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Abstract

This paper proposes a polynomial-time algorithm to construct the monotone
stepwise curve that minimizes the sum of squared errors with respect to a
given cloud of data points. The fitted curve is also constrained on the maxi-
mum number of steps it can be composed of and on the minimum step length.
Our algorithm relies on dynamic programming and is built on the basis that
said curve-fitting task can be tackled as a shortest-path type of problem. To
ease the computational burden of the proposed algorithm, we develop various
strategies to efficiently calculate upper and lower bounds that substantially
reduce the number of paths to be explored. These bounds are obtained by
combining relaxations of the original problem, clustering techniques and the
well-known and well understood isotonic regression fit. Numerical results on
synthetic and realistic data sets reveal that our algorithm is able to provide
the globally optimal monotone stepwise curve fit for samples with thousands
of data points in less than a few hours. Furthermore, the algorithm gives a
certificate on the optimality gap of any incumbent solution it generates. From
a practical standpoint, this piece of research is motivated by the roll-out of
smart grids and the increasing role played by the small flexible consumption
of electricity in the large-scale integration of renewable energy sources into
current power systems. Within this context, our algorithm constitutes an

∗Corresponding author
Email addresses: vbucarey@vub.be (Vı́ctor Bucarey), mlabbe@ulb.ac.be (Martine
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useful tool to generate bidding curves for a pool of small flexible consumers
to partake in wholesale electricity markets.

Keywords: Cardinality-constrained shortest path problem, isotonic
regression, segmented regression, inverse optimization, data clustering,
consumers’ price-response

1. Introduction

In this paper, we deal with the problem of how to fit a curve to a given
cloud of data points under the conditions that the fitted curve must be non-
increasing (or non-decreasing) and piecewise constant (or, equivalently, step-
wise), with a predefined limited number of pieces (also referred to as steps
or blocks in what follows). This problem is inspired by the bidding rules
that large consumers or a pool of small consumers must comply with when
participating in an electricity market. Their bids for purchasing electricity
in these markets must be often submitted in the form of a non-increasing
stepwise price-consumption curve, for which the maximum number of bid
blocks is also constrained. These curves reflect how consumers value elec-
tricity and therefore, their sensitivity to its price (which is referred to as
consumers’ elasticity), see, for instance, Su and Kirschen [23]. With the ad-
vent of Information and Communications Technologies and the roll-out of the
so-called smart grids, small consumers of electricity are being provided with
the means to actively adjust their consumption in response to the electricity
price. However, their consumption patterns are still uncertain, dynamic and
affected by other factors different from the electricity price. The result is
that estimating a bidding curve that properly reflects consumers’ sensitiv-
ity to the electricity price is a statistical challenge. This paper provides an
algorithm to efficiently compute that curve from a set of price-consumption
observations.

Beyond the practical context that inspires this piece of research, our work
is closely related to various thrusts of research or thematic areas that also
motivate it, namely:

Statistical regression. We desire to fit a monotonically decreasing curve
to a given cloud of data points, while satisfying the following two extra
conditions: i) The fitted curve must be piecewise constant and ii) there
is a maximum number of pieces the fitted curve can be comprised of.
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While the literature review includes a wealth of research papers ana-
lyzing related concepts and tools such as isotonic regression (see, e.g.,
Mair et al. [15], Tibshirani et al. [25], Guyader et al. [11] and refer-
ences therein), segmented regression (Muggeo [16]), and the popular
multivariate adaptive regression spline (Friedman [9]), these regression
techniques produce fitted curves that fail to satisfy at least one of the
conditions mentioned above. Furthermore, they are frequently based
on iterative, greedy or heuristic algorithms. Indeed, the fitted response
of the isotonic regression is a monotone piecewise constant function (al-
though efficient algorithms to produce smooth continuous functions are
also available, see, e.g., Sysoev and Burdakov [24]), but is not limited
in the number of pieces it may be comprised of. For its part, segmented
regression leads to curve fits that are not necessarily monotone. Against
this background, we propose an exact shortest-path algorithm that is
capable of delivering, in polynomial time, the monotone stepwise curve
(with a maximum of K steps) that constitutes the globally optimal
data fit according to the least-squares criterion.

We remark that, as pinpointed in Lerman [14], the stepwise shape of the
target curve releases the fitting process from the continuity condition
at the breakpoints that is typically enforced in segmented regression,
thus making it computationally easier. On the other hand, we addi-
tionally impose that the fitted curve be non-increasing, which adds an
extra layer of complexity to the regression problem at hand. Actually,
to our knowledge, the works that are the closest to ours are those of
Hawkins [12] and Dahl and Realfsen [5]. In the former, they describe a
dynamic programming approach to perform segmented regression over
a sequence of observations with at most K segments and no continuity
requirement at the transition points. Dahl and Realfsen [5] offer an in-
teresting computational perspective on this same problem, which they
pose as a cardinality-constrained shortest path problem and for which
they propose several solution algorithms. Neither Hawkins [12], nor
Dahl and Realfsen [5] consider, however, any monotonicity constraint,
which is, though, critical to our problem (seen as an extension or gen-
eralization of isotonic regression) and to the practical application that
motivates it.

Finally, we mention that Rote [20] uses dynamic programming for iso-
tonic regression, but, again, with no constraint on the number of pieces
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the fitted curve can be made up of.

Inverse optimization. Recently, inverse optimization has emerged as a
promising mathematical framework to infer the input parameters to
an optimization problem that have given rise to a series of optimal (or
quasi-optimal) solutions (Ahuja and Orlin [1], Esfahani et al. [6], Chan
et al. [4]). In the last few years, inverse optimization has been widely
used to infer consumers’ utility from a certain product (Keshavarz et al.
[13], Aswani et al. [2]), in particular, electricity (Saez-Gallego et al.
[22], Saez-Gallego and Morales [21]). Essentially, it is often assumed
that the market behavior of a pool of (rational) electricity consumers
is driven by the following maximization problem

Maximize
x≥0

∫ x

0

b(s)ds− px

where px is the payment the pool of consumers has to make for purchas-
ing x units of electricity in the market at price p, and b(·) is the so-called
bidding curve expressing the response of the consumers to the electric-
ity price. Many electricity markets around the world require that this
bidding curve be non-increasing and stepwise, with a maximum num-
ber of steps. Dealing with this problem by way of inverse optimization
involves estimating the step function values of this curve and the break-
points from a series of observed pairs {(p̂i, x̂i)}Ii=1. As highlighted in
Aswani et al. [2], however, the available estimation approaches based
on inverse optimization may result in statistically inconsistent estima-
tors or require the reformulation of the problem as a bilevel (NP-hard)
problem. In this regard, Aswani et al. [2] propose a statistically con-
sistent polynomial-time semiparametric algorithm to tackle a certain
class of inverse optimization problems. Nevertheless, the regression
problem we address here, when seen from the lens of inverse optimiza-
tion, does not comply with the conditions that ensure the statistical
and polynomial-time performance of their algorithm, because some of
the parameters to be estimated, specifically, the breakpoints, appear in
the constraints defining the feasible region of the forward problem. In
contrast, we propose an algorithm that directly solves the statistically
consistent formulation of the problem to optimality in polynomial time.

Unsupervised learning. The problem we address in this paper can be also
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interpreted as a clustering problem through which a series of observed
pairs {(p̂i, x̂i)}Ii=1 are grouped in such a way that:

1. There is a maximum number of clusters K into which the data
points can be grouped into.

2. The resulting clusters must satisfy some connectivity constraints.
In our particular case, these connectivity constraints impose that
only clusters with adjacent prices p̂i can be merged together (see,
e.g., Guo [10]).

3. If (p∗m, x
∗
m) and (p∗n, x

∗
n) are the centroids of clusters m and n,

respectively, then x∗m ≥ x∗n ⇐⇒ p∗m ≤ p∗n in order to guarantee a
non-increasing curve.

The technical literature includes some works in which structured clus-
tering is used in power system applications. For instance, Pineda and
Morales [19] propose a hierarchical clustering methodology to approxi-
mate time series that are used to determine the optimal expansion plan-
ning of the European electricity network. Due to the usual NP-hard
nature of clustering methods, the clusters are often obtained through
computationally efficient greedy algorithms. However, to the best of
our knowledge, the technical literature does not report any clustering
methodology that simultaneously satisfies the three conditions specified
above. Therefore, our work also contributes to the realm of structured
data clustering.

The rest of this paper is organized as follows. In Section 2, we formu-
late the curve-fitting problem that we aim to solve. Section 3 introduces
the solution algorithm we propose to that end, which is based on dynamic
programming and, more specifically, on the cardinality-constrained shortest
path problem. Section 4 provides various strategies to accelerate said algo-
rithm, whose performance is subsequently tested in Section 5 using synthetic
data sets and a data set coming from a real-life practical application. Lastly,
conclusions are duly drawn in Section 6.

2. Problem formulation

Consider a given set of pairs of points on the real plane {(p̂i, x̂i)}Ii=1.
Without loss of generality, we assume that p̂1 < p̂2 < . . . < p̂I . Let F be the
class of real functions f : [p̂1, p̂I ]→ R that are non-increasing and piecewise
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constants, with at most K blocks or steps, K ∈ Z+. We seek to solve the
following least-square minimization problem, hereinafter referred to as LSP :

(LSP) min
f∈F

I∑
i=1

(x̂i − f(p̂i))
2 (1)

A function f member of the class F can be expressed as

f(p) =
K∑
k=1

ukI[pk,pk+1)(p) (2)

where I[pk,pk+1)(p) is the indicator function equal to 1 if pk ≤ p < pk+1,
and 0 otherwise. Again without loss of generality, we set p1 = p̂1 and use
pK+1 = p̂I+1 > p̂I as a dummy p-coordinate to guarantee that all p̂i are
covered by the solution. Besides, u1 > u2 > . . . > uK > 0 represent the
step values of the blocks. We remark that functions f ∈ F with less than K
blocks can be also represented in this way, since two consecutive blocks are
allowed to have the same function value.

Using this characterization of the class of functions F and taking p1 = p̂1
and pK+1 > p̂I a dummy price coordinate as mentioned above, problem (1)
can be recast as follows.

min
u,p

I∑
i=1

(
x̂i −

K∑
k=1

ukI[pk,pk+1)(p̂i)

)2

(3a)

s.t. uk > uk+1, ∀k 6 K − 1 (3b)

pk+1 > pk, ∀k 6 K (3c)

Determining the breakpoints {pk}Kk=2, which are needed to compute the
indicator functions appearing in the objective function (3a), constitutes the
major source of complexity in problem (3). Constraint (3b), which enforces
the non-increasing character of the fitted curve, also adds another layer of
difficulty to the selection of those breakpoints. The easiest task in problem (3)
is to compute the values uk that minimize the squared error (3a) for a given
set of intervals [pk, pk+1). In the following section, we introduce a shortest
path algorithm through which we can solve problem (3) in polynomial time.
This algorithm starts from the evidence that the optimal breakpoints are
within the p-coordinates of the cloud of points {(p̂i, x̂i)}Ii=1.
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3. Cardinality-constrained shortest-path algorithm

For a function f ∈ F , the objective function value of problem (1) can be
rewritten as:

K∑
k=1

∑
i:pk≤p̂i<pk+1

(x̂i − uk)2 (4)

First, let p̂i be the smallest p-coordinate of a data point larger than or equal
to pk. Replacing pk by any value pk′ with pk ≤ pk′ ≤ p̂i does not change
the value of the objective function. Hence, we can restrict our search for the
breakpoints pk to the set {p̂i : 1 ≤ i ≤ I+ 1} of the p-coordinates of the data
points.

Second, consider an optimal solution of problem (1) represented by break-
points {p∗k}Kk=1 and step values {u∗k}Kk=1. Each time that two consecutive
blocks, say k′ and k′ + 1, have the same function value, i.e., u∗k′ = u∗k′+1, we
can merge them and reduce the number of blocks. Consequently, this optimal
solution can be described by K ′ blocks, with K ′ ≤ K, such that u∗k < u∗k+1,
for k = 1, . . . , K ′ − 1. Given that this solution is optimal, it must be locally
optimal, i.e., u∗k must minimize the contribution of block k to (4). In other
words,

u∗k ∈ arg min
uk
{

∑
i:p∗k≤p̂

∗
i<p

∗
k+1

(x̂i − uk)2 : u∗k−1 ≤ uk ≤ u∗k+1}

= {AV (p∗k, p
∗
k+1), u

∗
k−1, u

∗
k+1}, (5)

where AV (p∗k, p
∗
k+1) represents the average value of the coordinates x̂i of data

points such that p∗k ≤ p̂i < p∗k+1. Given that the step values are all different,
it follows that u∗k = AV (p∗k, p

∗
k+1). Further, the contribution of block k to the

total error is equal to

ER(p∗k, p
∗
k+1) =

∑
i:p∗k≤p̂i<p

∗
k+1

(x̂i − (AV (p∗k, p
∗
k+1))

2 (6)

We remark that a similar reasoning applies if we consider the least abso-
lute error (that is, the minimization of the sum of absolute values of errors),
instead of the least squares. In that case, it suffices to replace the average
value of the x̂i-coordinates of the data points such that p∗k ≤ p̂i < p∗k+1 with
their median.
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The above two properties allow to translate problem (1) into a shortest
path problem with at most K arcs on a particular directed graph G = (V,A)
defined as follows. Its vertex set is V := {vij : 2 ≤ i < j ≤ I} ∪ {s, t}.
Vertices s and t constitute the source and the sink between which a shortest
path must be found and correspond to the first and the last block of the
solution, respectively. Each intermediate vertex vij represents a block that
is neither the first one nor the last one, limited by p̂i and p̂j and whose step
value can be explicitly computed as AV (p̂i, p̂j) = (

∑
i≤h<j x̂h)/(j − i).

The arc set A contains four different types of arcs:

• Arcs from the source to intermediate vertices: (s, vij) ∈ A for all vij ∈ V
for which AV (p̂1, p̂i) > AV (p̂i, p̂j). They represent the possible first
block of a solution [p̂1, p̂i) and their cost is given by ER(p̂1, p̂i).

• Arcs between intermediate vertices: (vij, vjh) ∈ A for all vertices vij, vjh
∈ V such that 1 ≤ i < j < h ≤ I and AV (p̂i, p̂j) > AV (p̂j, p̂h). An arc
(vij, vjh) translates the existence of the two consecutive blocks [p̂i, p̂j)
and [p̂j, p̂h) in the solution and its cost is given by the error contribution
of the first of the two blocks, i.e., c(vij, vjh) = ER(p̂i, p̂j).

• Arcs from intermediate vertices to the sink: (vij, t) ∈ A for all vij ∈ V
for which AV (p̂i, p̂j) > AV (p̂j, p̂I+1) with cost c(vij, s) = ER(p̂j, p̂I+1).
They represent the last block of a solution that necessarily contains the
last data point.

• Arc from the source to the sink: (s, t) ∈ A with an associated cost
c(s, t) = ER(p̂1, p̂I+1) corresponds to the solution with one single block
[p̂1, p̂I+1).

Our least square minimization problem is equivalent to finding a path in
the graph G = (V,A), from s to t with at most K arcs and with minimum
total cost. Given that all costs are non-negative and the graph is acyclic, an
optimal path can be found in O(K|A|), see, e.g., Wolsey [26, ch. 5, pp. 68].
Further, since K ≤ I and |A| = O(I3), it follows that LSP can be solved in
polynomial time.

Alternatively, LSP can be equivalently posed as a shortest path prob-
lem with resource constraints in a different, but substantially smaller graph
G′(V ′, A′) with vertex set V ′ = {vi : 1 ≤ i ≤ I + 1} and edge set A′ =
{(vi, vj) : 1 ≤ i < j ≤ I + 1}. Each arc (vi, vj) corresponds to a block
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[p̂i, p̂j) with step value AV (p̂i, p̂j) and cost c(vi, vj) = ER(p̂i, p̂j). There is a
one-to-one correspondence between the paths in G′ from v1 to vI+1 and the
set of stepwise functions with breakpoints in {p̂i : 1 ≤ i ≤ I + 1}. To obtain
feasible solutions to LSP, we must impose two resource constraints. The first
one consists in setting an upper bound K on the numbers of arcs of a path
and the second one excludes the presence of consecutive arcs with increasing
step values in a path.

The standard approach for solving such a problem consists in using dy-
mamic programming to construct the path from v1 to vI+1 progressively, see
e.g. Feillet et al. [7]. The procedure contains I iterations and at iteration i,
partial paths ending in vertex vi ∈ V ′ are extended by adding one arc (vi, vj).

Further, a label is associated to each feasible partial path π from v1 to
vi ∈ V ′ specifying the consumption of the resources. Here the label is a triplet
(c(π), k(π), st(π)) where c(π) denotes the total error of the partial path, k(π)
its number of arcs and st(π) the step value of the block corresponding to the
last arc of the partial path. On the one hand, the label allows to check
whether extending a path π ending in vi by an arc (vi, vj) is feasible since we
need that k(π) ≤ K and st(π) > AV (p̂i, p̂j). On the other hand, dominance
between partial paths ending in a same vertex can be exploited. If π and π′

are two partial paths ending in vi, such that c(π) ≤ c(π′), k(π) ≤ k(π′) and
st(π) ≥ st(π′), then clearly path π′ cannot be part of a feasible path from v1
to vI+1 that has a strictly better total error. In consequence, all along the
execution of the algorithm, we only need to consider the partial paths with
different and non-dominated labels.

The number of different non-dominated partial paths ending in vertex vi
is in O(KI) (bear in mind that vertex vi can be reached in at most K arcs
and that the last of these arcs can be associated with at most i− 1 different
step values, namely, AV (p̂j, p̂i), with j = 1, 2, . . . , i−1). Besides, the number
of arcs with vi as the origin vertex is in O(I). Consequently, the number of
new candidate partial paths generated at iteration i is in O(KI2) and the
overall complexity of this algorithm is thus the same as the previous one, i.e,
O(KI3).

Conveniently, we may also take advantage of upper and lower bounds to
accelerate the search for the optimal path. Indeed, let INC be the value of
a feasible solution to LSP obtained either in some previous iteration of the
algorithm or by some other means. Consider a partial path π ending in vi
and let LB(vi, k(π), st(π)) be a lower bound on the cost of a partial path
from vi to vI+1 with at most K − k(π) arcs, non-increasing step values and
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smaller than st(π). If c(π) + LB(vi, k(π), st(π)) ≥ INC, then the partial
path π can be directly discarded.

A quick valid lower bound can be obtained by relaxing either the condition
on the maximum number of arcs or the constraint on the monotonicity of
the step values. In the former case, the problem boils down to an isotonic
regression problem on the data points {(p̂j, x̂j)}Ij=i. In the latter, it is a
lighter shortest path problem from vi to vI+1 in G′ with at most K − k(π)
arcs.

The whole procedure is described in Algorithm 1 in which Ni represents
the set of labels in the form `(π) = (c(π), k(π), st(π)) of different and non-
dominated partial paths ending in vi. Further, PRED(π) is used to store
the “predecessor” of π, which is the partial path, say π′, that has been
extended by one arc to obtain π. Once the algorithm terminates, this in-
formation allows to reconstruct the optimal path backward, starting with
PRED(OPTIMAL− PATH).

4. Acceleration strategies

Despite the fact that LSP can be solved in polynomial time, computing
the optimal solution can be expensive for realistic instances. The overall
solution time relies heavily on how tight the upper bound INC and the
lower bounds LB(·) are. In this section we discuss strategies to find good
bounds that are easy to compute.

4.1. Computing an upper bound: Combining isotonic regression with adjacency-
constrained data clustering

Feasible solutions provide us with an upper bound on the optimal error
that can help us reduce the computational burden of the shortest path prob-
lem presented in Section 3. One efficient procedure to compute a tight upper
bound runs as follows:

1. We use isotonic regression to fit a monotone stepwise function to the
original data set. However, one should expect the number of blocks of
this fit to be higher than K.

2. We reduce the number of blocks of the output of the isotonic regres-
sion to K by grouping the consumption values of the isotonic fit into K
clusters. For this purpose, we use the fast greedy algorithm proposed
in Pineda and Morales [19] for adjacency-constrained hierarchical clus-
tering.
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Algorithm 1 Shortest path algorithm for LSP

1: Initialization: N1 = {(0, 0,maxi ∈I x̂i + 1)}, INC = +∞
2: for i ∈ {1, . . . , I} do
3: while Ni 6= ∅ do
4: Select π∗ ∈ arg min`(π)∈Ni

{c(π)} and remove `(π∗) from Ni

5: if c(π∗) > INC then
6: Ni = ∅
7: else if c(π∗) + c(vi, vI+1) < INC and AV (pi, pI+1) < st(π∗) then
8: PRED(OPTIMAL− PATH) = π∗, INC = c(π∗) + c(vi, vI+1)
9: end if

10: if k(π∗) < K − 1 then
11: for h ∈ i+ 1, . . . , I do
12: if AV (pi, ph) < st(π∗) and c(π∗) + c(vi, vh) + LB(vh, k(π∗) +

1, AV (pi, ph)) < INC then
13: new = (c(π∗) + c(vi, vh), k(π∗) + 1, AV (pi, ph)),

PRED(new) = π∗

14: if new /∈ Nh then
15: Add label new to Nh if it is not dominated.
16: Delete all dominated labels.
17: end if
18: end if
19: end for
20: end if
21: end while
22: end for
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3. The step value is computed as the average consumption of the isotonic
fit values within each of the K clusters obtained in the previous point.

The procedure above yields a monotone stepwise function with K pieces
that is a feasible solution to LSP. This methodology is depicted in Figure 1,
with each subfigure representing one of the actions described above, from left
to the right. We implement the calculation of the so-obtained upper bound
on Python, using the isotonic regression and the agglomerative clustering
functions of package Scikit-learn, see Pedregosa et al. [18].

0 10 20 30 40 50 60
Isotonic Regression

20

40

60

80

100

0 10 20 30 40 50 60
Clustering

0 10 20 30 40 50 60
Feasible Solution

Figure 1: Algorithm to compute a feasible solution and an upper bound to the minimum
error.

4.2. Computing a lower bound

Lower bounds are useful in several ways. First, as we discussed in Sec-
tion 3, they prevent the shortest-path algorithm from creating sub-optimal
labels. To do so, it is necessary to compute lower bounds for each partial
path π. Depending on the method, this can be computationally expensive.
Second, lower bounds give a guarantee of how far any feasible solution is
from the optimal one. We obtain these lower bounds by relaxing either the
constraint on the number of blocks/arcs or the monotonicity constraint of
the fitted curve.

Relaxing the constraint on the number of arcs in the path: The isotonic fitted
curve. When the number of blocks is not limited, problem LSP is equivalent
to the well-known isotonic fit, (Fielding [8]). Isotonic regression can be solved
in linear time (Best and Chakravarti [3]). Given the efficiency of this method,
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we generate lower bounds for any partial path π by computing one lower
bound for each vertex vi. In other words, we calculate LB(vi, k(π), st(π)) as
LB(vi) for each partial path π. The total time to compute this lower bound
for all vi is in O(I2). We use the isotonic regression function implemented in
the Python package Scikit-learn to this end (Pedregosa et al. [18]).

Relaxing the monotonicity constraint. As mentioned in Section 3, another
lower bound can be obtained by relaxing the monotonicity constraint on the
step values. Then, for a given partial path π, a lower bound can be computed
by solving a shortest path problem with at most K − k(π) arcs from vi to
vI+1 in G′. One can determine the fitting error associated with the shortest
paths from all vertices vi to the sink vI+1 and containing at most k arcs,
for all k = 1, . . . , K, with dynamic programming. The corresponding total
computing time is in O(K|A|) = O(KI2) (essentially, if we disregard the
monotonicity constraint, our problem translates into a standard cardinality-
constrained shortest problem whose computational complexity is known to
be in O(K|A|), with |A| = O(I2) in our case).

In terms of implementation, to relax the monotonicity constraint is equiv-
alent to suppressing the third component st of each label and the correspond-
ing monotonicity conditions in line 7 and 12 in Algorithm 1. In particular,
for the path that corresponds to the initial label (0, 0) and contains the single
vertex v1, this shortest path problem returns a lower bound on the minimum
fitting error. In that case, besides, if the resulting function turns out to be
non-increasing, then it must be optimal to LSP.

We end this subsection with a remark on the so modified algorithm:
The minimum cost computed over all the partial paths reaching a layer i
in the modified algorithm is a lower bound on that very same cost in the
original Algorithm 1. Consequently, we can get an even tighter lower bound
by running Algorithm 1 with the monotonicity constraint dropped and with
LB(vh, k(π∗)+1, AV (pi, ph)) in line 12 of the pseudocode given by the isotonic
fit. The total cost at termination does not necessary correspond to the fitting
error of the optimal, possibly non-monotone, stepwise curve, but it is a still
valid lower bound on the cumulative error of LSP. This is indeed the lower
bound (obtained from dropping the monotonicity constraint on the optimal
fitted curve) that we will consider in the numerical experiments below.
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4.3. Imposing constraints on the length of steps

In some cases, it may be interesting and practically useful to impose
constraints on the length of the function blocks, i.e., to restrict the set of
functions F to decreasing stepwise functions with a step length bigger than
step min. This is equivalent to adding the following set of constraints to
model (3):

step min ≤ pk+1 − pk, ∀k ≤ K (7)

Moreover, Algorithm 1 can still be used after removing from the arc set
A all (vi, vj) for which the corresponding p-coordinates violate condition (7).
As a result, the number of operations to compute the optimal solution to
LSP decreases. We show the impact of imposing this type of constraint
experimentally in the next section.

We remark that the upper bound described in Section 4.1 may no longer
be feasible after enforcing the constraint on the minimum step length. Nev-
ertheless, if that is the case, we can always gradually decrease K in the
algorithm outlined in that section until a valid upper bound is eventually
recovered.

5. Numerical experiments

Next we run a series of numerical experiments to test the effectiveness and
performance of the proposed algorithm under different settings. To this end,
we first use synthetic data sets to assess the sensitivity of the algorithm per-
formance to the maximum number of steps, the noise level in the input data
and the sample size. Subsequently, we consider a realistic data set consisting
of price-power measurements at the main substation of a distribution power
grid that includes distributed energy resources. This data can be download
from [17].

5.1. Synthetic data sets

We first test our algorithm and the effectiveness of the acceleration strate-
gies described above on a controlled experiment, where we know the true
data-generating distribution. More specifically, the response variable x is
given by

x = f ∗(p) + ε (8)
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k-th block [p∗k, p
∗
k+1) u∗k

1 [0,12) 100
2 [12,30) 115
3 [30,35) 102
4 [35,45) 93
5 [45,50) 72
6 [50,60] 50

Table 1: Stepwise characterization of the true relationship between the response x and
the covariate p.
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Figure 2: Synthetic data for different noise levels.

where ε is a Gaussian noise of zero mean and standard deviation σ and f ∗

is the stepwise function depicted in Figure 2, that is,

f ∗(p) =
6∑

k=1

u∗kI[p∗k,p∗k+1)
(p) (9)

with u∗k and [p∗k, p
∗
k+1), k = 1, . . . , 6, provided in Table 1. Notice that f ∗ is

a stepwise function made up of six blocks of different sizes. Furthermore,
f ∗ is neither increasing, nor decreasing in its entire domain. For illustration
purposes, Figures 2a and 2b plot 1000 data points {(p̂i, x̂i)}Ii=1 randomly
generated for two different noise levels, namely, σ = 5 and σ = 10, respec-
tively. Both figures also include the true function (9) to compute the response
variable x.

Next, we run our shortest path algorithm using datasets of 1000 points
that are randomly generated from (8) for a noise level σ taking the values of
the natural numbers between zero and ten. Besides, the number of arcs K
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is set to six, which is the true number of blocks of the function that relates
the response variable x to the covariate p. Results for all these cases are
collated in Table 2 and include the aggregated square error (Error) and three
different computational times (with a maximum value of 12 hours):

- TISO: Computational time of the proposed shortest path algorithm
including the upper bound discussed in Section 4.1 and the lower bound
per layer provided by the isotonic fit.

- TRLX: This computational time is obtained as follows. Let TW/O denote
the time needed to run the proposed shortest path algorithm without
the monotonicity constraint, but including the upper bound discussed
in Section 4.1 and the lower bounds (one per layer) provided by the
isotonic regression fits. As mentioned in Section 4.2, the cost of this
shortest path constitutes a valid lower bound on the cumulative fit-
ting error associated with the optimal monotone curve. Actually, if
this shortest path leads to a nonincreasing curve, then this is the op-
timal one. In this case, we set TRLX = TW/O (because the optimal fit
has been found). Otherwise, we need to rerun our algorithm with the
monotonicity constraint back in force, and therefore, we set TRLX =
TW/O + TISO.

- TNOB: Computational time of the proposed shortest path algorithm if
no acceleration strategies are employed.

By comparing the computational times TNOB and TISO of Table 2, we
can conclude that the use of the proposed upper and lower bounds has a
tremendous impact on the ability of the algorithm to quickly identify the
globally optimal curve to be fitted. Besides, these results also reveal that our
algorithm is robust to the level of noise, since the computational time TISO is
relatively stable as noise increases. Finally, the lower bound provided by the
relaxation of the monotonicity constraint is, nevertheless, of little value for
this instance, in which TRLX is higher than TISO for most noise levels. We
will see, however, that this lower bound can be useful when the data features
a sufficiently marked monotonic layout.

In order to better understand the intuition behind the acceleration strate-
gies described in Section 3 and their impact on the computational time of the
shortest path problem proposed in Section 4, Figure 3 displays the following:
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I σ K Error TISO(s) TRLX(s) TNOB(s)
1000 0 6 28081 110 164 13053
1000 1 6 27491 647 837 >43200
1000 2 6 30716 1296 1569 39205
1000 3 6 35320 441 644 33675
1000 4 6 41852 1258 1501 41128
1000 5 6 52919 1038 1177 37186
1000 6 6 64416 1400 1547 >43200
1000 7 6 67985 1222 1447 >43200
1000 8 6 102860 1998 2346 >43200
1000 9 6 113847 1570 1903 42156
1000 10 6 123856 1162 1143 32689

Table 2: Impact of data noise
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Figure 3: Illustration of the various bounds and the optimal solution for the synthetic
data with noise σ = 10 and K = 6
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- Top left plot: The curve provided by the isotonic regression. As ob-
served, the isotonic fit is non-increasing, but the number of steps is
higher than K = 6. Therefore, the aggregated squared error associated
with this curve can be used to lower-bound the optimal solution.

- Bottom left plot: The curve obtained through the adjacency-constrained
hierarchical clustering technique using the isotonic fit as input. The
number of blocks is equal to six and the monotonic condition is also
satisfied. Therefore, this curve represents a feasible solution in LSP
and its accrued squared error is a valid upper bound of the optimal
objective function value.

- Top right plot: The curve computed by the relaxed shortest path al-
gorithm without the monotonicity constraint. The number of blocks is
also equal to six, but the curve is not monotone. Therefore, the corre-
sponding aggregate squared error can also be used as a lower bound.

- Bottom right plot: The global optimal solution obtained by the pro-
posed shortest path algorithm.

Interestingly, the optimal solution of this particular instance coincides
with that resulting from the combination of the isotonic regression and the
structured hierarchical clustering. Furthermore, the lower bound provided by
the isotonic fit is notoriously tight, which is, most likely, the reason behind
the good performance exhibited by our algorithm. Notice that the lower
bound achieved by relaxing the monotonicity constraint is significantly less
tight than the one given by the isotonic regression fit.

To further illustrate how the proposed bounds can accelerate the solution
of the shortest path algorithm, Figure 4 shows the time spent per iteration
by our algorithm for noise levels σ = 0, 5 and 10. In this figure, the dashed
plots refer to the raw implementation of the algorithm, i.e., with no bounds;
the dotted lines correspond to the version of the algorithm where only the
proposed upper bound is used; finally, the solid plots provide the time our
algorithm spends per iteration when both the lower and the upper bounds
are exploited. It is apparent that using bounds in the proposed methodology
has a remarkable beneficial effect on the algorithm performance, to such an
extent that the joint use of both bounds manages to immunize the algorithm
against the noise. Indeed, our upper and lower bounds noticeably reduce
the number of labels that Algorithm 1 generates in the intermediate layers
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Figure 4: Effect of bounds on computational burden per iteration. Example with 100 data
points and K = 6

of the graph. In the limiting case where there is no noise, both the upper
and the lower bounds coincide with the optimal fit and no intermediate label
is generated at all, thus taking a marginal amount of time per iteration.
As the noise level is increased, more and more intermediate labels are to
be handled, which essentially tells us that the optimization underlying the
regression problem becomes harder and harder to perform. Furthermore, as
can be inferred from the plots of Figure 4, the inclusion of the upper bound
only is not enough to keep the computational burden of our algorithm per
iteration low, because of the high amount of labels that are produced in
the first layers of the graph. It is the synergistic effect of the lower and
upper bounds which prevents the number of labels in the early stages of our
algorithm from exploding.

We note that, given the notorious superiority of our algorithm with
bounds to its raw version, computational time TNOB is no longer included in
the remaining analysis performed in this section.

Now we fix the noise level σ to five and change the sample size instead.
Still we have K = 6. The comparison results of TISO and TRLX for this
new experiment are collated in Table 3. Naturally, the aggregate squared
error and the solution times increase with the sample size I. However, our
algorithm appears to scale relatively well, given its theoretical complexity.

Finally, we fix the sample size to 1000 and the noise level of the data
to five, and change the maximum number of arcs K our algorithm may
use to reduce the error. The so obtained results are compiled in Table 4.
As expected, by increasing the maximum number of arcs K (also referred
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I σ K Error TISO(s) TRLX(s)
100 5 6 5074 0 0
200 5 6 11176 2 3
500 5 6 28810 73 99
1000 5 6 52919 1038 1177
2000 5 6 112410 9092 10726

Table 3: Impact of sample size

I σ K Error TISO(s) TRLX(s)
1000 5 2 118510 0 0
1000 5 3 81549 42 26
1000 5 4 55242 585 52
1000 5 5 53275 744 884
1000 5 10 52528 1799 1821
1000 5 12 52493 1622 1798
1000 5 14 52479 1817 2058
1000 5 16 52471 1951 2361
1000 5 18 52466 2234 2791
1000 5 20 52465 2734 3637

Table 4: Impact of the maximum number of arcs K

to as number of blocks), we enrich the family F of non-increasing stepwise
functions we consider and thus, the error of the data fitting is reduced. If
the number of blocks K is lower than or equal to four, the solution obtained
by the relaxed shortest path without the monotonicity constraint happens to
be non-incresing and thus, optimal. This explains why TRLX is significantly
lower than TISO if K ≤ 4. On the contrary, if K is higher or equal to
five, relaxing the monotonicity constraint leads to non-monotone solutions
in order to adapt as much as possible to the original function, which is also
non-monotone. In such cases, the time required to compute the lower bound
through the relaxed shortest path problem is significantly higher than the
time savings originated by such lower bound and consequently, TISO is lower
than TRLX for K ≥ 5.
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5.2. Realistic application: Estimating the bidding curve of a pool of flexible
consumers

Here we consider the problem of estimating the price-response of a clus-
ter of flexible consumers of electricity, that is, how much energy the cluster
consumes as a function of the electricity price. Similar instances of this prob-
lem has been considered, for example, in Aswani et al. [2], Saez-Gallego and
Morales [21], Saez-Gallego et al. [22]. In our particular case, these consumers
are located within a distribution grid that interacts with the transmission
system and the wholesale energy market. The distribution grid receives a
nodal price at the main substation, to which the consumers react accord-
ing to their energy needs, generation assets, and sensitivity to the electricity
cost. The aggregate amount of energy demanded by the pool, paired with
the nodal price (at the main substation) that induced such a demand, con-
stitutes an observation and form a data point on the plane. The collection
of the 2400 observations at our disposal are plotted in Figure 5. Since power
consumption is typically affected by other factors besides the electricity price,
similar price signals may yield quite different demand levels.
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Figure 5: Price-consumption data from realistic application

The cumulative squared error of the curve fit provided by our algorithm
for a different number of arcs (or steps) is compiled in Table 5. This table
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also shows the solution times TISO and TRLX defined in the previous exam-
ple, the initial upper bound and the lower bound obtained by relaxing the
monotonicity constraint from which our algorithm starts to iterate. From
these bounds, we can compute the optimality gap GAP0 = UB−LB

LB
100% at

the beginning of the algorithm, which we include in such a table too. We
omit time TNOB, as the raw algorithm is unable to deliver the optimal solu-
tion within a day in most cases, which proves the computational efficiency
of the proposed acceleration strategies for our shortest path algorithm. As
a matter of fact, the initial optimality gap that our algorithm needs to close
is always below 0.25%, which reveals that the heuristic procedures we have
devised to construct a (feasible) upper bound and a tight lower bound are
remarkably good.

For those cases in which Algorithm 1 reaches the maximum time limit
and thus, is terminated without having certified that the optimal curve fit
has been found, we include, within parentheses, the optimality gap at ter-
mination. This optimality gap is calculated from the best upper and lower
bounds on the optimal solution that are available after the time limit has
expired. In the case of the experiment associated with time TISO, which only
considers the lower bounds given by the isotonic fit, the best lower bound at
termination is computed as follows:

1. Let i′ be the layer being processed by the loop for in line 2 in the
pseudocode of Algorithm 1 at termination. Consider each feasible path
reaching layer i′− 1 and the cost accrued by this path until that layer.
Increase this cost by the error of the isotonic fit from layer i′− 1 to the
last one I + 1. Denote the result as the extended cost of a feasible path
at layer i′ − 1.

2. Compute the minimum extended cost for each layer i ∈ {1, 2, . . . , i′−1}.
3. The best lower bound is then given by the maximum over layers {1, 2, . . . ,
i′ − 1} of their associated minimum extended cost.

Once again, the optimality gaps provided within parentheses confirm that
the feasible solution we construct at the beginning of the algorithm, by modi-
fying the isotonic fit through adjacency-constrained data clustering, is nearly
optimal and that the lower bound given by relaxing the monotonicity con-
straint is hard to beat for this data set.

Results in Table 5 also show that the accrued fitting error decreases with
the number of blocks, since the family F of non-increasing stepwise functions
becomes larger as K is augmented. Nonetheless, the reduction in the fitting
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K Error TISO(s) TRLX(s) LB UB GAP0(%)

1 14901 1.1 1.1 14901 14901 0
2 9201 2.5 2.2 9201 9201 0
3 8213 731.4 581.3 8213 8222 0.11
4 7726 30602 1077.2 7726 7732 0.08
5 7596 65995 1881.3 7596 7602 0.08
6 7502 >86400 (2.71%) 2477.3 7502 7519 0.23
7 7442 >86400 (1.88%) 2895.8 7442 7448 0.08
8 - >86400 (1.31%) >86400 (0.14%) 7392 7402 0.14

Table 5: Realistic application: Cumulative squared error, solution times, bounds and
optimality gaps

error we get by increasing K rapidly plateaus after K > 4. On the contrary,
the solutions times TISO and TRLX feature a steady increase as K grows.
This is consistent with the computational complexity of our algorithm, which
depends linearly on K. Interestingly, TRLX is substantially smaller than TISO

forK < 8. The reason for this is that the lower bound we compute by relaxing
the monotonicity constraint of the fitted curve naturally produces, however,
a fit that is non-increasing and thus, globally optimal. In contrast, when
K ≥ 8, such a lower bound does no longer coincide with the globally optimal
solution and as a result, TRLX end up surpassing the time limit set to one day
(which is also exceeded by TISO). To support this argument, Figure 6 shows
the fitted curves provided by the monotonicity-relaxed lower bound for K = 7
and K = 8. Notice that, if K = 7, the fitted curve associated with this lower
bound is non-increasing, which allows our algorithm to certificate that this
curve is, in fact, the optimal one in around 2900 seconds (with essentially all
that time devoted to computing such a lower bound, logically). In contrast,
when K = 8, the curve delivered by the monotonicity-relaxed lower bound
features a tiny step that destroys its otherwise non-increasing appearance. It
is clear that this tiny step can only be attributed to the random nature of the
data and not to the price-sensitivity of the pool of flexible consumers. Indeed,
it is not reasonable to expect that a price variation lower than e0.1/MWh
has such an impact on the consumption of the pool. In order to discard
these implausible non-monotone stepwise functions from the family F , our
algorithm also includes the possibility to enforce a minimum arc length, that
is, a minimum step size. Very conveniently, besides, this constraint helps
reduce the solution time of our algorithm by pruning some paths in the
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graph that become thus infeasible and by increasing the chances that the
monotonicity-relaxed lower bound corresponds to the optimal curve fitting.
To illustrate the impact of the constraint on the minimum arc length on the
computational performance of the proposed algorithm, we provide Figure 7,
which shows the solution time for various step sizes and number K of arcs.
It can be seen that, while the case K = 8 cannot be solved to optimality
within a day time, if no constraint on the minimum arc length is enforced,
the solution time is drastically reduced below 3000 seconds when a (very
small) minimum block size of e0.5/MWh is imposed.
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Figure 6: Lower and upper bound solutions for K = 7 and K = 8. Notice the tiny step
that appears in the fit provided by the lower bound for K = 8
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Figure 7: Objective function and solution times for different values of K and step min.
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6. Conclusions

In this paper, we have developed an algorithm to compute the curve that
best fits to a certain cloud of data points in the sense of the least square
error, under the conditions that said curve must be monotone and stepwise
with a maximum number of steps. The proposed algorithm has been shown
to run in polynomial time and is based on the finding that the curve-fitting
problem can be addressed as a shortest-path type of problem. We have also
proposed several strategies to cut down the execution time of the algorithm,
all of which are based on computing upper and lower bounds that reduce the
number of paths that the algorithm needs to explore. More specifically, the
upper bound is given by a feasible solution that is swiftly built by combining
the isotonic fit with clustering. The relaxation of either the constraint on
the maximum number of steps or the monotonicity condition provides two
different lower bounds, with the former being computationally much cheaper
than the latter and not always necessarily looser. Our algorithm also allows
for setting a minimum step length. This constraint notoriously speeds up
the algorithm by pruning infeasible paths, while avoiding curve fits with
implausible spurious tiny steps.

Through a series of numerical experiments built on both synthetic and
realistic data sets, we have demonstrated that our algorithm, in conjunction
with the proposed acceleration strategies, is robust to the level of noise in
the data and able to certificate the globally optimal curve in less than a
few hours for sample sizes in the order of the thousands of data points.
Furthermore, through a data set comprising power-price measurements at
the main substation of a distribution power grid, we have shown that our
algorithm serves as an useful tool to estimate the bidding curve whereby the
distributed energy sources in the grid can trade in wholesale energy markets.
The extension of our algorithm to a multivariate setup is clearly an avenue
of potentially fruitful research.
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