
Multipliers Correction Methods for Optimization
Problems Over Stiefel Manifold

Lei Wang∗ Bin Gao† Xin Liu‡

Abstract

We propose a class of multipliers correction methods to minimize a differentiable func-
tion over the Stiefel manifold. The proposed methods combine a function value reduction
step with a proximal correction step. The former one searches along an arbitrary descent
direction in the Euclidean space instead of a vector in the tangent space of the Stiefel
manifold. Meanwhile, the latter one minimizes a first-order proximal approximation of
the objective function in the range space of the current iterate to make Lagrangian mul-
tipliers associated with orthogonality constraints symmetric at any accumulation point.
The global convergence has been established for the proposed methods. Preliminary nu-
merical experiments demonstrate that the new methods significantly outperform other
state-of-the-art first-order approaches in solving various kinds of testing problems.

AMS subject classifications: 15A18, 65F15, 65K05, 90C06 , 90C30
Key words: Stiefel manifold, orthogonality constraints, multipliers correction, proximal

approximation.

1 Introduction

We focus on the matrix-variable optimization problems with orthogonality constraints:

min
X∈Rn×p

f(X)

s. t. X>X = Ip,
(1.1)

∗State Key Laboratory of Scientific and Engineering Computing, Academy of Mathematics and Sys-
tems Science, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, China (wlk-
ings@lsec.cc.ac.cn). Research is supported by the National Natural Science Foundation of China (No.
11971466).
†Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Uni-

versité catholique de Louvain, Belgium ICTEAM institute at UCLouvain (bin.gao@uclouvain.be). Research
is supported in part by the Fonds de la Recherche Scientifique – FNRS and the Fonds Wetenschappelijk
Onderzoek – Vlaanderen under EOS Project (No. 30468160).
‡State Key Laboratory of Scientific and Engineering Computing, Academy of Mathematics and Sys-

tems Science, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, China (li-
uxin@lsec.cc.ac.cn). Research is supported in part by the National Natural Science Foundation of China
(No. 11991021, 11991020 and 11971466), Key Research Program of Frontier Sciences, Chinese Academy of
Sciences (No. ZDBS-LY-7022), the National Center for Mathematics and Interdisciplinary Sciences, Chinese
Academy of Sciences and the Youth Innovation Promotion Association, Chinese Academy of Sciences.

1

where p ≤ n, Ip is the p×p identity matrix, and f : Rn×p −→ R is a continuously differentiable
function. The feasible region, denoted by Sn,p :=

{
X ∈ Rn×p | X>X = Ip

}
, is called the Stiefel

manifold.
Optimization problems over the Stiefel manifold have wide applications in scientific com-

puting and data science. For example, in linear eigenvalue problems [9, 25, 26], energy min-
imization in electronic structure calculations [23, 24, 36], matrix completion [8], independent
component analysis [31], Bose–Einstein condensates [34], discriminant analysis [22], dictionary
learning [18], and nearest low-rank correlation matrix problems [16]. Beyond that, one can
find other applications in [4, 12] and the references therein.

1.1 Existing works

Optimization problems over the Stiefel manifold have been adequately studied in recent
decades. There emerge quite a few algorithms and solvers, such as, geodesic–based ap-
proaches [12, 27, 28], retraction–based approaches [1–3, 5, 19, 20, 32, 33, 36], and splitting and
alternating approaches [21,30]. We refer the interested readers to the monograph [4] and sur-
vey [17] on these methods. Recently, the authors in [15] developed two orthonormalization-free
approaches, called PLAM and PCAL, which are based on the augmented Lagrangian penalty
function [29] but adopt an explicit expression to update Lagrangian multipliers instead of
the dual ascent step. Such approaches are particularly suitable for parallel computing due to
their high scalability. PCAL was further applied to solve the energy minimization problem in
electronic structure calculations [13]. More recently, an exact penalty model, which shares the
same global minimizers as the original problem (1.1), was proposed in [35]. In order to solve
this model, they also proposed first-order and second-order approaches which subsume PCAL
as a specific implementation.

In [14], the authors proposed a new algorithmic framework which consists of two steps: the
function value reduction step, which preserves the feasibility, is conducted in the Euclidean
space; the correction step is nothing but a rotation on the previously obtained step. As the
Lagrangian multipliers associated with orthogonality constraints are symmetric and enjoy an
explicit expression X>∇f(X) at any first-order stationary point of (1.1) (see [15, (2.2)]), the
purpose of this correction step is to guarantee the symmetry of X>∇f(X) at each iteration. In
summary, three algorithms were introduced in [14] to fulfill the framework; extensive numerical
results illustrated their great potential. However, this framework strictly depends on the
following assumption.

Assumption 1.1. f(X) = h(X)+tr
(
G>X

)
, where G ∈ Rn×p is a constant matrix and h(X)

is orthogonal invariant, i.e., h(XQ) = h(X) holds for any Q ∈ Sp,p. Moreover, ∇h(X) =
H(X)X, where H : Rn×p −→ Sn and Sn refers to the set of n× n symmetric matrices.

Assumption 1.1 restricts the objective to a class of composite functions. In this case,
the explicit expression X>∇f(X) can be divided into two parts, including a symmetric term
X>H(X)X and a linear term X>G. Hence, it is sufficient to guarantee the symmetry of
X>∇f(X) in the correction step by making X>G symmetric. To this end, one can minimize
tr
(
G>X

)
in the range space of X whose finding its global minimizer is equivalent to computing

a singular value decomposition.
Although quite a few practical problems—such as linear eigenvalue problem and energy

minimization in electronic structure calculations—satisfy this assumption, there exist impor-
tant scenarios in which Assumption 1.1 does not hold; e.g., minimizing the Brockett function

2

(weighted sum of eigenvalues) [4,6], joint diagonalization problems [31], and dictionary learn-
ing [18] over the Stiefel manifold.

1.2 Motivation and contribution

In this paper, we intend to address the restriction of Assumption 1.1. Specifically, we solve
optimization problems over the Stiefel manifold with a general objective function. To this
end, we propose multipliers correction algorithmic framework, and it contains two steps. The
first step is to minimize the objective function in the Euclidean space. Gradient reflection,
gradient projection and column-wise block coordinate descent algorithms proposed in [14] are
similarly introduced in this step. Then we propose a novel multipliers correction step whose
essential idea is to minimize a first-order proximal approximation of the objective function
in the range space of the current iterate. The main computational cost of such correction
step is calculating the singular value decomposition of a p× p matrix, which shares the same
cost with the correction step introduced in [14]. This correction step can further reduce the
function value and guarantee the symmetry of Lagrangian multipliers at any accumulation
point. Remarkably, the new methods work for a much wider range of problems than those
proposed in [14].

In addition, we prove the global convergence and worst case complexity of the proposed
methods. Numerical experiments illustrate their effectiveness. Note that the new methods
outperform some state-of-the-art first-order algorithms for optimization over the Stiefel man-
ifold, and also work well in those instances which are out of the scope of the algorithms
proposed in [14].

1.3 Notation

The Euclidean inner product of two matrices Y1 ∈ Rn×m and Y2 ∈ Rn×m is defined as
〈Y1, Y2〉 = tr

(
Y >1 Y2

)
, where tr(B) is the trace of a square matrix B ∈ Rm×m. The Frobe-

nius norm and 2-norm of a matrix C ∈ Rn×m are denoted by ‖C‖F and ‖C‖2, respec-
tively. We use C† to represent the pseudo-inverse of C. Ci and Cij stand for the i-th
column and (i, j)-th element of C, respectively. Cī ∈ Rn×(m−1) refers to the matrix C
removing its i-th column, namely, Cī = [C1, . . . , Ci−1, Ci+1, . . . , Cm]. Ci,v ∈ Rn×m

stands for the matrix whose i-th column of C is replaced with a vector v ∈ Rn, i.e., Ci,v =
[C1, . . . , Ci−1, v, Ci+1, . . . , Cm]. The ball centered at C ∈ Rn×m with radius r > 0 is
denoted by B(C, r) = {P ∈ Rn×m | ‖P − C‖F ≤ r}. qr (C) refers to the Q-matrix of reduced
QR decomposition of C. The projection of a matrix W ∈ Rn×p to the Stiefel manifold Sn,p is
denoted by PSn,p(W). Diag(ξ) ∈ Rn×n denotes the diagonal matrix with entries of ξ ∈ Rn in
its diagonal.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we introduce our multipliers
correction methods. Then we establish the theoretical analysis in Section 3. Furthermore,
numerical experiments are presented in Section 4. In the end, we summarize this paper in
Section 5.

3

2 Multipliers correction method

In this section, we present the framework of our new approaches. We start with the first-order
optimality condition of the optimization problem over the Stiefel manifold (1.1). According
to [14, Lemma 2.2], a point X ∈ Rn×p is a first-order stationary point of (1.1), if and only if
it satisfies the following equalities:

(In −XX>)∇f(X) = 0,

X>∇f(X) = ∇f(X)>X,

X>X = Ip.

(2.1)

The first equality in (2.1) stands for the stationarity of the gradient in the null space of
X>. The second equality determines the symmetry of Lagrangian multipliers associated with
orthogonality constraints. For convenience, we call these three equalities “sub-stationarity”,
“symmetry” and “feasibility”, respectively.

In order to solve the problem (1.1), we adopt the similar algorithmic framework proposed
in [14], which consists of two steps: reduce the function value in proportion to the “sub-
stationarity” violation and preserve the “symmetry”. During the calculations of these two
steps, we maintain the “feasibility” all the time.

In Subsection 2.1, we first review the function value reduction step in [14] based on As-
sumption 2.1 on the differentiability of the objective function. Then, in Subsection 2.2, we
introduce a new proximal correction strategy, which can further reduce the function value
in proportion to the “symmetry” violation. In the end, we present the complete algorithmic
framework in Subsection 2.3.

Assumption 2.1. f(X) is twice differentiable. Then we can define ρ ≥ 0 as

ρ := sup
X∈S̃

∥∥∇2f(X)
∥∥

2
,

where S̃ = {Y ∈ Rn×p | ‖Y ‖2
F < p+ 1}. In fact, S̃ can be replaced by any given bounded open

set which contains Sn,p.

2.1 Function value reduction step

Let X(k) ∈ Sn,p be the current iterate. The function value reduction step is trying to find
a feasible intermediate point X̄(k) ∈ Sn,p satisfying the following sufficient function value
reduction condition:

f(X(k))− f(X̄(k)) ≥ c1

∥∥(In −X(k)(X(k))>
)
∇f(X(k))

∥∥2

F
, (2.2)

where c1 > 0 is a constant. The right hand side of (2.2) is in proportion to the squared
Frobenius norm of “sub-stationary” violation at X(k). Note that it can also be viewed as
the projected gradient at X(k) in the Euclidean space. In [14], the authors introduce three
algorithms to achieve the sufficient function value reduction (2.2). We list them below.

Gradient reflection (GR) method. It takes the reflection point of the current iterate
X(k) on the null space of X(k) − τ∇f(X(k)), which can be calculated by the Householder
transformation. {

V = X(k) − τ∇f(X(k)) for a fixed chosen τ ∈ (0, ρ−1),

X̄
(k)
GR =

(
−In + 2V (V >V)†V >

)
X(k).

4

Gradient projection (GP) method. It directly projects X(k) − τ∇f(X(k)) onto the
Stiefel manifold, which can be calculated by the following projection.{

V = X(k) − τ∇f(X(k)) for a fixed chosen τ ∈ (0, ρ−1),

X̄
(k)
GP = PSn,p(V).

Indeed, the projection PSn,p is equivalent to the singular value decomposition, namely, PSn,p(W) =
RT>, where W = RST> is the reduced singular value decomposition of W .

Column-wise block coordinate descent (CBCD) method. We minimize the objec-
tive function with respect to the i-th column of the variable X, and keep the remaining p− 1
columns fixed as those X. Specifically, we sequentially solve the following subproblem:

min
x∈Rn

fi,X(x) := f(Xi,x)

s. t. ‖x‖2 = 1,

X>ī x = 0.

(2.3)

The detailed procedure is described in Algorithm 1.

Algorithm 1 Column–wise block coordinate descent method.

1: Set W (0) = X(k) and i = 1.
2: while i ≤ p do
3: Solve the subproblem (2.3) with X replaced by W (i−1), and obtain a feasible point x+

satisfying the following sufficient function value descent and asymptotic small step size
safeguard:

fi,W (i−1)(X
(k)
i)− fi,W (i−1)(x+) ≥ k1

∥∥∥X(k)
i − x+

∥∥∥2

2
,∥∥∥X(k)

i − x+
∥∥∥

2
≥ k2

∥∥∥(In −W (i−1)(W (i−1))>
)
∇fi,W (i−1)(X

(k)
i)
∥∥∥

2
,

where k1 > 0 and k2 > 0 are constants.
4: Set W (i) = W

(i−1)

i,x+ and i← i+ 1.
5: end while
6: Return X̄

(k)
CBCD = W (p).

According to [14, Lemmas 3.2, 3.3 and 3.8], these three methods—GR, GP and CBCD—
provide an intermediate point satisfying the sufficient function value reduction condition (2.2).

2.2 Proximal correction step

The intermediate point X̄(k) ∈ Sn,p obtained in the previous subsection does not necessarily
satisfy the “symmetry” equality (X̄(k))>∇f(X̄(k)) = ∇f(X̄(k))>X̄(k) in (2.1). In [14], the
authors introduce a correction step to obtain X(k+1) through a rotation on X̄(k). The validity
of this correction step highly depends on Assumption 1.1, and can not be extended to the
general case.

In order to address this issue, we introduce a new proximal strategy. We still calculate the
next iterate by a rotation X(k+1) = X̄(k)Q with Q ∈ Sp,p. Ideally, we expect a minimization on

5

f(X̄(k)Q) and desire to satisfy the “symmetry” equality for X(k+1). However, it is intractable
to “cheaply” minimize a general objective function in the range space of X̄(k):

min
Q∈Sp,p

f(X̄(k)Q). (2.4)

On the other side, even if a global solution Q∗ of (2.4) is obtained, the corresponding X(k+1) =
X̄(k)Q∗ does not necessarily satisfy the “symmetry” equality in general.

To this end, we replace the objective function f(X) with its proximal linear approximation
f̃(X) at X̄(k) in the problem (2.4), where

f̃(X) := f(X̄(k)) +
〈
∇f(X̄(k)), X − X̄(k)

〉
+
γ

2

∥∥X − X̄(k)
∥∥2

F
,

and γ > 0 is a proximal parameter. Accordingly, we can construct the approximation problem:

min
Q∈Sp,p

f̃(X̄(k)Q). (2.5)

In view of the orthogonality of X̄(k) and Q, it is straightforward to obtain the following
equivalent problem for (2.5):

min
Q∈Sp,p

g(Q) := tr
(
Q>Z(k)

)
, (2.6)

where Z(k) := (X̄(k))>∇f(X̄(k))− γIp. If Z(k) = 0, the problem (2.6) is trivial and we choose
X(k+1) = X̄(k). Otherwise, it is known that the global solution of (2.6) is

Q(k) := −UV >,

where U ∈ Rp×p and V ∈ Rp×p come from the singular value decomposition Z(k) = UΣV >. In
summary, we can construct a new iterate as follows,

X(k+1) =

{
X̄(k), if (X̄(k))>∇f(X̄(k)) = γIp;
X̄(k)Q(k), otherwise.

(2.7)

We call (2.7) the proximal correction step. This step can further reduce the objective

function value in proportion to
∥∥(X̄(k))>∇f(X̄(k))−∇f(X̄(k))>X̄(k)

∥∥2

F
, which will be proved

in Section 3.

2.3 Complete algorithmic framework

We denote
c(X) := ∇f(X)−X∇f(X)>X.

Note that it measures the stationarity violation of (2.1) which represents the combination of
“sub-stationarity” violation and “symmetry” violation since

‖c(X)‖2
F =

∥∥(In −XX>)∇f(X)
∥∥2

F
+
∥∥X>∇f(X)−∇f(X)>X

∥∥2

F
(2.8)

holds for any X ∈ Sn,p. The complete algorithmic framework is described in Algorithm 2.
As X>∇f(X) is nothing but the explicit expression of Lagrangian multipliers associated

with orthogonality constraints at any first-order stationary point of (1.1), we call our frame-
work applying the proximal correction step as the multipliers correction methods (MCM). For
the algorithms taking GR, GP and CBCD in the Step 3 of Algorithm 2, we call them GRP,
GPP and CBCDP, respectively.

6

Algorithm 2 Multipliers correction methods.

1: Set tolerance ε > 0, proximal parameter γ > 0, and initial point X(0) ∈ Sn,p; Set k ← 0.
2: while ‖c(X(k))‖F > ε do
3: Based on X(k), find a feasible point X̄(k) satisfying (2.2);
4: Based on X̄(k), compute X(k+1) by (2.7);
5: Set k ← k + 1;
6: end while
7: Return X(k).

3 Convergence analysis

In this section, we establish the global convergence and worst case complexity of Algorithm 2.
First of all, using the compactness of Sn,p, we can define the following two constants.

f := min
X∈Sn,p

f(X), M := max
X∈Sn,p

‖∇f(X)‖2 .

Now we evaluate the sufficient function value reduction in the multipliers correction step.

Lemma 3.1. Suppose Assumption 2.1 holds and γ > ρ. Let X̄(k) ∈ Sn,p and X(k+1) be
computed by (2.7). Then we have X(k+1) ∈ Sn,p. In addition, it holds that

f(X̄(k))− f(X(k+1)) ≥ 1

8cγ

∥∥(X̄(k))>∇f(X̄(k))−∇f(X̄(k))>X̄(k)
∥∥2

F
, (3.1)

where cγ = M + γ > 0 is a constant.

Proof. The feasibility X(k+1) ∈ Sn,p is obvious. Next, we only focus on the inequality (3.1).
If Z(k) = 0, we have X(k+1) = X̄(k) and (X̄(k))>∇f(X̄(k)) = γIp is symmetric, which implies
(3.1) immediately. Otherwise, since γ > ρ, we can use Taylor’s Theorem and obtain

f(X(k+1)) ≤ f(X̄(k)) +
〈
∇f(X̄(k)), X(k+1) − X̄(k)

〉
+
γ

2

∥∥X(k+1) − X̄(k)
∥∥2

F
.

Due to the updating rule (2.7) and decomposition Z(k) = (X̄(k))>∇f(X̄(k)) − γIp = UΣV >,
we have

f(X̄(k))− f(X(k+1)) ≥ −
〈
(X̄(k))>∇f(X̄(k)), Q(k) − Ip

〉
− γ

2

∥∥Q(k) − Ip
∥∥2

F

= tr (Σ)− γtr
(
Q(k)

)
+ tr

(
(X̄(k))>∇f(X̄(k))

)
− γp+ γtr

(
Q(k)

)
= tr

(
Σ + UΣV >

)
.

(3.2)

Let Σ̂ = ΣV >U and Γ = (Σ̂ + Σ̂>)/2. It is easy to show that tr
(
UΣV >

)
= tr (Γ). On the

other side, after simple calculations, we can obtain that∥∥(X̄(k))>∇f(X̄(k))−∇f(X̄(k))>X̄(k)
∥∥2

F
=
∥∥UΣV > − V ΣU>

∥∥2

F

= 2tr
(
Σ2
)
− 2tr

(
ΣV >UΣV >U

)
= 2tr

(
Σ2
)
− 2tr

(
Σ̂2
)
.

(3.3)

7

It follows from the equality Γ =
(

Σ̂ + Σ̂>
)
/2 that 2tr (Γ2) = tr (Σ2)+tr

(
Σ̂2
)

. Together with

(3.3), we arrive at∥∥(X̄(k))>∇f(X̄(k))−∇f(X̄(k))>X̄(k)
∥∥2

F
= 4tr

(
Σ2
)
− 4tr

(
Γ2
)
. (3.4)

Moreover, we have tr (Γ2) = tr
(
Γ>Γ

)
=

p∑
i=1

Γ>i Γi ≥
p∑
i=1

Γ2
ii. Hence, it holds that

tr
(
Σ2
)
− tr

(
Γ2
)
≤

p∑
i=1

(
Σ2
ii − Γ2

ii

)
=

p∑
i=1

(Σii − Γii) (Σii + Γii) .

According to the definition of Γ, we can obtain |Γii| = Σii

(
V >i Ui

)
≤ Σii ‖Vi‖2 ‖Ui‖2 = Σii,

which implies

tr
(
Σ2
)
− tr

(
Γ2
)
≤

p∑
i=1

2Σii (Σii + Γii) ≤ 2 ‖Σ‖2 tr (Σ + Γ) ≤ 2cγtr (Σ + Γ) , (3.5)

where the last inequality follows from ‖Σ‖2 =
∥∥Z(k)

∥∥
2
≤
∥∥(X̄(k))>∇f(X̄(k))

∥∥
2

+ γ ≤M + γ =
cγ. Combing (3.4) and (3.5), we can deduce that

8cγtr
(
Σ + UΣV >

)
= 8cγtr (Σ + Γ) ≥

∥∥(X̄(k))>∇f(X̄(k))−∇f(X̄(k))>X̄(k)
∥∥2

F
, (3.6)

which together with (3.2) infers that

8cγ
(
f(X̄(k))− f(X(k+1))

)
≥
∥∥(X̄(k))>∇f(X̄(k))−∇f(X̄(k))>X̄(k)

∥∥2

F
.

This completes the proof.

The convergence of the function value can be a direct corollary.

Corollary 3.2. Suppose Assumption 2.1 holds, γ > ρ, and {X(k)} is the iterate sequence
generated by Algorithm 2. Then {f(X(k))} is convergent.

Proof. According to Lemma 3.1, we have

f(X(k))− f(X(k+1)) = f(X(k))− f(X̄(k)) + f(X̄(k))− f(X(k+1))

≥ c1

∥∥(In −X(k)(X(k))>
)
∇f(X(k))

∥∥2

F
+

1

8cγ

∥∥(X̄(k))>∇f(X̄(k))−∇f(X̄(k))>X̄(k)
∥∥2

F

≥ c1

∥∥(In −X(k)(X(k))>
)
∇f(X(k))

∥∥2

F
≥ 0.

(3.7)

Consequently, {f(X(k))} is a monotonically non-increasing sequence. On the other hand, it
follows from the compactness of the Stiefel manifold Sn,p that {f(X(k))} has a lower bound f .

Therefore, we conclude that {f(X(k))} is convergent, which completes the proof.

Then we show that the “symmetry” violation can be controlled by the distance between
X(k+1) and X̄(k).

8

Lemma 3.3. Suppose Assumption 2.1 holds and {X(k)} is the iterate sequence generated by
Algorithm 2. Then it can be verified that∥∥(X(k+1))>∇f(X(k+1))−∇f(X(k+1))>X(k+1)

∥∥
F
≤ 2 (ρ+ γ)

∥∥X(k+1) − X̄(k)
∥∥

F
. (3.8)

Proof. If Z(k) = 0, we have X(k+1) = X̄(k). Hence, the matrix (X(k+1))>∇f(X(k+1)) =
(X̄(k))>∇f(X̄(k)) = γIp is symmetric, which infers (3.8) immediately. Next, we investigate
the case that Z(k) 6= 0. It follows from the definition of Q(k) = −UV > and decomposition
Z(k) = UΣV > that (Q(k))>Z(k) = (Z(k))>Q(k). In view of Z(k) = (X̄(k))>∇f(X̄(k)) − γIp and
X(k+1) = X̄(k)Q(k), it further holds that

(X(k+1))>∇f(X̄(k))−∇f(X̄(k))>X(k+1) = γ(X(k+1))>X̄(k) − γ(X̄(k))>X(k+1).

According to the triangular inequality, we have∥∥(X(k+1))>X̄(k) − (X̄(k))>X(k+1)
∥∥

F

≤
∥∥(X(k+1))>X̄(k) − (X̄(k))>X̄(k)

∥∥
F

+
∥∥(X̄(k))>X̄(k) − (X̄k)>X(k+1)

∥∥
F

≤
∥∥X(k+1) − X̄(k)

∥∥
F

∥∥X̄(k)
∥∥

2
+
∥∥X̄(k)

∥∥
2

∥∥X(k+1) − X̄(k)
∥∥

F
= 2

∥∥X(k+1) − X̄(k)
∥∥

F
,

which immediately implies that∥∥(X(k+1))>∇f(X̄(k))−∇f(X̄(k))>X(k+1)
∥∥

F
≤ 2γ

∥∥X(k+1) − X̄(k)
∥∥

F
. (3.9)

On the other hand, according to Assumption 2.1, it follows that

‖∇f(Y1)−∇f(Y2)‖F ≤ ρ ‖Y1 − Y2‖F , for all Y1, Y2 ∈ Sn,p.

Thus, we can obtain that∥∥(X(k+1))>∇f(X(k+1))− (X(k+1))>∇f(X̄(k))
∥∥

F
≤
∥∥X(k+1)

∥∥
2

∥∥∇f(X(k+1))−∇f(X̄(k))
∥∥

F

≤ ρ
∥∥X(k+1) − X̄(k)

∥∥
F
,

and similarly,∥∥∇f(X̄(k))>X(k+1) −∇f(X(k+1))>X(k+1)
∥∥

F
≤ ρ

∥∥X(k+1) − X̄(k)
∥∥

F
.

Together with (3.9), we can conclude that∥∥(X(k+1))>∇f(X(k+1))−∇f(X(k+1))>X(k+1)
∥∥

F

≤
∥∥(X(k+1))>∇f(X(k+1))− (X(k+1))>∇f(X̄(k))

∥∥
F

+
∥∥(X(k+1))>∇f(X̄(k))

−∇f(X̄(k))>X(k+1)
∥∥

F
+
∥∥∇f(X̄(k))>X(k+1) −∇f(X(k+1))>X(k+1)

∥∥
F

≤ 2 (ρ+ γ)
∥∥X(k+1) − X̄(k)

∥∥
F
,

and complete the proof.

Next we show the distance between X(k+1) and X̄(k) converges to 0.

Lemma 3.4. Suppose Assumption 2.1 holds, γ > ρ, and {X(k)} is the iterate sequence gen-
erated by Algorithm 2. Then it holds that

lim
k→∞

∥∥X(k+1) − X̄(k)
∥∥

F
= 0.

9

Proof. Firstly, it follows from the inequality (3.6) that

8cγtr
(
Σ + UΣV >

)
≥
∥∥(X̄(k))>∇f(X̄(k))−∇f(X̄(k))>X̄(k)

∥∥2

F
≥ 0.

Then by simple calculations, we can obtain that〈
X(k+1) − X̄(k), X(k+1) − X̄(k) + 2γ−1∇f(X̄(k))

〉
=
〈
X(k+1) − X̄(k), X(k+1) − X̄(k)

〉
+ 2γ−1

〈
Q(k) − Ip, (X̄(k))>∇f(X̄(k))

〉
= − 2γ−1tr

(
Σ + UΣV >

)
≤ 0.

This relationship can guarantee that∥∥X(k+1) − X̄(k) + γ−1∇f(X̄(k))
∥∥

F
≤ γ−1

∥∥∇f(X̄(k))
∥∥

F
,

which implies that

X(k+1) ∈ B
(
X̄(k) − γ−1∇f(X̄(k)), γ−1

∥∥∇f(X̄(k))
∥∥

F

)
.

We recall [14, Lemma 3.1] and obtain that∥∥X(k+1) − X̄(k)
∥∥2

F
≤ 2

γ − ρ
(
f(X̄(k))− f(X(k+1))

)
≤ 2

γ − ρ
(
f(X(k))− f(X(k+1))

)
. (3.10)

Since {f(X(k))} is convergent, we conclude that

lim
k→∞

∥∥X(k+1) − X̄(k)
∥∥

F
= 0.

This completes the proof.

Finally, we are ready to present our main convergence result.

Theorem 3.5. Suppose Assumption 2.1 holds, γ > ρ, and {X(k)} is the iterate sequence
generated by Algorithm 2. Then there exists at least one convergent subsequence of {X(k)}.
Furthermore, each accumulation point X∗ of {X(k)} satisfies the first-order stationarity con-
dition (2.1). More precisely, the following inequality

min
1≤k≤K

∥∥∇f(X(k))−X(k)∇f(X(k))>X(k)
∥∥

F
≤

√
c2

(
f(X(0))− f

)
K

,

holds for any K ≥ 1, where c2 > 0 is a constant defined by

c2 =
1

c1

+
8 (γ + ρ)2

γ − ρ
. (3.11)

Proof. It follows from the compactness of the Stiefel manifold Sn,p that {X(k)} is bounded,
which implies {X(k)} has at least one convergent subsequence. Suppose X∗ is an accumulation
point of {X(k)}. It is clear that X∗ ∈ Sn,p due to the feasibility of {X(k)}.

Recalling the convergence of {f(X(k))} and (3.7), we have

lim
k→∞

∥∥(In −X(k)(X(k))>
)
∇f(X(k))

∥∥
F

= 0,

10

which directly implies (
In −X∗(X∗)>

)
∇f(X∗) = 0. (3.12)

On the other hand, it follows from Lemma 3.3 and Lemma 3.4 that

lim
k→∞

∥∥(X(k))>∇f(X(k))−∇f(X(k))>X(k)
∥∥

F
≤ 2 (ρ+ γ) lim

k→∞

∥∥X(k) − X̄(k−1)
∥∥

F
= 0,

which yields that
(X∗)>∇f(X∗) = ∇f(X∗)>X∗. (3.13)

Combining “feasibility”, “sub-stationarity” (3.12) and “symmetry” (3.13), we conclude
that X∗ satisfies the first-order stationarity condition (2.1).

Furthermore, it follows from Lemma 3.3 and (3.10) that∥∥(X(k+1))>∇f(X(k+1))−∇f(X(k+1))>X(k+1)
∥∥2

F
≤ 8(γ + ρ)2

γ − ρ
(
f(X(k))− f(X(k+1))

)
.

Together with the relationships (2.2) and (2.8), we can arrive at∥∥∇f(X(k))−X(k)∇f(X(k))>X(k)
∥∥2

F

≤ 1

c1

(
f(X(k))− f(X(k+1))

)
+

8 (γ + ρ)2

γ − ρ
(
f(X(k−1))− f(X(k))

)
.

To sum up both sides of the above inequality from k = 1 to K, we can obtain

K∑
k=1

∥∥∇f(X(k))−X(k)∇f(X(k))>X(k)
∥∥2

F

≤ 1

c1

K∑
k=1

(
f(X(k))− f(X(k+1))

)
+

8 (γ + ρ)2

γ − ρ

K∑
k=1

(
f(X(k−1))− f(X(k))

)
=

1

c1

(
f(X(1))− f(X(K+1))

)
+

8 (γ + ρ)2

γ − ρ
(
f(X(0))− f(X(K))

)
≤ c2

(
f(X(0))− f

)
,

where c2 is defined by (3.11). Together with the fact that

K∑
k=1

∥∥∇f(X(k))−X(k)∇f(X(k))>X(k)
∥∥2

F
≥ K min

1≤k≤K

∥∥∇f(X(k))−X(k)∇f(X(k))>X(k)
∥∥2

F
,

we complete the proof.

Remark 3.6. According to the stopping criterion, Theorem 3.5 guarantees the termination of
Algorithm 2 in at most O(1/ε2) iterations.

4 Numerical experiments

In this section, we report the numerical performance of the algorithms based on Algorithm 2.
Two types of testing problems are introduced in Subsection 4.1. The implementation details
including the selection of algorithm parameters and stopping criterion are presented in Sub-
section 4.2. The numerical comparison among our algorithms and those introduced in [14]
is presented in Subsection 4.3. Finally, we compare our algorithms with other two state-of-
the-art approaches, and numerical results are shown in Subsection 4.4. All experiments are
performed on a workstation with one Intel(R) Xeon(R) Silver 4110 CPU (at 2.10GHz×32)
and 384GB of RAM running in MATLAB R2018a under Ubuntu 18.10.

11

4.1 Testing problems

Problem 1. The first class of testing problems is a quadratic objective minimization over the
Stiefel manifold:

min
X∈Rn×p

f1(X) =
1

2
tr
(
X>MX

)
+ tr

(
N>X

)
s. t. X>X = Ip.

In the experiments, M ∈ Rn×n and N ∈ Rn×p are randomly generated by

M = EΨE>, N = αQD,

where E = qr (randn(n, n)) ∈ Rn×n, Q̃ = randn(n, p) ∈ Rn×p, and Q ∈ Rn×p with Qi =

Q̃i/
∥∥∥Q̃i

∥∥∥
2

(i = 1, . . . , p). The notation randn(n,m) represents an n × m matrix randomly

generated by i.i.d. standard Gaussian distribution. Moreover, Ψ ∈ Rn×n and D ∈ Rp×p are
diagonal matrices with, respectively,

Ψii =

{
η1−i, if ωi < 0.5,
−η1−i, otherwise,

for all i = 1, 2, . . . , n,

Dii = ζ1−i, for all i = 1, 2, . . . , p,

where ωi ∈ [0, 1] for i = 1, 2, . . . , n are randomly generated numbers. Here, η ≥ 1 is a
parameter determining the decay of eigenvalues of M , and ζ ≥ 1 is a parameter referring to
the growth rate of the columns norm of N . The parameter α > 0 represents the scale difference
between the quadratic term and the linear term. Unless otherwise stated, the default values
of these parameters are η = 1.01, ζ = 1.01, α = 1. This class of testing problems is also used
in [14], which satisfies Assumption 1.1.

Problem 2. The second class of testing problems is Brockett function minimization over
the Stiefel manifold:

min
X∈Rn×p

f2(X) =
1

2
tr
(
DX>AX

)
s. t. X>X = Ip.

The data matrix A ∈ Rn×n is randomly generated by

A = EΨE>.

Here, E = qr (randn(n, n)) ∈ Rn×n, Ψ ∈ Rn×n and D ∈ Rp×p are diagonal matrices with,
respectively,

Ψii =

{
η1−i + β, if ωi < 0.5,
−η1−i − β, otherwise,

for all i = 1, 2, . . . , n,

Dii =

{
αζ1−i, if θi < 0.5,
−αζ1−i, otherwise,

for all i = 1, 2, . . . , p,

where ωi ∈ [0, 1] for i = 1, 2, . . . , n and θi ∈ [0, 1] for i = 1, 2, . . . , p are randomly generated
numbers. Two parameters η ≥ 1 and β ≥ 1 determine the difference of eigenvalues of A.
Moreover, ζ ≥ 1 is a parameter referring to the decrease rate of diagonal entries of D. The
parameter α > 0 represents the scale difference between A and D. Unless otherwise stated,
the default values of these parameters are η = 1.05, ζ = 1.05, β = 2, α = 0.1. This class of
testing problems does not satisfy Assumption 1.1.

12

4.2 Implementation details

All of the three algorithms GRP, GPP and CBCDP have a common parameter γ. Although
in the theoretical analysis, γ should be larger than the constant ρ, we set γ = 10−3s in
practice, where s is an estimation of ‖∇2f(0)‖2. More specifically, we choose s = ‖M‖2 and
s = ‖A‖2 ‖D‖2 for Problems 1 and 2, respectively.

In practice, we recommend to use the following alternating BB stepsize introduced in [10]:

τ
(k)
ABB =

{
τ

(k)
BB1 if k is odd,

τ
(k)
BB2 if k is even.

Here, two Barzilai-Borwein (BB) stepsizes were first introduced in [7]:

τ
(k)
BB1 =

|〈Jk, Kk〉|
〈Kk, Kk〉

, or τ
(k)
BB2 =

〈Jk, Jk〉
|〈Jk, Kk〉|

,

where Jk = X(k) −X(k−1), Kk = c(X(k))− c(X(k−1)).
As for the CBCDP method, the subproblem (2.3) can be solved globally if our testing

problems are quadratic, which has been elaborately introduced in [14] and hence omitted
here. For the updating order of the block coordinate descent scheme, we simply choose the
Gauss–Seidel manner.

The stopping criterion can be described as follows,∥∥∇f(X(k))−X(k)∇f(X(k))>X(k)
∥∥

F
≤ εg

∥∥∇f(X(0))−X(0)∇f(X(0))>X(0)
∥∥

F
, (4.1)

where εg > 0 is a tolerance constant. In addition, we also adopt the following stopping rules
based on the relative error:

tol(k)
x =

∥∥X(k) −X(k−1)
∥∥

F√
n

≤ εx, tol
(k)
f =

∣∣f(X(k))− f(X(k−1))
∣∣

|f(X(k−1))|+ 1
≤ εf , (4.2)

and

mean(tol(k−min{k,T}+1)
x , . . . , tol(k)

x) ≤ 10εx, mean(tol
(k−min{k,T}+1)
f , . . . , tol

(k)
f) ≤ 10εf , (4.3)

where εx > 0 and εf > 0 are also tolerance constants, and mean(a1, . . . , am) denotes the mean
value of numbers a1, . . . , am. We terminate the algorithm when it satisfies one of the above
three stopping criteria (4.1)-(4.3), or reaches a preset maximum iteration number MaxIter.
Unless otherwise stated, we set the tolerance parameters εx = 10−6, T = 5 and MaxIter =
3000. For Problems 1 and 2, we set εg = 10−5, εf = 10−10 and εg = 10−3, εf = 10−8,
respectively.

In Algorithm 2, the proximal correction step is performed once in each iteration. A special
test on GPP employed in solving Problem 2 with n = 5000 and p = 50 demonstrates that the
decay rate of the “symmetry” violation is worse than that of the “sub-stationarity” violation.
Such unbalance affects the overall performance of our algorithms. Hence, we consider multiple
proximal correction steps in each iteration. From Figure 1, we can learn that three times proxi-
mal correction can accelerate the decay of “symmetry” violation. Heuristically, we recommend
δk = 2d

√
k/2e − 1 times proximal correction steps in the k-th iteration, which substantially

makes the two decay rates close to each other. Therefore, in the following comparison, we use
δk as the default number of proximal correction steps in each iteration.

13

0 50 100 150

Iteration (k)

10
-4

10
-3

10
-2

10
-1

V
io

la
ti
o

n

Sub-stationarity

Symmetry

(a) Single proximal correction step

0 50 100 150

Iteration (k)

10
-4

10
-3

10
-2

10
-1

V
io

la
ti
o

n

Sub-stationarity

Symmetry

(b) 3 proximal correction steps

0 50 100 150

Iteration (k)

10
-5

10
-4

10
-3

10
-2

10
-1

V
io

la
ti
o

n

Sub-stationarity

Symmetry

(c) δk proximal correction steps

Figure 1: Comparison of multiple proximal correction steps.

We use three measurements in the numerical comparison, including CPU time in seconds,
KKT violation (

∥∥∇f(X)−X∇f(X)>X
∥∥

F
) and function value variance, which is defined as

|fs − fmin| / (1 + |fmin|) + eps. Here, fs and fmin refer to the final objective function value
returned by solver s and the smallest one of those obtained by all solvers in the comparison,
respectively. We add eps = 2.2204×10−16, the machine precision in MATLAB, to the relative
variance of function value for the sake of logarithmic scale demonstration. Finally, all the
tested algorithms are initiated from the same point X(0), which is randomly generated by
X(0) = qr (randn(n, p)) ∈ Sn,p.

4.3 Comparison with GR, GP and CBCD

In this subsection, we mainly compare our GRP, GPP and CBCDP with GR, GP, and CBCD,
respectively. In the test, all of GR, GP, and CBCD are taken their default settings introduced
in [14], which are almost the same as our algorithms, except for completely different multipliers
correction step.

For this purpose, we perform on a set of problems based on Problem 1 with n ranging
from 1000 to 6000 increment 1000 and p = 60. Other parameters take their default values.
We demonstrate the numerical results in Figure 2. We observe that these six algorithms all
reach comparable KKT violations and final function values. In most cases, GRP, GPP, and
CBCDP require less CPU time than GR, GP, and CBCD, respectively. In this sense, our
multipliers correction methods are comparable with those proposed in [14] for the problems
satisfying Assumption 1.1.

We also make a comparison among GRP, GPP and CBCDP, when they are employed to
solve Problem 1 and Problem 2. In this test, we set n = 3000 and p ranging from 20 to 120
increment 20. Other parameters take their default values. The numerical results are illustrated
in Figure 3. We observe that GPP outperforms GRP and CBCDP in most cases. Therefore,
we choose GPP to represent our new multipliers correction methods in the following numerical
experiments.

14

1000 2000 3000 4000 5000 6000

Size of A (n)

0.2

0.3

0.4

0.5

0.6
0.7
0.8

C
P

U
 t

im
e

 (
s
)

GR

GRP

(a) CPU time (s)

1000 2000 3000 4000 5000 6000

Size of A (n)

10
-16

10
-14

10
-12

10
-10

F
u

n
c
ti
o

n
 v

a
lu

e
 v

a
ri
a

n
c
e GR

GRP

(b) Function value variance

1000 2000 3000 4000 5000 6000

Size of A (n)

2.5

3

3.5

4

4.5

5

K
K

T
 v

io
la

ti
o

n

10
-5

GR

GRP

(c) KKT violation

1000 2000 3000 4000 5000 6000

Size of A (n)

0.2

0.3

0.4

0.5

0.6

0.7

C
P

U
 t

im
e

 (
s
)

GP

GPP

(d) CPU time (s)

1000 2000 3000 4000 5000 6000

Size of A (n)

10
-16

10
-15

10
-14

10
-13

F
u

n
c
ti
o

n
 v

a
lu

e
 v

a
ri
a

n
c
e GP

GPP

(e) Function value variance

1000 2000 3000 4000 5000 6000

Size of A (n)

3.5

4

4.5

5

5.5

6

K
K

T
 v

io
la

ti
o

n

10
-5

GP

GPP

(f) KKT violation

1000 2000 3000 4000 5000 6000

Size of A (n)

2

3

4

5

6

C
P

U
 t

im
e

 (
s
)

CBCD

CBCDP

(g) CPU time (s)

1000 2000 3000 4000 5000 6000

Size of A (n)

10
-16

10
-15

10
-14

10
-13

10
-12

F
u

n
c
ti
o

n
 v

a
lu

e
 v

a
ri
a

n
c
e CBCD

CBCDP

(h) Function value variance

1000 2000 3000 4000 5000 6000

Size of A (n)

3

3.5

4

4.5

5

5.5

6
K

K
T

 v
io

la
ti
o

n
10

-5

CBCD

CBCDP

(i) KKT violation

Figure 2: Comparison between multipliers correction methods with their original versions.

4.4 Performance comparison with other algorithms

In this subsection, we compare the performance of GPP with other two state-of-the-art algo-
rithms for optimization problems over the Stiefel manifold. One is OptM1 proposed in [33].
The other one is MOptQR from the package MANOPT2 which is proposed in [4]. The origi-
nal version is MOptQR-LS (manifold QR method with line search). For fair comparison, we
implement the same alternating BB step size strategy to MOptQR-LS, which can significantly
accelerate the algorithm as our GPP.

We design five groups of testing problems based on Problem 2, in each of which there is
only one parameter varying with all the others fixed. More specifically, we describe the varying
parameters of each group as follows.

• n = 9000 + 1000j for j = 1, 2, 3, 4, 5, 6; p = 100.

1Downloadable from https://github.com/wenstone/OptM.
2Downloadable from https://www.manopt.org/.

15

20 40 60 80 100 120

Width of variable (p)

10
-1

10
0

10
1

10
2

C
P

U
 t

im
e

 (
s
)

GRP

GPP

CBCDP

(a) CPU time (s) (Problem 1)

20 40 60 80 100 120

Width of variable (p)

10
-16

10
-14

10
-12

10
-10

F
u

n
c
ti
o

n
 v

a
lu

e
 v

a
ri
a

n
c
e

GRP

GPP

CBCDP

(b) Function value variance (Problem
1)

20 40 60 80 100 120

Width of variable (p)

3

4

5

6

7

K
K

T
 v

io
la

ti
o

n

10
-5

GRP

GPP

CBCDP

(c) KKT violation (Problem 1)

20 40 60 80 100 120

Width of variable (p)

10
0

10
1

10
2

C
P

U
 t

im
e

 (
s
)

GRP

GPP

CBCDP

(d) CPU time (s) (Problem 2)

20 40 60 80 100 120

Width of variable (p)

10
-20

10
-15

10
-10

10
-5

10
0

F
u

n
c
ti
o

n
 v

a
lu

e
 v

a
ri
a

n
c
e

GRP

GPP

CBCDP

(e) Function value variance (Problem
2)

20 40 60 80 100 120

Width of variable (p)

2.05

2.1

2.15

2.2

K
K

T
 v

io
la

ti
o

n

10
-4

GRP

GPP

CBCDP

(f) KKT violation (Problem 2)

Figure 3: Comparison of GRP, GPP, and CBCDP for different p.

• p = 20j for j = 1, 2, 3, 4, 5, 6; n = 10000.

• β = 1.1 + 0.3j for j = 0, 1, 2, 3, 4, 5; n = 10000; p = 60.

• η = 1.01 + 0.02j for j = 0, 1, 2, 3, 4, 5; n = 10000; p = 60.

• ζ = 1.01 + 0.05j for j = 0, 1, 2, 3, 4, 5; n = 10000; p = 60.

All the other parameters take their default values.
The numerical results of the above five groups of testing problems are depicted in Figures

4 to 8, respectively. We observe that these algorithms achieve comparable KKT violation, and
GPP outperforms the other two algorithms in terms of CPU time and function value variance.

In order to make a more comprehensive comparison, we use performance profiles based
on [11] to visualize the different behaviors among these solvers. For this purpose, we design a
variety of random problems based on Problem 2, which can be described as follows:

• n = 2000 + 1000j for j = 1, 2, 3, 4, 5, 6;

• p = 20j for j = 1, 2, 3, 4, 5, 6;

• β = 1 + 0.5j for j = 0, 1, 2, 3;

• η = 1.01 + 0.05j for j = 0, 1, 2, 3;

• ζ = 1.1 + 0.05j for j = 0, 1, 2, 3.

16

1 1.1 1.2 1.3 1.4 1.5

Size of A (n) 10
4

30

40

50

60

70

80

C
P

U
 t

im
e

 (
s
)

MOptQR

OptM

GPP

(a) CPU time (s)

1 1.1 1.2 1.3 1.4 1.5

Size of A (n) 10
4

10
-20

10
-15

10
-10

10
-5

10
0

F
u

n
c
ti
o

n
 v

a
lu

e
 v

a
ri
a

n
c
e

MOptQR

OptM

GPP

(b) Function value variance

1 1.1 1.2 1.3 1.4 1.5

Size of A (n) 10
4

1.8

1.9

2

2.1

K
K

T
 v

io
la

ti
o

n

10
-4

MOptQR

OptM

GPP

(c) KKT violation

Figure 4: Comparison of GPP, OptM and MOptQR for different n on Problem 2.

20 40 60 80 100 120

Width of variable (p)

10
0

10
1

10
2

C
P

U
 t

im
e

 (
s
)

MOptQR

OptM

GPP

(a) CPU time (s)

20 40 60 80 100 120

Width of variable (p)

10
-20

10
-15

10
-10

10
-5

10
0

F
u

n
c
ti
o

n
 v

a
lu

e
 v

a
ri
a

n
c
e

MOptQR

OptM

GPP

(b) Function value variance

20 40 60 80 100 120

Width of variable (p)

1.85

1.9

1.95

2

2.05

2.1

2.15

K
K

T
 v

io
la

ti
o

n

10
-4

MOptQR

OptM

GPP

(c) KKT violation

Figure 5: Comparison of GPP, OptM and MOptQR for different p on Problem 2.

1.5 2 2.5

15

20

25

30

35

40

45

C
P

U
 t

im
e

 (
s
)

MOptQR

OptM

GPP

(a) CPU time (s)

1.5 2 2.5
10

-20

10
-15

10
-10

10
-5

10
0

F
u

n
c
ti
o

n
 v

a
lu

e
 v

a
ri
a

n
c
e

MOptQR

OptM

GPP

(b) Function value variance

1.5 2 2.5
1.6

1.8

2

2.2

K
K

T
 v

io
la

ti
o

n

10
-4

MOptQR

OptM

GPP

(c) KKT violation

Figure 6: Comparison of GPP, OptM and MOptQR for different β on Problem 2.

There are altogether 6 × 6 × 4 × 4 × 4 = 2304 randomly generated problems. We simply
explain the performance profile as the following. For problem m and solver s, we use tm,s to
represent its CPU time. Performance ratio is defined as rm,s = tm,s/mins {tm,s}. If solver s
fails to solve problem m, the ratio rm,s is set to a preset large number. Finally, the overall
performance of solver s is defined by

πs(ω) =
number of problems where rm,s ≤ ω

total number of problems
.

It means the percentage of testing problems that can be solved in ωmins {tm,s} seconds. It is
clear that the closer πs is to 1, the better performance solver s has.

17

1.02 1.04 1.06 1.08 1.1

14

16

18

20

22

24

C
P

U
 t

im
e

 (
s
)

MOptQR

OptM

GPP

(a) CPU time (s)

1.02 1.04 1.06 1.08 1.1
10

-20

10
-15

10
-10

10
-5

10
0

F
u

n
c
ti
o

n
 v

a
lu

e
 v

a
ri
a

n
c
e

MOptQR

OptM

GPP

(b) Function value variance

1.02 1.04 1.06 1.08 1.1

2

2.05

2.1

2.15

2.2

K
K

T
 v

io
la

ti
o

n

10
-4

MOptQR

OptM

GPP

(c) KKT violation

Figure 7: Comparison of GPP, OptM and MOptQR for different η on Problem 2.

1.05 1.1 1.15 1.2 1.25

15

20

25

30

35

40

C
P

U
 t

im
e

 (
s
)

MOptQR

OptM

GPP

(a) CPU time (s)

1.05 1.1 1.15 1.2 1.25
10

-20

10
-15

10
-10

10
-5

10
0

F
u

n
c
ti
o

n
 v

a
lu

e
 v

a
ri
a

n
c
e

MOptQR

OptM

GPP

(b) Function value variance

1.05 1.1 1.15 1.2 1.25
10

-5

10
-4

10
-3

K
K

T
 v

io
la

ti
o

n

MOptQR

OptM

GPP

(c) KKT violation

Figure 8: Comparison of GPP, OptM and MOptQR for different ζ on Problem 2.

The performance profile with respect to the CPU time is given in Figure 9. On the 2304
testing problems, GPP is of the best numerical behavior in terms of CPU time and it always
solves problems in no more than twice the fastest time among these three algorithms. In
addition, we also provide the average KKT violation, feasibility violation and function value
variance over these 2304 random problems in Table 1, which shows that all solvers achieve a
comparable average KKT violation, feasibility violation, and function value variance.

5 Conclusion

The first-order algorithmic framework proposed in [14] consists of a function value reduction
step in the Euclidean space and a rotation step to guarantee the symmetry of the explicit
expression of Lagrangian multipliers associate with orthogonality constraints. Three algo-
rithms based on this framework have illustrated their efficiency in solving problems such as

GPP MOptQR OptM

KKT violation 1.4917× 10−3 1.1534× 10−3 1.1516× 10−3

Function value variance 3.3934× 10−4 6.8694× 10−4 8.1899× 10−4

Feasibility violation 2.5227× 10−15 2.2282× 10−15 2.0217× 10−15

Table 1: Average KKT violation, feasibility violation, and function value variance.

18

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

s
(

) MOptQR

OptM

GPP

Figure 9: Performance profile on 2304 problems with respect to CPU time.

minimizing quadratic objective over the Stiefel manifold and discretized Kohn–Sham total
energy minimization. However, a crucial limitation of this approach is its strict assumption
on the objective. In practice, there are quite some critical instances that do not satisfy that
assumption.

In this paper, we propose a novel multipliers correction strategy, which minimizes a linear
approximation with a proximal term in the range space of the intermediate iterate generated
by the function value reduction step. Such correction strategy can guarantee further function
value reduction in proportion to the “symmetry” violation. Consequently, the convergent point
satisfies the “symmetry” property. We establish the complete global convergence analysis
and worst case complexity as well. Furthermore, numerical experiments illustrate that the
new multipliers correction methods have better performances than those proposed in [14].
Remarkably, our multipliers correction methods can solve problems that those proposed in [14]
can not solve. In solving these testing problems, our methods outperform other state-of-the-art
first-order approaches.

References

[1] T. E. Abrudan, J. Eriksson, and V. Koivunen. Steepest descent algorithms for optimiza-
tion under unitary matrix constraint. IEEE T. Signal Proces., 56(3):1134–1147, 2008.

[2] T. E. Abrudan, J. Eriksson, and V. Koivunen. Conjugate gradient algorithm for opti-
mization under unitary matrix constraint. Signal Process., 89(9):1704 – 1714, 2009.

[3] P.-A. Absil, C. G. Baker, and K. A. Gallivan. Trust–region methods on Riemannian
manifolds. Found. Comput. Math., 7(3):303–330, 2006.

[4] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds.
Princeton University Press, 2008.

[5] P.-A. Absil and J. Malick. Projection–like retractions on matrix manifolds. SIAM J.
Optimiz., 22(1):135–158, 2012.

19

[6] K. Anstreicher and H. Wolkowicz. On Lagrangian relaxation of quadratic matrix con-
straints. SIAM J. Matrix Anal. A., 22(1):41–55, 2000.

[7] J. Barzilai and J. M. Borwein. Two–point step size gradient methods. IMA J. Numer.
Anal., 8(1):141–148, 1988.

[8] N. Boumal and P.-A. Absil. Low-rank matrix completion via preconditioned optimization
on the Grassmann manifold. Linear Algebra Appl., 475:200–239, 2015.

[9] A. Caboussat, R. Glowinski, and V. Pons. An augmented Lagrangian approach to the
numerical solution of a non-smooth eigenvalue problem. J. Numer. Math., 17(1):3–26,
2009.

[10] Y.-H. Dai and R. Fletcher. Projected Barzilai–Borwein methods for large-scale box-
constrained quadratic programming. Numer. Math., 100(1):21–47, 2005.

[11] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance
profiles. Math. Program., 91(2):201–213, 2002.

[12] A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality
constraints. SIAM J. Matrix Anal. A., 20(2):303–353, 1998.

[13] B. Gao, G. Hu, Y. Kuang, and X. Liu. An orthogonalization-free parallelizable framework
for all-electron calculations in density funcitonal theory. arXiv:2007.14228, 2020.

[14] B. Gao, X. Liu, X. Chen, and Y.-x. Yuan. A new first-order algorithmic framework for
optimization problems with orthogonality constraints. SIAM J. Optimiz., 28(1):302–332,
2018.

[15] B. Gao, X. Liu, and Y.-x. Yuan. Parallelizable algorithms for optimization problems with
orthogonality constraints. SIAM J. Sci. Comput., 41(3):A1949–A1983, 2019.

[16] I. Grubǐsić and R. Pietersz. Efficient rank reduction of correlation matrices. Linear
Algebra Appl., 422(2-3):629–653, 2007.

[17] J. Hu, X. Liu, Z. Wen, and Y.-x. Yuan. A brief introduction to manifold optimization.
J. Oper. Res. Soc. CHN., 8(2):199–248, 2020.

[18] X. Hu and X. Liu. An efficient orthonormalization-free approach for sparse dictionary
learning and dual principal component pursuit. Sensors, 20(11):3041, 2020.

[19] W. Huang, K. A. Gallivan, and P.-A. Absil. A Broyden class of quasi–Newton methods
for Riemannian optimization. SIAM J. Optimiz., 25(3):1660–1685, 2015.

[20] B. Jiang and Y.-H. Dai. A framework of constraint preserving update schemes for opti-
mization on Stiefel manifold. Math. Program., 153(2):535–575, 2015.

[21] R. Lai and S. Osher. A splitting method for orthogonality constrained problems. J. Sci.
Comput., 58(2):431–449, 2014.

20

[22] Z. Li, F. Nie, X. Chang, and Y. Yang. Beyond trace ratio: weighted harmonic mean of
trace ratios for multiclass discriminant analysis. IEEE T. Knowl. Data En., 29(10):2100–
2110, 2017.

[23] X. Liu, X. Wang, Z. Wen, and Y.-x. Yuan. On the convergence of the self–consistent field
iteration in Kohn–Sham density functional theory. SIAM J. Matrix Anal. A., 35(2):546–
558, 2014.

[24] X. Liu, Z. Wen, X. Wang, M. Ulbrich, and Y.-x. Yuan. On the analysis of the discretized
Kohn–Sham density functional theory. SIAM J. Numer. Anal., 53(4):1758–1785, 2015.

[25] X. Liu, Z. Wen, and Y. Zhang. Limited memory block Krylov subspace optimization for
computing dominant singular value decompositions. SIAM J. Sci. Comput., 35(3):A1641–
A1668, 2013.

[26] X. Liu, Z. Wen, and Y. Zhang. An efficient Gauss–Newton algorithm for symmetric
low-rank product matrix approximations. SIAM J. Optimiz., 25(3):1571–1608, 2015.

[27] J. H. Manton. Optimization algorithms exploiting unitary constraints. IEEE T. Signal
Proces., 50(3):635–650, 2002.

[28] Y. Nishimori and S. Akaho. Learning algorithms utilizing quasi–geodesic flows on the
Stiefel manifold. Neurocomputing, 67:106–135, 2005.

[29] J. Noceda and S. J. Wright. Numerical Optimization. Springer Science & Business Media,
2006.

[30] G. Rosman, X. C. Tai, R. Kimmel, and A. M. Bruckstein. Augmented Lagrangian regu-
larization of matrix-valued maps. Methods Appl. Anal., 21(1):121–138, 2014.

[31] H. Sato. Riemannian Newton–type methods for joint diagonalization on the Stiefel man-
ifold with application to independent component analysis. Optimization, 66(12):2211–
2231, 2017.

[32] B. Savas and L.-H. Lim. Quasi–Newton methods on Grassmannians and multilinear
approximations of tensors. SIAM J. Sci. Comput., 32(6):3352–3393, 2010.

[33] Z. Wen and W. Yin. A feasible method for optimization with orthogonality constraints.
Math. Program., 142(1-2):397–434, 2013.

[34] X. Wu, Z. Wen, and W. Bao. A regularized Newton method for computing ground states
of Bose–Einstein condensates. J. Sci. Comput., 73(1):303–329, 2017.

[35] N. Xiao, X. Liu, and Y.-x. Yuan. A class of smooth exact penalty function methods for
optimization problems with orthogonality constraints. Optim. Method. Softw., 0(0):1–37,
2020.

[36] C. Yang, J. C. Meza, and L.-W. Wang. A trust region direct constrained minimization
algorithm for the Kohn–Sham equation. SIAM J. Sci. Comput., 29(5):1854–1875, 2007.

21

