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Abstract. Cardinality-constrained optimization problems are notoriously
hard to solve both in theory and practice. However, as famous examples
such as the sparse portfolio optimization and best subset selection problems
show, this class is extremely important in real-world applications. In this
paper, we apply a penalty alternating direction method to these problems.
The key idea is to split the problem along its discrete-continuous structure
to obtain two subproblems that are much easier to solve than the original
problem. In addition, the coupling between these subproblems is achieved via
a classic penalty framework. The method can be seen as a primal heuristic
for which convergence results are readily available from the literature. In our
extensive computational study, we first show that the method is competitive
to a commercial MIP solver for the portfolio optimization problem. On these
instances, we also test a variant of our approach that uses a perspective
reformulation of the problem. Regarding the best subset selection problem, it
turns out that our method significantly outperforms commercial solvers and
that it is at least competitive to state-of-the-art methods from the literature.

1. Introduction

In many cases, optimization models require a cardinality constraint to filter
underlying data. Such a mechanism is required if, for instance, the number of
utilized variables should be small such that the solution is easier to interpret or
such that variables are not used, which allegedly contain no valuable statistical
information. On the other hand, it might happen that the usage of a variable is
bound to some cost and a given budget cannot be exceeded. Moreover, a cardinality
constraint can be interpreted as an optimization version of Occam’s razor, i.e.,
one wants to compute a good solution while only using a small proportion of the
available assumptions.

In this paper, we consider optimization problems of the general form
min
x∈Rn

f(x)

s.t. x ∈ C,
|supp(x)| ≤ k

(CC)

with f : Rn → R being a convex function, C ⊆ Rn being a convex set, supp(x) :=
{i ∈ [n] : xi 6= 0}, [n] := {1, . . . , n}, and k ∈ N being a fixed cardinality ceiling. Even
though Problem (CC) does not exhibit any integer variables explicitly, it has a
discrete structure and hence can be formulated as a mixed-integer problem. This
fact can easily be seen by introducing new variables z ∈ {0, 1}n and reformulating
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the constraint |supp(x)| ≤ k as

−Mz ≤ x ≤Mz,

n∑
i=1

zi ≤ k, z ∈ {0, 1}n (1)

with M being an upper bound on ‖x‖∞.
Applications like the best subset selection problem [13, 59] or the cardinality-

constrained portfolio optimization problem [11, 16] exactly fit into the formula-
tion (CC). Moreover, extensions using nonconvex objective functions are also
considered in the literature, e.g., for sparse principal component analysis [29]. How-
ever, let us note that there is also research on reformulating the sparse principal
component analysis problem as a mixed-integer semidefinite program [10, 55], and
hence as a mixed integer convex problem. The combinatorial structure combined
with frequently occurring nonlinear objective functions makes this problem class
difficult to solve in theory and practice. Hence, major research interests have been
sparked in recent years. A wide range of results includes the perspective refor-
mulation [35, 36, 47], which enables a tight formulation of Problem (CC), studies
concerning bound tightening [5], or the application of disjunctive programming [19].
Additionally, local solvers are subject of interest as well; see, e.g., [21]. Interestingly,
some methods from the low-rank optimization literature are similar in their spirit
to the method that we propose in this paper; see, e.g., the nonlinear factorization
method of [22] or the alternating least squares implementation of softimpute [48].
Although these methods are concerned with low-rank optimization problems, a rank
constraint on a matrix is in fact a cardinality constraint on its singular values. Both
in the cited papers as well as in this paper, the way to handle the present nonconvex
constraints is to make use of alternating direction optimization schemes.

1.1. Contribution. Due to the hardness of (CC), fast local methods or primal
heuristics are desired to deliver feasible points of good quality for warmstarting a
global solver or—on the other hand—they can even act as standalone approaches
for large-scale instances. Our contribution is to derive such a primal heuristic that,
additionally, can be analyzed theoretically. To this end, we consider the special
combinatorial structure of Problem (CC). On the one hand, the considered problems
can be solved efficiently if the cardinality constraint is omitted and, on the other
hand, the cardinality constraint, if decoupled from the rest, is easy to handle as
well since its set of feasible indicator vectors is the uniform matroid [61]. Thus, we
consider these two parts of the problem separately, each with its own set of variables.
In other words, we consider these parts as separate directions of optimization in a
higher dimensional space. However, only optimizing into each direction individually
would very likely not yield a feasible point for the complete problem as we would only
consider the feasible region for each direction independently. As a remedy, one can
add a coupling condition that penalizes the deviation between the solutions of the two
directions forcing them to be equal if the penalization is sufficiently large. We later
show evidence that the proposed approach is very fast and reliably provides feasible
points of very good quality. In particular, by using the classic theory of alternating
direction methods, it can be shown that a partial minimum, i.e., a solution which
cannot be improved in any of the decomposed parts, is returned. Thus, unlike many
other heuristics, our proposed method guarantees certain qualitative characteristics.
Our numerical results show that this method is competitive to commercial software
packages for the cardinality-constrained portfolio optimization problem and that it
significantly outperforms them for the case of the best subset selection problem. For
the latter, our method also outperforms or is competitive to other heuristics that
are state-of-the-art in the current literature. In particular, we compared our method
with the MaxMin method as proposed in [14] as well as with the L0Learn method
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as discussed in [28, 50]. For the portfolio optimization problem, we also tested
a variant of our method using the perspective reformulation of the problem; see,
e.g., [35]. However, although this can yield an improvement in terms of objective
function values, it leads to a significantly slower approach compared to the originally
proposed method.

1.2. Structure of the Paper. As just mentioned, we decided to focus in our
computational analysis on important instances of the general framework (CC)
instead of analyzing the general problem class calibrated with, e.g., random data.
Hence, we apply the method to the best subset selection problem and the sparse
portfolio optimization problem, which we introduce in detail in Section 2. Afterward,
in Section 3, we review PADMs in general and show how to apply them to the best
subset selection and the cardinality-constrained portfolio optimization problems.
In Section 4, we recall how the perspective reformulation techniques are applied
to the aforementioned problems for obtaining strong relaxations of the underlying
MIQPs and we also discuss a possible combination of the perspective reformulation
techniques with the PADM proposed in Section 3. In Section 5, we then present
the numerical results of the PADM applied to both problems studied and the paper
closes with some concluding remarks in Section 6.

2. Applications

In this section, we discuss two famous instances of the general problem class
in (CC): the cardinality-constrained portfolio optimization problem (Section 2.1)
and the best subset selection problem (Section 2.2).

2.1. The Cardinality-Constrained Portfolio Optimization Problem. During
the last decades, there has been a lot of research in the optimization and investment
communities regarding the famous mean-variance Markowitz optimization model [56].
This attention is mainly due to the inclusion of real-world financial constraints,
which makes the traditional model more realistic but also more complex. For a
survey on different constraints proposed in the literature; see, e.g., [52, 58]. One
popular constraint is the cardinality constraint, which limits the number of assets to
be included in the portfolio. In what follows, we describe the resulting cardinality-
constrained portfolio optimization problem.

We are given n possibly risky assets with mean return vector r ∈ Rn and
covariance matrix Σ ∈ Rn×n as well as the level of expected portfolio return R > 0.
Then, the traditional Markowitz optimization framework computes the optimal
proportion of each asset such that the risk is minimized for the given desired
return or the return is maximized for a given level of risk. Let 0 < k ≤ n be
the maximum number of assets that can be included in the portfolio. Thus, the
cardinality-constrained portfolio optimization problem is given by

min
x∈Rn

x>Σx

s.t. r>x ≥ R,

e>x = 1,

x ≥ 0,

‖x‖0 ≤ k,

(CCPO)
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where e is the vector of all ones in suitable dimension. By introducing binary
variables z ∈ {0, 1}n, this problem can be reformulated as

min
x,z

x>Σx

s.t. r>x ≥ R, e>x = 1,

0 ≤ xi ≤ zi for all i = 1, . . . , n,
n∑
i=1

zi ≤ k, zi ∈ {0, 1} for all i = 1, . . . , n.

(2)

This is a mixed-integer quadratic program (MIQP). In general, this is an NP-hard
problem [8, 40] and there are a couple of branch-and-bound algorithms [15, 16, 18,
27, 36, 37, 40, 68, 71] for solving Problem (CCPO) to global optimality. However, it
is not always suitable to use such global methods to find optimal solutions, especially
for large-scale instances. To the best of our knowledge, the exact method that scales
best even for large instances has been recently proposed in [8], where instances are
solved for which the number of assets is around 1000 or larger. Heuristics and local
search methods have also been studied. Earlier heuristics rely on genetic algorithms,
tabu search, and simulated annealing [26]. More recent heuristics are mostly based
on first-order methods; see, e.g., [8, 64]. In particular, we highlight [64], because it
uses a similar decomposition idea as we do—however, the resolution approach is
rather different. In [8], a heuristic tailored to the sparse portfolio problem is used to
compute high-quality feasible solutions, which are then used to warm-start an exact
method. This heuristic has been initially proposed in [13] for realizing warm-starts
for the best subset selection problem, which we discuss next.

2.2. The Best Subset Selection Problem. Consider the linear regression
model y = Xβ0 + ε with response vector y ∈ Rn, observed data X ∈ Rn×p,
true predictors β0 ∈ Rp, and errors ε ∈ Rn. Assuming that β0 and ε are unknown,
we try to estimate the true predictors β0 with a linear regression. However, it is
often not known which recorded variables are actually relevant, i.e., the regressors β0

are sparse. More formally, this means that |supp(β0)| < p holds. The best subset
selection problem [59] aims to address this aspect by allowing to have only k many
non-zero entries in β. The objective is then to select k out of p features, which
best describe the relation between X and y. Usually, a proper k is then chosen via
cross-validation. Accordingly, the best subset selection problem is defined as the
optimization problem

min
β∈Rp

‖Xβ − y‖22

s.t. |supp(β)| ≤ k.
(BSS)

Clearly, the best subset selection fits the framework of (CC) and, hence, is an
appropriate candidate for studying our proposed methods. Problem (BSS) is NP-
hard [60] and it is folklore that it is indeed notoriously difficult to solve in practice as
well [13, 57]. Hence, the problem gained a lot of research interest in recent years [3,
13, 14, 32]. Since (BSS) is considered computationally hard and since it is common
to consider thousands of variables in practice, some research has concentrated on
finding viable heuristics [57, 72] for the best subset selection problem. The most
prominent approach is the Lasso method [20, 65], which replaces |supp(β)| with ‖β‖1.
Often the modified cardinality constraint is then put into the objective function as
a regularization term:

min
β∈Rp

‖Xβ − y‖22 + λ‖β‖1. (LASSO)

The Lasso method enjoys major scientific interest and thus many results exist
proving beneficial characteristics of Lasso under various assumptions concerning the
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underlying data [20]. These assumptions include the compatibility condition [42]
or the restricted isometry property [24]. Unfortunately, if these conditions are not
satisfied, the resulting statistical properties can cease to hold [13, 57, 70]. Moreover,
testing the conditions is NP-hard [30, 67].

In contrast, empirical evidence indicates that the best subset selection can produce
solutions that have superior predictive quality compared to Lasso [13, 57]. Since
the best subset selection is still computationally challenging and because Lasso can
have disadvantages concerning the statistical performance, it is of high interest to
develop better heuristics for (BSS).

Recently, more efforts have been made to leverage techniques from discrete
optimization to find good heuristic solutions for (BSS). The authors of [13] propose
a first-order method combined with the hard-thresholding operator. Their efforts
are focused on solving the best subset selection exactly and, hence, they use their
heuristic as a warmstart. Another approach [14] takes the dual of the continuous
part of the problem and transforms it to a max-min problem, which can be solved
efficiently as a second-order cone problem. This MaxMin method provides very
good results and will be one of the benchmarks that we compare our method with.
One of the very recent and most promising approaches is the L0Learn method [28,
50]. Similar to the algorithms used to find a solution for Lasso, L0Learn utilizes a
coordinate-descent approach. L0Learn also serves as a comparison for our proposed
method.

Additionally, screening and excluding variables to decrease the dimension can also
be helpful in solving (BSS). In [2], the authors propose rules, which can be efficiently
checked and which provide guarantees for variables to be excluded. Relaxing the
condition that a decision variable must be either 0 or 1 in every optimal solution to
be excluded leads to the backbone method [12]. Here, it is enough that a variable is
set to 1 in at least one near-optimal solution in order to fix it.

3. Decomposition and Penalty Alternating Direction Methods

Next, we review penalty alternating direction methods (PADMs) in general
(Section 3.1) and then discuss in detail on how to efficiently apply these methods to
the cardinality-constrained portfolio optimization problem (Section 3.2) and to the
best subset selection problem (Section 3.3).

3.1. General Description of PADMs. To describe the general ideas behind
PADMs, we consider the general problem

min
u,v

f(u, v) (3a)

s.t. g(u, v) = 0, h(u, v) ≥ 0, (3b)
u ∈ U ⊆ Rnu , v ∈ V ⊆ Rnv , (3c)

for which we make the following assumption.

Assumption 1. The objective function f : Rnu+nv → R and the constraint
functions g : Rnu+nv → Rm, h : Rnu+nv → Rq are continuous and the sets U and V
are non-empty and compact.

Alternating direction methods are iterative procedures that solve Problem (3) by
alternatingly solving two simpler subproblems. Given an iterate (ul, vl), Problem (3)
with v fixed to vl is solved into the direction of u, yielding a new u-iterate ul+1.
Subsequently, u is fixed to ul+1 and Problem (3) is solved into the direction of v,
yielding a new v-iterate vl+1. The method is formally stated in Algorithm 1. The
for-loop is repeated until a termination criterion is reached. To present the general
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convergence result of Algorithm 1, we need the following definition that uses the
abbreviation

Ω = {(u, v) ∈ U × V : g(u, v) = 0, h(u, v) ≥ 0} ⊆ U × V
for the feasible set of Problem (3).

Algorithm 1 A standard ADM.

1: Choose initial values (u0, v0) ∈ U × V .
2: for l = 0, 1, . . . do
3: Compute

ul+1 ∈ arg min
u

{
f(u, vl) : g(u, vl) = 0, h(u, vl) ≥ 0, u ∈ U

}
.

4: Compute

vl+1 ∈ arg min
v

{
f(ul+1, v) : g(ul+1, v) = 0, h(ul+1, v) ≥ 0, v ∈ V

}
.

5: Set l← l + 1.
6: end for

Definition 2. Let (u∗, v∗) ∈ Ω be a feasible point of Problem (3). Then, (u∗, v∗) is
called a partial minimum of Problem (3) whenever it satisfies

f(u∗, v∗) ≤ f(u, v∗) for all (u, v∗) ∈ Ω,

f(u∗, v∗) ≤ f(u∗, v) for all (u∗, v) ∈ Ω.

Consider now the set of possible future iterates starting from the current iter-
ate (ul, vl), i.e.,

Θ(ul, vl) =
{

(u∗, v∗) : f(u∗, vl) ≤ f(u, vl)∀u ∈ U ; f(u∗, v∗) ≤ f(u∗, v)∀v ∈ V
}
.

The general convergence result of Algorithm 1 is stated in the following theorem;
see Theorem 4.9 in [46] for the proof. For further details on the convergence theory
of classic ADMs; see also [69].

Theorem 3. Let {(ul, vl)}∞l=0 be a sequence generated by Algorithm 1 with
(ul+1, vl+1) ∈ Θ(ul, vl). Suppose that the solution of the first optimization problem
(in Line 3) is always unique. Then, every convergent subsequence of {(ul, vl)}∞l=0

converges to a partial minimum. In addition, if w and w′ are two limit points of
such subsequences, then f(w) = f(w′) holds.

Usually, the feasible set of Problem (3) is not completely decomposable into the
disjoint sets U and V since the constraints in (3b) couple the two subproblems.
These coupling constraints may lead to poor convergence rates in practice. Thus, an
extension of the ADM called penalty alternating direction method (PADM) has been
proposed in [43], which has been already used successfully to solve many problems
in practical applications; see, e.g., [23, 44, 45, 53, 62]. The main idea is to move the
coupling constraints g and h to the objective function by means of an `1 penalty
function, yielding

φ1(u, v;µ, ρ) := f(u, v) +

m∑
i=1

µi|gi(u, v)|+
q∑
i=1

ρi[hi(u, v)]−,

with [α]− = max {0,−α} and µ = (µi)
m
i=1, ρ = (ρi)

q
i=1 ≥ 0 being the penalty

parameters of the equality and inequality constraints, respectively.



AN ALTERNATING METHOD FOR CARDINALITY-CONSTRAINED OPTIMIZATION 7

The penalty ADM works as follows. Given a starting point and initial values for
all penalty parameters, the ADM of Algorithm 1 computes a partial minimum of
the penalty problem

min
u,v

φ1(u, v;µ, ρ) s.t. u ∈ U, v ∈ V. (4)

With this partial minimum at hand, we verify if the coupling constraints are satisfied.
If they are, we stop with a feasible solution of Problem (3). If not, the penalty
parameters are updated and the next penalty problem is solved to partial minimality.
In this way, the method is composed out of an inner and an outer loop. In the inner
loop, a partial minimum of the current penalty problem is computed with a classic
ADM, while in the outer loop, the penalty parameters are updated producing a
new penalty problem. Thus, the PADM generates a sequence of partial minima
of a sequence of penalty problems of type (4). The method is formally stated in
Algorithm 2.

Algorithm 2 The `1 penalty ADM.

1: Choose initial values (u0,0, v0,0) ∈ U × V and penalty parameters µ0, ρ0 ≥ 0.
2: for t = 0, 1, . . . do
3: Set l = 0.
4: while (ut,l, vt,l) is not a partial minimum of (4) with µ = µt and ρ = ρt do
5: Compute

ut,l+1 ∈ arg min
u

{
φ1(u, vt,l;µt, ρt) : u ∈ U

}
.

6: Compute

vt,l+1 ∈ arg min
v

{
φ1(ut,l+1, v;µt, ρt) : v ∈ V

}
.

7: Set l← l + 1.
8: end while
9: if (ut,l, vt,l) satisfies the coupling constraints then

10: Stop with (ut,l, vt,l) being a feasible point of (3).
11: else
12: Choose new penalty parameters µt+1 ≥ µt and ρt+1 ≥ ρt.
13: end if
14: end for

In the following, we state the general convergence result of Algorithm 2; see [43]
for a proof (Theorem 8) and for further details about the method.

Theorem 4. Suppose that Assumption 1 holds and that µti ↗∞ for all i = 1, . . . ,m
and ρti ↗∞ for all i = 1, . . . , q. Moreover, let (ut, vt) be a sequence of partial minima
of (4) (for µ = µt and ρ = ρt) generated by Algorithm 2 with (ut, vt) → (u∗, v∗).
Then, there exist µ̄, ρ̄ ≥ 0 such that (u∗, v∗) is a partial minimizer of the weighted `1
feasibility measure

χµ̄,ρ̄(u, v) :=

m∑
i=1

µ̄i|gi(u, v)|+
q∑
i=1

ρ̄i[hi(u, v)]−.

If, in addition, (u∗, v∗) is feasible for the original problem (3), the following holds:
(a) If f is continuous, then (u∗, v∗) is a partial minimum of (3).
(b) If f is continuously differentiable, then (u∗, v∗) is a stationary point of (3).
(c) If f is continuously differentiable and f and Ω are convex, then (u∗, v∗) is a

global optimum of (3).
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Let us note that the above result does not ensure the convergence of iterates
or the feasibility of limit points but states properties of the limit points in case
of convergence. However, our numerical results later show that we neither face
convergence nor infeasibility issues for the two problems that we apply our methods
to.

3.2. Application to the Cardinality-Constrained Portfolio Optimization
Problem. We now turn to the application of Algorithm 2 to Problem (CCPO).
First, we duplicate the continuous variables x ∈ Rn via the introduction of new
variables w ∈ Rn and rewrite Problem (CCPO) as

min
x,w

x>Σx

s.t. r>x ≥ R, e>x = 1, x ≥ 0,

x = w, ‖w‖0 ≤ k.
The constraint x = w is the so-called copy constraint that couples the variables x
and w. It allows us to transfer the hard cardinality constraint previously on x to w.
Copy constraints are commonly used in decomposition methods to split the genuine
problem into parts. Now, to alleviate this constraint, we move it to the objective
function by means of an `1 penalty term with penalty parameter µ ≥ 0, obtaining
the following problem which is in the form of (4)

min
x,w

x>Σx+ µ‖x− w‖1

s.t. x ∈ Ũ := {x̃ ∈ Rn : r>x̃ ≥ R, e>x̃ = 1, x̃ ≥ 0},

w ∈ Ṽ := {w̃ ∈ Rn : e>w̃ = 1, ‖w̃‖0 ≤ k}.

(5)

Note that the constraint e>w̃ = 1 does not necessarily need to be included in the
set Ṽ since the same constraint is considered for x. However, previous computational
experiments revealed that having this constraint in both subproblems significantly
improves the solution process of the PADM.

Now, we can fully decompose the variable space of Problem (5) into two blocks:
one for x and the other one for w. Thus, given the outer iteration t, in each inner
iteration l of Algorithm 2 the two subproblems that need to be solved are given by

xt,l+1 ∈ arg min
x∈Ũ

x>Σx+ µt‖x− wt,l‖1, (6)

and
wt,l+1 ∈ arg min

w∈Ṽ
‖xt,l+1 − w‖1. (7)

Here, we already discarded the constant term (xt,l+1)
>

Σxt,l+1 and the penalty
parameter µt in the objective function of Problem (7) since they do not have an
effect on the solution of the optimization problem.

These problems can be solved efficiently. Problem (6) is the traditional portfolio
optimization problem with an `1 regularization term. Therefore, it is a convex
optimization problem which can be solved by any state-of-the-art quadratic pro-
gramming solver. However, it might not have a unique solution. On the other hand,
a solution of Problem (7) can be stated in closed form, which is what we show in
the next two propositions. In order to simplify the presentation, we denote the
sub-vector of a vector x ∈ Rn corresponding to the index set S = {i1, . . . , im} ⊆ [n]
by xS ∈ Rm, i.e., xS := (xi1 , . . . , xim)>.

Proposition 5. Suppose that x̄ is an optimal solution of Problem (6). For every
optimal solution w̃ of Problem (7) with supp(w̃) = S, there exists an optimal
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solution w∗ of Problem (7) such that supp(w∗) = S and

w∗i =

{
x̄i/(e

>x̄S), if i ∈ S,
0, otherwise,

(8)

holds.

Proposition 6. Suppose that x̄ is an optimal solution of Problem (6). Let x̄i1 ≥
x̄i2 ≥ · · · ≥ x̄in be the sorted entries of x̄. Then, there exists an optimal solution w∗
of Problem (7) such that S = {i1, . . . , ik} = supp(w∗) holds.

The proofs are given in Sections A.1 and A.2 in the appendix. From Proposition 5,
we can directly compute a solution of Problem (7) using Formula (8) and the set S
characterized in Proposition 6. Although both the first and the second subproblem
do not necessarily have to possess unique solutions, Formula (8) also serves as a
“tie-breaking” rule that stays the same over all iterations. Thus, the general PADM
theory applies.

3.3. Application to the Best Subset Selection Problem. In this section,
we propose a tailored version of Algorithm 2 to compute partial minima of Prob-
lem (BSS).

For applying the PADM to the best subset selection problem we first duplicate
the continuous variables of Problem (BSS) using the new variables γ, δ ∈ Rp and
then rewrite the problem equivalently as

min
γ,δ

‖Xγ − y‖22

s.t. γ = δ,

|supp(δ)| ≤ k.
Now, we move the coupling condition γ = δ to the objective function by using an `1
penalty term with penalty parameter µ ≥ 0, yielding

min
γ,δ

‖Xγ − y‖22 + µ‖γ − δ‖1

s.t. γ ∈ Ū := Rp,
δ ∈ V̄ := {δ′ ∈ Rp : ‖δ′‖0 ≤ k}.

(9)

Note that this problem is of the form of Problem (4). Thus, we can apply Algorithm 2
to Problem (9) with the search space decomposed into two blocks: one for γ and
the other one for δ.

In each inner iteration, the two subproblems to be solved read

γt,l+1 ∈ arg min
γ∈Ū

‖Xγ − y‖22 + µt‖γ − δt,l‖1, (10)

and
δt,l+1 ∈ arg min

δ∈V̄
‖γt,l+1 − δ‖1. (11)

With these two subproblems at hand we have to ensure two properties. First,
considering that we want to avoid the computational hardness of (BSS) both
subproblems (10) and (11) should be easier to handle. Second, we have to make
sure that Theorem 3 can be applied.

We first show that both directions are efficiently solvable. For Problem (10) it
is easy to see that the optimization problem is convex and thus, can be solved
in polynomial time. Moreover, Problem (10) rather closely resembles (LASSO).
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Indeed, this first subproblem can be solved via the Lasso method by substituting
γ̃ := γ − δt,l. Consequently, we can solve the equivalent optimization problem

min
γ̃∈Rp

∥∥Xγ̃ − (y −Xδt,l)∥∥2

2
+ µt ‖γ̃‖ (12)

by using tailored solvers such as the coordinate descent solver in [39] or a LARS
solver [33], which exploit the sparsity structure of the solution. These specialized
solvers are known to be exceptionally fast.

For Problem (11), a simple Greedy algorithm finds a global optimal solution.
This is shown in the next proposition. The proof is given in Section A.3 in the
appendix.

Proposition 7. Given the outer iteration t, the inner iteration l, and a solu-
tion γt,l+1 of Problem (10). Then, the optimal solution of Problem (11) is given
by

δt,l+1 = (γt,l+1
1 , . . . , γt,l+1

k , 0, . . . , 0),

with |γt,l+1
1 | ≥ · · · ≥ |γt,l+1

k | ≥ · · · ≥ |γt,l+1
p |.

Hence, both subproblems can be solved very fast. It remains to be clarified if the
assumptions of Theorem 3 hold. Clearly, Assumption 1 is satisfied. Thus, we only
need to check if one of the two subproblems always yields a unique solution. For
Problem (11) this is not the case. It is possible that the coefficients γt,l+1 do not
have a unique order if there are multiple k-largest elements, i.e.,

|γt,l+1
1 | ≥ · · · ≥ |γt,l+1

k | = |γt,l+1
k+1 | = · · · = |γ

t,l+1
k+q | ≥ · · · ≥ |γ

t,l+1
p |

for some q ≥ 1. Fortunately, (10) has a unique solution under some mild assumptions.
That is, the following result, taken from [66], holds for the Lasso problem and
consequently for (10) as well.

Proposition 8. If the entries of X ∈ Rn×p are drawn from a continuous probability
distribution on Rn×p, then for any y and λ > 0, the Lasso solution is unique with
probability one.

The assumption that X is drawn from a continuous probability distribution is not
a major restriction since it usually holds in real-world applications. Note that no
requirements for y are needed. Thus, we can safely apply the transformation (12).

Furthermore, we could also force the second subproblem (11) to be unique
by adding a regularization term π

∑p
i=1 i χδi 6=0(δi) to (9) with χδi 6=0 being the

indicator function that returns 1 if δi is non-zero and 0 otherwise. If π is chosen
sufficiently small, the optimal selection will not be changed but nevertheless it
causes Problem (11) to always have a unique solution. While this is a mathematical
technicality, in the algorithm it would simply mean to first pick the element with
the smallest index if there is no unique choice during the greedy selection.

Thus, the PADM fits well for being applied to the best subset selection problem.
For the relation between the PADM and the trimmed Lasso method, we refer to
Section A.4 in the appendix, where we also discuss some robustness aspects of the
mentioned methods.

4. Perspective Reformulations

Exact methods for solving problems of the form of (CC) are usually based on
branch-and-bound techniques. Thus, a good continuous relaxation of the problem is
essential. The standard big-M formulation obtained by reformulating the cardinality
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constraint via (1) usually provides only weak continuous relaxations, which slows
down branch-and-bound. For a more detailed discussion, see [17].

Fortunately, problems of the form of (CC) are MIQPs with semi-continuous
variables x and binary variables z. For such problems, a better MIQP reformulation
is proposed in [35] using so-called perspective cuts. For doing so, the authors explore
the convex envelope of the objective function and show that it is the perspective
function of the continuous part of the objective function. This insight can be used to
provide a reformulation with a tighter continuous relaxation—called the perspective
reformulation. However, this technique is only applicable for problems with convex
and separable objective functions but, in the same work [35], the authors present
a trick for problems such as (CCPO) with non-separable cost matrix Σ so that
the technique can be applied again. The idea is to extract a positive semidefinite
diagonal matrix D such that Σ−D is positive semidefinite. This gives rise to a new
separable part containing D. Different ways exist for computing a proper diagonal
matrix; see, e.g., [38]. The matrix D, which gives the tightest continuous relaxation
is presented in [71], but requires solving a structured semidefinite program.

We now discuss how the perspective reformulation can be applied to Prob-
lem (CCPO). First, a positive semidefinite diagonal matrix D with entries Dii ≥ 0,
i ∈ [n], is extracted from Σ such that Σ−D is still positive semidefinite. With this
at hand, we re-write the problem as follows:

min
x,z

x>(Σ−D)x+ x>Dx

s.t. r>x ≥ R, e>x = 1,

0 ≤ x ≤ z, e>z ≤ k, z ∈ {0, 1}n.

Now, the perspective reformulation is applied to the convex and separable part x>Dx,
i.e., this term is replaced by its convex envelope, which is exactly its perspective
function, yielding

min
x,z

x>(Σ−D)x+
∑
i∈[n]

Di,i
x2
i

zi

s.t. r>x ≥ R, e>x = 1,

0 ≤ x ≤ z, e>z ≤ k, z ∈ {0, 1}n.

Here, we assume that x2
i /zi = 0 if zi = 0 for all i ∈ [n]. Note that the fractional

term renders this problem intractable at a first glance. To resolve this issue,
another reformulation is discussed in [1, 34, 47, 63], which further allows to impose
the cardinality constraint via second-order cone (SOC) constraints and drop the
(considerably weaker) big-M constraints in (1), resulting in the mixed-integer second-
order cone problem (MISOCP)

min
x,z,θ

x>(Σ−D)x+
∑
i∈[n]

Di,i θi

s.t. r>x ≥ R, e>x = 1,

e>z ≤ k, z ∈ {0, 1}n,
x2
i ≤ θizi for all i = 1, . . . , n,

x, θ ≥ 0.

(13)

This reformulation has been shown to outperform the big-M formulation in several
works; see, e.g., [8, 9, 71].



12 C. MOREIRA COSTA, D. KREBER, M. SCHMIDT

4.1. Combining Perspective Reformulations with PADM. We now show
how we can use perspective reformulations in combination with the PADM. We
discuss the main ideas for the case of Problem (CCPO). The ideas can, however, be
applied to Problem (BSS) as well. We start with the problem

min
x,w

x>(Σ−D)x+ w>Dw

s.t. r>x ≥ R, e>x = 1, x ≥ 0,

x = w, ‖w‖0 ≤ k,
which is equivalent to (CCPO). As before, we penalize the coupling constraints via
an `1 penalty term

min
x,w

x>(Σ−D)x+ w>Dw + µ‖x− w‖1

s.t. r>x ≥ R, e>x = 1, x ≥ 0, ‖w‖0 ≤ k.
Thus, given the outer iteration t, in each inner iteration l of Algorithm 2, the two
subproblems that need to be solved are

xt,l+1 ∈ arg min
x∈Rn

x>(Σ−D)x+ µt‖x− wt,l‖1

s.t. r>x ≥ R, e>x = 1, x ≥ 0,

and
wt,l+1 ∈ arg min

w∈Rn
w>Dw + µt‖xt,l+1 − w‖1

s.t. e>w = 1, ‖w‖0 ≤ k.
(14)

Note that, when compared to the subproblem (7), we are now adding more infor-
mation from the original problem to the subproblem in the direction of w. The
underlying rationale is that this may improve the performance of PADM especially in
cases for which the covariance matrix Σ is diagonally dominant. On the other hand,
this comes with additional difficulties. First, a closed form solution for (14) seems to
be out of reach. Nonetheless, we can again introduce binary variables z, apply the
perspective reformulation to the term w>Dw, and reformulate it as an MISOCP
similarly to as it is done in the previous section. Second, the first subproblem is
now “less convex” since we are extracting the matrix D from Σ. Consequently, we
may loose uniqueness properties for the first subproblem. These difficulties may
harm the solution process of PADM. Therefore, we explore this in more depth in
our numerical studies.

5. Computational Study

In this section, we present and discuss the numerical results for the cardinality-
constrained portfolio optimization problem in Section 5.2 and the best subset
selection problem in Section 5.3. Before, we briefly discuss the software and
hardware setup in the next section.

5.1. Software and Hardware Setup. All computations were conducted on a
computer with two Intel Xeon CPU E5-2699 v4 at 2.20 GHz (2× 44 threads) and
756 GBRAM.

The PADM approach for the best subset selection problem has been implemented
in C++. For solving the Lasso subproblems, we use the PICASSO library [41]. For
computing the global solutions and for solving second-order cone programs, we use
CPLEX 12.8. The PADM for portfolio optimization has been coded in Python and
GUROBI 9.03 is used for solving the first subproblem (6) as well as the big-M and
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the MISOCP formulations. The PADM implementation and the setup of the com-
putational study is available under an open-source license at https://gitlab.com/
Dnis/computational-study-padm-for-cardinality-constrained-problems.

5.2. Numerical Results for the Cardinality-Constrained Portfolio Opti-
mization Problem. In this section, we present the computational results for
real-world as well as large-scale and randomly generated cardinality-constrained
portfolio optimization instances. First, we comment on some implementation details
in the next section. The test set that we consider is described in Section 5.2.2.
Finally, in Section 5.2.3, we evaluate the performance of the algorithm proposed
in Section 3.2 in terms of solution quality and running time by comparing it with
the commercial solver Gurobi applied to the big-M based MIQP formulation (2). In
cases for which a diagonal matrix D (see Section 4) is available, we also compare
against the MISOCP formulation (13). Moreover, we also present and discuss some
results obtained by combining the PADM with the perspective reformulation.

5.2.1. Implementation Issues. We set the initial penalty parameter µ0 based on
the magnitude of usual objective function values of the problem. This criterion
turned out to give a good balancing between feasibility and optimality. Thus,
for the real-world instances, the initial penalty parameter is set to 10−4, while
for the random instances, it is set to 1. In both cases the penalty parameter is
updated using the factor 10. Each inner loop is stopped when a partial minimum is
obtained, i.e., whenever ‖(xt,l, wt,l)− (xt,l−1, wt,l−1)‖∞ < 10−5. Finally, the PADM
terminates with a feasible partial minimum if the coupling constraint is satisfied,
i.e., if ‖x− w‖1 < 10−5 holds.

5.2.2. Description of the Test Set. We first consider the five mean-variance portfolio
optimization problems described in [26]. These instances are publicly available in
the OR-Library test set [4]. They are built from weekly price data using real-world
capital market indices and have been widely used to test algorithms for the sparse
portfolio optimization problem. Since a required level of return R is not given, we
define it similarly to [8, 71], i.e., first we compute

Rmin = r>x∗, x∗ = arg min
x

{
x>Σx : e>x = 1, x ≥ 0

}
,

Rmax = r>x̄, x̄ = arg max
x

{
r>x : e>x = 1, x ≥ 0

}
,

and then set R = Rmin + 0.3(Rmax −Rmin).
Another test set of mean-variance portfolio optimization problems that is widely

used in the literature is described in [38].1 In total, there are 90 instances, 30 for
each value of n ∈ {200, 300, 400}. Moreover, for each n, there are three subsets
of 10 instances identified as n+, n0, and n−, where the superscript represents the
degree of diagonal dominance, i.e., strongly, weakly, and not diagonally dominant,
respectively. A proper matrix D, as discussed in Section 4, is given as well. Specif-
ically, we use those in the folder “s” which are independent of the choice of the
sparsity k and are obtained by solving the SDP discussed in [38].

The largest of all those instances contains 400 assets. To test our algorithm
on large-scale instances, we also consider further randomly generated cardinality-
constrained portfolio problems. To this end, we follow the procedure given in [51],
and use the Python implementation made available by [25].2 This procedure generates
random covariance matrices in a way so that they mimic covariance matrices of
real-world data. In total, we use 60 randomly generated instances with the number

1The data is available at http://groups.di.unipi.it/optimize/Data/MV.html.
2The implementation is available at http://sertalpbilal.github.io/randomportfolio/.

https://gitlab.com/Dnis/computational-study-padm-for-cardinality-constrained-problems
https://gitlab.com/Dnis/computational-study-padm-for-cardinality-constrained-problems
http://groups.di.unipi.it/optimize/Data/MV.html
http://sertalpbilal.github.io/randomportfolio/
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Table 1. Comparison of running times (in seconds) and objective
function values obtained with PADM and Gurobi on five real-world
cardinality-constrained portfolio instances.

Instance n k PADM Big-M

Time Obj. Value Time Obj. Value

port1 31 5 0.06 0.000 76 0.03 0.000 76
10 0.02 0.000 75 0.01 0.000 75
20 0.02 0.000 75 0.01 0.000 75

port2 85 5 0.34 0.000 25 0.28 0.000 24
10 0.81 0.000 19 0.12 0.000 19
20 0.17 0.000 18 0.07 0.000 18

port3 89 5 0.10 0.000 31 0.49 0.000 28
10 0.82 0.000 25 0.88 0.000 25
20 0.18 0.000 24 0.08 0.000 24

port4 98 5 0.94 0.000 25 8.38 0.000 25
10 4.36 0.000 20 5.63 0.000 20
20 0.05 0.000 18 0.37 0.000 18

port5 225 5 12.83 0.000 36 0.40 0.000 36
10 0.96 0.000 34 0.35 0.000 34
20 0.23 0.000 34 0.15 0.000 34

of assets varying from 400 to 5000. Again, we compute the level of expected return R
as described above.

5.2.3. Discussion of the Results. We start with the discussion of the results for
the five real-world instances. We first compute partial minima using the proposed
PADM and globally optimal solutions with the big-M formulation (2) using Gurobi
without a time limit. In Table 1, we present the instance ID, the size n of the
problem, the given cardinality bound k, the solution time (in seconds) required
to find a solution, and the objective function value reported by both PADM and
Gurobi. For each problem instance, the smaller running time is printed in bold.
Regarding the running times, there is no clear trend in general. Both approaches
are able to compute a solution very quickly. For some instances, Gurobi is the faster
approach while for other instances, PADM is faster. In terms of solution quality,
PADM always finds a partial minimum that is very close to the optimal solution
or it even finds the optimal solution. In fact, only two instances are not solved to
global optimality by PADM. Therefore, we conclude that PADM is competitive to
the commercial solver Gurobi on these instances.

We now turn to the discussion of the results for the instances generated in [38].
Since the required diagonal matrices are available for these instances, the perspective
reformulation techniques from Section 4 will also be employed. First, we compare
our plain PADM with the big-M as well as the MISOCP formulations (the latter two
both solved with Gurobi) in terms of running times and objective function values. The
results are presented in Table 2, where we display the instance ID (see Section 5.2.2
for the details), the cardinality ceiling k, the average running times (in seconds),
and the average objective function values over the 10 instances for each method.
The column “Gap” shows the relative gap computed as (fPADM − fLB)/|fLB|,
where fPADM denotes the average objective function value of PADM and fLB denotes
the best average objective function value, i.e., the best lower bound obtained either



AN ALTERNATING METHOD FOR CARDINALITY-CONSTRAINED OPTIMIZATION 15

Table 2. Results on the mean-variance portfolio optimization
problems generated by [38]. The running times are shown in
seconds, and the time limit is 600 s. The column “Gap” shows
the relative gap between the average objective function value of
PADM and the best lower bound.

PADM MISOCP Big-M

ID k Time Obj. Gap Time Obj. Time Obj.

200+ 5 0.51 422.04 0.02 13.81 413.65 527.75 413.65
2000 0.72 150.70 0.04 70.16 145.26 600.03 145.26
200− 0.59 110.74 0.05 131.53 105.94 520.07 105.98
200+ 10 0.58 219.50 0.03 23.41 212.87 600.04 212.92
2000 0.58 78.61 0.03 287.88 76.03 600.04 76.03
200− 0.54 59.18 0.05 491.74 56.38 600.04 56.38
200+ 15 0.59 151.56 0.04 31.01 146.31 600.05 146.35
2000 0.51 54.84 0.03 384.01 53.04 600.04 53.07
200− 0.56 41.72 0.04 547.66 39.99 600.04 39.99

300+ 5 1.03 619.04 0.02 61.61 609.17 600.06 609.17
3000 1.09 223.20 0.03 349.67 217.77 600.05 217.73
300− 1.04 176.65 0.05 382.18 168.66 432.43 168.55
300+ 10 1.04 316.45 0.02 242.60 309.79 600.05 309.78
3000 1.28 116.68 0.04 570.89 112.80 600.05 112.60
300− 1.49 93.70 0.06 505.59 88.78 544.30 88.64
300+ 15 1.05 215.61 0.03 235.08 209.97 600.05 210.04
3000 0.89 80.58 0.04 579.31 77.68 600.05 77.62
300− 0.91 66.11 0.07 527.58 62.15 545.99 62.03

400+ 5 1.36 848.43 0.03 332.55 820.23 542.89 820.20
4000 1.33 296.64 0.03 576.75 288.00 600.07 287.74
400− 1.37 215.27 0.05 602.26 206.32 600.07 205.97
400+ 10 1.81 435.12 0.04 534.34 418.24 600.07 417.67
4000 1.67 153.95 0.04 602.42 148.36 600.07 147.77
400− 1.75 113.41 0.06 602.16 107.21 600.07 106.58
400+ 15 1.73 297.04 0.04 488.91 284.76 600.08 284.66
4000 1.71 106.19 0.05 601.92 101.64 600.06 101.29
400− 1.75 78.22 0.06 601.92 73.79 600.07 73.54

from the MISOCP or the big-M formulation. Taking a closer look at the gap values,
we can see that the PADM computes feasible points with objective function values
very close to the optimal solution or to the best known lower bound—the largest gap
is 7 %. Thus, the solutions of PADM are almost as good as the solutions of the exact
methods. Regarding running times, we can directly see that PADM always finds a
feasible solution very quickly, never requiring more than 2 seconds on average. The
MISOCP formulation solved with Gurobi is able to find the optimal solution in a
reasonable amount of time, especially for the diagonally dominant instances, but as
the size of the instances grows, the required solution time also increases. In contrast,
Gurobi applied to the big-M formulation almost always reaches the time limit and,
thus, is outperformed by the MISOCP formulation as expected. We conclude from
this experiment that the PADM performs very well across all variants of diagonal
dominance properties of the covariance matrices.
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As discussed in Section 4.1, the PADM may be improved by exploiting perspective
reformulations. Our expectation is that this particularly might lead to improvements
in terms of the objective function values for those cases for which the covariance
matrices are diagonally dominant. Therefore we also test the Perspective-PADM
variant on the same instances as discussed in Table 2. However, as shown in
Table 3, the solution process of the PADM is significantly harmed by using these
ideas: Although some of the obtained objective function values are better when
incorporating the perspective formulation, the running times slow down significantly.
What happens is that the two subproblems in each iteration are much harder
to solve now. As a consequence, we are no longer able to compute a feasible
solution for all of the instances. The percentage of instances (among the 10 for
each scenario) for which the PADM could find a feasible solution is shown in the
column “Feasible” of Table 3. Note that only for the diagonally dominant instances
with 200 assets and k = 5 the PADM was able to find feasible solutions for all of
the 10 instances. Nevertheless, for the same scenario, the relative gap (last column)
is worse (compared to Table 2, the relative gap is 4 % vs. 2 %). Thus, the numerical
results show that the Perspective-PADM variant does not seem to be beneficial.
We tried to further improve on this in several ways. First, we observed that the
constraint r>x ≥ R is very hard to be satisfied in the w-space, leading to very many
inner ADM iterations. We tried to overcome this issue by including this constraint
also in the subproblem (14). However, this was only beneficial for a few instances.
Second, we scaled the diagonal matrices by a factor < 1 so that its effect on the
subproblems is smaller. However, again, this was only beneficial for a few instances.
Another idea for an improvement that could be tried is to calibrate a parameter
that controls the balancing between feasibility and optimality in Subproblem (14).
However, this would require many experiments to find a parameter that works for
all of the instances—if this is possible at all. For this reason and because we are
already satisfied with the results shown in Table 2, we refrained from executing
additional adjustments.

Let us now discuss the results for the large-scale and randomly generated instances.
Here, we set the time limit to 1 h. The results are shown in Table 4, where we
report averages since we randomly generated 10 instances for each value of n. Again,
we indicate the faster running time in bold. First, it can be seen that by using
the big-M formulation, Gurobi is not able to compute an optimal solution within
the time limit for all instances with k ∈ {5, 10}. Thus, smaller values of k seem
to make the problem much harder from the point of view of solving it to global
optimality. In contrast, PADM never reaches the time limit and always returns
a feasible point of good quality very fast for these instances. For the instances
with k = 50, PADM is much faster than Gurobi and the reported objective function
values are the same. Thus, PADM is able to compute globally optimal solutions for
k = 50. Larger values of k, i.e., k ∈ {100, 200}, also makes the problem easier to
solve for PADM. For these k, Gurobi is the faster method, but also PADM always
finds the globally optimal solution within reasonable time. Possibly, an MISOCP
formulation would perform better than the big-M formulation if the covariance
matrices of these instances are diagonally dominant. However, in this work, we
refrain from testing an MISOCP formulation on these instances, since this would
require computing proper diagonal matrices D, which is not at the core of this
paper.

Our further computational analysis has shown that Gurobi often needs a lot of
time to prove global optimality of an already found feasible solution. Thus, we also
run Gurobi on the large-scale and randomly generated instances setting the time
limit to the time that PADM required to compute a partial minimum. Afterward, we
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Table 3. Results of Perspective-PADM on the portfolio optimiza-
tion problems generated by [38]. The column “Feasible” shows the
percentage of instances for which Perspective-PADM was able to
find a feasible solution. For those instances, we present the average
running times (in seconds) and average objective function values.
The time limit is 600 s. The column “Gap” shows the relative gap
between the average objective function value of Perspective-PADM
and the best lower bound (the latter shown in Table 2).

Perspective-PADM

ID k Feasible (%) Time Obj. Gap

200+ 5 100 61.84 431.97 0.04
2000 80 53.59 148.70 0.02
200− 90 117.73 109.75 0.04
200+ 10 80 95.13 222.24 0.04
2000 90 126.93 77.13 0.01
200− 80 151.76 58.09 0.03
200+ 15 80 23.89 147.39 0.01
2000 90 47.19 53.64 0.01
200− 80 12.76 40.69 0.02

300+ 5 70 123.73 613.86 0.01
3000 70 125.70 228.35 0.05
300− 50 89.28 171.56 0.02
300+ 10 50 149.34 309.86 0.00
3000 80 228.24 117.40 0.04
300− 60 140.11 92.82 0.05
300+ 15 60 187.56 210.66 0.00
3000 50 34.29 80.84 0.04
300− 40 97.74 62.56 0.01

400+ 5 70 54.88 867.89 0.06
4000 70 94.68 304.51 0.06
400− 70 52.64 218.95 0.06
400+ 10 50 260.40 457.56 0.1
4000 70 272.18 160.22 0.08
400− 60 252.50 109.24 0.03
400+ 15 30 107.03 313.83 0.1
4000 10 33.79 102.71 0.01
400− 30 392.40 76.00 0.03

compare the best solution found by Gurobi within this time limit with the solution
computed by PADM. This setting provides a reasonable comparison between our
primal heuristic and primal heuristics implemented in Gurobi. The results are shown
in the last column of Table 4, where we report the ratio between the objective
function value at the partial minimum obtained with PADM and the objective
function value of the best feasible point that Gurobi found within this time limit. We
observe that when k is small, Gurobi is also able to give a feasible solution and it is
slightly better than the feasible solution given by PADM. However, the deviation of
these ratios from 1 is almost in the range of numerical tolerances. For the remaining
instances, both give the same solution.
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Table 4. Performance of PADM and big-M formulation solved
with Gurobi on large-scale randomly generated cardinality-
constrained portfolio instances. The time limit is 1 h for the results
in columns 3–7. The last column compares the objective function
values obtained by Gurobi within the time limit set to the time
required by PADM to compute a partial minimum.

n k PADM Big-M PADM/Big-M

Time Obj. Time Obj. Gap (%)

400 5 1.37 20.63 > 3600 20.54 4.84 1.0045
10 6.47 19.74 > 3600 19.71 1.85 1.0016
50 0.68 19.25 8.46 19.25 0.01 1.0000
100 0.28 19.25 0.25 19.25 0.00 1.0000
200 0.28 19.25 0.26 19.25 0.00 1.0000

600 5 1.96 20.52 > 3600 20.45 5.49 1.0033
10 14.78 19.64 > 3600 19.61 2.06 1.0017
50 1.70 19.14 390.94 19.14 0.01 1.0000
100 0.52 19.13 0.47 19.13 0.00 1.0000
200 0.50 19.13 0.49 19.13 0.00 1.0000

1000 5 10.11 20.50 > 3600 20.40 6.16 1.0047
10 39.14 19.57 > 3600 19.54 2.30 1.0017
50 3.40 19.05 753.16 19.05 0.01 1.0000
100 1.44 19.04 1.11 19.04 0.00 1.0000
200 1.42 19.04 1.24 19.04 0.00 1.0000

2000 5 63.64 20.33 > 3600 20.25 6.68 1.0041
10 212.16 19.41 > 3600 19.39 2.58 1.0014
50 14.44 18.88 2654.62 18.88 0.02 1.0000
100 8.07 18.88 3.94 18.88 0.00 1.0000
200 8.13 18.88 3.88 18.88 0.00 1.0000

3000 5 115.194 20.20 > 3600 20.16 6.74 1.0017
10 915.89 19.35 > 3600 19.31 2.63 1.0022
50 96.96 18.80 2828.98 18.80 0.02 1.0000
100 21.53 18.79 7.96 18.79 0.00 1.0000
200 21.49 18.79 8.14 18.79 0.00 1.0000

5000 5 378.63 20.15 > 3600 20.05 6.78 1.0050
10 1679.16 19.22 > 3600 19.20 2.68 1.0015
50 126.31 18.69 > 3600 18.69 0.03 1.0000
100 42.58 18.68 13.41 18.68 0.00 1.0000
200 42.63 18.68 13.32 18.68 0.00 1.0000

From this experiment, we conclude that PADM is competitive to the commercial
solver Gurobi on the tested cardinality-constrained portfolio optimization problems.
For k not being too small, PADM always computed the global optimum and for k
being not too large, it is even faster than Gurobi. However, one of course has to
mention that PADM does not provide any guarantee that the solution is globally
optimal.

5.3. Numerical Results for the Best Subset Selection Problem. In this
section, we present and discuss the results for the best subset selection problem.
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Similarly to Section 5.2, we first discuss the issue of selecting a good initial penalty
parameter in Section 5.3.1, then explain the test data setup in Section 5.3.2, and
finally discuss the results in the remaining part of this section.

5.3.1. Selection of the Initial Penalty Parameter. In the case of the best subset
selection problem, the PADM resembles Lasso in the first part of its iterations. Since
Lasso is known to produce sparse solutions, it can happen that |supp(γ0,1)| < k
holds if the initial penalty parameter is chosen too large. It can easily be seen that
each further iteration either decreases the number of non-zero entries or keeps it
unchanged. Hence, once a solution γt,l has less than k non-zero entries, the final
result will have less than k non-zero values as well.

However, there always exists a global optimal solution to (BSS) that has exactly
k non-zero values. Moreover, if a solution with cardinality less than k is globally
optimal, then either rank(X) < k holds or a subset S ⊆ [p] exists with |S| < k
such that y ∈ span(XS) holds for the response vector y. Therefore, if these unusual
cases are not given, having a cardinality less than k means that the result cannot
be optimal.

That is why we want to avoid starting with a penalty parameter that is too
large. Fortunately, many applications for which Lasso is conventionally used require
the computation of the entire λ-path, i.e., all solutions for all λ > 0 or, at least,
for a large sample of λ values. Consequently, most Lasso solvers are specialized
to compute the λ-path. In particular, the LARS method computes the λ-path for
[λ′,∞) as a side product of just solving (LASSO) for λ′.

For computing the initial penalty parameter, we hence proceed as follows. We
first compute the λ-path and search for the largest λ that yields a solution with k
or more non-zero entries. Since the penalty parameter controls the balance between
optimality and feasibility in the PADM, we want to avoid a penalty parameter that
directly leads to a feasible solution. Instead, our preliminary numerical experiments
revealed that setting µ = 0.3λ results in the overall best performance of the method.
After that, we double the penalty parameter in each outer iteration.

5.3.2. Description of the Test Set. For the test data, we replicate the standard setup
as seen in [13, 49] and create the test data for the best subset selection problem
as follows. First, we synthetically generate the design matrix X ∈ Rn×p, true
coefficients β0 ∈ Rp, and noise ε ∈ Rn as described in detail below. Then, the
response y ∈ Rn is computed by y = Xβ0 + ε. This has the advantage that we know
the true predictors and that we can examine the selection accuracy of the methods,
i.e., we can assess how many correct non-zero coefficients are chosen. We generate
the following instance sizes for n > p:

• dim-small: n = 180, p = 60, ‖β0‖0 = 30,
• dim-medium: n = 300, p = 100, ‖β0‖0 = 50,
• dim-large-1: n = 1500, p = 500, ‖β0‖0 = 250,
• dim-large-2: n = 6000, p = 2000, ‖β0‖0 = 600,
• dim-large-3: n = 24 000, p = 8000, ‖β0‖0 = 2500,
• dim-huge: n = 45 000, p = 15 000, ‖β0‖0 = 5000.

We deliberately choose n = 3p for all these settings such that the predictive
qualities are comparable between the setups. Furthermore, we study the following
degenerated instances where p > n holds:

• dim-deg-1: n = 200, p = 1000, ‖β0‖0 = 100,
• dim-deg-2: n = 200, p = 10 000, ‖β0‖0 = 100.

According to the setting, we draw each row of X i. i. d. from Np(0, I), where Np
denotes the multivariate normal distribution. Note that the correlation matrix I can
be a parameter as well. However, preliminary results showed that the correlation
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does not seem to have any notable effect on the relative performance of the examined
methods. Hence, we only consider the identity correlation matrix. We then draw
β0 ∈ Rp subject to the sparsity condition for the respective setting’s dimension. To
this end, if k is the number of desired non-zero values, a subset of size k is uniformly
sampled from [p] and the entries of β0 are set to 1 if the respective index is an
element of the sampled subset or 0 otherwise. In other words, we draw a subset
S ⊆ [p] with |S| = k and create the entries of β0 according to the rule

β0
i :=

{
1, if i ∈ S,
0, otherwise.

After creating the coefficients, we generate the noise ε added to Xβ0, which is
drawn i. i. d. from the multivariate normal distribution Nn(0, σ2I), with σ2 chosen
in accordance to the signal-to-noise ratio (SNR). Low SNR means that there is a
high disturbance in the signal. Otherwise, if the SNR is high, noise is relatively low.
The ratio is defined as

SNR :=
Var(x0β0)

Var(ε)
=
‖β0‖22
σ2

.

For dim-small and dim-medium, we consider the SNR values SNR ∈ {0.05, 0.3, 1, 6}
and for dim-large and dim-huge, we only assess SNR = 1.

Moreover, for each setting except for dim-huge, we generate 50 instances. Due to
its size, we only examine 5 instances for dim-huge.

We compare the following four approaches:
• PADM, as proposed in this article,
• CPLEX applied to compute an exact solution,
• the MaxMin method as proposed in [14], and
• L0Learn as discussed in [28, 50].

For the global solution, we are using the big-M reformulation with M chosen as
in [54]. The third method is a max-min approach, which can be stated as a second-
order cone program. This heuristic is both known to be very efficient and to yield
feasible points of good quality. We will refer to the heuristic proposed in [14] as
the MaxMin method. Finally, the L0Learn method is a well-known state-of-the-art
heuristic providing fast and good heuristic solutions. However, the method does not
aim to solve the cardinality-constrained best subset selection problem as discussed
in this article. Instead, it tries to find a solution to the regularized best subset
selection problem

min
β∈Rp

‖Xβ − y‖22 + κ|supp(β)|,

where κ > 0 is a regularization parameter. While both the truncated and the
regularized problem aim to induce sparsity in the coefficients, there is no one-to-one
connection between the sparsity parameter k and the regularization parameter κ.
Indeed, there exist cases for which certain cardinalities cannot be generated by
the regularized best subset selection, no matter how κ is chosen [54]. Hence,
L0Learn does not exactly fit our setting, and is, thus, inherently at a disadvantage.
L0Learn provides a parameter for setting the maximum cardinality. We utilize
this functionality to compute a κ-path and then pick the solution with the largest
sparsity—ideally equal to k. In addition, we also evaluate L0Learn using a more
sophisticated and finetuned setting. In this case, the maximum support is set
to 2k, we set the scaleDownFactor to 0.95, and the size of the λ grid to bk2 c. This
finetuned variant yields solutions with support larger than k. Hence, from the
solution path we manually select the largest subset smaller or equal to k. We will
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Figure 1. Relative gap (in %) of the methods PADM (blue),
L0Learn (yellow), finetuned L0Learn (green), MIP (orange), and
MaxMin (purple) for the settings dim-small, dim-medium, and dim-
large-1.

later see that this finetuning of parameters is especially tailored for large values of p,
whereas it might lead to an inferior behavior for smaller instances.

For all four approaches we set a time limit of 1 h and a termination tolerance of
1× 10−8. We always set k to the number of correct predictors.

5.3.3. Solution Quality. We now start by discussing the quality of the feasible
solutions provided by PADM. To this end, we compare the objective function values
of the heuristics with the exact solution.

Since the best subset selection problem is very hard to solve to global optimality,
the dim-small instances are the only ones for which we can compute provably optimal
solutions using the global solver. For the other cases we compare the relative gap
between the different approaches. In particular, for each instance we determine the
smallest residual sum of squares of all approaches for the particular instance. We
denote this minimum value by R̂SS. Then, assuming RSS is the residual sum of
squares for one of the approaches, the gap is defined by

RSS− R̂SS
RSS

· 100.

Clearly, a gap of 0 % means that the approach yields the best solution and, in the
case of dim-small, provably the globally optimal point. A higher gap indicates that
the method returned an inferior solution.

Looking at Figure 1 we find that the solutions produced by MaxMin have the
highest gap for p = 500 whereas the finetuned version of L0Learn produces the
highest gaps for p ∈ {60, 100}. Although we are not able to receive provably optimal
solutions from the MIP approach for every setting, solving an MIP provides the
best objective values. Comparing L0Learn and PADM we observe that, in average,
PADM provides slightly worse solutions—however, with less variance compared to
L0Learn. Furthermore, it seems that PADM performs better on noisy data and
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Figure 2. Relative gap (in %) of the methods PADM (blue),
L0Learn (yellow), and finetuned L0Learn (green) for the settings
dim-large-2, dim-large-3, and dim-huge.

looses some ground when noise is low. These differences are, however, in a range of
< 1 %, which is rather small in absolute terms.

The picture changes when we consider larger instances; see Figure 2. The
plot shows the relative gaps between PADM, L0Learn, and finetuned L0Learn for
the settings dim-large-2, dim-large-3, and dim-huge. We see that with increasing
dimension the solutions produced by L0Learn become significantly worse and can
reach a gap of around 40 % in relation to PADM. On the other hand, the finetuned
version of L0Learn now performs much better compared to the results for smaller p
as shown in Figure 1. The finetuned version reaches gaps that are larger than those
of PADM but is never worse than 5 % in relation to PADM.

5.3.4. Running Times. In summary, we conclude that PADM provides points very
close to the global optimum and very competitive values compared to MaxMin and
(finetuned) L0Learn. In the following we want to study the computational efficiency
of the PADM. Since the subproblems in our proposed approach can be solved in a
highly efficient way, we expect our proposed method to have competitive running
times.

We compare the running times via performance profiles as introduced in [31].
That is, for an instance i we have the running times tmi for each method m ∈
M = {PADM, L0Learn, finetuned L0Learn, MaxMin, MIP}. We then compute the
performance ratio

tmi
min {tai : a ∈M}

for each m ∈M and plot the resulting data via an ECDF plot.
Figure 3 shows the performance profiles. We see that L0Learn dominates all

other approaches as it is always the fastest approach. Our proposed approach comes
second, closely followed by the finetuned L0Learn method. MaxMin comes fourth,
and the exact approach fifth. About 50 % of all instances could not be solved within
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Table 5. Average running times in seconds. Dashes indicate that
the experiments were not conducted because they failed due to the
time limit (MaxMin) or already reached the time limit in smaller
experiments (MIP). For the degenerated cases only L0Learn and
PADM are applicable.

Instance MIP MaxMin L0Learn finetuned L0Learn PADM

dim-small 58.446 0.032 0.007 0.015 0.010
dim-medium 980.111 0.076 0.013 0.022 0.023
dim-large-1 3600.01 5.87 0.39 0.83 0.58
dim-large-2 – 219.70 3.27 11.03 10.77
dim-large-3 – – 30.67 188.82 258.85
dim-huge – – 114.63 1212.35 994.37

dim-deg-1 – – 0.10 0.10 0.23
dim-deg-2 – – 0.45 0.36 0.80
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Figure 3. Performance profile for PADM (blue), L0Learn (yellow),
finetuned L0Learn (green), MIP (orange), and MaxMin (purple).

the time limit by the exact approach and a small amount of instances could also
not be solved within the time limit by MaxMin.

Additionally, Table 5 shows the average running times for the different instances.
We can see a similar pattern: L0Learn consistently outperforms PADM, while
PADM outperforms MaxMin and the exact solver by large margins. Moreover, the
finetuned version of L0Learn and PADM have rather comparable running times.
However, it seems that L0Learn’s performance comes at a cost. The difference
in running times becomes especially apparent in higher dimensions. In the last
section, we have already seen that solutions become significantly worse for L0Learn
in these settings and we will see that this effect also occurs when considering the
statistical quality and the sparsity of the solutions. On the other hand, PADM and
the finetuned version of L0Learn are both comparable w.r.t. running times and the
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Figure 4. Selection accuracy values between PADM (blue),
L0Learn (yellow), finetuned L0Learn (green), the exact solver
(orange), and MaxMin (purple) for dim-small, dim-medium, and
dim-large-1.

quality of the solutions. However, for both measures PADM performs slightly better
than the finetuned version of L0Learn and has the additional advantage that no
finetuning is required.

5.3.5. Statistical Performance. Finally, we discuss the selection accuracy of the three
methods. The selection accuracy is the percentage of correctly selected predictors.
To this end, suppose that S ⊆ [p] is the set of selected indices and that S0 ⊆ [p]
is the true set of indices, i.e., S0 is given by S0 = supp(β0). Then, the selection
accuracy is defined by

1− |S∆S0|
|S|+ |S0|

,

where ∆ is the symmetric difference. Although the objective function value and the
selection accuracy could be correlated, they do not have to be. That is because the
solution of the optimization problem depends on the given training data. However,
it, of course, does not depend on new, i.e., unknown, data to which it later is
applied to. It might select a subset that indeed is optimal, but only because the
noise interference caused it to be optimal. Hence, it also makes sense to consider
statistical performance, for example indicated by the selection accuracy. For all our
tested methods we set k to the correct sparsity.

In Figure 4 we can observe that PADM is highly competitive and in some cases
it even yields the most accurate selection. This is, e.g., the case for the dim-large-1
instances. Interestingly, we have previously seen that, in this setting, PADM
provides solutions that are slightly worse than those of L0Learn w.r.t. the objective
function value. Nevertheless, the selection accuracy is superior. One possible
explanation might be that this is a side-effect of the connection between our method
and (trimmed) Lasso. Specifically, it is shown in [6, 7] that both Lasso and trimmed
Lasso have a robustification effect, which can positively affect the prediction quality.
Since each inner loop of the PADM algorithm is aiming to solve a trimmed Lasso
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Figure 5. Selection accuracy values between PADM (blue),
L0Learn (yellow), and finetuned L0Learn (green) for dim-large-
2, dim-large-3, and dim-huge.

problem (or a Lasso problem in the very first iteration), it might happen that PADM
returns a subset for which the selection is influenced by the robustification effects
caused by Lasso and trimmed Lasso. A detailed analysis of this hypothesis could be
further examined in future research but is out of scope of this work.

Even more interesting is the selection behavior for large scale instances. In
Figure 5 we compare the selection accuracy of PADM and (finetuned) L0Learn for
the instances dim-large-2, dim-large-3, and dim-huge. While PADM keeps a steady
selection accuracy of about 80 %, the accuracy of L0Learn falls off sharply with
increasing dimension. The accuracy of the finetuned version of L0Learn is also
around 80 % but slightly worse than the one of PADM. The observation is consistent
with the results for the relative gap, which also becomes worse for L0Learn in
higher dimensions. We have noted that the sparsity of L0Learn cannot be controlled
directly. Hence, we suspected that the decrease in selection accuracy and objective
quality could be linked to a decrease of the support size. Indeed, in Figure 6 we
see the relative support size |supp(β)|/k for the high-dimensional settings. Clearly,
a value of 1 means that the method yields a support of correct size and a value
smaller than 1 means that the method only yields a proportion of the aimed sparsity.
We can see that with increasing dimension the relative support size produced by
L0Learn decreases while it is almost perfect for its finetuned version.

Finally, we consider the degenerated cases dim-deg-1 and dim-deg-2. Here, we can-
not observe that L0Learn suffers from a significantly smaller support. Nevertheless,
we notice a different behavior for the PADM and L0Learn for these instances.

Figure 7 shows the plots for the gaps and the selection accuracy for the degenerated
cases. We see that PADM has a significantly worse residual sum of squares, i.e.,
much worse objective values. The same is true for the finetuned version of L0Learn
for p = 10 000. Yet, PADM selects predictors with much higher accuracy than
(finetuned) L0Learn. Since our overall objective with the best subset selection is to
find a well-suited prediction model, the selection accuracy is the more important
metric for the end result. Our guess is that this behavior is, once again, due to
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Figure 6. Relative support size |supp(β)|/k between PADM (blue),
L0Learn (yellow), and finetuned L0Learn (green) for dim-large-1,
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the Lasso and trimmed Lasso method. After all, it is comparable to having a
regularization. With a regularization we pay the price of a worse objective value
but gain improved predictive performance.

Our proposed method delivers very good results. The PADM provides feasible
points that are very close to a global optimum in a very fast manner. That is, we
have measured running times magnitudes faster on average than the MaxMin
approach and while solving the problem to global optimality can take between
hundreds and thousands of seconds, PADM stays under a second for instances
up to dim-large-1. However, compared to the prominent L0Learn approach, our
proposed methods can be up to 30 times slower. Nevertheless, we have seen that this
performance advantage comes at a cost, i.e., for higher dimensions L0Learn declines
immensely in solution quality (or needs to be finetuned, which requires detailed
knowledge about the method itself) whereas PADM stays consistent. Moreover, the
relative gap for PADM compared to the MIP approach is in the range of a single
digit and oftentimes less than 1 %.

Furthermore, we have shown that our approach is able to solve instances with
15 000 variables in about 15 min with consistently good results and without compro-
mises in selection accuracy.

6. Conclusion

In this paper, we applied a penalty alternating direction method to two famous
instantiations of cardinality-constrained optimization problems: (i) the cardinality-
constrained portfolio optimization problem and (ii) the best subset selection problem.
The decomposition of these problems along their discrete-continuous structure allows
to alternatingly solve two subproblems that are much easier to solve, while the
convergence of the iterates is ensured by a classic penalty framework. The numerical
results are very convincing. For cardinality-constrained portfolio optimization,
our method is competitive with highly evolved commercial solvers. Interestingly,
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another variant of our method that uses a perspective reformulation of the portfolio
optimization problems only improved the obtained objective function values while
it significantly slows down the method. For the best subset selection problem, we
compared our method with an exact approach and two other heuristic approaches
that are state-of-the-art in the current literature. Our numerical study shows that
we are at least competitive to these methods. In particular, the statistical quality of
our solutions are superior to those of the other methods.

Let us finally mention some open topics for future research. First, we “only”
considered two exemplary instantiations of cardinality-constrained models and
further examples can be studied as well. Moreover, one could also embed the
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proposed method as a primal heuristic in a branch-and-bound algorithm to further
enhance the solution process for obtaining globally optimal solutions.
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Appendix A. Omitted Proofs and Remarks

A.1. Proof of Proposition 5.

Proof. If e>x̄S = 1 we have proven the result because w̃S = x̄S must hold for w̃
to be an optimal solution. Hence, we only have to consider the case e>x̄S < 1
because e>x̄S > 1 is infeasible. First, we show that w̃i ≥ x̄i holds for all i ∈ S.

Note that if e>w̃ = e>w̃S = 1 and e>x̄S < 1 holds, then there must be at least
one index i ∈ S with w̃i > x̄i. By contradiction, assume that there also exists an
index j ∈ S with w̃j < x̄j . Next, we define γ := min{w̃i − x̄i, x̄j − w̃j} > 0 and
consider ŵ ∈ Rn such that

ŵl :=


w̃i − γ, if l = i,

w̃j + γ, if l = j,

w̃l, otherwise,
(15)

holds. Clearly, e>ŵ = 1 and supp(ŵ) = S hold. Thus, ŵ is feasible for (7).
Furthermore, it holds that ŵi ≥ x̄i and ŵj ≤ x̄j . From this and (15), it follows

‖ŵ − x̄‖1 =

n∑
l=1

|ŵl − x̄l| =
n∑
l=1

l/∈{i,j}

|ŵl − x̄l|+ |ŵi − x̄i|+ |ŵj − x̄j |

=

n∑
l=1

l/∈{i,j}

|ŵl − x̄l|+ ŵi − x̄i + x̄j − ŵj

=

n∑
l=1

l/∈{i,j}

|w̃l − x̄l|+ w̃i − γ − x̄i + x̄j − w̃j − γ

= ‖w̃ − x̄‖1 − 2γ < ‖w̃ − x̄‖1,
which is a contradiction to w̃ being an optimal solution of (7). Thus, w̃i ≥ x̄i holds
for all i ∈ S.

Consider now w∗ ∈ Rn with

w∗l :=

{
x̄l/(e

>x̄S), if l ∈ S,
0, otherwise.

Clearly, w∗ is feasible for (7) and w∗i ≥ x̄i holds for all i ∈ S. We are now ready to
show that w∗ is also an optimal solution of (7):

‖w̃ − x̄‖1 =
∑
l/∈S

|x̄l|+
∑
l∈S

w̃l − x̄l =
∑
l/∈S

|x̄l|+ 1− e>x̄s

=
∑
l/∈S

|x̄l|+
∑
l∈S

w∗l − x̄l = ‖w∗ − x̄‖1. �
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A.2. Proof of Proposition 6.

Proof. Let S∗ = {i1, . . . , ik} and w∗ ∈ Rn with

w∗l :=

{
x̄l/(e

>x̄S∗), if l ∈ S∗,
0, otherwise.

Moreover, assume that there is an optimal solution w̃ of (7) with S̃ = supp(w̃). Due
to Proposition 5, we can assume without loss of generality that w̃ has the form

w̃l :=

{
x̄l/(e

>x̄S̃), if l ∈ S̃,
0, otherwise,

and, hence, that w̃ ≥ x̄ holds. Then, it follows that

‖w̃ − x̄‖1 =
∑
l/∈S̃

x̄l +
∑
l∈S̃

w̃l − x̄l =
∑
l/∈S̃

x̄l + 1−
∑
l∈S̃

x̄l ≥
∑
l/∈S∗

x̄l + 1−
∑
l∈S∗

x̄l

=
∑
l/∈S∗

x̄l +
∑
l∈S∗

w∗l − x̄l = ‖w∗ − x̄‖1.

Thus, w∗ is an optimal solution of (7). �

A.3. Proof of Proposition 7.

Proof. We need to prove two properties: feasibility and optimality of δt,l+1. To
prove feasibility, we need to check whether δt,l+1 ∈ V̄ . This is obvious since there are
at most k non-zero entries in δt,l+1 and all the others p−k entries are zero. Now, we
prove that δt,l+1 is optimal. Suppose that δ in Problem (11) is not restricted to the
set V̄ , i.e., the problem is an unconstrained problem. Then, the minimum objective
value that one can obtain is zero and this is reached by setting δt,l+1 = γt,l+1.
However, if δ is restricted to the set V̄ and γt,l+1 is not the zero vector, at most k
entries of δ are allowed to be non-zero and then one needs to choose the k out of p
that minimize the sum of the absolute values of the 1 norm. Clearly, the best choice
are the k largest entries of γt,l+1, because then the k corresponding terms in the
sum are zero and the other p− k are the smallest entries of γt,l+1. This concludes
the proof. �

A.4. Remark on The Robustness of Our Heuristic. The PADM can be
understood as cutting off the smallest coefficients in each iteration to construct a
sparse solution. This idea is similar to the trimmed Lasso [7]. Trimmed Lasso is a
generalization of Lasso. For the latter, the coefficients are penalized by an `1 norm
term, while for the trimmed Lasso, the regularization is given by

Tk(β) = min
δ: |supp(δ)|≤k

‖β − δ‖1,

i.e., the trimmed Lasso is the optimization problem

min
β∈Rp

‖Xβ − y‖22 + µTk(β). (16)

Interestingly, the two components of the trimmed Lasso, i.e., the least-squares
part and the regularization, are the two subproblems that we identified to be the
directions for the PADM. In other words, the result of an inner loop of the PADM
can be considered a heuristic solution to the trimmed Lasso. The connection of
the PADM theory and the theory behind the trimmed Lasso reveals an interesting
relation. In [7] it is shown that for some sufficiently large µ, Problem (16) is
equivalent to the best subset selection problem. This insight can as well be derived
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from Theorem 4. Moreover, the optimization problem (16) can be reformulated as
a robust optimization problem. The authors in [7] prove that problem

min
β∈Rp

min
I⊆[p]
|I|=p−k

max
∆∈LµI

‖(X + ∆)β − y‖22 (17)

with

LµI := {∆ ∈ Rn×p : ‖∆i‖2 ≤ µ for all i ∈ [p] for ∆i = 0 for all i 6∈ I},
is equivalent to (16). Hence, the inner loop solution of the PADM can be considered a
solution to (17)—i.e., a robustification of the usual least-squares problem. Therefore,
each outer iteration of the PADM increases the robustification severity. Thus,
even though we are only guaranteed to obtain a partial minimum, the effects of
the underlying robustification can lead to results which are still very good from a
statistical point of view.
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