
manuscript No.
(will be inserted by the editor)

Some Modified Fast Iteration Shrinkage Thresholding
Algorithms with a New Adaptive Non-monotone Stepsize
Strategy for Nonsmooth and Convex Minimization Problems

Hongwei Liu1 · Ting Wang1 · Zexian Liu23 ·

Received: date / Accepted: date

Abstract The “ fast iterative shrinkage-thresholding algorithm ” (FISTA) is one of the
most famous first order optimization scheme, and the stepsize, which plays an important
role in theoretical analysis and numerical experiment, is always determined by a con-
stant related to the Lipschitz constant or by a backtracking strategy. In this paper, we
design a new adaptive non-monotonic stepsize strategy (NMS), which allows the step-
size increases monotonically after finite iterations. It is remarkable that NMS can be
successfully implemented without knowing the Lipschitz constant or without backtrack-
ing. And the additional cost of NMS is less than the cost of some existing backtracking
strategies. For using NMS to the original FISTA (FISTA NMS) and the modified FISTA
(MFISTA NMS), we show that the convergence results stay the same. Moreover, under
the error bound condition, we show that FISTA NMS achieves the rate of convergence
to o

(
1
k6

)
and MFISTA NMS enjoys the convergence rate related to the value of parame-

ter of tk, that is o
(

1
k2(a+1)

)
; And the iterates generated by the above two algorithms are

strong convergent. In addition, by taking advantage of the restart technique to acceler-
ate the above two methods, we establish the linearly convergences of the function value
and iterates under the error bound condition. Similar results can not be obtained if we
use the backtracking schemes. We conduct some numerical experiments to examine the
effectiveness of the proposed algorithms.

Keywords FISTA, Proximal-based method, Adaptive non-monotone stepsize strategy,
Inertial forward-backward algorithms, Convergence rate, Convex optimization

Mathematics Subject Classification (2000) 94A12 · 65K10 · 94A08 · 90C06 · 90C25 ·

Ting Wang ())
E-mail: wangting 7640@163.com

Hongwei Liu
E-mail: hwliu@mail.xidian.edu.cn

Zexian Liu
E-mail: liuzexian2008@163.com

1 School of Mathematics and Statistics, Xidian University, Xi’an, 710126, China
2 School of Mathematics and Statistics, Guizhou University, Guiyang, 550025, China
3 State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Math-
ematics and Scientific/Engineering computing, AMSS, Chinese Academy of Sciences, Beijing, 100190,
China.

2

1 Introduction

We consider the non-smooth optimization problem:
(P) min

x∈Rn
F (x) = f (x) + g (x) .

The following assumptions are made throughout the paper:
A) g : Rn →]−∞,+∞] is a proper, convex, “ proximal-friendly ” [10] and lower semi-
continuous function.
B) f : Rn →]−∞,+∞[is a smooth convex function and continuously differentiable with
Lipschitz continuous gradient, i.e., there exists a Lipschitz constant Lf such that for every
x, y ∈ Rn, ‖∇f (x)−∇f (y)‖ ≤ Lf ‖x− y‖ and ‖·‖ denotes the standard Euclidean norm.
C) Problem (P) is solvable, i.e., X∗ := arg minF 6= ∅, and for x∗ ∈ X∗ we set F ∗ := F (x∗) .

Problem (P) arises in many contemporary applications such as machine learning [24],
compressed sensing [12], and image processing [7]. And due to the importance and the
popularity of the problem (P), various attempts have been made to solve it efficiently,
especially when the problem instances are of large scale. One popular class of methods
for solving problem (P) are first-order methods due to their cheap iteration cost and good
convergence properties. Among them, the proximal gradient (PG) method [13,16,21] is
arguably the most fundamental one, in which the basic iteration is

xk+1 = proxλkg (xk − λk∇f (xk)) , λk ∈
]
0, 1
/
Lf
]
, (1)

where proxλg (·) = arg min
x

{
g (x) + 1

2λ‖x− ·‖
2} denotes the proximal operator of g, and

λk indicates the stepsize and has an upper bound related to Lipschitz constant. The
convergence of PG has been well studied in the literature under various contexts and
frameworks (The detailed information can be referred to [6,8,17,19]). However, PG can
be slow in practice, see, for example, [23].

Various ways have thus been made to accelerate the proximal gradient algorithm. By
performing the extrapolation technique, a prototypical algorithm takes the following form:

yk+1 = xk + γk (xk − xk−1) ,
xk+1 = pλk+1g (yk+1) ,

(2)

where γk is the extrapolation parameter satisfying 0 ≤ γk ≤ 1, λk+1 ∈
]
0, 1
/
Lf
]
, and

pλg (y) = arg min
x

{Qλ(x, y)}= proxλg (y − λ∇f (y)) . (3)

Here Q(x, y) be the approximation function of F (x) at the given point y, where

Qλ (x, y) = g (x) + f (y) + 〈∇f (y) , x− y〉+ 1

2λ
‖x− y‖2, ∀x ∈ Rn. (4)

One representative algorithm that takes the form of (2) and with the extrapolation
parameter

γk =
tk − 1

tk+1
, where t1 = 1, tk+1=

1+
√

1 + 4t2k

2
(5)

is the fast iterative shrinkage-thresholding algorithm (FISTA), which was proposed by Beck
and Teboulle [4] and was based on the idea that introduced and developed by Nesterov [20]
for minimizing a smooth convex function. The stepsize λk can be dynamically updated to
estimate the Lipschitz constant Lf by a backtracking stepsize rule. FISTA is a very effective
algorithm that keeps the simplicity scheme like PG and improves the convergence rate of
objective function value to O

(
1
/
k2
)

for solving the problem (P); hence, it has become
a standard algorithm [16] and motivated subsequent studies on the extrapolation scheme
(2), see, for example, [5,22,23,28]. Though FISTA is surprisingly efficient, the convergence
of the whole iterative sequence generated by FISTA is still unclear [11,29]. Chambolle and

3

Dossal [11] established the convergence of the sequence generated by FISTA with the new

parameter γk = k−1
k+a for a fixed a > 2 and the assumption λk ∈

]
0, 1
Lf

]
, for problem (P).

Furthermore, Attouch and Peypouquet [1] proved that the convergence rate of function
value generated by the algorithm in [11] is o

(
1
k2

)
and they considered the convergence of

iterates and the rate of convergence of function value for the scheme of (2) with various
options of extrapolation parameter γk in [2]. Under the error bound conditon, Wen, Chen
and Pong [29] showed that there exists a threshold depending on the Lipschitz constant Lf
such that if γk is below this threshold, then the sequence generated by (2) is R−linearly
convergent when f in problem (P) is possible nonconvex. As we see, at least one parameter
in these algorithm such as [1,2,11,29] is directly related to the Lipschitz constant, which
results in that the algorithm implementation as well as the theoretical analysis rely heavily
on the Lipschitz constant.

Backtracking for estimating Lipschitz constant works well in practice but the principal
drawback is that the stepsize λk generated by the backtracking strategy in FISTA is non-
increasing, which can substantially limit the performance of FISTA when a small stepsize
is encountered early in the algorithm since this causes the stepsize taken at that point, and
at all subsequent iterates, to be very small. Scheinberg [26] develop a new backtracking
strategy, which allows stepsize to increase. This new backtracking strategy [26] starts
with a new initial value at the beginning of each iteration, rather than the stepsize of
last iteration like the backtracking in FISTA, and estimates the local Lipschitz constant
Lk, which is often smaller than Lf . Hence, 1

Lk
may be a better estimate for the stepsize

than 1
Lf
. With this new backtracking strategy, they proposed a new versions of accelerated

FISTA (FISTA BKTR), which reduces the number of iteration greatly and the calculating
cost is less more than the one in backtracking rule of original FISTA, and the convergence
result is still O

(
1
/
k2
)
.

It is natrual that each time the backtracking step operates, the calculating cost of
algorithm will increase. Although both of the mentioned backtracking strategies works
well, we still pursue to develop a stepsize strategy, which dose not use the backtracking
procedure and can bring some numerical improvements and some new theoretical results.
In this paper, we exploit a new adaptive non-monotone stepsize technique (NMS) to de-
termine λk in (2), where the stepsize increases monotonically after finite interations. We
prove that FISTA with NMS keeps O

(
1
/
k2
)

convergence rate of the objective function
value, which is similar with original FISTA and FISTA BKTR. By using the new choice
of tk in FISTA [11] and the new adaptive non-monotone technique, we present a modified
FISTA with NMS which also achieves o

(
1
k2

)
convergence rate of the objective function

value. Also, the convergence of the iterative sequence is established without dependence
on the Lipschitz constant Lf unlike the analysis in [11]. Meanwhile, we prove that both
of those two algorithms with NMS enjoy o

(
1
k

)
convergent rate of the norm of subdiffer-

ential of the objective function. Furthermore, under the error bound condition, we prove
that FISTA and FISTA CD with NMS can achieve some improved convergence rates for
objective function value and iterates convergent strongly; we also take advantage of the
restart technique in [23] to accelerate the above FISTA methods with NMS, and establish
the linear convergences of the function value and iterative sequence under the error bound
condition.

The reminder of the paper is organized as follows. In Section 2, we provide a new adap-
tive non-monotone stepsize strategy. In Section 3, we propose an algorithm FISTA NMS
by combining FISTA with the new adaptive non-monotone technique, which ensures the
similar convergence rate of the objective function value with FISTA, and a greater conver-
gence rate of the norm of subdifferential of function value than FISTA. In Section 4, with
a small modification, we present a MFISTA NMS which has similar theoretical results
like [1,11,25]. In Section 5, we use the restart technique in [23] to accelerate the above
methods and establish the linear convergences of the function value and iterates under

4

the error bound condition. Numerical results are reported in Section 6. In the last section,
conclusions and discussions are presented.

2 Adaptive non-monotone stepsize strategy

In this section, we present a new adaptive non-monotone stepsize strategy.

Denote that the computations of tk+1 :=
1+
√

1+4θkt2k
2 and yk+1 := xk+ tk−1

tk+1
(xk − xk−1)

by (tk+1, yk+1) = FistaStep (xk, xk−1, tk, θk) .

We first state the algorithms of FISTA with backtracking [4] and the detailed algorithm
of FISTA BKTR [26] as follows.

Algorithm 1 FISTA with backtracking
Step 0. Set t1 = 1 and y1 = x0, λ0 > 0; η < 1.
Step k. (1) Finding the smallest nonnegative integers ik such that with λk = ηikλk−1

F
(
pλkg (yk)

)
≤ Qλk

(
pλkg (yk) , yk

)
. (6)

(2) compute (tk+1, yk+1) = FistaStep (xk, xk−1, tk, 1)

Since that (6) holds if λk ≤ 1
Lf
, we have that λk >

η
Lf
, which means that the lower

bound of stepsize is related to Lf , and λk in Algorithm 1 can be seen an estimate for
the global Lipschitz constant. It is easy to obtain that there are at most log 1

η

(
λ0Lf

)
+ 1

backtracking steps at each iteration [26]. Each time the backtracking performs, pλkg (yk)
and f

(
pλkg (yk)

)
must be recomputed, that is the main cost of FISTA backtracking.

To obtain larger stepsize than Algorithm 1, The following Algorithm 2 propose a new
backtracking step rule, which starts with a new initial value at the beginning of each
iteration and can be reduced to Algorithm 1 if we set λ0

k = λk−1.

Algorithm 2 FISTA BKTR

Step 0. Set t1 = 1, t0 = 0, 0 < β < 1, θ0 = 1 and y1 = x0 = x−1, λ0
1 > 0;

Step k. (1) Set λk := λ0
1, and compute ∇f (yk) , pλk (yk)

(2) If F
(
pλk (yk)

)
> Qλk

(
pλk (yk) , yk

)
,

set λk := βλk, θk−1 := θk−1/β
(tk, yk) = FistaStep (xk−1, xk−2, tk−1, θk−1)

return to (2)
(3) xk := pλk (yk)

choose λ0
k+1 > 0 and set θk−1 := λk/λ

0
k+1

(tk+1, yk+1) = FistaStep (xk, xk−1, tk, θk)

We see that the updating θk equivalent to θk = λk
λk+1

and λk in Algorithm 2 is an

estimate for the local Lipschitz constant, while the λk in Algorithm 1 is an estimate global
of Lipschitz constant. Similar to the analysis of Algorithm 1, the lower bound of stepsize is
related to the local Lipschitz constant Lk for∇f (x) restricted to the interval

[
pλkg (yk) , yk

]
for any λk ≤ 1

Lk
, which is less than or equals to Lf . If the backtracking step performed, the

values of f (yk) , ∇f (yk) , pλkg (yk) and f
(
pλkg (yk)

)
must be recomputed. Here, we can

see that computation of f (yk) and ∇f (yk) will be additional costs over against Algorithm
1 for the case that ∇f is non-linear; otherwise, those computation can be negligible. Since
the option of initial stepsize is related to the number of backtracking steps closely, based on
the idea of Nesterov [21], the author choose λ0

k = λk
σ (σ ≥ η) to reduce the total number of

backtracking steps to [1+ lnσ
ln η] (Iter + 1)+ 1

ln η [ln σλ0

η/Lf
]+, where Iter means the total number

5

of iterations of Algorithm 2. When we set σ = η, the average number of backtracking steps
at each iteration is 2.

Although Algorithm 2 greatly reduces the number of cycle of the internal loop, and
generates better stepsize, it still may have additional costs per backtracking step, espe-
cially, when the function f is non-linear, the computations of f (yk) , ∇f (yk) , pλkg (yk)
and f

(
pλkg (yk)

)
will occupy the CPU time. Hence, we design a stepsize strategy that

directly gives the stepsize at each iteration, which avoids any extra computations due to
line search. We present the adaptive non-monotone stepsize strategy as follows.

Algorithm 3 Adaptive non-monotone stepsize strategy

Let {xk} , {yk} be generated by the scheme of FISTA, and
∞∑
k=1

Ek is a convergent nonnegative series.

Set 0 < µ1 < µ0 < 1.
if 〈∇f (xk)−∇f (yk) , xk − yk〉 > µ0

λk
‖xk − yk‖2 holds, set

λk+1 = µ1
‖xk − yk‖2

〈∇f (xk)−∇f (yk) , xk − yk〉
, (7)

otherwise,

λk+1 = λk (1+Ek) . (8)

In Algorithm 3, we use the condition

〈∇f (x)−∇f (y) , x− y〉 ≤ µ0

λ
‖x− y‖2, where µ0 ∈]0, 1[, (9)

to control the increase or decrease of the stepsize λk. When the condition (9) does not
holds, the stepsize λk is determined by (7), which implies that λk+1 < λk. Conversely,

λk+1 ≥ λk. The
∞∑
k=1

Ek is called control series, which can be corrected adaptively for

better control of stepsize growth. For the choice Ek, we will discuss later in this section.
It is remarkable that it is not required to know the Lipschitz constant or use a line

search procedure when one uses Algorithm 3 to determine the stepsize λk. Now we study
some significant properties of the stepsize {λk} generated by Algorithm 3.

Lemma 2.1 Let {λk} be the sequence generated by Algorithm 3. We have that the sequence

{λk} is convergent, and

λk ≥ λmin = min

{
λ1,

µ1

Lf

}
, ∀k ≥ 1. (10)

Proof. First, we prove that ∀k ≥ 1, λk ≥ min
{
λ1,

µ1

Lf

}
holds by induction.

For k = 1, the conclusion is obvious. Suppose that for ∀p > 1 such that for k = p, the
conclusion holds. Then, for k = p+ 1, there are two situations:
(1) λp+1 is generated by (7). We obtain

λp+1 = µ1
‖xp − yp‖2

〈∇f (xp)−∇f (yp) , xp − yp〉
≥ µ1

Lf
, (11)

the inequality is follows from the fact that f is Lipschitz continuous gradient.
(2) λp+1 is generated by (8). We obtain

λp+1 ≥ λp ≥ min(λ1,
µ1

Lf
). (12)

6

From (11) and (12), we conclude that ∀k ≥ 1, λk ≥ min
{
λ1,

µ1

Lf

}
holds for ∀k ≥ 1.

Denote that

lnλi+1 − lnλi = (lnλi+1 − lnλi)
+ − (lnλi+1 − lnλi)

−
, (13)

where (·)+ = max{0, ·}, (·)− = −min{0, ·}. Following the fact that

lnλi+1 − lnλi ≤ ln (1 + Ei) ≤ Ei, ∀i ≥ 1, (14)

we have

(lnλi+1 − lnλi)
+ ≤ Ei,∀i = 1, 2, · · · , (15)

which implies that
∑∞
i=1 (lnλi+1 − lnλi)

+ is convergent from the fact that
∑∞
i=1 Ei is a

convergent nonnegative series.
The convergence of

∑∞
i=1 (lnλi+1 − lnλi)

− also can be proved as follows.

Assume by contradiction that
∑∞
i=1 (lnλi+1 − lnλi)

−= +∞. Based on the convergence

of
∑∞
i=1 (lnλi+1 − lnλi)

+ and the equality

lnλk+1 − lnλ1=
k∑
i=1

(lnλi+1 − lnλi)

=
k∑
i=1

(lnλi+1 − lnλi)
+ −

k∑
i=1

(lnλi+1 − lnλi)
−

(16)

we can easily deduce lim
k→∞

lnλk = −∞, which is a contradiction with λk ≥ min
{
λ1,

µ1

Lf

}
>

0. As a result,
∑∞
i=1 (lnλi+1 − lnλi)

− is a convergent series. Then, in view of (16), we
obtain the sequence {λk} is convergent. �

Lemma 2.2 For the sequence {λk} generated by Algorithm 3, there exists a positive integer

k̂ ≥ 1 such that condition (9) holds constantly for every k > k̂.

Proof. Suppose the conclusion is not true, i.e. there exists a sequence
{
kj
}
, where kj →∞,

such that ∥∥xkj − ykj∥∥2
<

λkj
µ0

〈
∇f
(
xkj
)
−∇f

(
ykj
)
, xkj − ykj

〉
=

λkj
λkj+1

1
µ0
λkj+1

〈
∇f
(
xkj
)
−∇f

(
ykj
)
, xkj − ykj

〉
=

λkj
λkj+1

µ1

µ0

∥∥xkj − ykj∥∥2
.

(17)

Combining this with the fact

lim
j→∞

λkj
λkj+1

µ1

µ0
=
µ1

µ0
< 1, (18)

which follows from Lemma 2.1, we obtain∥∥xkj − ykj∥∥2
<
∥∥xkj − ykj∥∥2

, for j sufficient large, (19)

which is a contradiction. Therefore, (9) will holds constantly after a finite iterations k̂. �
For the rest of this article, we always denote that k0 = k̂ + 1 is the first positive

integer such that λk satisfy the condition (9), which means that condition (9) holds for
any k ≥ k0. It follows from Lemma 2.2 that the stepsize {λk} generated by Algorithm 3
increase monotonically after k̂ step.

According to Lemma 2.1 and Lemma 2.2, we can easily obtain the following conclusion.

7

Corollary 2.1 For the sequence {λk} generated by Algorithm 3, denote that lim
k→∞

λk = λ∗.

Then, for any k sufficient large, we have λk ≤ λk+1 ≤ λ∗.

Now, we discuss the choice of Ek. In Algorithm 3, we set Ek := wk
kp (p > 1) , where

wi is a nonnegative bounded constant. Generally, we set the value of p is close to 1. For
the choice of wk, we can adjust the value of wk based on the angle between the vectors

xk − xk−1 and xk−1 − xk−2. If the value 〈xk−xk−1,xk−1−xk−2〉
‖xk−xk−1‖‖xk−1−xk−2‖ is close to 1, it may be

caused by a small stepsize, then, we expect a larger stepsize. Hence, we can set the value
of wk adaptively. In the following, we give the details for setting wk.
Set wk = η1, if 〈xk − xk−1, xk−1 − xk−2〉 ≤ 0.9 ‖xk − xk−1‖ ‖xk−1 − xk−2‖ ;
set wk = η3, if 〈xk − xk−1, xk−1 − xk−2〉 ≥ 0.98 ‖xk − xk−1‖ ‖xk−1 − xk−2‖ ;
set wk = η2, otherwise, where 0 < η1 < η2 < η3. In the numerical experiment, η1 = 1, η2 =
2, η3 = 10.

3 FISTA algorithm with the adaptive non-monotone stepsize

Based on the adaptive non-monotone stepsize strategy, we present a accelerated FISTA
algorithm. This algorithm enjoys the O

(
1
/
k2
)

convergence rate of the objective function
value and o

(
1
k

)
convergence rate of the norm of subdifferential of function value.

We present the FISTA algorithm with the adaptive non-monotone stepsize (FISTA NMS)
as follows.

Algorithm 4 FISTA NMS
Step 0. Take y1 = x0 ∈ Rn, t1 = 1, 0 < µ1 < µ0 < 1 andλ1 > 0
Step k. compute

xk = pλkg (yk)
Set λk+1 via the adaptive non-monotone stepsize strategy (Algorithm 3)

tk+1 =
1+
√

1+4(λk/λk+1)t2k
2

yk+1 = xk + ((tk − 1)/tk+1) (xk − xk−1)

Next, we show the convergence result of Algorithm 4. For ease of description, we denote
several sequences firstly.
Notation 3.1 Let {xk} and {yk} be generated by the Algorithm 4 and x∗ is a fixed
minimizer of F. Then, for the convergence of objective function value holds, the sequence
{υk} tends to zero when n goes to infinity

vk := F (xk)− F
(
x∗
)
. (20)

The sequence {δk} means the local variation of the sequence {xk}

δk :=
1

2
‖xk − xk−1‖2, (21)

and the sequence {Γk} , denoting the distance between {yk} and
{
pλkg (yk)

}
, is

Γk :=
1

2
‖xk − yk‖2, (22)

and we define Φk is the distance between {xk} and a fixed minimizer {x∗}

Φk :=
1

2

∥∥xk − x∗∥∥2
. (23)

These definitions are frequently used in following proofs, and we declare that these defini-
tions are applicable to any algorithm in this paper.

We are now construct a key result and the theoretical analysis of the algorithms pro-
posed in this paper relies heavily on it.

8

Lemma 3.1 For any y ∈ Rn, µ0 ∈]0, 1] , if y and pλ (y) satisfy the condition (9), then, for

any x ∈ Rn,

F (x)− F (pλ (y)) ≥ µ̄

λ
‖pλ (y)− y‖2 +

1

λ
〈y − x, pλ (y)− y〉 . (24)

where µ̄ = 1− µ0

2 , if f is a quadratic function, µ̄ = 1− µ0, if f is a non-quadratic function.

Proof. Since f, g are convex, we have

f (x) ≥ f (y) + 〈x− y,∇f (y)〉 ,
g (x) ≥ g (pλ (y)) + 〈x− pλ (y) , γ (y)〉 , (25)

where γ (y) = −∇f (y)− 1
λ (pλ (y)− y) ∈ ∂g (pλ (y)) , and ∂g (·) denotes the subdifferential

of g (·) .
Then,

F (x)− F (pλ (y))
= f (x) + g (x)− f (pλ (y))− g (pλ (y))
≥ f (y) + 〈x− y,∇f (y)〉+

〈
pλ (y)− x,∇f (y) + 1

λ (pλ (y)− y)
〉
− f (pλ (y))

= f (y)− f (pλ (y)) + 〈pλ (y)− y,∇f (y)〉+ 1
λ 〈pλ (y)− x, pλ (y)− y〉

= f (y)− f (pλ (y)) + 〈pλ (y)− y,∇f (y)〉+ 1
λ 〈y − x, pλ (y)− y〉+ 1

λ‖pλ (y)− y‖2.

(26)

Denote

∆ = f (y)− f (pλ (y)) + 〈pλ (y)− y,∇f (y)〉+ 1

λ
〈y − x, pλ (y)− y〉+ 1

λ
‖pλ (y)− y‖2. (27)

The proof is derived by dividing the function into two cases.
1) In the case that f is a quadratic function, without loss of generality, assume that

f (x) =
1

2
xTAx+ bT x,∇f (x) = Ax+ b. (28)

It is easy to obtain that

f (x)− f (y) =
1

2
〈∇f (x) +∇f (y) , x− y〉 . (29)

Then,

∆ = 1
2 〈∇f (y) +∇f (pλ (y)) , y − pλ (y)〉+ 〈∇f (y) , pλ (y)− y〉

+ 1
λ 〈y − x, pλ (y)− y〉+ 1

λ‖pλ (y)− y‖2

= 1
2 〈∇f (y)−∇f (pλ (y)) , pλ (y)− y〉+ 1

λ 〈y − x, pλ (y)− y〉+ 1
λ‖pλ (y)− y‖2

≥ 1
λ

(
1− µ0

2

)
‖pλ (y)− y‖2 + 1

λ 〈y − x, pλ (y)− y〉 .

(30)

2) In the case that f is a non-quadratic function,

∆ ≥ 〈∇f (pλ (y)) , y − pλ (y)〉+ 〈∇f (y) , pλ (y)− y〉
+ 1
λ 〈y − x, pλ (y)− y〉+ 1

λ‖pλ (y)− y‖2

= 〈∇f (y)−∇f (pλ (y)) , pλ (y)− y〉+ 1
λ 〈y − x, pλ (y)− y〉+ 1

λ‖pλ (y)− y‖2

≥ 1
λ (1− µ0) ‖pλ (y)− y‖2 + 1

λ 〈y − x, pλ (y)− y〉 .

(31)

The last inequalities of (30) and (31) are from the condition (9).
By combining (26), (27), (30) and (31), we can easliy obtain (24). �

Remark 3.1. when µ̄ ≥ 1
2 , the result (24) of Lemma 3.1 will reduces to the lemma 2.3 in

[4]

F (x)− F (pλ (y)) ≥ 1

2λ
‖pλ (y)− y‖2 +

1

λ
〈y − x, pλ (y)− y〉 , (32)

which plays a crucial role for the analysis of FISTA.

9

We always choose the value range of µ0 ∈]0, 1[for the quadratic function and µ0 ∈]
0, 1

2

[
for the non-quadratic function, i.e. µ̄ > 1

2 , which means that Lemma 3.1 is a result
stronger than Lemma 2.3 of [4].

Further, it follows from the identity

〈a− b, a− c〉 =
1

2
‖a− b‖2 +

1

2
‖a− c‖2 − 1

2
‖b− c‖2, (33)

and (24) that

F (pλ (y)) + ‖pλ(y)−x‖2
2λ ≤ F (x) + ‖y−x‖2

2λ −
(

2µ̄−1
2λ

)
‖pλ (y)− y‖2

≤ F (x) + ‖x−y‖2
2λ , ∀x ∈ Rn, µ̄ > 1

2 .
(34)

We also prove a trivial fact about the {tk} generated by Algorithm 4.

Lemma 3.2 Let {tk} be generated by Algorithm 4. Then, we obtain that 1/tk = O (1/k) .

Proof. Rearranging the expression of tk+1, we have 2
√
λk+1tk+1 =

√
λk+1+

√
λk+1 + 4λkt

2
k.

Denote that wk =
√
λktk, then 2wk+1 =

√
λk+1 +

√
λk+1 + 4w2

k, it is easy to get that {wk}
increasing monotonically.

The following proves that lim
k→∞

wk = +∞. Suppose that lim
k→∞

wk = w < +∞. Using

Lemma 2.1 and Lemma 2.2, denoted lim
k→∞

λk = λ∗ > 0, we have 2w =
√
λ∗ +

√
λ∗ + 4w2,

which implies a contradiction that 4w2 − 4w
√
λ∗ = 4w2. Therefore, lim

k→∞
wk = +∞.

Using the Stolz theorem, we deduce

lim
k→∞

tk
k = lim

k→∞
wk√
λkk

= 1√
λ∗ lim

k→∞
(wk+1 − wk)

= 1√
λ∗ lim

k→∞
2
√
λk+1(√

λk+1/w2
k+4+2−

√
λk+1/w2

k

) = 1
2 .

(35)

Hence, we have 1/tk = O (1/k) . �
In the following theorem, we show that the convergence rate of the objective function

value and some other results which will be use to prove the convergence of {xk} generated
by Algorithm 4.

Theorem 3.1 (Convergence Rate) Let {xk} , {yk} be generated by the Algorithm 4. Then,

(a)

F (xk)− F
(
x∗
)
≤ O

(
1
/
k2
)
, ∀x∗ ∈ X∗ and ∀k ≥ 1. (36)

(b) The series
∞∑
k=1

k2‖xk − yk‖2 is convergent and lim inf
k→∞

k1.5 ‖xk − yk‖ = 0.

Proof. Invoking Lemma 2.2 and Lemma 3.1, we obtain that (24) holds for every k ≥ k0.

Denote that uk = tkxk − (tk − 1)xk−1− x∗. We apply the inequality (24) at the points
(x := xk, y := yk+1) with λ := λk+1, and likewise at the points (x := x∗, y := yk+1) , to get

λk+1 (vk − vk+1) ≥ µ̄‖xk+1 − yk+1‖2 + 〈xk+1 − yk+1, yk+1 − xk〉 , (37)

−λk+1vk+1 ≥ µ̄‖xk+1 − yk+1‖2 +
〈
xk+1 − yk+1, yk+1 − x∗

〉
. (38)

Multiplying the first inequality above by (tk+1 − 1) and adding it to the second inequality,
we have

λk+1 ((tk+1 − 1) vk − tk+1vk+1)

≥ µ̄tk+1‖xk+1 − yk+1‖2 + 〈xk+1 − yk+1, tk+1yk+1 − (tk+1 − 1)xk − x∗〉 .
(39)

10

Further, multiplying (39) by tk+1, and from the definition of tk, we obtain

λkt
2
kvk − λk+1t

2
k+1vk+1

≥ µ̄‖tk+1 (xk+1 − yk+1)‖2 + 〈tk+1 (xk+1 − yk+1) , tk+1yk+1 − (tk+1 − 1)xk − x∗〉
=1

2‖tk+1 (xk+1 − yk+1)‖2 + 〈tk+1 (xk+1 − yk+1) , tk+1yk+1 − (tk+1 − 1)xk − x∗〉
+
(
µ̄− 1

2

)
‖tk+1 (xk+1 − yk+1)‖2

= 1
2

(
‖uk+1‖2 − ‖uk‖2

)
+
(
µ̄− 1

2

)
‖tk+1 (xk+1 − yk+1)‖2.

(40)

Define the quantities ak = λkt
2
kvk, bk = 1

2‖uk‖
2. The above inequality (40) can be rewritten

by

ak − ak+1 ≥ (bk+1 − bk) +

(
µ̄− 1

2

)
‖tk+1 (xk+1 − yk+1)‖2 ≥ bk+1 − bk. (41)

It is not difficult to show that there exists a constant c > 0 such that

ak + bk ≤ ak0 + bk0 ≤ c, (42)

which implies that λkt
2
kvk ≤ c. Applying (10), we have

vk=F (xk)− F
(
x∗
)
≤ c

λkt
2
k

≤ c

λmint2k
, (43)

then, Lemma 3.2 yields the result that F (xk)− F (x∗) ≤ O
(
1
/
k2
)
.

Rearranging (41) we see that

(ak + bk)− (ak+1 + bk+1) ≥
(
µ̄− 1

2

)
‖tk+1 (xk+1 − yk+1)‖2.

Summing the inequality from k = Ns to k = N, where Ns is a sufficient large positive
integer, we obtain that

(aNs + bNs)− (aN+1 + bN+1) ≥
(
µ̄− 1

2

) N∑
k=Ns

‖tk+1 (xk+1 − yk+1)‖2, (44)

where µ̄− 1
2 > 0 based on the choice of µ0. Then, from ak+bk > 0 and Lemma 3.2 we have

∞∑
k=1

k2‖xk − yk‖2 is convergent. Further, we can easily obtain that lim inf
k→∞

k1.5 ‖xk − yk‖ =

0. �

Lemma 3.3 [4] For any y ∈ Rn, one has z = pλg (y) if and only if there exists σ (y) ∈ ∂g (z)
the subdifferential of g (·) , such that

∇f (y) +
1

λ
(z − y) + σ (y) = 0.

Remark 3.2. Denote ψk = ∇f (xk)− 1
λk

(xk − yk + λk∇f (yk)) . Based on Lemma 3.3, we

have ψk ∈ ∂F (xk) . It follows from Lemma 2.1, Lemma 3.2, the conclusion lim
k→∞

k2‖xk − yk‖2 =

0 and the fact that ‖ψk‖ ≤
(
Lf + 1/λmin

)
‖xk − yk‖ that lim

k→∞
k ‖ψk‖ = 0, which implies

that ‖ψk‖ = o
(

1
k

)
. However, for the FISTA, we deduce that t2k‖xk − yk‖

2 is bounded from
the proof of Lemma 4.1 in [4], i.e. ‖ψk‖ = O

(
1
k

)
. Hence, the sequence {‖ψk‖} generated

by Algorithm 4 converges to zero faster than the one generated by FISTA. In Section 6,
the numerical performances verify this.

In following theorem, we will show that the sequence {xk} exists at least one accumu-
lation point, and any accumulation point belongs to X∗.

Theorem 3.2 For ∀k ≥ 1, we have the sequence {xk} generated from Algorithm 4 is bounded,

and all the accumulation points of {xk} belongs to X∗.

11

Proof. From (42), we have that {bk} is bounded for any k ≥ k0.
With the definition of bk and trigonometric inequality, we see that

∥∥xk − x∗∥∥ ≤ √2bk
tk

+

(
1− 1

tk

)∥∥xk−1 − x∗
∥∥ ≤ √2c

tk
+

(
1− 1

tk

)∥∥xk−1 − x∗
∥∥ . (45)

Let M0 = max
(
2c,
∥∥xk0 − x∗∥∥) . Then, we can easily prove that ‖xk − x∗‖ ≤M0 by induc-

tion, which implies {xk} is bounded. Assume that
{
xkj
}

is a convergent subsequence of
{xk} and lim

j→∞
xkj = x̄.

In view of (36) and F is lower semi-continuous, we see that

F (x̄) ≤ lim inf
j→∞

F
(
xkj
)

= lim
j→∞

F
(
xkj
)

= F
(
x∗
)
. (46)

Combining this with the fact that F (x̄) ≥ F (x∗) , we have F (x̄) = F (x∗) , which means
that x̄ ∈ X∗. �

4 Modified FISTA algorithm with the adaptive non-monotone stepsize

As mentioned in Section 1, Chambolle and Dossal [11] exploited a new γk = tk−1
tk+1

with

tk = k+a−1
a , a > 2 for FISTA, and establish the convergence of the iterates generated by

FISTA with this new parameter γk and a constant stepsize λk ≡ 1
Lf

(FISTA CD). Attouch

and Peypouquet [1] proved that the convergence rate of function value of FISTA CD is
actually o

(
1
k2

)
, better than O

(
1
k2

)
of FISTA. Moreover, FISTA CD has a better numerical

performance than FISTA.
Based on the above analysis, we present the modified FISTA algorithm with the new

adaptive non-monotone stepsize (MFISTA NMS) as follows.

Algorithm 5 MFISTA NMS
Step 0. Take y1 = x0 ∈ Rn, 0 < µ1 < µ0 ≤ 1 , a > 2, andλ1 > 0
Step k. Compute

xk = pλkg (yk)

yk+1 = xk +
(
k−1
k+a

)
(xk − xk−1)

(47)

Set λk+1 via the Algorithm 3.

From Theorem 3.1, it’s easy to see that if the sequence {tk} satisfies

ρk = λkt
2
k − λk+1

(
t2k+1 − tk+1

)
≥ 0, (48)

where t1 = 1 and {λk} is generated by the Algorithm 3, then the objective function

value has the O
(
1
/
k2
)

convergence rate. Particularly, for tk+1 =
1+
√

1+4(λk/λk+1)t2k
2 from

Algorithm 4, one have that ρk = 0. The following result is based on the analysis of ρk.

Lemma 4.1 Let {xk, yk} be the sequences generated via Algorithm 5. Assume that
∞∑
k=1

Ek is

a convergent nonnegative series and {Ek} decreasing monotonically. We obtain the following

conclusions.

(a) The series
∞∑
k=1

k (F (xk)− F (x∗)) is convergent.

(b) The series
∞∑
k=1

k2‖xk − yk‖2 is convergent and lim inf
k→∞

k1.5 ‖xk − yk‖ = 0.

12

Proof. From the fact that
∞∑
k=1

Ek is a convergent nonnegative series and {Ek} decreasing

monotonically, we can easily obtain that lim
k→∞

kEk = 0. Then, the following equality

ρk = 1
a2

(
λk−1(k + a− 2)2 − λk (k − 1) (k + a− 1)

)
= 1

a2

(
λk−1(k + a− 2)2 − λk

(
(k + a− 2)2 + (2− a) (k + a− 2) + 1− a

))
= 1

a2

(
(λk−1 − λk) (k + a− 2)2 + λk ((a− 2) (k + a− 2) + a− 1)

)
= 1

a2

(
− |λk−1 − λk| (k + a− 2)2 + λk ((a− 2) (k + a− 2) + a− 1)

)
= 1

a2

(
−λk−1 · Ek−1 · (k + a− 2)2 + λk ((a− 2) (k + a− 2) + a− 1)

)
(49)

yields that lim
k→∞

ρk
k = a−2

a2 λ∗ ≥ ω3, where ω3 = (a−2)
a2 λmin.

Invoking (37)–(39) and combining lim
k→∞

ρk
k ≥ ω3, we have ρk

k ≥
ω3
2 for all k sufficiently

large, and

λkt
2
kvk − λk+1t

2
k+1vk+1

≥ µ̄‖tk+1 (xk+1 − yk+1)‖2 + ω3
2 kvk

+ 〈tk+1 (xk+1 − yk+1) , tk+1yk+1 − (tk+1 − 1)xk − x∗〉
=1

2‖tk+1 (xk+1 − yk+1)‖2+
(
µ̄− 1

2

)
‖tk+1 (xk+1 − yk+1)‖2 + ω3

2 kvk
+ 〈tk+1 (xk+1 − yk+1) , tk+1yk+1 − (tk+1 − 1)xk − x∗〉

= 1
2

(
‖uk+1‖2 − ‖uk‖2

)
+
(
µ̄− 1

2

)
‖tk+1 (xk+1 − yk+1)‖2 + ω3

2 kvk,

(50)

where uk = tkxk − (tk − 1)xk−1 − x∗. We rearrange (50) into(
λkt

2
kvk +

1

2
‖uk‖2

)
−
(
λk+1t

2
k+1vk+1 +

1

2
‖uk+1‖2

)
≥ ω3

2
kvk,

and(
λkt

2
kvk + 1

2‖uk‖
2)− (λk+1t

2
k+1vk+1 + 1

2‖uk+1‖2
)
≥
(
µ̄− 1

2

)
‖tk+1 (xk+1 − yk+1)‖2.

Summing the above two inequalities from k = Ns to k = N, where Ns is sufficient large,

yields that
∞∑
k=1

k (F (xk)− F (x∗)) and
∞∑
k=1

t2k‖xk − yk‖
2 are convergent. With the definition

of tk = k+a−1
a (a > 2) , we can further obtain that

∞∑
k=1

k2‖xk − yk‖2. In addition, we can

easily show that lim inf
k→∞

k1.5 ‖xk − yk‖ = 0. �

Remark 4.1. It follows that
∞∑
k=1

k2‖ψk‖2 is convergent from Lemma 4.1 (b), which is

stronger than the fact follows [1] that ‖ψk‖ = o
(

1
k

)
for FISTA CD.

Lemma 4.2 Let {xk} be generated by Algorithm 5. Then, the series
∞∑
k=1

kδk is convergent.

Proof. From (34) with x := xk, y := yk+1, we have that

δk+1

λk+1
− γ2

k
δk
λk
≤ vk − vk+1, (51)

where γk = (k − 1) / (k + a) .
Multiplying this inequality by (k + a)2 and summing from k = Ns to k = N, where Ns

sufficient large, leads to

(N + a)2 δN+1

λN+1
− (k0 − 1)2 δk0

λk0
+

N∑
k=k0+1

a (2k − 2 + a) δkλk

≤ (k0 + a)2
vk0 − (N + a)2

vN+1 +
N∑

k=k0+1

(2k + 2a− 1) vk.

(52)

13

From Lemma 4.1 (a) and a > 2, the series
∞∑
k=1

k δkλk is convergence. Further, we obtain that

∞∑
k=1

kδk is convergence by using lim
k→∞

λk = λ∗ > 0. �

Next, we construct the convergence rate of function value generated by the Algorithm
5.

Theorem 4.1 For the sequence {xk} generated by Algorithm 5, we have F (xk) − F (x∗) =
o
(

1
k2

)
and ‖xk − xk−1‖ = o

(
1
k

)
.

Proof. Denote φk = νk + δk
λk
.

From (51) and γk ≤ 1, we can easily deduce that φk+1 ≤ φk for k ≥ k0. Multiplying by
(k + 1)2 we have

(k + 1)2
φk+1 ≤ (k + 1)2

φk = k2φk + (2k + 1)φk. (53)

It follows that
∞∑
k=1

kφk is convergent from Lemma 4.1 (a) and Lemma 4.2. Then, we can

prove that
{
k2φk

}
is convergent, the proof is similar with the proof of the convergence of

{λk} in Lemma 2.1. Further, we have lim inf
k→∞

k2φk = 0 by using the convergence of
∞∑
k=1

kφk.

Hence, lim
k→∞

k2φk = 0, which implies F (xk) − F (x∗) = o
(

1
k2

)
and ‖xk − xk−1‖ = o

(
1
k

)
follows the Lemma 2.1. �

Now, we give the proof of convergence of the sequence {xk} generated by Algorithm
5. Before that, we give some auxiliary results.

Lemma 4.3 For ∀k ≥ 1, we have the sequence {xk} generated from Algorithm 5 is bounded,

and all the accumulation points of {xk} belongs to X∗.

Proof. The proof is similar with the Theorem 3.2.

Lemma 4.4 For any x∗ ∈ X∗, and the sequence {xk} generated by Algorithm 5, we have

Φk = 1
2‖xk − x

∗‖2 is convergent.

Proof. Recalling (50) in the proof of lemma 4.1, we have ak + bk ≥ ak+1 + bk+1 for all

k ≥ k0, where ak := λkt
2
kvk and bk := 1

2‖(tk − 1) (xk − xk−1) + (xk − x∗)‖
2
. Combining

this and the fact that ak + bk ≥ 0, we can easily deduce that the sequence {ak + bk} is
convergent.

With Lemma 2.1, Lemma 3.2 and lim
k→∞

k2 (F (xk)− F (x∗)) = 0 from Theorem 4.1, we

obtain that lim
k→∞

ak = 0, which implies that {bk} is convergent. From the definition of

{bk} , we see that

bk = 1
2‖(tk − 1) (xk − xk−1) + (xk − x∗)‖

2

= 1
2 (tk − 1)2‖xk − xk−1‖2 + 〈(tk − 1) (xk − xk−1) , (xk − x∗)〉+ 1

2‖xk − x
∗‖2.

(54)

It follows from the Lemma 3.2 and Theorem 4.1 that the first item of (54) converges to
zero, i.e.

lim
k→∞

1

2
(tk − 1)2‖xk − xk−1‖2 = 0. (55)

In addition, from Lemma 3.2, Theorem 4.1 and the fact from Lemma 4.3 that ‖xk − x∗‖
is bounded, we have

lim
k→∞

〈
(tk − 1) (xk − xk−1) ,

(
xk − x∗

)〉
= 0. (56)

With (54), (55), (56) and the fact that {bk} is convergent, we can obtain that Φk =
1
2‖xk − x

∗‖2 is convergent. �

14

Theorem 4.2 The sequence {xk} generated by Algorithm 5 converges to a minimizer of F .

Proof. From Lemma 4.3, we have lim
j→∞

xkj = x̄ ∈ X∗. And with the result of Lemma 4.4,

we have ‖xk − x̄‖2 is convergent by using x̄ to replace x∗. Then, easily to deduce that the
sequence

{
‖xk − x̄‖2

}
converge to zero, which implies {xk} convergent to a minimizer of

F. �
It is worth mentioning that the biggest difference between Algorithm 5 and FISTA CD

is that it is not required to do any assumption related to the Lf , while the condition λ ∈]
0, 1
Lf

]
in FISTA CD plays an important role in algorithm implementation and theoretical

analysis.
Meanwhile, it is unclear that whether the iterative sequence generated by FISTA CD

with the backtracking stepsize converges. However, MFISTA NMS keeps the similar theo-
retical results with FISTA CD including the convergence rate of objective function value
and the convergence of iterative sequence.

In the above analysis, we proved that for the Algorithm 3 and Algorithm 4, function
values keep similar convergence rate with FISTA and FISTA CD, but the convergence of
iterates generated by FISTA or FISTA NMS is still unknown. It is widely known that error
bound condition is a key ingredient in proving convergence of iterative methods. Major
contributions on developing and using error bound condition to derive rates of convergence
rate of iterative descent algorithms have been developed in a series of papers [3,14,15,27,
29].

Assumption 3.1: (Error Bound Condition) For any ξ ≥ F ∗, there exist a ε > 0 and
τ̄ > 0 such that

dist
(
x,X∗

)
≤ τ̄

∥∥∥∥p 1
Lf
g (x)− x

∥∥∥∥ (57)

whenever

∥∥∥∥p 1
Lf
g (x)− x

∥∥∥∥ < ε and F (x) ≤ ξ.

In [18], under the error bound condition, the author uses a comparison method to prove
the convergence of iterates generated by FISTA and FISTA CD with constant stepsize,
similar results can be derived for the ones with Algorithm 3.

Corollary 4.1 Suppose that Assumption 3.1 holds. Let {xk} be generated by Algorithm 4 and

x∗ ∈ X∗. Then,

1) F (xk)− F (x∗) = o
(

1
k6

)
and ‖xk − xk−1‖ = O

(
1
k3

)
.

2) {xk} sublinearly converges to x̄ ∈ X∗ at the O
(

1
k2

)
rate of convergence.

Corollary 4.2 Suppose that Assumption 3.1 holds. Let {xk} be generated by Algorithm 5 and

x∗ ∈ X∗. Then,

1) F (xk)− F (x∗) = o
(

1
k2(a+1)

)
and ‖xk − xk−1‖ = O

(
1

ka+1

)
.

2) {xk} sublinearly converges to x̄ ∈ X∗ at the O
(

1
ka

)
rate of convergence.

The proofs of Corollary 4.1 and Corollary 4.2 follow the proof of Theorem 2.6 in [18].
Difference from the constant stepsize setting in [18], both of Algorithm 4 and Algorithm
5 are based on the new adaptive nonmonotone stepsize setting, which is convergent and
have a property that increasing monotonically after finite iterations. We point out that
the main of proof of Theorem 2.6 in [18] is the following inequality

F (xk+1)− F
(
x∗
)

+
1− µ
2λk+1

‖xk+1 − yk+1‖2 +
1

2λk+1
‖xk+1 − xk‖2

≤ F (xk)− F
(
x∗
)

+
γ2
k

2λk
‖xk − xk−1‖2,

which is obtained by applying (34) at y := yk+1, x := xk and λ := λk+1, and the fact that
λk+1 ≥ λk for k is sufficient large. Here, we omit the remaining proof.

15

It is noted that the stepsize λk generated by Algorithm 3 increases monotonically after
finite iterations, while the stepsize λk generated by backtracking of FISTA BKTR may
increases or decreases in the backtracking process. Meanwhile, we can not obtain a similar
inequality with (34) based on FISTA BKTR. Hence, using the same idea of proof in [18],
backtracking of FISTA BKTR can not obtain the results in Corollary 4.1 and Corollary
4.2, and to our knowledge, there don’t have similar results in the literature. From this point
of view, FISTA with λk generated by the new stepsize strategy (Algorithm 3) enjoys better
theoretical properties than FISTA with backtracking in Algorithm 2 (FISTA BETR).

To further illustrate this point, we consider a restart technique, which is crucially
important in improving the theoretical results and accelerating the numerical performance
of the algorithm, to improve our algorithms in next section.

5 Restart FISTA algorithm with the new non-monotone stepsize strategy

Brendan and Emmanuel [23] introduced two simple heuristic adaptive restart techniques
that can improve the convergence rate of accelerated gradient schemes. One restart tech-
nique is fixed restarting, that restarting the algorithm every K iterations and taking
the last point generated by the algorithm as the starting point. Another is the adaptive
restart, which starting the algorithm based on the following schemes: 1) function scheme:

F (xk) > F (xk−1) ; 2)gradient scheme: (yk − xk)T (xk − xk−1) > 0.

Brendan and Emmanuel pointed out that both of the two adaptive restart schemes
perform similarly well. But when the iteration point is close to the minimum, the algorithm
with the gradient restart technique is more numerically stable. Therefore, we combine
the fixed restarting with the gradient restart technique to improve the performance of
FISTA NMS and MFISTA NMS in this section.

We present algorithms as follows.

Algorithm 6 FISTA NMS restart

Step 0. Given K ∈ R and take y1 = x0 ∈ Rn, t1 = 1, 0 < µ1 < µ0 ≤ 1, λ1 > 0 and k̃ = 1
Step k. Compute

xk = pλkg (yk)

Set k̃ = k̃ + 1 and compute λk+1 via Algorithm 3.

If (yk − xk)T (xk − xk−1) > 0 or k̃ = K holds, set tk = 1, k̃ = 1

tk+1 =

(
1 +

√
1 + 4 (λk/λk+1) t2k

)
(58)

yk+1 = xk + ((tk − 1)/tk+1) (xk − xk−1) .

Algorithm 7 MFISTA NMS restart

Step 0. Given K ∈ R and take y1 = x0 ∈ Rn, 0 < µ1 < µ0 ≤ 1 , a > 2, λ1 > 0 and k̃ = 1.
Step k. Compute

xk = pλkg (yk)

Set k̃ = k̃ + 1
If (yk − xk)T (xk − xk−1) > 0 or k̃ = K holds, set k̃ = 1

yk+1 = xk +

(
k̃ − 1

k̃ + a

)
(xk − xk−1) (59)

Compute λk+1 via Algorithm 3.

16

The schemes of FISTA BKTR and FISTA CD BKTR combining the restart strategy
separately namely FISTA BKTR restart and FISTA CD BKTR restart are similar to the
above two algorithms. Here we omit the unnecessary details. In the following, we prove that
under the error bound condition, the sequences generated by Algorithm 6 and Algorithm
7 are R-linearly convergent; Moreover, the corresponding sequences of objective values
are also R-linearly convergent. Note that whether the FISTA BKTR with restart strategy
enjoy similar convergence results is unknown.

Before proceeding with the convergence results, we give some auxiliary conclusions as
follows.

Definition 5.1 [29] For a sequence {xk} , we say that xk is Q−linearly to its limit if there

exist 0 < c < 1 and kl such that∥∥xk+1 − x∗
∥∥ ≤ c∥∥xk − x∗∥∥ , ∀k ≥ kl

and we say that xk converges R−linearly to its limit if

lim sup
k→∞

∥∥xk − x∗∥∥ 1
k < 1.

Lemma 5.1 [29] Suppose that {pk} and {qk} be two sequences with 0 ≤ pk ≤ qk and {qk} is

Q−linearly convergent to zero. Then {pk} is R−linearly convergent to zero.

Lemma 5.2 Let {Ak} , {Bk} and {Ck} be three nonnegative sequences. Suppose that there

exist 0 < τ < 1, l > 0 and kl > 0 such that Ak+1 + Bk+1 + Ck+1 ≤ Ak + τBk and Ak ≤ lCk
hold for any k > kl, we have {Ak+1 + αBk+1} is Q−linear convergent to zero, where α =

min
(

1
1+ 1

l

, τ
)
. And both of {Ak} and {Bk} are R−linear convergent to zero.

Proof. We can easy to deduce that for any k > kl,(
1 +

1

l

)
Ak+1 +Bk+1 ≤ Ak + τBk. (60)

Denote α = min
(

1
1+ 1

l

, τ
)

and β = max
(

1
1+ 1

l

, τ
)
. Using the definition of α and β and

(60), we obtain

Ak+1 + αBk+1 ≤ Ak+1 +

(
1

1 + 1
l

)
Bk+1 ≤

(
1

1 + 1
l

)
Ak +

(
τ

1 + 1
l

)
Bk ≤ β (Ak + αBk) ,

(61)

which means that {Ak + αBk} is Q−linearly convergent to zero.
Further, we can deduce that {Ak} and {Bk} are R−linearly convergent to zeros using

Lemma 5.1. �

Lemma 5.3 [21] For L1 ≥ L2 > 0, we have

∥∥∥Gf,gL1
(x)
∥∥∥ ≥ ∥∥∥Gf,gL2

(x)
∥∥∥ and

∥∥∥Gf,gL1
(x)
∥∥∥

L1
≤

∥∥∥Gf,gL2
(x)
∥∥∥

L2
, (62)

where Gf,gLf (x) = Lf

(
p 1
Lf
g (x)− x

)
.

Theorem 5.1 Suppose that Assumption 3.1 holds. Then, both of the sequences {xk} generated

by the Algorithm 6 and Algorithm 7 are convergence and R−linearly convergent to their limit.

Also, {F (xk)} are R−linearly convergent to F (x∗) .

17

Proof. For the tk generated by Algorithm 6, it follows from

tk+1 − 1 =

√
1 + 4

(
λk
λk+1

)
t2k − 1

2
<

√
1 + 4t2k − 1

2
< tk, ∀k sufficient large (63)

that there exists a M̂ such that tk ≤ M̂. Based on Lemma 2.1 and Corollary 2.1, we have

0 ≤ 1− λk
λk+1

≤ 1

M̂
≤ 1

tk
,

holds for sufficient large k. Then,

tk+1 − tk =
1+

√
1+4

λk
λk+1

t2k

2 − tk

=
−4

(
1− λk

λk+1

)
t2k+4tk

2

(√
1+4

λk
λk+1

t2k+2tk−1

) ≥ −4tk+4tk

2

(√
1+4

λk
λk+1

t2k+2tk−1

) = 0.

Further, it’s easy to show that

γk =
tk − 1

tk+1
≤ tk − 1

tk
= 1− 1

tk
≤ M̂ − 1

M̂
< 1.

From Algorithm 7, it is obvious that γk = k−1
k+a ≤

K−1
K+a < 1. Thus, either algorithm 6

or algorithm 7, there exists a γ̄ such that γk ≤ γ̄ < 1.

Denote Ns is a sufficient large positive integer. Let ξ = vNs +
δNs
λNs

+ F (x∗) . From the

Assumption 3.1, we can deduce that for this ξ, there exist a ε > 0 and τ̄ > 0 such that

dist (x,X∗) ≤ τ̄
∥∥∥∥p 1

Lf
g (x)− x

∥∥∥∥ holds for

∥∥∥∥p 1
Lf
g (x)− x

∥∥∥∥ < ε and F (x) ≤ ξ.

From (34), we obtain that

vk+1 +
δk+1

λk+1
+

2µ̄− 1

λk+1
Γk+1 ≤ vk + γ̄2 δk

λk
. (64)

It’s easy to get

vk+1 +
δk+1

λk+1
≤ vk +

δk
λk
, (65)

which means that for k sufficient large,
{
vk + δk

λk

}
is nonincreasing.

This together with the fact that
{
vk + δk

λk

}
is bound below deduces to

{
vk + δk

λk

}
is

convergent.
Recalling (64), for k ≥ Ns we have(

2µ̄− 1

λk+1

)
Γk+1 ≤

(
vk +

δk
λk

)
−
(
vk+1 +

δk+1

λk+1

)
.

Summing from k = Ns to k = N and letting N → ∞, we obtain that
∞∑
k=1

Γk, i.e.

∞∑
k=1

‖xk − yk‖2 is convergent from Lemma 2.1.

In addition, it follows from (65) that

vk +
δk
λk
≤ vNs +

δNs
λNs

which implies that for k ≥ Ns

F (xk) ≤ ξ. (66)

18

Based on the nonexpansiveness property of the proximal operator [8], ∆f is Lipschitz
continuous and λk ≤ λ∗ for k sufficiently large, we deduce to∥∥pλkg (xk)− xk

∥∥=
∥∥pλkg (xk)− pλkg (yk)

∥∥
=
∥∥proxλkg (xk − λk∇f (xk))− proxλkg (yk − λk∇f (yk))

∥∥
≤
(
1 + λ∗ · Lf

)
‖xk − yk‖ .

(67)

In addition, we discussion λk in two cases: For the case that λk ≤ 1
Lf

, it follows from

Lemma 5.3 and (10) that∥∥GLfg (xk)
∥∥

Lf
≤

∥∥∥G 1
λk
g (xk)

∥∥∥
1/λk

1

Lf · λk
≤ 1

Lf · λmin

∥∥pλkg (xk)− xk
∥∥ . (68)

For the case that λk >
1
Lf

, we have

∥∥GLfg (xk)
∥∥

Lf
<

∥∥∥G 1
λk
g (xk)

∥∥∥
1/λk

=
∥∥pλkg (xk)− xk

∥∥ . (69)

It follows from (68) and (69) that∥∥GLfg (xk)
∥∥

Lf
≤ τ1

∥∥pλkg (xk)− xk
∥∥ , (70)

where τ1 = max(1
Lf ·λmin

, 1). Combining (67), (70) and Theorem 3.1 (b), we have

lim
k→∞

∥∥GLfg (xk)
∥∥

Lf
= lim
k→∞

∥∥∥∥p 1
Lf
g (xk)− xk

∥∥∥∥ = 0. (71)

Following (66) and (71), we have F (xk) ≤ ξ and

∥∥∥∥p 1
Lf
g (xk)− xk

∥∥∥∥ < ε hold for k

sufficient large. Then, combining (57), (70) and (67), there exist τ2 > 0 for k sufficient
large,

dist
(
xk, X

∗) ≤ τ2 ‖xk − yk‖ . (72)

From (34) with y := yk+1, we have

F (xk+1) ≤ F (x) + ‖x−yk+1‖2
2λk+1

= F (x) + ‖x−xk+1+xk+1−yk+1‖2
2λk+1

≤ F (x) + 1
λk+1

(
‖x− xk+1‖2 + ‖xk+1 − yk+1‖2

)
.

(73)

Choose x to be an x∗k+1 ∈ X
∗ so that

∥∥x∗k+1 − xk+1

∥∥ = dist (xk+1, X
∗) , then,

F (xk+1)− F (x∗) = F (xk+1)− F
(
x∗k+1

)
≤ 1

λk+1

(∥∥x∗k+1 − xk+1

∥∥2
+ ‖xk+1 − yk+1‖2

)
= 1

λk+1

(
dist2 (xk+1, X

∗) + ‖xk+1 − yk+1‖2
)

≤ τ3‖xk+1 − yk+1‖2,
(74)

where τ3=1+(τ2)2

λmin
and the last inequality is from (72) and Lemma 2.1, i.e.,

υk+1 ≤ τ3Γk+1 (75)

hold.
It follows from (64) and (75) and Lemma 5.2 that

{
νk + α δkλk

}
is Q−linearly conver-

gent to zero. And F (xk) is R−linear convergent to F (x∗),
{
‖xk+1 − xk‖2

}
is R−linear

convergent to zero.

19

With the R−linearly convergence of
{
‖xk+1 − xk‖2

}
, we obtain that there exist 0 <

c̄ < 1, and M1 > 0, such that
‖xk − xk−1‖ ≤M1c̄

k.

Consequently, for any m2 > m1 > 0, we have

‖xm2 − xm1‖ ≤
m2∑

k=m1+1

‖xk − xk−1‖ ≤M1 ·
c̄m1

1− c̄

showing that {xk} is a Cauchy sequence and hence convergent. Denoting its limit by x∗and
passing to the limit as m2 →∞ in the above relation, we see further that∥∥xm1 − x

∗∥∥ ≤M1 ·
c̄m1

1− c̄

that means that the sequence {xk} is R−linearly convergent to its limit. �
Remark 5.1. Under the error bound condition, Wen, Chen and Pong [29] proved that

for FISTA equipped with the restart scheme and the constant stepsize 1
Lf
, the sequences

{xk − x∗} and {F (xk)− F (x∗)} are R−linear convergent to zero. In Theorem 5.1, we show
the similar results hold for FISTA and FISTA CD with stepsize generated by Algorithm
3 based on the error bound condition and restart scheme. The proposed algorithm im-
plementations are independent of Lf . In the proof of Theorem 5.1, the main contribution
of Algorithm 3 is that it generates a stepsize sequence which is convergent and increases
monotonically after finite iterations. We see that backtracking strategy in FISTA BKTR
does not have this property, hence, it is not clear whether FISTA BKTR can obtain the
linearly convergence.

6 Numerical Experiments

6.1. We conduct numerical experiments to demonstrate our algorithms’ effectiveness by
testing the following five algorithms:
— FISTA backtracking
— FISTA BKTR
— FISTA CD BKTR(a = 4)
— FISTA NMS
— MFISTA NMS(a = 4)
termination condition

The inequality ‖ψk‖ ≤ ε is often used to be the termination condition for all compar-
ison algorithms, where ψk = ∇f (xk) − 1

λk
(xk − yk + λk∇f (yk)) ∈ ∂F (xk) . However, we

notice that if F is flat, the distance between two iterates will be very far but the value
of ‖ψk‖ is close to 0; oterwise, conversely. Hence, we terminate the test algorithms when
min (‖ψk‖ , ‖xk − xk−1‖) ≤ ε.
Test Function

The numerical experiments are conducted on the following two types of test functions:
(1) The linear inverse problem; (2) the l1−regularized logistic regression. It’s obvious that
the first problem is the case that f is a quadratic function, thus we need to restrict the
parameter µ1 < µ0 < 1; for the latter that f is a non-quadratic function, µ1 < µ0 < 1/2.
In the numerical experiment, we set Ek = wk

k1.1 , ∀k ≥ 1 be the control series for the new
adaptive non-monotone stepsize strategy, parameter wk same as the setting we introduced
in Section 2; µ0 = 0.99, µ1 = 0.95 for the test function (1), µ0 = 0.49, µ1 = 0.45 for the

test function (2); ε = 1.e− 5. For the backtracking scheme, we set η = 0.5, λ0
k = λk−1

η .

6.1.1. the Linear Inverse problem.
The Linear Inverse problem is described as follows:

min
x
F (x) =

1

2
‖Ax− b‖2 + σ‖x‖1, (76)

20

where the linear operator A and observation b is generated by the following scheme:
A = randn(n,m);
xstar = ones(m, 1);
Set s : The number of non− zero elements of xstar
I = randperm(m); xstar(I(1 : m− s)) = 0;
b = A ∗ xstar+0.1 ∗ randn(n, 1);

In the numerical experiments, we take n = 1000,m = 10000.

Note that in this linear inverse problem, ∇f(x) = AT (Ax− b) , which is linear, hence,
we can directly compute ∇f (yk) by linear relationship between ∇f (xk−1) and ∇f (xk−2) ;
since that Ayk−b can be computed by linear relationship between Axk−1−b and Axk−2−b,
so the computation of f (yk) is negligible. Through numerical experiments, we find that for
FISTA backtracking and FISTA BKTR, the condition F

(
pλkg (yk)

)
≤ Qλk

(
pλkg (yk) , yk

)
is difficult to distinguish if we set ε too small, which means that these two backtracking
schemes are not suitable for applications with high precision requirements like Medical
imaging. We consider the influence of such factors like sparsity

(
s
m

)
and regularization

parameter σ on the algorithm. The selection of regularization parameter is separately
σ = 1 and σ = 0.1. Iter denotes the total number of iterations and Mult denotes the
number of matrix-vector product for compute Ax− b and Time denotes the CPU time.

From Table 1–3, we see that under the setting of different parameters and different
sparsity, our algorithms FISTA NMS and MFISTA NMS hava significant improvment over
FISTA backtracking, and comparison with FISTA BKTR and FISTA CD BKTR, we see
that FISTA BKTR is a little better than FISTA NMS for the total number of iterations,
but much more than FISTA NMS for the number of matrix-vector product, the comparison
with other two algorithms MFISTA NMS and FISTA CD BKTR show similar results. In
order to more intuitively show the effectiveness of our algorithms, we plot how ‖ψk‖ and
F (xk) − F (x∗) changes during time taken by these five algorithms, where F ∗ be the
smallest F (xk) among all methods.

Iter Mult Time

σ=1,s=80

FISTA NMS 4586 9174 34.8816
FISTA BKTR 4030 12140 47.6178
FISTA backtracking 9527 20070 76.3822
MFISTA NMS 3093 6188 23.5663
FISTA CD BKTR 2822 9481 37.6727

Table 1: Comparison of algorithms for solving (76) with n=800, m=8000, s=80, σ = 1

0 10 20 30 40 50 60 70 80

Time

10-15

10-10

10-5

100

105
n=800, m=8000, s=80

FISTA_backtracking

FISTA_BKTR

FISTA_CD_BKTR

FISTA_NMS

MFISTA_NMS

0 10 20 30 40 50 60 70 80

Time

10-15

10-10

10-5

100

105

1010
n=800, m=8000, s=80

FISTA_backtracking

FISTA_BKTR

FISTA_CD_BKTR

FISTA_NMS

MFISTA_NMS

Fig. 1: Performance profile for the convergences of ‖ψk‖ and F (xk)− F (x∗) with σ = 1.

21

Iter Mult Time

σ=0.1,s=80

FISTA NMS 8756 17514 65.8372
FISTA BKTR 8293 24880 99.5572
FISTA backtracking 30550 62116 234.7369
MFISTA NMS 7329 14660 55.2078
FISTA CD BKTR 7640 22921 88.9125

Table 2: Comparison of algorithms for solving (76) with n=800, m=8000, s=80, σ = 0.1

0 50 100 150 200 250

Time

10-15

10-10

10-5

100

105
n=800, m=8000, s=80

FISTA_backtracking

FISTA_BKTR

FISTA_CD_BKTR

FISTA_NMS

MFISTA_NMS

0 50 100 150 200 250

Time

10-15

10-10

10-5

100

105

1010
n=800, m=8000, s=80

FISTA_backtracking

FISTA_BKTR

FISTA_CD_BKTR

FISTA_NMS

MFISTA_NMS

Fig. 2: Performance profile for the convergences of ‖ψk‖ and F (xk)−F (x∗) with σ = 0.1.

Iter Mult Time

σ=1,s=200

FISTA NMS 29838 59678 234.7507
FISTA BKTR 23619 70915 279.8414
FISTA backtracking 66079 133174 525.9265
MFISTA NMS 18962 37926 146.4571
FISTA CD BKTR 13654 41977 169.4404

Table 3: Comparison of algorithms for solving (76) with n=800, m=8000, s=200, σ = 1

0 100 200 300 400 500 600

Time

10-15

10-10

10-5

100

105
n=800, m=8000, s=200

FISTA_backtracking

FISTA_BKTR

FISTA_CD_BKTR

FISTA_NMS

MFISTA_NMS

0 100 200 300 400 500 600

Time

10-15

10-10

10-5

100

105
n=800, m=8000, s=200

FISTA_backtracking

FISTA_BKTR

FISTA_CD_BKTR

FISTA_NMS

MFISTA_NMS

Fig. 3: Performance profile for the convergences of ‖ψk‖ and F (xk)− F (x∗) with σ = 1.

22

From Fig.1–3, we can see that even if regularization parameter selection and spar-
sity are different, FISTA NMS has a significant improvement over the FISTA BKTR and
FISTA backtracking for the given test problem. Moreover, we can see that MFISTA NMS
is more efficient than FISTA CD BKTR, which means that our stepsize strategy is also
effective for the modified algorithm FISTA CD. Numerical experiments show that the
new adaptive nonmonotone stepsize strategy is very useful for improving algorithm per-
formances and our algorithms are very suitable for practical application problems such as
sparse signal processing.

Since that FISTA BKTR successfully improves the FISTA in practice, in the following
computational experiments, we just compare the algorithms: FISTA NMS, MFISTA NMS,
FISTA BKTR and FISTA CD BKTR.
6.1.2. Sparse Logistic Regression

Consider the question

min
x
F (x) :=

1

n

n∑
i=1

log (1 + exp (−li 〈hi, x〉)) + σ‖x‖1, (77)

where x ∈ Rm, hi ∈ Rn, li ∈ {−1, 1} , i = 1, · · · , n, and σ = 1.e − 2. The problem sparse
logistic regression is a popular problem in machine learning applications, where f(x) =

1
n

n∑
i=1

log (1 + exp (−li 〈hi, x〉)) is non-linear. DefineKij = −lihij , and set f̃ (y) =
m∑
i=1

log (1 + exp (yi)).

Then f (x) = f̃ (Kx) , and Lf = 4
n

∥∥∥KTK
∥∥∥ . Initial point x0= zeros(m, 1). We take three

datasets ‘heart test’, ‘sonar test’ and ‘mushroom’ from LIBSVM [9]. We report the num-
ber of iterations (Iter), calculation of function value (Fval), calculation of gradient value
(Gval) and CPU time (Time).

Iter Fval Gval Time
FISTA NMS 81392 81392 162784 6.6532
FISTA BKTR 75583 199829 175497 10.8337

MFISTA NMS 25864 25864 51728 2.1469
FISTA CD BKTR 20412 81645 61234 4.0928

Table 4: Comparison of algorithms for solving “heart test”.

0 2 4 6 8 10 12

Time

10-5

10-4

10-3

10-2

10-1

100

101

102
heart_test

FISTA_NMS

FISTA_BKTR

MFISTA_NMS

FISTA_CD_BKTR

0 2 4 6 8 10 12

Time

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
heart_test

FISTA_NMS

FISTA_BKTR

MFISTA_NMS

FISTA_CD_BKTR

Fig. 4: Performance profile for solving “heart test”.

23

Iter Fval Gval Time
FISTA NMS 1044 1044 2088 0.144
FISTA BKTR 916 2420 2126 0.1806

MFISTA NMS 719 719 1438 0.0975
FISTA CD BKTR 530 2114 1587 0.151

Table 5: Comparison of algorithms for solving “sonar test”.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
sonar_test

FISTA_NMS

FISTA_BKTR

MFISTA_NMS

FISTA_CD_BKTR

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
sonar_test

FISTA_NMS

FISTA_BKTR

MFISTA_NMS

FISTA_CD_BKTR

Fig. 5: Performance profile for solving “sonar test”.

Iter Fval Gval Time
FISTA NMS 116 116 232 0.0585
FISTA BKTR 107 249 231 0.0703

MFISTA NMS 100 100 200 0.0379
FISTA CD BKTR 93 339 262 0.0656

Table 6: Comparison of algorithms for solving “mushroom”.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Time

10-8

10-6

10-4

10-2

100

102

104
mushroom

FISTA_NMS

FISTA_BKTR

MFISTA_NMS

FISTA_CD_BKTR

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Time

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
mushroom

FISTA_NMS

FISTA_BKTR

MFISTA_NMS

FISTA_CD_BKTR

Fig. 6: Performance profile for solving “mushroom”.

24

The algorithms for solving the sparse logistic regression problem obtain similar results,
i.e., though the number of iterations of algorithms with NMS is slightly worse than algo-
rithms with BKTR, we can see that the algorithms with NMS are obviously better from
the calculation times of function and gradient value and CPU time. Hence, FISTA NMS
outperforms the FISTA BKTR, and meanwhile, MFISTA NMS is more efficient than the
FISTA CD BKTR. Observe that sometimes FISTA NMS is faster than FISTA CD BKTR
for some test problem, like the sparse logistic regression with ”sonar test” and ”mushroom”
datasets.

6.2. The main goal of our experiments is to test that our algorithms combining with
the Restart scheme are still effective. The test functions and the related parameter settings
are same as Subsection 6.1.

First, we compare the following four algorithms: FISTA NMS; FISTA NMS restart;
MFISTA NMS and MFISTA NMS restart. We can see that using the restart strategy,
both of our algorithms’ performances can be greatly improved, which shows from Table 7
that Iter, Mult and Time for solving the linear inverse problem be greatly reduced.

Iter Mult Time

σ=1,s=80

FISTA NMS 4292 8586 32.4994
FISTA NMS restart 693 1388 5.2372
MFISTA NMS 3331 6664 25.2049
MFISTA NMS restart 803 1608 6.0839

σ=0.1,s=80

FISTA NMS 8769 17540 64.7331
FISTA NMS restart 2866 5734 21.3431
MFISTA NMS 7260 14522 53.6101
MFISTA NMS restart 2970 5942 21.9513

σ=1,s=200

FISTA NMS 28423 56848 219.7712
FISTA NMS restart 19410 38822 155.6988
MFISTA NMS 26345 52692 200.5118
MFISTA NMS restart 21844 43690 163.4164

Table 7: Comparison of algorithms with restart scheme and without restart scheme for
solving (76) with n=800, m=8000.

In the following, we compare the following four algorithms: FISTA BKTR restart;
FISTA CD BKTR restart; FISTA NMS restart and MFISTA NMS restart. We present
numerical results to elaborate that: after incorporating restart strategy into all the compar-
ison algorithms, our algorithms are still superior to the other two comparison algorithms,
which shows the stability of our algorithms. From Fig.7–Fig.9, we show the comparison

0 2 4 6 8 10 12 14

Time

10-15

10-10

10-5

100

105
n=800, m=8000, s=80

FISTA_BKTR_restart

FISTA_CD_BKTR_restart

FISTA_NMS_restart

MFISTA_NMS_restart

0 2 4 6 8 10 12 14

Time

10-15

10-10

10-5

100

105

1010
n=800, m=8000, s=80

FISTA_BKTR_restart

FISTA_CD_BKTR_restart

FISTA_NMS_restart

MFISTA_NMS_restart

Fig. 7: Performance profile for the convergences of ‖ψk‖ and F (xk)− F (x∗) with σ = 1.

25

results for solving the linear inverse problem with different regularization parameter values
and sparsity:

0 5 10 15 20 25 30

Time

10-6

10-4

10-2

100

102

104

106
n=800, m=8000, s=80

FISTA_BKTR_restart

FISTA_CD_BKTR_restart

FISTA_NMS_restart

MFISTA_NMS_restart

0 5 10 15 20 25 30

Time

10-15

10-10

10-5

100

105

1010
n=800, m=8000, s=80

FISTA_BKTR_restart

FISTA_CD_BKTR_restart

FISTA_NMS_restart

MFISTA_NMS_restart

Fig. 8: Performance profile for the convergences of ‖ψk‖ and F (xk)−F (x∗) with σ = 0.1.

0 10 20 30 40 50 60 70 80 90 100

Time

10-15

10-10

10-5

100

105
n=800, m=8000, s=200

FISTA_BKTR_restart

FISTA_CD_BKTR_restart

FISTA_NMS_restart

MFISTA_NMS_restart

0 10 20 30 40 50 60 70 80 90 100

Time

10-15

10-10

10-5

100

105

1010
n=800, m=8000, s=200

FISTA_BKTR_restart

FISTA_CD_BKTR_restart

FISTA_NMS_restart

MFISTA_NMS_restart

Fig. 9: Performance profile for the convergences of ‖ψk‖ and F (xk)− F (x∗) with σ = 1.

From Fig.10–Fig.12, we show the comparison results for solving the sparse logistic
regression problem:

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time

10-6

10-4

10-2

100

102
heart_test

FISTA_NMS_restart

FISTA_BKTR_restart

MFISTA_NMS_restart

FISTA_CD_BKTR_restart

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
heart_test

FISTA_NMS_restart

FISTA_BKTR_restart

MFISTA_NMS_restart

FISTA_CD_BKTR_restart

Fig. 10: Performance profile for solving “heart test.”

26

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Time

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
sonar_test

FISTA_NMS_restart

FISTA_BKTR_restart

MFISTA_NMS_restart

FISTA_CD_BKTR_restart

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Time

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
sonar_test

FISTA_NMS_restart

FISTA_BKTR_restart

MFISTA_NMS_restart

FISTA_CD_BKTR_restart

Fig. 11: Performance profile for solving “sonar test.”

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Time

10-8

10-6

10-4

10-2

100

102
mushroom

FISTA_NMS_restart

FISTA_BKTR_restart

MFISTA_NMS_restart

FISTA_CD_BKTR_restart

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Time

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
mushroom

FISTA_NMS_restart

FISTA_BKTR_restart

MFISTA_NMS_restart

FISTA_CD_BKTR_restart

Fig. 12: Performance profile for solving “mushroom.”

7 Conclusion

In this paper, we introduce a new adaptive nonmonotone stepsize strategy (NMS), which
does not execute line search and is independent of the Lipschitz constant. Based on
NMS, we propose FISTA NMS that has O

(
1
k2

)
convergence rate of the objective function

value, which is similar with FISTA. We construct the convergence of iterates generated by
MFISTA NMS based on the new adaptive nonmonotone stepsize without dependent on
the Lipschitz constant. Also, the convergence rate of objective function value shares o

(
1
k2

)
.

Further, our algorithms FISTA NMS and MFISTA NMS acheive similar convergence rate
in the norm of subdifferential of objective function. Under error bound condition, we
prove that FISTA NMS and MFISTA NMS have improved convergence results, i.e., for
FISTA NMS, convergence rates of function value and iterates can be achieved to o

(
1
k6

)
and O

(
1
k2

)
; for MFISTA NMS, that are o

(
1

k2(a+1)

)
and o

(
1
ka

)
. In addition, we improve

our algorithms and give the proof of the linear convergence of function value and iterates
by combining our algorithms with the restart strategy. Note that FISTA and FISTA CD
with backtracking schemes can not achieve the same results, which means that NMS has
theoretical advantages. We demonstrate the performance of our schemes on some numer-
ical examples to show that our stepsize strategy outperforms the backtracking.

Acknowledgements The work was supported by the National Natural Science Founda-
tion of China (No.11901561), the Natural Science Foundation of Guangxi (No.2018GXNSFBA281180)
and the Postdoctoral Fund Project of China (Grant No.2019M660833).

27

References

1. Attouch, H., Peypouquet, J.: The rate of convergence of Nesterov’s accelerated forwardbackward
method is actually faster than 1

k2
. SIAM J. Optim. 26, 1824–1834 (2016)

2. Attouch, H., Cabot, A.: Convergence rates of inertial forward-backward algorithms. SIAM J.
Optim. 28, 849–874 (2018)

3. Beck, A., Teboulle, M.: A linearly convergent dual-based gradient projection algorithm for quadrat-
ically constrained convex minimization. Math. Oper. Res. 31, 398–417 (2006)

4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse prob-
lems. SIAM J. Imaging Sci. 2, 183–202 (2009)

5. Becker, S. R., Cands, E.J., Grant, M. C.: Templates for convex cone problems with applications
to sparse signal recovery. Math. Prog. Comp. 3, 165–218 (2011)

6. Bello, C., Jose, Y., Nghia, T. T. A.: On the convergence of the forward-backward splitting method
with linesearches. Optim. Method Softw. 31, 1209–1238 (2016)

7. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging
Vis. 20,. 89–97 (2004)

8. Combettes, P. L., Wajs, V. R.: Signal recovery by proximal forward-backward splitting. Multiscale
Model. Simul. 4, 1168–1200 (2005).

9. Chang, C. C., Lin, C. J.: LIBSVM: a library for support vector machines. ACM. Trans. Intell.
Syst. Technol. 2, 1–27 (2011)

10. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Fixed-Point
Algorithms for Inverse Problems in Science and Engineering. Springer, New York (2011)

11. Chambolle, A., Dossal, C.: On the convergence of the iterates of the “fast iterative shrinkage-
thresholding algorithm”. J. Optim. Theory Appl. 166, 968–982 (2015).

12. Donoho, D. L.: Compressed sensing. IEEE Trans. inf. Theory. 52, 1289–1306 (2006)
13. Lions, P. L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J.

Numer. Anal. 16, 964–979 (1979)
14. Luo, Z. Q., Tseng, P.: Error bound and the convergence analysis of matrix splitting algorithms

for the affine variational inequality problem. SIAM J. Optim. 2, 43–54 (1992)
15. Luo, Z. Q.: New error bounds and their applications to convergence analysis of iterative algorithms.

Math. Program. 88, 341–355 (2000)
16. Lorenz, D.A., Pock, T.: An inertial forward-backward algorithm for monotone inclusions. J. Math.

Imaging Vis. 51, 311–325 (2015)
17. Liang, J., Fadili, J., Peyr, G.: Convergence rates with inexact non-expansive operators. Math.

Program. 159, 403–434 (2016)
18. H. W. Liu, T. Wang and Z. X. Liu, Convergence rate of inertial forward-backward algorithms

based on the local error bound condition. http://arxiv.org/pdf/2007.07432
19. Molinari, C., Liang, J., Fadili, J.: Convergence rates of forward-douglas-rachford splitting Method.

J. Optim. Theory Appl. 182, 606–639 (2019)
20. Nesterov, Y.: A method for solving the convex programming problem with convergence rate

O
(

1
k2

)
. Dokl. Akad. Nauk SSSR. 269, 543–547 (1983)

21. Nesterov, Y.: Gradient methods for minimizing composite objective function. Math. Program. 140,
125–161 (2012)

22. Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140, 125–161
(2013)

23. O’Donoghue, B., Cands, E.: Adaptive restart for accelerated gradient schemes. Found Comput
Math. 15, 715–732 (2015)

24. Sra, S., Nowozin, S., Wright, S.J.: Optimization for machine learning. MIT Press, Cambridge,
Massachusetts (2012)

25. W. Su, S. Boyd and E. J. Candes, A differential equation for modeling Nesterov’s accelerated
gradient method: Theory and insights, J. Mach. Learn. Res, 17 (2016), pp. 1–43.

26. K. Scheinberg, D. Goldfarb and X. Bai, Fast First-Order Methods for Composite Convex Opti-
mization with Backtracking, Found. Comput. Math, 14 (2014), pp. 389–417.

27. Tseng, P.: Approximation accuracy, gradient methods, and error bound for structured convex
optimization. Math. Program. 125, 263–295 (2010)

28. Tao, S., Boley, D., Zhang, S.: Local linear convergence of ISTA and FISTA on the LASSO problem.
SIAM J. Optim. 26, 313–336 (2016)

29. Wen, B., Chen, X. J., Pong, T. K.: Linear convergence of proximal gradient algorithm with extrap-
olation for a class of nonconvex nonsmooth minimization problems. SIAM J. Optim. 27, 124–145
(2017)

	1 Introduction
	2 Adaptive non-monotone stepsize strategy
	3 FISTA algorithm with the adaptive non-monotone stepsize
	4 Modified FISTA algorithm with the adaptive non-monotone stepsize
	5 Restart FISTA algorithm with the new non-monotone stepsize strategy
	6 Numerical Experiments
	7 Conclusion

