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Abstract We consider polyhedral separation of sets as a possible tool in su-
pervised classification. In particular we focus on the optimization model intro-
duced by Astorino and Gaudioso [5] and adopt its reformulation in Difference
of Convex (DC) form. We tackle the problem by adapting the algorithm for DC
programming known as DCA. We present the results of the implementation
of DCA on a number of benchmark classification datasets.
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1 Introduction

The classification of an object is a decision making process whose outcome is
the assignment of a specific class membership to the object under observation.
Medical diagnosis [21], chemistry [18], cybersecurity [1], image processing [19]
are only some of the possible application areas of classification.
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Each object (sample) is characterized by a finite number of (quantitative
and/or qualitative) attributes, usually referred to as the features.

Construction of a classifier is a supervised learning activity, where a dataset
of samples, whose class membership is known in advance, is given as the input.
The objective is to gather a mathematical model capable to correctly classify
newly incoming samples whose class membership is, instead, unknown.

Classification deals, mainly, with separation of sets of samples in the feature
space, which is assumed to be Rn. Whenever classes are two, we are faced with
a binary classification problem. In this paper, in fact, the training dataset is
partitioned into two subsets, say A and B, thus the problem consists in finding
a separation surface, if any, between them.

Most of the models rely on setting an appropriate optimization problem
whose output is either a separating surface or a nearly-separating one, resulting
in the minimization of some measure of the classification error.

Starting from the pioneering works by Mangasarian [10] and Vapnik [31],
the hyperplane has been considered as the election surface to be looked for,
although the use of nonlinear separation surfaces has been pursued too [26],
[25], [7], [6].

The literature on classification is huge. We cite [31], [13], [27], [28] as basic
references in Support Vector Machine (SVM) framework and [30] as a recent
approach in the Deep Learning.

It is well known (see, e.g., [13]) that, if the convex hulls of the two sets
A and B do not intersect, there exists a separating hyperplane such that the
set A is on one side of such hyperplane and B is on the other side. It can
be calculated by Linear Programming [10] and the two sets are referred to as
linearly separable. On the other hand, if conv(A) ∩ conv(B) 6= ∅, a number of
algorithms can be adopted to determine a quasi-separating hyperplane such
that the related error functions are minimized (see for example [20]).

In this paper we deal with binary classification based on the use of a poly-
hedral surface. The concept of polyhedral separability was introduced in [22]
and applied within the classification framework in [5], [2].

Whenever, in fact, the two sets A and B are not linearly separable, it
is possible to resort to polyhedral separation, that is to determine h > 1
hyperplanes such that A is in the convex polyhedron given by the intersection
of h half-spaces and B lies outside such polyhedron.

In [5] an optimization model was proposed to calculate a set of h hyper-
planes generating a polyhedral separation, whenever possible, for the sets A
and B. The model consists, as usual in classification, in minimizing an error
function to cope with the case when the two sets are not h-polyhedrallly sep-
arable. Parallel to SVM, the model was extended in [2] to accommodate for
margin maximization.

The error function adopted in [5] is neither convex nor concave and it was
dealt with by means of successive linearizations.

In this paper we focus on the numerical treatment of the optimization prob-
lem to be solved in order to get a polyhedral separation surface. In particular
we fully exploit the DC (Difference of Convex) [16] nature of the objective func-
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tion and thus, differently from [5], we adopt an algorithm designed to treat
DC functions. In fact, the literature provides a wide set of efficient algorithms
in this area nowadays.

In [24,23] an iterative algorithm was introduced to minimize functions of
the form f = f1 − f2, with g and h convex functions. The algorithm, called

DCA, considers at iteration t the linearization f
(t)
2 of function f2 at point

xt and determines the next iterate xt+1 as an optimal solution of the convex
problem

min
x
f1(x)− f (t)2 (x) (1)

DCA has proven to be an efficient method to tackle DC problems, even non-
smooth and different artificial intelligence problems have been approached by
means of the DCA [3,4,8,9,19].

Several other methods have been more recently proposed in the literature
(see [14], [17]) which allow to solve large scale DC programs too.

In this paper we build on the model [5] and adopt a decomposition of
the error function for the h-polyhedral separability problem as the difference
of two convex functions. We then apply the DCA to carry out an extensive
experimentation on several classes of benchmark instances.

The paper is organized as follows. In Section 2 we describe the h-polyhedral
classification model and its reformulation as a Difference of Convex optimiza-
tion problem. In Section 3 we describe how the DCA has been adapted to
the DC reformulations. In Section 4 we present the results of our implementa-
tion on a number of benchmark classification problems. Some conclusions are
drawn in Section 5

2 The polyhedral separability model

Let A = {a1, . . . , am} and B = {b1, . . . , bk} be two finite sets of Rn.

Definition 1 The sets A and B are h-polyhedrally separable if there exist a
set of h hyperplanes {(vj , ηj)}, vj ∈ Rn, ηj ∈ R, j = 1, . . . , h, such that

aTi v
j < ηj ∀i = 1, . . . ,m, j = 1, . . . , h

bTl v
j > ηj ∀l = 1, . . . , k, and at least one j ∈ {1, . . . , h}

(2)

The following proposition gives an equivalent characterization of h-polyhedral
separability:

Proposition 1 The sets A and B are h-polyhedrally separable if and only if
there exist h hyperplanes {(wj , γj)} such that

aTi w
j ≤ γj − 1 ∀i = 1, . . . ,m, j = 1, . . . , h

bTl w
j ≥ γj + 1 ∀l = 1, . . . , k, and at least one j ∈ {1, . . . , h}.

(3)

Proof [5, Proposition 2.1]
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Moreover, in [5, Proposition 2.2] it is proven that a necessary and sufficient
condition for the sets A and B to be h-polyhedrally separable (for some h ≤
|B|) is given by

conv(A) ∩ B = ∅. (4)

Remark 1 The roles of A and B in (4) are not symmetric.

According to Proposition 1, a point ai ∈ A is well classified by the set of
hyperplanes {wj , γj} if aTi w

j − γj + 1 ≤ 0 for all j = 1, . . . , h. Therefore, we
can compute the classification error of the point ai with respect to {wj , γj}
as

max
1≤j≤h

{0, aTi wj − γj + 1}. (5)

Analogously, if min1≤j≤h{−bTl wj +γj +1} ≤ 0, a point bl ∈ B is well classified
by the set {wj , γj}. Thus, the error of classification of the point bl is

max{0, min
1≤j≤h

{−bTl wj + γj + 1}}. (6)

Given a set of h hyperplanes {wj , γj} we denote with W = [w1 : · · · : wh]
the matrix whose j-th column is the vector wj and with Γ = (γ1, . . . , γh) the
vector whose components are the γj ’s. The classification error function for the
h-polyhedral separability problem for the sets A and B, with respect to the
hyperplanes {wj , γj}, is then given by

e(W,Γ ) := e1(W,Γ ) + e2(W,Γ ), (7)

where

e1(W,Γ ) :=
1

m

m∑
i=1

max
1≤j≤h

{max{0, aTi wj − γj + 1}} (8)

and

e2(W,Γ ) :=
1

k

k∑
l=1

max{0, min
1≤j≤h

{−bTl wj + γj + 1}} (9)

represent the errors for points ofA and B, respectively. Function e(W,Γ ) is non
negative and piecewise affine; e1(W,Γ ) is convex and e2(W,Γ ) is quasiconcave;
moreover in [5] it has also been proven that the setsA and B are h-polyhedrally
separable if and only if there exists a set of h hyperplanes (W ∗, Γ ∗) such that
e(W ∗, Γ ∗) = 0 and, in that case, wj = 0 for all j = 1, . . . , h cannot be the
optimal solution.

In [5] the problem of minimizing the error function (7) is tackled by solving,
at each iteration, a linear program providing a descent direction. Here, instead,
we rewrite e(W,Γ ) as difference of convex functions and then we address its
minimization through ad hoc DC techniques.

To obtain such reformulation it is useful the following identity, valid for
any set of h affine functions zj(x), j = 1, . . . , h:

max(0,min
j
zj(x)) = max(0,−max

j
(−zj(x)))

= max(0,max
j

(−zj(x)))−max
j

(−zj(x)).
(10)
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By applying (10) to e2(W,Γ ) we obtain the following DC decomposition
of e(W,Γ ):

e(W,Γ ) = ê1(W,Γ )− ê2(W,Γ ), (11)

where both

ê1(W,Γ ) = e1(W,Γ ) +
1

k

k∑
l=1

max[0,max
j

(bTl w
j − γj − 1)]} (12)

and

ê2(W,Γ ) =
1

k

k∑
l=1

{max
j

(bTl w
j − γj − 1)} (13)

are convex.
The DC decomposition (11) has been already discussed in [29], where the

authors suggested an algorithm that combines a local and a global search
in order to find a global minimum of the error function. In the numerical
experience we are going to discuss in the next Sections we confine ourselves to
find just local minima of the error functions involved.

3 Exploiting the function structure in the DCA implementation

We have applied DCA to the minimization of the error function (11). Before
discussing our experiment setting, we describe how we have adapted DCA
to deal with polyhedral separation applied to a number of datasets from the
classification literature.

At iteration t, in any possible configuration (Wt, Γt) of the h hyperplanes
we can calculate for each l = 1, . . . , k the index jl where the maximum in (13)
is achieved:

jl = arg max
1≤j≤h

(bTl w
j
(t) − γ

j
(t) − 1), l = 1, . . . , k (14)

and we define consequently the linearization of function ê2 at iteration t:

êt2(W,Γ ) :=
1

k

k∑
l=1

(bTl w
jl − γjl − 1) (15)

which satisfies êt2(W,Γ ) ≤ ê2(W,Γ ).
Then, we consider the convexification of the original DC function:

et(W,Γ ) = ê1(W,Γ )− êt2(W,Γ ), (16)

so that next configuration (Wt+1, Γt+1) is obtained by solving the convex pro-
gram

min
W,Γ

et(W,Γ ),
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which in turn can be put in form of the following linear program, thanks to the
introduction of the additional variables ξi, i = 1, . . . ,m and ζl, l = 1, . . . , k:

(Wt+1, Γt+1) = arg min
1

m

m∑
i=1

ξi +
1

k

k∑
l=1

(ζl − bTl wjl + γjl + 1)

ξi ≥ 0 i = 1, . . . ,m

ξi ≥ aTi wj − γj + 1, j = 1, . . . , h, i = 1, . . . ,m

ζl ≥ 0 l = 1, . . . , k

ζl ≥ bTl wj − γj − 1, j = 1, . . . , h, l = 1, . . . , k.

(17)

Summing up, the DCA based algorithm for the minimization of (11) can
be stated as follows:

0. Choose W0 ∈ Rn×h, Γ0 ∈ Rh and a tolerance ε. Set t = 0;

1. Set gt ∈ ∂êt2(Wt, Γt);

2. Set (Wt+1, γt+1) as a solution of (17);

3. If |e(Wt+1, Γ t+ 1)− e(Wt, Γ t)| ≤ ε terminate.

Otherwise, increase t by 1 and return to step 1.

The above algorithm is a descent method. It is easy to verify that, if
e(Wt+1, Γt+1) = e(Wt, Γt), then (Wt, Γt) is a critical point, i.e.

∂ê1(Wt, Γt) ∩ ∂ê2(Wt, Γt) 6= ∅ .

Hence, this result provides the stopping criterion at step 3. For more theoretical
details and the convergence theorem see [23,24].

Following the SVM paradigm, aimed at obtaining a good generalization
capability, we have added to ê1(W,Γ ) in (11) the margin term:

1

2

h∑
j=1

‖wj‖2, (18)

thus coming out with the following DC model:

ē(W,Γ ) =

C

2

h∑
j=1

‖wj‖2 + ê1(W,Γ )

− ê2(W,Γ ), (19)

where C > 0 is a tradeoff parameter between the two objectives of maximiz-
ing the margin and minimizing the classification error. The minimization of
(19) can be addressed by DCA, too. In this case, at each iteration we have
to solve a quadratic program that differs from the linear program (17) only
for the quadratic margin term (18). Consequently, the algorithmic scheme is
unchanged except for the step 2 where a quadratic program has to be solved.



Polyhedral Separation via Difference of Convex (DC) Programming 7

4 Numerical experiments

In the numerical experiments we have implemented two DCA codes:

– h-PolSepDC, where we minimize (11) (the separation problem with no
separation margin) by solving at each iteration the linear program (17);

– h-PolSepDC-QP, where we minimize (19) (a margin has been accounted
for) by solving at each iteration a quadratic program.

In particular, we have chosen h = 2 according to the hyperparameter tuning
performed in [5].

Moreover, since the role of the sets A and B is not symmetric in the defini-
tion of polyhedral separability, in the numerical experiments one has to define
who is A and B in any dataset. So, we have called set A the one with less
number of points, following, also for this issue, the rule adopted in [5].

We have used MATLAB R2015b calling CPLEX library, under a 2,6 GHz
Intel Core i7 processor, on an OS X 10.12.6 operating system.

To evaluate the impact of the DC decomposition of the error function (7)
with respect to the classic nonsmooth optimization approach, we have reimple-
mented, in MATLAB, the algorithm proposed in [5] (2-PolSep code). Finally,
for sake of completeness we have also used the standard MATLAB SVM pack-
age to run the linear separability classification problem (SVM-LINEAR code).

We have considered several test problems drawn from the binary classifi-
cation literature which are described in Table 1. In particular, all datasets are
taken from the LIBSVM (LIBrary for Support Vector Machines) repository
[11], except for g50c and g10n, which are described in [12].

Table 1 Datasets

# Dataset Space dimension #Samples

1 Cancer 9 699
2 Diagnostic 30 569
3 Heart 13 297
4 Pima 8 769
5 Ionosphere 34 351
6 Sonar 60 208
7 Galaxy 14 4192
8 g50c 50 550
9 g10n 10 550

10 Mushrooms 22 8124
11 Prognosis 32 110
12 Tic Tac Toe 9 958
13 Votes 16 435
14 Letter-a 16 20000
15 a9a 123 1605

For all datasets we have performed a standard ten-fold cross-validation
protocol and in Table 2 we summarize the LP/QP problems solved at each
fold, in terms of number of variables and constraints.
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Table 2 The number of variables/constraints

Dataset # of vars # of constrs

1 649 1887
2 574 1536
3 295 801
4 710 2076
5 386 948
6 309 561
7 3803 11319
8 597 1485
9 517 1485
10 7358 21936
11 165 297
12 882 2586
13 426 1176
14 18034 54000
15 1693 4335

For each approach, in the columns Train and Test of Table 3 we report the
average percentage of training and testing correctness, respectively. The best
results in terms of testing correctness have been underlined.

A preliminary tuning for the parameter C in 2-PolSepDC-QP and SVM-
LINEAR codes has been performed and we have selected, for each dataset,
that value optimizing the performance on the testing set.

Table 3 Training and testing correctness percentage

#
2-PolSep 2-PolSepDC 2-PolSepDC-QP SVM-LINEAR

Train Test Train Test Train Test Train Test

1 97.77 97.36 97.77 97.37 97.72 97.66 97.72 97.21
2 98.54 97.18 99.53 95.78 98.22 97.89 98.79 97.53
3 86.31 84.18 86.34 83.84 85.52 84.84 86.16 84.51
4 76.62 75.12 76.98 75.12 76.68 75.64 76.65 75.38
5 96.11 87.76 97.97 87.23 92.24 88.94 93.38 87.20
6 99.04 67.16 100.00 69.61 88.35 70.99 94.50 62.84
7 94.56 94.08 95.76 95.35 95.09 94.63 95.59 95.30
8 100.00 94.38 100.00 91.63 96.61 95.29 99.01 92.38
9 100.00 94.38 100.00 91.63 96.61 95.29 99.01 92.38

10 80.06 72.66 85.80 77.23 83.47 80.28 80.07 72.85
11 71.92 69.11 90.39 63.65 68.39 69.18 78.79 64.65
12 61.89 53.22 81.00 81.04 81.00 81.04 63.02 55.43
13 96.68 94.25 96.91 94.95 96.14 95.19 96.25 94.25
14 98.30 98.24 96.31 96.23 97.24 97.24 96.31 96.24
15 – – 78.83 78.47 77.99 77.88 79.83 79.56

The numerical results indicate the good performance, in terms of correct-
ness, of the DC-based approaches w.r.t. both the algorithm [5] and standard
SVM. In particular, the DC model, equipped with margin maximization (Code
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Table 4 CPU time (secs)

#
2-PolSep 2-PolSepDC 2-PolSepDC-QP SVM-LINEAR

Time Time Time Time

1 0.82 0.09 1.39 0.05
2 2.13 0.46 1.16 0.12
3 0.48 0.02 0.19 0.22
4 4.74 0.17 1.62 0.32
5 1.21 0.18 1.41 0.31
6 1.41 0.05 0.47 0.28
7 266.47 54.25 19.00 1.81
8 4.61 0.42 0.85 0.43
9 4.63 0.41 0.82 0.42

10 303.69 5.93 7.06 4.82
11 0.13 0.02 0.08 0.15
12 2.90 0.13 1.73 0.25
13 0.18 0.08 0.95 0.11
14 696.62 287.96 573.72 29.22
15 – 954.32 381.12 1230.74

2-PolSepDC-QP) has provided the best testing correctness in 13 out of 15
datasets. By comparing 2-PolSepDC and 2-PolSepDC-QP we can observe that
the addition of margin provides a better testing correctness except for galaxy
and a9a datasets. On the contrary, 2-PolSepDC has a better performance in
terms of training correctness except for Tic Tac Toe and letter-a datasets.
This means that the classifier coming out from 2-PolSepDC-QP has a higher
generalization capability.

As for computation time (see Table 4), the DC decomposition has been
much more effective than 2-PolSep method. Moreover, the increase in compu-
tation time with respect to single-hyperplane separation model SVM-LINEAR
has not been particularly severe.

2-PolSep and the 2-PolSepDC are different algorithms to solve the same
problem, i.e. the minimization of (11). By comparing the objective function
values obtained by the two codes starting from the same initial point, we note
that the second approach provides better solutions but the difference is not so
significant.

Since in the definition of polyhedral separability the role of the sets A
and B is not symmetric, we compare the results also in terms of recall, speci-
ficity, precision and F1score (see Table 5). The trend of these key performance
indicators confirms the goodness of the DC-based approaches.

For completeness, we have have launched both the codes h-PolSepDC and
h-PolSepDC-QP with h > 2. The running time is not dramatically larger but
the numerical experiments show that there is no significant improvement in
terms of correctness. Even worse, in some cases the improvement of training
performance is not accompanied with an improvement of testing one. This
proves that a high value of h -number of hyperplanes- provides classifiers with
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Table 5 Numerical Results

# Code
Training set Testing set

Rec. Sp. Pr. F1s. Rec. Sp. Pr. F1s.

1

2-PolSep 0.98 0.97 0.95 0.97 0.98 0.97 0.95 0.96
2-PolSepDC 0.99 0.97 0.95 0.97 0.98 0.97 0.95 0.96

2-PolSepDC-QP 0.98 0.98 0.96 0.97 0.98 0.97 0.95 0.97
SVM-LINEAR 0.98 0.97 0.95 0.97 0.97 0.97 0.95 0.96

2

2-PolSep 0.99 0.98 0.99 0.99 0.97 0.97 0.98 0.98
2-PolSepDC 0.99 1.00 1.00 1.00 0.96 0.96 0.98 0.97

2-PolSepDCQP 0.99 0.97 0.98 0.99 0.99 0.96 0.98 0.98
SVM-LINEAR 0.99 0.98 0.99 0.99 0.98 0.97 0.98 0.98

3

2-PolSep 0.85 0.90 0.96 0.90 0.84 0.85 0.94 0.88
2-PolSepDC 0.85 0.90 0.96 0.90 0.84 0.84 0.93 0.88

2-PolSepDC-QP 0.85 0.88 0.95 0.89 0.84 0.87 0.94 0.89
SVM-LINEAR 0.85 0.90 0.96 0.90 0.84 0.85 0.94 0.89

4

2-PolSep 0.73 0.79 0.65 0.68 0.69 0.79 0.64 0.66
2-PolSepDC 0.73 0.79 0.65 0.69 0.69 0.78 0.63 0.66

2-PolSepDC-QP 0.73 0.79 0.65 0.69 0.71 0.78 0.64 0.67
SVM-LINEAR 0.72 0.79 0.65 0.68 0.69 0.79 0.64 0.66

5

2-PolSep 0.96 0.97 0.98 0.97 0.92 0.81 0.90 0.90
2-PolSepDC 0.98 0.98 0.99 0.98 0.90 0.82 0.90 0.90

2-PolSepDC-QP 0.96 0.86 0.92 0.94 0.96 0.75 0.88 0.92
SVM-LINEAR 0.95 0.91 0.95 0.95 0.93 0.76 0.88 0.90

6

2-PolSep 1.00 0.99 0.98 0.99 0.64 0.70 0.66 0.64
2-PolSepDC 1.00 1.00 1.00 0.75 1.00 0.65 0.68 0.70

2-PolSepDC-QP 0.90 0.87 0.86 0.88 0.79 0.65 0.70 0.72
SVM-LINEAR 0.96 0.94 0.93 0.94 0.63 0.63 0.61 0.61

7

2-PolSep 0.94 0.95 0.95 0.95 0.94 0.95 0.95 0.94
2-PolSepDC 0.96 0.95 0.95 0.96 0.95 0.96 0.96 0.95

2-PolSepDC-QP 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.94
SVM-LINEAR 0.96 0.95 0.95 0.96 0.95 0.96 0.96 0.95

8

2-PolSep 1.00 1.00 1.00 0.93 1.00 0.95 0.95 0.94
2-PolSepDC 1.00 1.00 1.00 0.92 1.00 0.92 0.92 0.92

2-PolSepDC-QP 0.96 0.97 0.97 0.97 0.95 0.96 0.96 0.95
SVM-LINEAR 0.99 0.99 0.99 0.99 0.93 0.91 0.92 0.92

9

2-PolSep 1.00 1.00 1.00 0.93 1.00 0.95 0.95 0.94
2-PolSepDC 1.00 1.00 1.00 0.92 1.00 0.92 0.92 0.92

2-PolSepDC-QP 0.96 0.97 0.97 0.97 0.95 0.96 0.96 0.95
SVM-LINEAR 0.99 0.99 0.99 0.99 0.93 0.91 0.92 0.92

10

2-PolSep 0.75 0.85 0.85 0.80 0.64 0.82 0.83 0.66
2-PolSepDC 0.83 0.89 0.89 0.86 0.76 0.79 0.84 0.76

2-PolSepDC-QP 0.74 0.93 0.92 0.82 0.70 0.92 0.92 0.77
SVM-LINEAR 0.75 0.85 0.85 0.80 0.65 0.82 0.83 0.66

11

2-PolSep 0.70 0.73 0.61 0.65 0.68 0.70 0.67 0.62
2-PolSepDC 0.93 0.89 0.84 0.88 0.62 0.65 0.51 0.62

2-PolSepDC-QP 0.66 0.70 0.57 0.61 0.68 0.70 0.64 0.62
SVM-LINEAR 0.79 0.79 0.69 0.73 0.61 0.67 0.54 0.61

12

2-PolSep 0.62 0.62 0.76 0.68 0.49 0.62 0.69 0.56
2-PolSepDC 0.71 1.00 1.00 0.83 0.71 1.00 1.00 0.82

2-PolSepDC-QP 0.71 1.00 1.00 0.83 0.71 1.00 1.00 0.82
SVM-LINEAR 0.63 0.64 0.77 0.69 0.51 0.64 0.72 0.58

13

2-PolSep 0.98 0.96 0.93 0.96 0.95 0.94 0.91 0.93
2-PolSepDC 0.98 0.96 0.94 0.96 0.95 0.95 0.92 0.94

2-PolSepDC-QP 0.99 0.94 0.92 0.95 0.98 0.94 0.91 0.94
SVM-LINEAR 0.98 0.95 0.92 0.95 0.95 0.94 0.91 0.93

14

2-PolSep 0.96 0.95 1.00 0.98 0.96 0.95 1.00 0.98
2-PolSepDC 0.96 0.95 1.00 0.98 0.96 0.95 1.00 0.98

2-PolSepDC-QP 0.97 0.94 1.00 0.99 0.97 0.94 1.00 0.99
SVM-LINEAR 0.96 0.95 1.00 0.98 0.96 0.95 1.00 0.98

15

2-PolSepDC 0.89 0.75 0.54 0.67 0.89 0.75 0.53 0.67
2-PolSepDC-QP 0.89 0.74 0.53 0.66 0.89 0.74 0.52 0.66

SVM-LINEAR 0.87 0.78 0.55 0.67 0.86 0.78 0.55 0.67

a smaller generalization capability. For instance, we report some results (see
Tables 6-7).

5 Conclusions

We have adopted a Difference of Convex decomposition of the error function
in polyhedral separation and have tackled the resulting optimization problem
via DCA algorithm.
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Table 6 Percentage of correctness with h-PolSepDC (h ≥ 2)

#
h = 2 h = 3 h = 5 h = 10

Train Test Train Test Train Test Train Test

1 97.77 97.37 97.91 97.07 97.91 97.22 97.91 97.22
2 99.53 95.78 99.92 94.55 99.92 94.39 99.92 94.39
3 86.34 83.84 86.34 83.84 – – – –
4 76.98 75.12 74.86 73.43 – – 74.83 73.56
5 97.97 87.23 97.63 87.49 100.00 86.33 100.00 87.76
6 100.00 69.61 100.00 70.61 100.00 70.61 100.00 70.61
7 95.76 95.35 95.76 95.35 – – 95.74 95.30
8 100.00 94.03 100.00 89.46 100.00 89.46 – –
9 100.00 94.03 100.00 89.46 – – – –

10 85.80 77.23 86.00 77.38 86.93 77.97 86.93 77.97
11 90.39 63.65 90.39 64.65 90.39 64.65 90.39 64.65
12 81.00 81.04 81.00 81.04 – – – –
13 96.91 94.95 96.99 94.49 97.09 94.49 97.09 94.49
14 96.31 96.23 96.31 96.23 – – – –

Table 7 Percentage of correctness with h-PolSepDC-QP (h ≥ 2)

#
h = 2 h = 3 h = 5 h = 10

Train Test Train Test Train Test Train Test

1 97.72 97.66 97.72 97.65 – – – –
2 98.22 97.89 98.26 97.89 – – – –
3 85.52 84.84 85.52 84.84 – – – –
4 76.68 75.64 75.39 73.69 76.53 74.22 76.79 73.43
5 92.24 88.94 93.26 88.35 93.19 88.10 – –
6 88.35 70.99 88.56 71.01 – – – –
7 95.59 95.30 95.07 94.58 – – – –
8 96.61 95.29 96.61 95.29 – – – –
9 96.61 95.29 96.61 95.29 – – – –

10 83.47 80.28 83.47 80.28 – – – –
11 68.39 69.18 68.39 69.18 68.39 69.18 68.39 69.18
12 81.00 81.04 81.00 81.04 – – – –
13 96.14 95.19 96.09 95.19 96.07 95.19 – –
14 97.24 97.24 97.21 97.11 – – – –

The numerical results we have obtained demonstrate the good performance
of the approach both in terms of classification correctness and computation
time.

Future research would investigate the integration between feature selection
[15] and polyhedral separation aimed at detecting a possibly smaller subsets
of significant attributes in terms of classification correctness.
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