41.2 38.8 38.8 38.8
cH 105.2 62.4 58.6 52.8 52.8 52.8

180 dS cL 19.6 19.8 19.8 19.6 19.6 19.6
cH 89.4 39.2 42.2 28.0 28.0 28.0

dL cL 43.8 33.6 34.2 31.6 31.6 31.6
cH 116.6 59.2 57.2 47.6 47.6 47.6

Average 61.7 40.0 40.2 34.2 34.2 34.2

200 200 dS cL 24.6 25.4 26.0 24.4 24.4 24.4
cH 247.2 49.6 59.0 31.6 31.6 31.6

dL cL 184.0 42.4 42.8 38.0 38.0 38.0
cH 317.2 78.0 71.8 53.6 53.6 53.6

240 dS cL 21.6 22.6 24.0 21.2 21.2 21.2
cH 163.2 51.4 58.0 30.4 30.4 30.4

dL cL 154.4 34.8 37.2 32.4 32.4 32.4
cH 320.4 83.2 66.0 46.0 46.0 46.0

Average 179.1 48.4 48.1 34.7 34.7 34.7

Table 9: Comparison of the average objective values z and zLP for the integer models and their LP relaxations,
respectively.
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models were equivalent. Although we noticed in our theoretical part that any relations
between the three LP values are possible (see Theorem 5), here we observed that they were
always equal to (the integer value) z?LP = 2 · h. Note that this bound is easily implied by
requiring h servers to be used, because any server will at least produce one fire-up.

• In many cases (especially for all scenarios with n = 50), all the assignment models perform
equivalently, but they do not always identify the optimality of the feasible point found so
far. For larger numbers of items (that is, n ∈ {150, 200}), we see that M1 partly struggles
to find good integer solutions, particularly when large item sizes (cH) are involved. In the
latter case, the remaining ILP formulations lead to considerably better results. By way
of example, not a single compact model could solve any of the cH -instances for n = 200
(see Tab. 8), but M2 and M3 lead to much better feasible points9. We attribute this
observation to the less complex model itself, because especially M3 highly benefits from
the additional reductions (in terms of x-variables) caused by large item sizes, see (R1?).

Having a holistic view on Tab. 8 and Tab. 9, it seems that the general structure of M1 may be
rather beneficial for branching because there are many interactions between the different types of
variables, whereas the internal heuristics applied by Gurobi do not always perform successfully
given the relatively large complexity of the formulation. For M2 and M3, the data suggest that
it tends to be the other way around.
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Figure 6: Performance profile for the three formulations applied to the instances of Category (A)

Although M1 represents the best compact formulation with respect to the criteria applied in Tab.
8, the general structure of M2 and M3 seems to be very appropriate to find near-optimal solutions
of good approximation quality much quicker than M1 (at least for the instances considered here).
Consequently, all models have their specific advantages and can be useful depending on which
goal (e.g., large number of optimal solutions vs. good-quality feasible points in short times)
shall be achieved. This impression is also supported by the performance profile depicted in

9A similar observation is also true for the dL-instances.
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Fig. 6. In it we see for each of the three models, which percentage of instances from Category
(A) could be solved in which time. According to Fig. 6, the practical choice of the respective
compact model for solving an instance should also depend on the available time frame. If only
very little time is available to calculate a feasible solution (here: about up to four seconds), then
Model 3 should be preferred, because on this short time scale (due to its very low complexity) it
provides significantly better results than the other two models. If, on the other hand, decisions
are allowed to take a medium amount of time (here: up to four minutes), Model 2 provides
the best compromise between complexity and performance. Finally, the advantages of Model 1
become particularly clear in the long run.

5.4. Complexity of the ILP Formulations and Computational Results for Category (B)

In this section we would like to present a selection of the numerical results for the second
category of instances (from [26]). Remember that these instances are characterized differently
than those of Category (A), since there are only two main parameters influencing the shape
of an instance. More precisely, as already stated at the beginning of Sect. 5, one of these
parameters determines the number of active jobs per instant of time, while the other one more
or less defines the temporal interaction between successive time steps. Contrary to the previous
experiment, for a fixed number |T | of time steps, we now consider ten classes (numbered by
I-X) each of which consisting of 10 instances. To recapitulate, we repeat once again that the
exact construction data of these classes are contained in [26, Tab. 1]. However, to give a rough
overview, the following more detailed explanations can be made:

(a) Among the ten classes, Classes I-V and VII can be considered as relatively easy, especially
because here a very high percentage of the jobs from the preceeding time step is overtaken
for the current time step, so that we only have a few number of new jobs per instant of
time. Moreover, the total number of active jobs per instant of time is not too large yet.
Both these features lead to manageable cardinalities of I (and K). For the purpose of an
internal ranking, it can be said that the instances referred to in the previous lines become
(on average) more difficult with increasing class index.

(b) For Classes VI and IX, the b-parameters (from the construction described at the beginning
of Sect. 5) are significantly smaller than for the other classes, meaning that we have (much)
more new jobs per time step. This leads to a larger total number of jobs, i.e., to larger
sets I and K, making the instances more difficult.

(c) For Classes VIII-X, the a-parameters (from the construction described at the beginning
of Sect. 5) are larger than for the other classes. Hence, we can have a larger number of
jobs per time step, so that again the sets I and K (and thus the instances) become more
complex.

In a first test scenario, we collect the numerical data for all three (reduced) compact formulations,
but only for those instances having a small number of time steps, i.e., for |T | ∈ {10, 15, 20}. Based
on these results, it will be decided which of the models should be further investigated for larger
instances. To this end, we particularly notice:

• The different levels of hardness (of the instance classes) described in (a)-(c) of the above
list can be observed to a large extent for any of the three formulations.

• According to Tab. 10 (upper table), we see that M1 is able to solve the largest number of
instances for any |T | ∈ {10, 15, 20}. From an overall point of view, M3 performs second
best, but for many subsets it is able to solve the same number of instances as M1 in
(slightly) less time. Regarding M2, it can be said that it typically leads to the worst
results, because it can only solve a single subset the fastest (but performs only slightly
better than M1 in this case). Altogether, these observations clearly support the general
trends already observed for Category (A).
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• Contrary to the previous experiments, we see that the structural properties of M2 are much
worse than those of M1 and M3, see Tab. 10 (lower table). More precisely, especially for
the harder instance classes (i.e., for Classes VI and VIII-X, see part (b) and (c) of the
above list), significant differences in terms of the numbers of constraints and nonzeros can
be noticed. To better understand this, we have to remember that, by way of example, the
numbers of constraints in the unimproved versions of M1 and M2 resulted to n · (|T |+ 1 +
|TS |) + n2 and 3n2 + n (see Sect. 2), respectively, and that the effects of the reductions
were (approximately) comparably strong (not precisely the same, but on a similar level).
Since the total number of jobs n is particularly large for the (difficult) instance classes
addressed in the current discussion (and since we only consider a rather small number |T |
of time steps), we typically have |TS | ≤ |T | � n. With this in mind, the coefficient of the
quadratic term (in the number of constraints) is generally larger for M2. Of course, this
large number of constraints then also influences the number of nonzeros.

Although there is no separate table for this here, we mention for the sake of completeness that
the optimal LP values were always identical for each of the three models. Furthermore, contrary
to the results from Tab. 9, there were no significant differences as regards the objective values
of the best integer solution found. Most likely, the instances (with only a few time steps) are
not yet difficult enough to observe this behavior again.

To conclude this introductory investigation for the instances of Category (B), let us have a look
at a performance profile, see Fig. 7, summarizing the numerical results for the 300 instances
attempted so far. Similar to Category (A), we again see that M3 (usually having the least
complex model structure) performs best when decisions have to be made very quickly. Contrary
to the situation depicted in Fig. 6, now we see that M1 and M2 perform almost equivalently
even for the smaller solution times which is a clear indicator that the instances from Category
(B) are rather not favorable to M2. Again, in the long run, the numerical advantages of M1
(also compared to M3) become visible.
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Figure 7: Performance profile for the three formulations applied to instances of Category (B) with |T | ∈
{10, 15, 20}
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Thanks to the aforementioned results, we now only consider M1 and M3 for growing instance
sizes. To be more precise, our final experiment deals with the medium-sized sets of time steps
|T | ∈ {30, 40, 50, 60}. Note that, for the ordinary TBPP, already these instances have only
been tackled heuristically in [26], so that not going for even larger instance sizes from Category
(B) can be justified. Here we only provide two overview tables (see Tab. 11) summarizing
the main results of our computational study. We can see that, for each fixed |T |, M1 is again
superior to M3 in terms of the number of instances solved to optimality (see upper table in Tab.
11). With increasing number |T | of time steps, we also observe that M1 becomes more and
more convincing even in the rather easy instance classes which were dominated by M3 before.
Contrary to this, both approaches really struggle to find optimal solutions for the very hard
Classes VIII-X. However, as shown in the lower table of Tab. 11, especially for these difficult
instances M3 is again able to find feasible solutions of (much) better quality. The fact that both
models offer their specific advantages also for the current set of 400 instances is underlined in
Fig. 8. Again, we see that M3 can solve more instances in short time, but that the “distance”
to M1 (compared to the previous figures) has become closer. In the long run (here from about
180 seconds on) the generally better performance of M1 becomes noticeable again.
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Figure 8: Performance profile for two compact formulations applied to instances of Category (B) with |T | ∈
{30, 40, 50, 60}

6. Conclusions

In this article, we studied compact formulations for a generalization of the temporal bin packing
problem. More precisely, besides the mere number of servers required, also the sustainability of
the operation mode (measured by the number of fire-ups) is contained in the overall optimization
problem. At first, we propose a wide variety of reduction methods for the two existing ILP
formulations from the literature, and show that they can lead to improved LP values and less
complex compact models. Moreover, an alternative approach having even fewer variables and
constraints is introduced, and the applicability of reduction methods is discussed also with
respect to this new framework. From a theoretical point of view, one of our main contributions
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consists in proving that none of these three models is superior to another in terms of the quality
of its LP bound. Finally, all approaches are numerically compared using different categories of
test instances. It turns out that the reduction methods are very successful (depending on the
model, the reductions in terms of variables and constraints are roughly 50% or even beyond)
and therefore, from an overall point of view, each of the models shows a better performance
than the state-of-the-art in the literature. On average, the improved version of Model 1 shows
the most convincing results, while M2 and M3 (due to their low complexity) are particularly
suitable for quickly finding high-quality feasible solutions. Altogether, the numerical tests thus
underline the fact that each of the models has its individual areas of application.

In our future research we mainly want to deal with alternative modeling approaches for the
TBPP-FU. In particular, we will focus on flow-based formulations, whose general strengths
have recently been brilliantly summarized in [25], and exponential formulations, which can then
be solved using branch-and-price. Note, however, that an efficient implementation of both
approaches is challenging and not necessarily straightforward. On the one hand, the different
states of an arcflow graph must not only contain information about the currently used capacity
but also about the temporal dimension (i.e., at least the next terminating item or even all items
forming the current state), thus making a smart construction of nodes and arcs more complicated.
On the other hand, any branch-and-price framework offers a lot of tuning possibilities (e.g.,
branching schemes, heuristics, solving the pricing problems, etc.), so that a thorough analysis
of all these ingredients has to be conducted. Since both of these alternative approaches require
much more preparatory work, these topics could not be dealt within the scope of this already
very detailed research article.
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[44] López-Pires, F., Barán, B.: Virtual Machine Placement Literature Review. arXiv Preprint
(2015) (http://arxiv.org/abs/1506.01509)

[45] Luo, J.-P., Li, X., Chen, M.-R.: Hybrid shuffled frog leaping algorithm for energy-efficient
dynamic consolidation of virtual machines in cloud data centers. Expert Systems with Ap-
plications 41(13), 5804–5816 (2014)

[46] Manvi, S.S., Krishna Shyam, G.: Resource management for Infrastructure as a Service
(IaaS) in cloud computing: A survey. Journal of Network and Computer Applications 41,
424–440 (2014)

[47] Martello, S., Monaci, M., Vigo, D.: An exact approach to the strip-packing problem. IN-
FORMS Journal on Computing 15(3), 310–319 (2003)

[48] Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations.
John Wiley & Sons, Chichester, New York (1990)

[49] Martinovic, J., Delorme, M., Iori, M., Scheithauer, G., Strasdat, N.: Improved flow-based
formulations for the skiving stock problem. Computers & Operations Research 113, Article
104770 (2020)

[50] Martinovic, J., Hähnel, M., Scheithauer, G., Dargie, W., Fischer, A.: Cutting Stock Prob-
lems with Nondeterministic Item Lengths: A New Approach to Server Consolidation. 4OR
17(2), 173–200 (2019)
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AppendixA. Detailed Solutions for Example 1

• (Lit): z1 = z2 = 1 and

xik 1 2 3 4

1 1/2 1/2 0 0
2 2/3 1/3 0 0
3 2/3 1/3 0 0
4 7/9 2/9 0 0

ytk 1 2 3 4

1 1 2/3 0 0
2 1 1/3 0 0
3 1 1/3 0 0
4 0 0 0 0

wtk 1 2 3 4

1 1 2/3 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0

• (Lit) + (R1): z1 = z2 = 1 and

xik 1 2 3 4

1 1 - - -
2 1/3 2/3 - -
3 2/3 1/3 0 -
4 7/9 2/9 0 0

ytk 1 2 3 4

1 1 2/3 - -
2 1 0 - -
3 1 1/3 0 0
4 0 0 0 0

wtk 1 2 3 4

1 1 2/3 - -
3 0 1/3 0 0

• (Lit) + (R2): z1 = z2 = 1 and

xik 1 2 3 4

1 1 0 0 0
2 1/3 2/3 0 0
3 2/3 1/3 0 0
4 7/9 2/9 0 0

ytk 1 2 3 4

1 1 2/3 0 0
2 1 0 0 0
3 1 1/3 0 0
4 0 0 0 0

wtk 1 2 3 4

1 1 2/3 0 0
2 0 0 0 0
3 0 1/3 0 0
4 0 0 0 0

• (Lit) + (R3): z1 = z2 = 1 and

xik 1 2 3 4

1 1/3 2/3 0 0
2 2/3 1/3 0 0
3 0 1 0 0
4 1 0 0 0

ytk 1 2 3 4

1 1 1 0 0
2 1 1 0 0
3 1 1 0 0
4 0 0 0 0

wtk 1 2 3 4

1 1 1 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
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• (Lit) + (R1)-(R3): z1 = z2 = 1 and

xik 1 2 3 4

1 1 - - -
2 0 1 - -
3 0 1 0 -
4 1 0 0 0

ytk 1 2 3 4

1 1 1 - -
2 1 0 - -
3 1 1 0 0
4 0 0 0 0

wtk 1 2 3 4

1 1 1 - -
3 0 1 0 0

AppendixB. Detailed Solutions for the Instances from Fig. 5

For the leftmost instance in Fig. 5, we obtain the following solutions of the LP relaxations:

• Model 1: Optimal value z
(1),?
LP = 5 given by z1 = z2 = 1 and

xik 1 2 3

1 1 - -
2 1 0 -
3 0 1 0

ytk 1 2 3

1 1 - -
2 0 - -
3 1 1 0
4 0 0 0

wtk 1 2 3

1 1 - -
3 1 1 0

• Model 2: Optimal value z
(2),?
LP = 4.5 given by z1 = z2 = 1 and

xik 1 2 3

1 1 - -
2 1/2 1/2 -
3 1/2 1/2 0

wtk 1 2 3

1 1 - -
3 1/2 1 0

• Model 3: Optimal value z
(3),?
LP = 4 given by

xik 1 2 3

1 1 - -
2 1/3 2/3 -
3 2/3 - 1/3

i 1 2 3

wi 1 2/3 1/3

For the middle instance in Fig. 5, we obtain the following solutions of the LP relaxations:

• Model 1: Optimal value z
(1),?
LP = 4.5 given by z1 = z2 = 1 and

xik 1 2 3 4

1 1 - - -
2 1 0 - -
3 0 1 0 -
4 1/2 1/2 0 0

ytk 1 2 3 4

1 1 1 0 -
2 1 0 0 -
3 1 1/2 0 0
4 0 0 0 0

wtk 1 2 3 4

1 1 1 0 -
3 0 1/2 0 0

• Model 2: Optimal value z
(2),?
LP = 4 given by z1 = z2 = 1 and

xik 1 2 3 4

1 1 - - -
2 3/4 1/4 - -
3 1/8 7/8 0 -
4 5/8 3/8 0 0

wtk 1 2 3 4

1 1 7/8 0 -
3 0 1/8 0 0
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• Model 3: Optimal value z
(3),?
LP = 4.5 given by

xik 1 2 3 4

1 1 - - -
2 1 0 - -
3 - - 1 -
4 1/2 - 1/4 1/4

i 1 2 3 4

wi 1 0 1 1/4

For the rightmost instance in Fig. 5, we obtain the following solutions of the LP relaxations:

• Model 1: Optimal value z
(1),?
LP = 4 given by z1 = z2 = 1 and

xik 1 2 3

1 1 - -
2 1/3 2/3 -
3 2/3 1/3 0

ytk 1 2 3

1 1 2/3 -
2 1 - -
3 1 1 0
4 0 0 0

wtk 1 2 3

1 1 2/3 -
3 0 1/3 0

• Model 2: Optimal value z
(2),?
LP = 13/3 given by z1 = z2 = 1 and

xik 1 2 3

1 1 - -
2 1/3 2/3 -
3 2/3 1/3 0

wtk 1 2 3

1 1 1 -
3 1/3 0 0

• Model 3: Optimal value z
(3),?
LP = 5 given by

xik 1 2 3

1 1 - -
2 - 1 -
3 1 - 0

i 1 2 3

wi 1 1 1

AppendixC. Further Numerical Results
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