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Abstract. We investigate a class of moment problems, namely recovering a measure sup-
ported on the graph of a function from partial knowledge of its moments, as for instance in
some problems of optimal transport or density estimation. We show that the sole knowl-
edge of first degree moments of the function, namely linear measurements, is sufficient to
obtain asymptotically all the other moments by solving a hierarchy of semidefinite relax-
ations (viewed as moment matrix completion problems) with a specific sparsity inducing
criterion related to a weighted `1-norm of the moment sequence of the measure. The result-
ing sequence of optimal solutions converges to the whole moment sequence of the measure
which is shown to be the unique optimal solution of a certain infinite-dimensional linear
optimization problem (LP). Then one may recover the function by a recent extraction al-
gorithm based on the Christoffel-Darboux kernel associated with the measure. Finally, the
support of such a measure supported on a graph is a meager, very thin (hence sparse) set.
Therefore the LP on measures with this sparsity inducing criterion can be interpreted as an
analogue for infinite-dimensional signals of the LP in super-resolution for (sparse) atomic
signals.

Keywords: Moment problem, Inverse problem, Sparse signals, Semidefinite programming.

1. Inverse problem: from moments to graph

In data science, it is often relevant to process moments of a signal instead of the signal
itself. For complex valued signals, the moments are Fourier coefficients, and many filtering
operations are efficiently carried out in the sequence of moments. In numerical approximation
algorithms, many operations on real valued signals are more efficiently implemented in their
sequence of Chebyshev coefficients [19]. In the moment-SOS hierarchy approach, many
nonlinear nonconvex problems are reformulated and solved approximately in the sequence of
moments; see [13, 12] and references therein. Once moments or approximate moments have
been computed, one is faced with the inverse problem of reconstructing the signal from its
moments.

The recent work [15] describes an algorithm based on the Christoffel-Darboux kernel, to
recover the graph of a function from knowledge of its moments. Its novelty (and distinguish-
ing feature) is to approximate the graph of the function (rather than the function itself)
with a semialgebraic function (namely a minimizer of a sum of squares of polynomials) with
L1 and pointwise convergence guarantees for an increasing number of input moments. In
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contrast to approximations via continuous functions (e.g. polynomials) this larger class of
approximants permits to better handle nasty functions (e.g. with discontinuities). In par-
ticular, this distinguishing feature allows to sometimes avoid a typical Gibbs phenomenon
(as well as oscillations) typically encountered when approximating a discontinuous function
by polynomials; for more details and illustrative examples the interested reader is referred
to [15].

The (algebraic) moment of degree d := (dx, dy) ∈ Nnx×Nny of the Young measure supported
on the graph of a given mapping f : X → Y from a domain X ⊂ Rnx to a domain Y ⊂ Rny

is the real number

(1.1)

∫
X

xdxf(x)dy dλ(x) , (dx, dy) ∈ Nnx × Nny ,

where we have used the multi-index monomial notation1. In (1.1) λ is a given reference
measure, for example the uniform measure on X.

In applications treated in [15] to recover f , all moments (1.1) are available; more precisely,
in principle an arbitrarily large number of them can be computed. However in a number of
other interesting applications this is not the case. For instance:

• In the moment-SOS approach for solving or controlling differential equations, only
finitely many (approximate) moments are given, i.e. |d| ≤ r where r ∈ N is a given
relaxation order, and |d| denotes the sum of the entries of vector d;
• In statistics for density estimation (ny = 1), only finitely many moments

∫
xdxf(x) dx,

dx ∈ Nnx , of the unknown density function f ≥ 0 are available, i.e. dy = 1;
• In optimal transport, only marginal moments are available, i.e. either |dx| = 0 or
|dy| = 0.

The main feature of this paper is to consider the more general inverse problem of recovering
the graph of a function f given some of its moments, indexed by d ∈ D in a given countable
index set D ⊂ Nnx × Nny . The following optimization / relaxation / concentration features
combined with the recovery technique described in [15], are key ingredients for a successful
recovery of f .

Optimization. In order to approximate the function f from some of its moments (1.1), an
integral functional ∫

X

c(x, f(x)) dλ(x)

of the solution is typically minimized, where c : X × Y → R is a running cost. In some
applications, the cost is given and there is a unique function solving the problem. Otherwise,
the cost is chosen so that a specific function is recovered. The resulting optimization problem
reads

(1.2) inf
f

∫
X

c(x, f(x)) dλ(x) s.t.

∫
X

xdxf(x)dy dλ(x) = zd, d ∈ D

where the sequence (zd)d∈D ⊂ R and the index set D are given. Function f is sought in a given
functional space, for example square integrable functions, uniformly bounded functions, or
measurable functions.

1For numerical reasons, it is preferable to express moments in a basis different from the monomial basis.
However, in this note we stick to monomials for notational ease.
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Relaxation. Optimization problem (1.2) is nonlinear, nonconvex and quite difficult in gen-
eral. Following Kantorovich’s idea proposed for transport problems [18, Introduction to
optimal transport], one can instead consider the relaxed version

(1.3) inf
µx

∫
X×Y

c(x,y)µx(dy)λ(dx) s.t.

∫
X×Y

xdxydyµx(dy)λ(dx) = zd, d ∈ D

of the non convex problem (1.2). A distinguishing feature of the relaxation (1.3) is to be
linear and hence convex in µx, which is a probability measure on Y parametrized by x ∈ X,
also called a conditional, or Young measure. Weak star compactness arguments can be used
to show that under mild assumptions on the input data, the infimum in relaxed problem
(1.3) is attained. Letting µx = δf(x) shows that the infimum in relaxed problem (1.3) is
less than or equal to the infimum in problem (1.2). Techniques of calculus of variations can
be used to show that under mild assumptions on the input data, the minimum in relaxed
problem (1.3) is equal to the infimum in problem (1.2), i.e. that there is no relaxation gap.

Concentration. For some specific choices of c and D, it can be proved that µx = δf(x) is
the unique optimal solution of relaxed problem (1.3), and hence problem (1.2) has a unique
solution f . In this case we say that the Young measure µx is concentrated on the graph of
function f .

For instance this happens in quadratic optimal transport for which the cost c(x,y) :=
1
2
‖x− y‖2 is given. Brenier showed that the optimal transport function is the gradient of a

convex function; see e.g. [18, Chapter 1] and references therein. If there is freedom for the
cost c, it can be chosen so that concentration occurs.

It also happens in the moment-SOS approach for solving a certain class of nonlinear partial
differential equations, if additional linear constraints are enforced on the measure and/or the
cost if chosen appropriately; see e.g. the recent work on Burgers equation [16].

Contribution. We consider problem (1.3) in the case |dy| ≤ 1, i.e. the only available
moments are those of the reference measure (zero-th order moments dy = 0) and averages
of the graph (first order moments dy = 1, namely linear measurements of the function). A
typical case is density estimation.

Our contribution is twofold: I. As for transport problem, we show that the measure µ to re-
cover is the unique optimal solution of a certain infinite-dimensional LP on a measure space.
II. Next, under the assumption that the input data are semialgebraic, we provide a system-
atic numerical scheme to approximate as closely as desired any arbitrary finite number of
moments of µ. It consists of solving problem (1.3) with the moment-SOS hierarchy. Since we
are given an incomplete set of moments, we optimize over the remaining set of unknown mo-
ments. In other words, each semidefinite relaxation is a moment matrix completion problem
of increasing size.

The rationale behind the asymptotic convergence of the hierarchy is that every semidefinite
relaxation is a r-truncated version of the infinite-dimensional LP where one only considers
pseudo-moments of order r. It turns out that as r increases, the resulting sequence of optimal
solutions converges to the vector of moments of µ.

Interestingly this result can be interpreted as an analogue for infinite-dimensional signals
(densities) of super-resolution for sparse atomic measures [7, 6, 8]. Indeed instead of consid-
ering the measure dν(x) = f(x) dx on X with unknown density f (but with all its moments



4 DIDIER HENRION1,2, JEAN BERNARD LASSERRE1,3

available), we rather consider the graph density measure µ = δf(x)(dy)λ(dx) whose support
(x, f(x)) is a meager (very thin) degenerate set of X × Y (hence sparse), now with partial
knowledge of its moments. Then as for super-resolution of sparse atomic measures, this
sparse (degenerate) measure is the unique solution of an infinite LP on measures where the
sparsity-inducing cost to minimize is a weighted `1-norm of their moment vector.

Then once moments of µ up to order 2r have been approximated in an optimal solution at
step r of the hierarchy, the function can be in turn approximated with the reconstruction
technique already alluded to and described in [15]; the deeper in the hierarchy the better is
the resulting approximation.

Our experiments convey the following message: In the above situations it is better to ap-
proximate the graph G := {(x, f(x) : x ∈ X)} from moments of the measure µ supported
on G (a thin subset of X × Y ), rather than approximate the function itself (e.g. L2-norm
approximation by polynomials) from moments of the measure dν = fdx on X with density
f . Even more, this is true even if most moments of µ have to be approximated, whereas all
exact moments of ν are available.

2. Problem statement

Let X := {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m } be a compact basic semi-algebraic set
defined for given polynomials (gj) ⊂ R[x]. With no loss of generality, we will assume that
X ⊂ [0, 1]n (possibly after some scaling and translation).

The cone of Borel regular non-negative measures on X, topologically dual to the cone of
non-negative continuous functions on X, is denoted by M (X)+. The Borel sigma algebra
of subsets of X is denoted by B(X).

Let λ ∈M (X)+ be a finite probability measure with moments λ = (λdx) ⊂ R defined by

λdx :=

∫
X

xdxdλ(x), dx ∈ Nn.

From now on, let us restrict our attention to scalar-valued functions f : X → Y . Vector-
valued functions can be treated entry-wise. Let µ ∈ M (X × Y )+ be a finite probability
measure of the form dµ(x, y) = δf(x)(dy)λ(dx), i.e.

(2.1) µ(A×B) =

∫
A

1B(f(x)) dλ(x), ∀A ∈ B(X), B ∈ B(Y ),

with all finite moments µ = (µd)d∈Nn+1 ⊂ R defined by

(2.2) µd :=

∫
X

∫
Y

xdx ydy dµ(x, y) =

∫
X

xdx f(x)dy dλ(x), d = (dx, dy) ∈ Nn+1.

In particular µdx,0 = λdx for all dx ∈ Nn. We assume that 0 ≤ f ∈ L∞(λ) and ‖f‖∞ ≤ γ for
a given γ > 0, i.e. Y := [0, γ]. (The case where f is bounded but can take negative values

reduces to the previous case by taking f̃ := f + ‖f‖∞.) Let Nn+1
r := {d ∈ Nn+1 : |d| :=∑n+1

k=1 dk ≤ r}.

Problem. Moment completion. Let D := {d = (dx, dy) ∈ Nn+1 : dy ≤ 1}. Given
moments (µd)d∈D and given s ∈ N, approximate as closely as desired all moments (µd)d∈Nn+1

2s
.
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Further notations. Let g0(x) := 1 and g1(x) := n − ‖x‖2; as g1 ≥ 0 defines a redundant
constraint, it can always be included in the definition of X. Let gm+1(x, y) := y(γ − y).
Then the quadratic module

(2.3) Q(g) := {
m+1∑
j=0

σj gj : σj ∈ Σ[x, y] } ⊂ R[x, y] ,

generated by the gj is Archimedean.

For j = 0, 1, . . . ,m + 1, let dj := ddeg(gj)/2e, and express gj in the monomial basis as
gj(x, y) =

∑
d=(dx,dy)∈Nn+1 gjd xdxydy .

Next, define the localizing matrix Ms−dj(gj µ)) associated with µ and gj, as the real sym-

metric matrix of size
(
n+1+s−dj

n+1

)
whose entries indexed by (dr, dc) ∈ Nn+1

s−dj ×Nn+1
s−dj are equal

to
∑

d∈Nn+1 gjd µd+dr+dc . In particular, for j = 0, g0 = 1, d0 = 0 and Ms(µ) is called the
moment matrix associated with µ.

A preliminary result. The following result of independent interest provides a rationale
for the infinite-dimensional LP introduced in Section 3 as well as for the numerical scheme
described in Section 4 to recover the measure µ in (2.1) supported on the graph of f .

Theorem 2.1. Let µ ∈ M (X × Y )+ be as in (2.1) and let φ ∈ M (X × Y )+ be such that
all its moments φ = (φd)d∈Nn+1 are finite, with φdx,0 = λdx and φdx,1 = µdx,1 for all dx ∈ Nn.
Then φd ≥ µd for all d ∈ Nn+1. In particular,

(2.4) trace Mr(µ) ≤ trace Mr(φ), ∀r ∈ N.

The proof of Theorem 2.1 is postponed to Section 8.

Remark 1. If X 6⊂ Rn
+ then we obtain the slightly weaker result φ2dx,dy ≥ µ2dx,dy for all

(2dx, dy) ∈ Nn+1, and therefore (2.4) still holds.

3. An infinite-dimensional LP on measures

The moment-completion problem can be viewed as a way to embed the initial problem into
that of recovering a curve (more exactly the measure µ supported on the graph of that
curve), i.e., a lower dimensional object with a meager, very thin, degenerate support in a
space of measures on X ×Y which can have support of full-dimension n+ 1. In other words
this meager support {(x, f(x)) : x ∈ X} is sparse in X × Y .

Therefore when viewing the problem with such glasses, Theorem 2.1 suggests a way to build
up an appropriate cost criterion defined over M (X × Y )+ that will select µ in (2.1) as the
unique optimal solution of a certain infinite-dimensional LP on M (Y × Y )+.

So let θ = (θd)d∈Nn+1 be a nonnegative sequence of `1, the Banach space of summable
sequences a = (ad) with norm ‖a‖1 =

∑
d∈Nn+1 |ad|. For instance choose

(3.1) θd=(dx,dy) =

(
c2dy

(
n− 1 + |dx|
|dx|

))−1
with c > max(1, γ).
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Recalling Y = [0, γ], observe that φdx,dy =

∫
X×Y

xdx ydy dφ < γdy for all (dx, dy) ∈ Nn+1,

and therefore

(3.2) T (φ) :=
∑
d

θd φd <

∞∑
|dx|=1

∑
dy

γdy

c2dy
(
n−1+|dx|
|dx|

) <
∑
dy

(γ/c2)dy <
1

1− γ/c2
,

for all φ ∈M (X × Y )+. Next, with θ as in (3.1) let T : X × Y → R+,

(x, y) 7→ T(x, y) :=
∑

d=(dx,dy)∈Nn+1

θd xdx ydy < ∞.

Observe that for all (x, y) ∈ X × Y ,

0 ≤
∑

d=(dx,dy)≤r

θd xdx ydy =: Tr(x, y) ↑ T(x, y) as r →∞.

Hence by Monotone Convergence [1, p.44],

(3.3) T (φ) =
∑

d∈Nn+1

θd φd = lim
r→∞

∑
|d|≤r

θd φd = lim
r→∞

∫
Tr(x, y) dφ =

∫
T(x, y) dφ,

for all φ ∈M (X × Y )+.

3.1. An LP on measures. Consider the infinite-dimensional LP:

(3.4)
τ ′∞ = inf

φ∈M (X,Y )+

∫
T dφ

s.t.

∫
xdx ydy dφ = µd, d = (dx, dy) ∈ D .

Theorem 3.1. The measure µ = δf(x)(dy)λ(dx) ∈M (X, Y )+ is the unique optimal solution
of the infinite-dimensional LP (3.4).

Proof. Let φ ∈M (X, Y )+ be an arbitrary feasible solution of (3.4), with moments (φd)d∈Nn+1 .
Then: ∫

T(x, y) dφ =
∑

d=(dx,dy)∈Nn+1

θd φd [by (3.3)]

≥
∑

d=(dx,dy)∈Nn+1

θd µd [by Theorem 2.1]

=

∫
T(x, y) dµ , [by (3.3)],

which implies that µ is an optimal solution of LP (3.4). As measures on compact sets are
moment determinate, uniqueness follows. �

Notice that the criterion
∫

T dφ = T (φ) (a weighted `1-norm of the moment vector of φ) is
sparsity-inducing. Indeed it induces a sparse support for the unique optimal solution of LP
(3.4). Again, by sparse we mean that the support of µ is degenerate and a meager (thin) set
of X × Y (since it is the graph (x, f(x))).
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Remark 2. A parallel can be drawn with super-resolution in signal processing [7, 6, 8], which
consists of recovering an atomic measure with sparse finite support (a few atoms), from the
sole knowledge of only a limited number of its moments. Indeed as shown in [6], the sparse
atomic measure (signal) to recover is the unique optimal solution of an LP on measures
with (spasity-inducing) total-variation criterion. In addition, solving the latter LP reduces
to solving a single SDP in the univariate case.

In our graph-recovering inverse problem, our knowledge is also limited to a few moments
only, namely (µd,0, µd,1)d∈Nn out of the potentially many (µdx,dy)(dx,dy)∈Nn+1. (As the object to
recover is infinite-dimensional one cannot expect exact recovery from finitely many moments.)
Hence the spirit of the infinite-dimensional LP (3.4) is that a measure with sparse support
(the graph of a function) can be recovered from a few moments only, as the unique optimal
solution of an LP on measures with appropriate sparsity-inducing criterion.

3.2. A dual of (3.4). Let C (X×Y ) be the space of continuous functions on X×Y . Observe
that T ∈ C (X×Y ). Indeed let (xn, yn)n∈N ⊂ X×Y be such that (xn, yn)→ (x, y) ∈ X×Y ,

as n→∞. Let and := xdxn y
dy
n for all n and all d ∈ Nn+1, so that for all d, and → ad := xdx ydy

as n → ∞. Moreover |and | ≤ ydy for all n, and
∑

d θd y
dy < ∞. Therefore by Dominated

Convergence [1, p. 49]:

T(xn, yn) =
∑
d

θd xdxn ydyn →
∑
d

θd xdx ydy = T(x, y) as n→∞.

Next, consider the infinite-dimensional LP problem:

(3.5)
τ ∗∞ = sup

h1,h2∈C (X×Y )

∫
X

(h1(x) + h2(x) f(x)) dx

h1(x) + h2(x) y ≤ T(x, y) , ∀(x, y) ∈ X × Y .

Theorem 3.2. There is no duality gap between (3.4) and its dual (3.5).

Proof. The LP (3.4) reads:

τ ′∞ = inf
φ∈M (X×Y )+

{ 〈T, φ 〉 : A1 φ = λ ; A2 φ = A2µ },

where Ai : M (X × Y )→M (X), i = 1, 2, are defined by:

φ 7→ A1 φ(B) =

∫
B×Y

dφ B ∈ B(X)

φ 7→ A2 φ(B) =

∫
B×Y

y dφ(x, y), B ∈ B(X).

The adjoints A∗i : C (X)→ C (X × Y ) are defined by:

h 7→ A∗1 h(x, y) = h(x) ; h 7→ A∗2 h(x, y) = y h(x) , ∀(x, y) ∈ X × Y,

for all h ∈ C (X). The dual (3.5) reads:

τ ∗∞ = sup
h1,h2∈C (X)

{〈h1, λ〉+ 〈h2,A2 µ〉 :

T−A∗1 h1 + A∗2 h2 ∈ C (X × Y )+ }
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Equivalently:

τ ∗∞ = sup
h1,h2∈C (X)

{
∫
X

(h1(x) + h2(x) f(x)) dx :

h1(x) + y h2(x) ≤ T(x, y) , ∀(x, y) ∈ X × Y }.

To prove that τ ′∞ = τ ∗∞ it suffices to prove that the set

M := {(A1 φ,A2 φ, 〈T, φ〉) : φ ∈M (X × Y )+}

is closed in the weak-star topology σ(M (X)2 × R,C (X)2 × R), see [5, Theorem IV.7.2].

So let (A1 φn,A2 φn, 〈T, φn〉)→ (a, b, c) as n→∞. From the definition of A1 and the weak-
star convergence, one obtains φn(X × Y ) → a(X × Y ) ≥ 0. Hence the sequence (φn)n∈N is
norm-bounded. As X×Y is compact there is a measure ψ ∈M (X×Y )+ and a subsequence
(nk)k∈N such that φnk

→ ψ (weak-star) as k →∞. But then

〈h, a〉 = lim
k→∞
〈h,A1 φnk

〉 = lim
k→∞
〈 A∗1 h︸︷︷︸
∈C (X×Y )

, φnk
〉 = 〈A∗1 h, ψ〉 = 〈h,A1 ψ〉, ∀h ∈ C (X),

which implies a = A1 ψ. Similarly,

〈h, b〉 = lim
k→∞
〈h,A2 φnk

〉 = lim
k→∞
〈 A∗2 h︸︷︷︸
∈C (X×Y )

, φnk
〉 = 〈A∗2 h, ψ〉 = 〈h,A2 ψ〉, ∀h ∈ C (X),

which implies b = A2 ψ. Finally, as T ∈ C (X × Y ), c = limk→∞ 〈T, φnk
〉 = 〈T, ψ〉 and

therefore (a, b, c) = (A1 ψ,A2 ψ, 〈T, ψ〉) for some ψ ∈M (X × Y )+, the desired result. �

So as for super-resolution for atomic measure where the dual problem provides a certificate,
the dual (3.5) indicates what would be a certificate if it has an optimal solution.

Indeed assume that (h∗1, h
∗
2) ∈ C (X × Y ) is an optimal solution of (3.5). Then∫

X

(T(x, f(x))− h∗1(x)− h∗2(x) f(x)) dλ(x) = 0.

Equivalently:

T(x, f(x)) = h∗1(x) + h∗2(x) f(x), a.e. in X.

T(x, y) ≥ h∗1(x) + h∗2(x) y, ∀(x, y) ∈ X × Y.

Example 1. X = [0, 1] ; Y = [0, 1] and f(x) = 1. We can take

T(x, y) =
∞∑
k=0

∞∑
j=0

yj

j!

xk

k!
= exp(x) exp(y) , (x, y) ∈ [0, 1]× [0, 1].

Then with h∗1 = 0, h∗2 := e · exp(x) we obtain

T(x, f(x)) = e · exp(x) = f(x) · h∗2(x) ; T(x, y) = exp(x) · exp(y) ≥ e · exp(x) y

as exp(y) ≥ e y for all y ∈ [0, 1].

Unfortunately solving the infinite-dimensional LP (3.4) is out of reach. However Theorem
2.1 still suggests a practical numerical scheme which in principle allow to approximate as
closely as desired moments, any finite number of moments of µ in (2.1).
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4. Asymptotic Recovery

In this section we provide a systematic numerical scheme to recover asymptotically either
an arbitrary (but fixed) number of moments of µ, or all moments of µ.

4.1. Recovery of finitely many moments. Given an integer s ∈ N fixed, and a sequence
φ = (φd)d∈Nn+1 , let

(4.1) Ts(φ) :=
∑

d∈Nn+1
s

φ2d = trace(Ms(φ)),

and consider the following hierarchy of semidefinite programs:

(4.2)

τr = inf
φ

Ts(φ)

s.t. Mr(φ) � 0 , Mr−dj(gj φ) � 0, j = 1, . . . ,m+ 1,
φd = µd, d ∈ D,

indexed by the relaxation order r ≥ d0 = max(s,maxj dj), and where φ = (φd)d∈Nn+1
2r

.

Theorem 4.1. The semidefinite program (4.2) has an optimal solution φr = (φrd)d∈Nn+1
2r

,

and τr = Ts(φ
r) ≤ Ts(µ) for all r ≥ d0. In addition, limr→∞Ts(φ

r) = Ts(µ) and

(4.3) lim
r→∞

φrd = µd ∀d ∈ Nn+1
2s .

Moreover if ν is a measure on X × Y such that νd = µd for all d ∈ D then Ts(µ) ≤ Ts(ν).

In other words, with a suitable choice of an objective function, the moment completion
problem is solved asymptotically via the hierarchy of semidefinite relaxations (4.2). That is,
arbitrary finitely many moments of a graph can be recovered from linear measurements, i.e.
from the sole knowledge of zero-th and first order moments.

The proof of Theorem 4.1 is relegated to Section 8.

4.2. Recovery of all moments. Theorem 4.1 states that finitely many moments of the
graph can be recovered. This result can be extended to recover (asymptotically) infinitely
many moments. Recall the weighted criterion:

T (φ) :=
∑

d∈Nn+1

θd φd

already considered in (3.2). When φ = (φd)d∈Nn+1
2r

then T (φ) is the obvious finite truncation

T (φ) =
∑

d∈Nn+1
2r

θd φd.

Next, consider the following hierarchy of semidefinite programs:

(4.4)

τ ′r = inf
φ

T (φ) :

s.t. Mr(φ) � 0 , Mr−dj(gj φ) � 0, j = 1, . . . ,m+ 1,
φd = µd, d ∈ D,

indexed by r ≥ d0 := maxj dj. Notice that in contrast to (4.2), the cost function in (4.4)
changes with the index r as more and more terms of φ are taken into account. Of course as
µ is a feasible solution, we also have τ ′d ≤ T (µ) for every r.
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Theorem 4.2. The semidefinite program (4.4) has an optimal solution φr = (φrd)d∈Nn+1
2r

,

and τ ′r = T (φr) ≤ T (µ) for all r ≥ d0. In addition, limr→∞T (φr) = T (µ) and

(4.5) lim
r→∞

φrd = µd ∀d ∈ Nn+1.

The proof of Theorem 4.2 is relegated to Section 8.

5. Application to the L-moment problem with unknown support

In the generalized L-moment problem with K ⊂ Rn known, the goal is to retrieve a measure φ
on K with density 0 ≤ h ≤ L in L∞(K)+, whose moments φ = (φdx)dx∈D = (

∫
K

xdxdφ)dx∈D,
are given, and where D ⊂ Nn is also given. The classical univariate L-moment problem on
R was solved in [2].

So when K is known and moments of Lebesgue measure on K are known as well, then we
have seen how to apply the moment-completion approach to recover the unknown density in
h ∈ L (K)+; see Section 4 with X = K.

When K is unknown this is just the K-moment problem with the additional information
that φ has a bounded density with respect to Lebesgue measure on the unknown K. We
next show how to formulate this problem as a completion problem investigated in previous
sections.

Assuming K is compact, let X be a box such that K ⊂ X. Then

(5.1) µdx =

∫
K

xdx dφ =

∫
X

xdx 1K(x)h(x)︸ ︷︷ ︸
f(x)

dx, dx ∈ D.

Formulation (5.1) for the full L-moment problem (i.e., where D = Nn) is exactly the frame-
work developed in previous sections where x 7→ f(x) := 1K(x)h(x) ∈ L∞(X)+, is the
function whose graph is to be recovered. Indeed, letting dµ(x, y) = δ1K(x)h(x)(dy) dx,

µdx,0 =

∫
X

xdx dx , dx ∈ Nn known in closed form(5.2)

µdx,1 =

∫
X×Y

xdx y dµ :=

∫
X

xdx f(x) dx =

∫
K

xdx h(x) dx = φdx , dx ∈ Nn.(5.3)

So applying the moment completion approach developed earlier, one may approximate as
closely as desired any finite number of moments of µ, and in a second-step to approximate
the function x 7→ 1K(x)h(x).

It follows that the moment completion approach allows to both approximate the unknown
support and density of the measure φ on K.

The particular case when h = 1. When the density h ∈ L (K)+ is the indicator 1K

then the above procedure described in Section 4 allows to approximate the indicator func-
tion 1K from knowledge of moments of the Lebesgue measure on K (e.g. obtained from
measurements). Notice that in this case (5.3) yields:

µdx,dy =

∫
X

xdx ydydµ(x, y) =

∫
X

xdx1K(x)dy dx = µdx,1 , ∀(dx, dy) ∈ Nn+1.

Therefore the matrix completion problem is trivial. There is no optimization involved. Only
the second step of recovery via the Christoffel-Darboux kernel is needed. In particular the
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moment matrix Mr(µ) is highly singular since all columns indexed by (dx, dy) with dy > 1 are
identical to the column indexed by (dx, 1). So we may replace Mr(µ) with the smaller size

matrix M̂r(µ) with rows and columns indexed by monomials (xdx)dx∈Nn
r

and (xdx y)dx∈Nn
r−1

.

6. Graph approximation with the Christoffel-Darboux kernel

Let us briefly recall one of the main results of [15] where the Christoffel-Darboux kernel is
used to approximate the support of a measure concentrated on a graph given its moments.

Let b(x, y) be a polynomial vector of degree at most d whose elements are orthonormal
with respect to the bilinear form induced by a measure which is absolutely continuous with
respect to the uniform measure on X × Y . Let

Mr :=

∫
X

b(x, f(x))b(x, f(x))>dx =

∫
X×Y

b(x, y)b(x, y)>dµ(x, y)

be the moment matrix of order d of the measure dµ(x, y) := IX(x) dx δf(x)(dy) concentrated
on the graph {(x, f(x)) : x ∈ X} ⊂ X×Y . Given Mr, we want to compute an approximation
fr of function f , with convergence guarantees when r →∞.

Given a regularization parameter βr := 23−
√
r, define the Christoffel-Darboux (CD) polyno-

mial
qr(x, y) := b(x, y)>(Mr + βrI)−1b(x, y).

Polynomial qr can be computed numerically by a spectral decomposition of the positive semi-
definite matrix Mr. Instead of trying to approximate the (possibly discontinuous) function
f with polynomials, we approximate it with a class of semi-algebraic functions. We define
the semi-algebraic approximant

fr(x) := min{argminy∈Y qr(x, y)}
as the minimum of the argument of the minimum of the CD polynomial, always well defined
since this polynomial is a sum of squares (SOS).

Theorem 6.1. [15, Theorem 1] If the set S ⊂ X of continuity points of f is such that
X \ S has Lebesgue measure zero, then limr→∞ fr(x) = f(x) for almost all x ∈ X and
limr→∞ ‖f − fr‖L 1(X) = 0.

This graph approximation method is implemented in the momgraph function described in
[15].

7. Examples

For our numerical examples we modeled our moment problems with GloptiPoly [10] and
solved them with MOSEK [3] on Matlab. For reconstructing graphs from approximate
moments we used he momgraph function described in [15].

7.1. Convex optimal transport. Let us first illustrate the CD kernel graph approximation
method of Theorem 6.1 with a standard quadratic optimal transport problem, a particular
case of optimization problem (1.2). Let x = x ∈ X := [−1, 1] and y ∈ Y := [−1, 1] be
scalar, and c(x, y) = (x− y)2/2. Only marginal moments are available: D = {(dx, 0) : dx ∈
N}∪{(0, dy) : dy ∈ N} and we want to transport the density dλ(x) = (1−x)dx/2 on X onto
the density (1 + y)dy/2 on Y .
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In this case there exists a unique transport map

f(x) = −1 +
√

(1 + x)(3− x)

yielding the optimal cost ∫
X

c(x, f(x))dλ(x) =
π

2
− 4

3
≈ 0.23746.

relaxation order r 1 2 3 4 5 6 7
lower bound 0.22222 0.23494 0.23725 0.23742 0.23743 0.23745 0.23746

Table 1. Lower bounds on optimal cost at various relaxation orders r.

Figure 1. CD approximations (thin black) of optimal transport map (thick
gray) for relaxation orders r = 1 (top left), r = 2 (top right), r = 3 (bottom
left), r = 4 (bottom right).

In Table 1 we report the lower bounds of the moment relaxations for various relaxation
orders r. In Figure 1 we represent the approximate graphs obtained from the CD kernel
method described in Section 6.

7.2. Non-convex optimal transport. Let us now illustrate the CD kernel graph ap-
proximation method of Theorem 6.1 with a non-convex optimal transport problem. Let
x = x ∈ X := [0, 1] and y ∈ Y := [0, 1] be scalar, and c(x, y) := (4x− y)xy. Only marginal
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Figure 2. Logarithmic level sets (gray, smaller values darker) of the CD
polynomial of degree 12 approximating the graph (thick red) of the optimal
transport map.

moments are available: D = {(dx, 0) : dx ∈ N}∪ {(0, dy) : dy ∈ N} and we want to transport
the Lebesgue measure on X onto the Lebesgue measure on Y . An analytic optimal transport
map is known [4, Section 5.3] for this example:

f(x) =


2
3

+ 4
3
x on [0, 1

4
]

2− 4x on [1
4
, 1
3
]

1− x on [1
3
, 1]

yielding the optimal cost ∫
X

c(x, f(x))dx =
107

432
≈ 0.24769.

Formulating problem (1.2) as a generalized problem of moments (1.3) with λ(dx) = dx,
we can use the moment-SOS hierarchy to approximate numerically all the moments of the
measure dxδf(x)(dy).

We solved the moment relaxation of order r = 6, corresponding to approximate moments of
degree up to 2r = 12 and a positive semidefinite moment matrix of size 28. The lower bound
on the optimal cost obtained with the moment relaxation is 0.24741, matching 3 digits of
the exact cost. The maximum absolute error between the approximate moments and the
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Figure 3. Discontinuous benchmark function (red) and its approximations
(black) obtained from approximate moments recovered at relaxation order
r = 4 (top left), r = 8 (top right), r = 12 (bottom left), r = 16 (bottom right).

exact moments is 9.6 · 10−4. On Figure 2 we represent sublevel sets of the CD polynomial
q6 of degree 12. We observe that they closely match with the graph of the transport map.

7.3. Graph reconstruction from linear measurements. Example 67 of [9] was used
in [15, Section 5.4] to illustrate the CD kernel graph approximation algorithm when all the
moments are available. Let us revisit the same example to illustrate the reconstruction
algorithm of Theorem 4.2, when θ is the truncated sequence of all ones.

Approximate graphs for various relaxation orders are reported in Figure 3.

7.4. Comparison with L2 estimate. Consider the problem of reconstructing a step func-
tion

f(x) =

{
0.1 if 0 ≤ x < 0.5
0.9 if 0.5 ≤ x ≤ 1.

The only input data are the moments
∫ 1

0
xdxdx and

∫ 1

0
xdxf(x)dx for dx less than a given

degree r ∈ N.

The reconstruction algorithm of Theorem 4.2, when θ is the truncated sequence of all ones,
and r = 12 gives the approximate graph of the right of Figure 4. It is not perfect, especially
at the discontinuity point, yet it compares favorably with the L2 density estimate of degree
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Figure 4. Approximations of the graph (thick red) of a step function. Left:
L2 estimate of degree 12 (black). Right: CD polynomial of degree 12 obtained
from first order moments (black).

Figure 5. Approximations of the graph (thick red) of a step function. Left:
L2 estimate of degree 12 (black). Right: CD polynomial obtained from all
moments of degree up to 4 (black).

12 of [11, Proposition 1] which oscillates around the graph to be recovered, as seen at the
left of Figure 4.

For comparison, we report on the right of Figure 5 the graph obtained with the CD polyno-
mial constructed from moments up to degree 4, as already studied in [15, Example 3, Figure
2]. We observe that in this case the graph approximation is almost perfect, thanks to the
additional information provided by the higher degree moments.

7.5. Disconnected L-moment problem. This example illustrates our solution in Section
5 to the L-moment problem when h = 1 and hence the graph to be reconstructed is the
indicator function of an unknown set K. To compute the moments we choose a disconnected
set K := [1/5, 2/5]∪ [3/5, 4/5] ⊂ X := [0, 1]. Solving the moment relaxation of order r = 10
we obtain the approximate graph represented on Figure 6. We observe that it matches
closely the indicator function of K.

The level sets of the CD polynomial (obtained with the momgraph function with regularization
parameter 10−6) are represented on the left of Figure 7. We see that the CD polynomial



16 DIDIER HENRION1,2, JEAN BERNARD LASSERRE1,3

Figure 6. Indicator function (red) and its approximation (black) obtained
from approximate moments recovered at relaxation order r = 10.

Figure 7. Logarithmic level sets (gray, smaller values darker) of the CD
polynomial q10(x, y) of degree 20 (left), and its values at y = 0 (light gray)
and y = 1 (black).

q10(x, y) is small around y = 0 and y = 1, as expected. For each x, the value of y for which
q10(x, y) is minimal is the approximation f10(x) of the indicator function of K. On the right
of Figure 7 we represent q10(x, y) for y = 0 and y = 1. For each x, the value f10(x) is the
minimum of q10(x, 0) and q10(x, 1).
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8. Proofs

Proof of Theorem 2.1. As φdx,0 = λdx for all dx ∈ Nn and X ⊂ [0, 1]n, the marginal of
φ on X is the measure λ. Next, disintegrate φ with respect to its marginal λ on X and its
conditional ϕ(·|x) on Y given x ∈ X, i.e.:

φ(A×B) =

∫
A

ϕ(B|x)λ(dx), A ∈ B(X), B ∈ B(Y ).

In particular,

φdx,1 =

∫
X×Y

xdxy dµ(x, y) =

∫
X

xdx


∫
Y

y ϕ(dy|x)︸ ︷︷ ︸
h1(x)

 dλ(x) =

∫
X

xdx h1(x) dλ(x)

for some measurable function h1 on X. Therefore∫
X

xdx f(x) dλ(x) = µdx,1 = φdx =

∫
X

xdx h1(x) dλ(x), ∀dx ∈ Nn.

As signed measures on compact sets are moment-determinate, one deduces that h1 = f for
λ-almost-all x in X. Next, fix (dx, dy) ∈ Nn+1, arbitrary and recall that X ⊂ [0, 1]n ⊂ Rn

+.
Then

φdx,dy =

∫
xdxydy dφ(x, y) =

∫
X

xdx
(∫

Y

ydyϕ(dy|x)

)
dλ(x)

≥
∫
X

xdx
(∫

Y

yϕ(dy|x)

)dy
dλ(x) [by Jensen’s inequality]

≥
∫
X

xdx h1(x)dy dλ(x) =

∫
X

xdx f(x)dy dλ(x) = µdx,dy .(8.1)

(We can apply Jensen’s inequality because ydy is convex on Y ⊂ R+ and X ⊂ Rn
+.) Therefore

with r ∈ N fixed, arbitrary, summing up over all (2dx, 2dy) ∈ Nn+1
2r yields

trace Mr(φ) =
∑

(dx,dy)∈Nn+1
r

φ2dx,2dy ≥
∑

(dx,dy)∈Nn+1
r

µ2dx,2dy = trace Mr(µ),

the desired result.

(Concerning Remark 1. If X 6⊂ Rn
+ the above arguments still hold whenever dx is even

(hence xdx ≥ 0) so that Jensen’s inequality applies.) �

Proof of Theorem 4.1. (i) Let φ = (φdx,dy)(dx,dy)∈Nn+1
2r

be an arbitrary feasible solution.

From Mr(gj φ) � 0, we may deduce

(8.2) Lφ(y2r) ≤ γ2r ; Lφ(x2ri ) ≤ 1 i = 1, . . . , .

Hence by [14, Proposition 2.38, p. 41], |φdx,dy | ≤ max[1, γ2r] =: ρr for all (dx, dy) ∈ Nn+1
2r ,

which implies that that feasible set is compact and (4.2) has an optimal solution φr with
Ts(φ

r) = τr.

(ii) Let (φr)r∈N be a sequence of arbitrary optimal solutions of (4.2) as r increases. With
each r fixed, recalling the definition of ρr in the proof of (i), one has φr0,0 = 1 and:

|φrd| ≤ ρt, ∀2t− 1 ≤ |d| ≤ 2t; t = 1, . . . , r.
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So for each r ∈ N let

|ψrd| :=
|φrd|
ρt
, for all 2t− 1 ≤ |d| ≤ 2t; t = 1, . . . , r.

By construction |ψrd| < 1 for all d ∈ Nn+1
2r . Hence by completing the finite sequence ψr with

zeros to make it an infinite sequence indexed by Nn+1, the infinite sequence ψr = (ψrd)d∈Nn+1

is an element of the unit ball B1 of the Banach space `∞ of uniformly bounded sequence.
As this unit ball is weak-star sequentially compact, there exists an element ψ∗ ∈ B1 and a

subsequence (rj)j∈N such that ψrj weak ?→ ψ∗ as j →∞. In particular,

lim
j→∞

ψ
rj
d = ψ∗d, ∀d ∈ Nn+1,

and equivalently:

(8.3) lim
j→∞

φ
rj
k,α = ρt ψ

∗
d =: φ∗d, ∀ 2t− 1 ≤ |d| ≤ 2t ; t = 1, 2, . . .

In addition, the latter convergence (8.3) implies φ∗d ≥ 0 for all d ∈ Nn+1, and

Mr(gj φ
∗) � 0, j = 0, 1, . . . ,m+ 1 , ∀r ∈ N.

Next, recall that the quadratic module Q(g) in (2.3) is Archimedean and therefore by Puti-
nar’s Positivstellensatz [17], φ∗ has a representing measure φ∗ on X×Y . Moreover, by (8.3)
again,

φ∗dx,0 = λdx and φ∗dx,1 = µdx,1, ∀dx ∈ Nn,

and limj→∞ τrj = limj→∞Ts(φ
rj) = Ts(φ

∗). Therefore since τrj ≤ Ts(µ) for all j, we obtain
Ts(φ

∗) ≤ Ts(µ). But by Lemma 2.1, one concludes that Ts(φ
∗) = Ts(µ), and φ∗d = µd for

all d ∈ Nn+1
2s , i.e.,

lim
j→∞

φ
rj
d = µd =

∫
Ω

xdx f(x)dy dλ(x), ∀d = (dx, dy) ∈ Nn+1
2s .

As this limit does not depend on the particular converging subsequence (φrj)j∈N, we also
obtain the full convergence (4.3). �

Proof of Theorem 4.2. The proof of (i) is almost a verbatim copy of that of Theorem
4.1(i).

(ii) Again as in the proof of Theorem 4.1(ii) there is a subsequence (rj)j∈N and a sequence
φ∗ such that (8.3) holds and φ∗ has a representing measure on X × Y . In addition, recall
that (8.2) holds for φrj , and so φ

rj
d ≤ γ2ddy/2e for all d = (dx, dy) ∈ Nn+1.

Hence letting ψ := (ψd)d∈Nn+1 with ψd = γ2ddy/2e, φrj ≤ ψ for all j. Moreover notice that
T (ψ) < ∞. Therefore by the Dominated Convergence Theorem [1, p. 49], T (φrj) →
T (φ∗), as j →∞. But recall that T (φr) ≤ T (µ) for all r, and therefore T (φ∗) ≤ T (µ).

On the other hand, by Theorem 2.1, the reverse inequality T (φ∗) ≥ T (µ) holds (since
φ∗d ≥ µd for all d), which yields T (φ∗) = T (µ). But from T (φ∗ − µ) = 0 we obtain

0 =
∑

d∈Nn+1

θd (φ∗d − µd︸ ︷︷ ︸
≥0

) ⇒ φ∗d = µd, ∀d ∈ Nn+1.

Finally, as the limit φ∗d = µd does not depend on the particular converging subsequence
(rj)j∈N, we conclude that the whole sequence converges, i.e., the desired result (4.5) holds.
�
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9. Conclusion

This paper deals with the problem of recovering the graph of a function when only partial
moment information is available, here only zero-th and first-order moments, namely linear
measurements of the function. We show how to recover the graph asymptotically by solving
a hierarchy of semidefinite programs, with an appropriately chosen objective function that
promotes sparsity.

As shown in non trivial numerical experiments, our results suggest a perhaps counter-
intuitive message. Namely we observe experimentally that it is better

- to approximate the graph G = {(x, f(x)) : x ∈ X} ⊂ X×Y from moments of the measure
supported on G (a thin subset of X × Y ) with the recovery technique of [15],

rather than

- to approximate the function f itself (e.g. via L2-norm approximation by polynomials) from
moments of the measure with density f on X.

Moreover, this is true even if all exact moments of the measure with density f are available,
whereas only a few exact moments of the measure supported on the graph G are available
(and the other must be appropriately approximated).
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