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Abstract: Healthcare delivery in the United States has been characterized as overly reactive and
dependent on emergency department care for safety net coverage, with opportunity for improve-
ment around discharge planning and high readmissions and emergency department bounce-back
rates. Community paramedicine is a recent healthcare innovation that enables proactive visita-
tion of patients at home, often shortly after emergency department and hospital discharge. We
establish the first optimization-based framework to study efficiencies in the management and op-
eration of a community paramedicine program. The collective innovations of our modeling in-
clude i) a novel hierarchical objective function with the goals of fairly increasing patient wel-
fare, lowering hospital costs, and reducing readmissions and emergency department visits, ii) a
new constraint set that ensures priority same-day visits for emergent patients, and iii) a fur-
ther extension of our model to determine the minimum supplemental resources necessary to en-
sure feasibility in a single optimization formulation. Our medical-need based objective func-
tion prioritizes patients based on their clinical features and seeks to select and schedule pa-
tient visits and route healthcare providers to maximize overall patient welfare while favoring
shorter tours. We use our methods to develop managerial insights via computational experi-
ments on a variety of test instances based on real data from a hospital system in Upstate New
York. We are able to identify optimal and nearly optimal tours that efficiently select, route,
and schedule patients in reasonable timeframes. Our results lead to insights that can support
managerial decisions about establishing (and improving existing) community paramedicine pro-
grams.

Keywords: Community Paramedicine, Integer Optimization, Team Orienteering, Mandatory Vis-
its, Time Windows.
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1. Introduction

Healthcare in the United States has been criticized for being fragmented, poorly-integrated, and
reactive. Emergency departments (ED) stand-in for primary care especially for patients who rely
on safety net coverage or require after-hours care. Discharge planning after inpatient care remains
tenuous as evidenced by high readmissions rates across the country. It has been estimated that more
than 18 billion USD could be saved annually if patients whose medical problems are considered non-
urgent were to take advantage of primary or preventive health care rather than relying upon the ED
for their medical needs [1]. These lower-acuity patients are at risk of becoming increasingly ill and
eventually requiring acute ED care and potentially a costly hospital admission. Further, the cost of
unplanned readmissions post-discharge has been estimated to be 15 to 20 billion USD annually [2].
Hospitals in the United States face penalties for 30-day readmissions and avoidable ambulatory
care sensitive conditions [3] and actively seek ways to prevent both inpatient readmissions and ED
bounce-backs.

Community paramedicine (CP) is a recent healthcare delivery innovation that, in contrast to a
reactive approach, enables proactive visitation of patients in the comfort of their own home, often
shortly after an ED or hospital discharge. CP has been shown to be effective for chronic disease
and ED high-utilizer management and, in some cases, for acute conditions that could be treated at
home rather than at an ED. Patients recently discharged from the hospital often require follow-up
care such as medication administration and adherence, wound management, or routine check-
ups. Other complaints such as dehydration, nausea, flu, constipation, or anxiety do not necessarily
require ED level resources. Without appropriate resources, these recently-discharged and ill patients
are at greater risk for unplanned readmission or ambulatory sensitive ED visit. Moreover, while
ED resources should be used for true emergencies, many patients use ED services for non-urgent
purposes. CP aims to increase access to primary and preventive care and decrease unnecessary ED
visitation and unplanned hospital readmission, ultimately seeking to increase patient welfare and
decrease health care costs [4, 5].

CP, alternatively called mobile integrated care uses traditional front-line clinicians to help bridge
gaps between primary care and community health needs. Prehospital care in the United States
typically involves three levels of certification, Emergency Medical Technician (EMT, Basic Life
Support), Paramedic (Advanced Life Support), and Intermediate Emergency Medical Technician
(jurisdiction-dependent hybrid between EMT and Paramedic). While CP programs utilize all three
levels of specialty, going forward we will use the term “community paramedic” for efficiency while
acknowledging that some services may be best provided by other levels of care [6].

Unlike ambulance and transport-based paramedicine, community paramedics work where pa-
tients live (homes, shelters, assisted living centers) to prevent their health conditions from de-
teriorating to the point where emergency and inpatient care are required. Whereas emergency
paramedics are an in-the-field extension of an emergency medicine (EM) physician, the community
paramedic can be an extension of either EM or a primary care (PC) physician.

In the United States, a community paramedic’s training, scope-of-practice, and credentialing
is determined by each state. While some states and more rural and under-resourced jurisdictions
have found benefit in expanding the paramedic’s scope of practice to include a broader range
of medications and diagnostic practices (e.g., phlebotomy, urinalysis reagent tests, wound care),
other jurisdictions maintain the paramedic’s usual scope but expand where and in what ways
the paramedic can practice and how agencies can be compensated for these services [6]. The
International Board of Speciality Certification offers Community Paramedic certification alongside
other specialty certifications for paramedics (Flight, Critical Care, Tactical, Tactical Responder,
Wilderness) [7]. In most jurisdictions, certification remains optional as CP is still in development,
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is rapidly evolving, and has yet to be widely adopted [8].
CP shares some similarities to home health care (HHC) services. While both programs provide

health-focused services performed at client homes, most home health care services are typically
assessment-driven and can operate on a relatively fixed and routine schedule. CP programs, in
contrast, are designed to bring certain emergency department-level services to the home by ex-
panding the role of advanced paramedics and emergency medical technicians (EMTs) who are
routed through the community. In CP, community paramedics fill gaps in community care and
complement existing services provided by HHC, visiting nurses, and social workers. In this way, the
community paramedic works best as part of a multidisciplinary patient care team that can include
case managers, visiting nurses, behavioral health specialists, social workers, and physicians [9].

Important clinical differences exist between CP and HHC and these differences have implica-
tions for scheduling and operations. Whereas nurses and other HHC providers have expertise in
longer term patient care, as an extension of an emergency medicine or primary care physician, the
community paramedic may be able to provide in-home interventions not available to usual HHC
providers. In addition to patient assessments, CP personnel perform interventions in the home
including medication administration, IV therapy, EKGs, phlebotomy, urine tests, disease screens
(such as rapid COVID-19), and, in some jurisdictions, vaccinations. Community paramedics typi-
cally also use a designated vehicle (fly car1 or personal car) whereas cars, bikes, public transport
and walking are used in HHC. Since HHC typically focuses on assessing patients and ensuring that
specific clinical goals are being met (medication adherence, weight loss, medication reconciliation
post-discharge), two critical differences exist between delivering CP and HHC services.

First is the requirement of who must be visited in a given planning period and second is the
amount of time required for each visit. First, in the CP delivery model, higher-severity patients
must be visited as these patients require clinical interventions that are necessary to prevent an
inpatient or emergency-department encounter. Visits to lower-severity patients could be moved to
another day if postponing that visit would not result in a more expensive clinical encounter. Thus,
the priority for CP is to visit as many emergent patients as possible within a given time period (such
as a day), while lower-severity patients, if not selected to be visited, may be postponed and placed
on less-frequent schedules. Second, CP visits are more dynamic than HHC as CP interventions
can take as little as 15 minutes or as long as two hours. In the HHC model, if a patient requires
advanced care (IV fluids for example), emergency services such as 911 are dispatched and the
patient is sent to the emergency department. In the CP model, if a patient requires advanced care,
the visiting clinician provides that care after consultation with a physician. In this way, scheduling
CP services requires a more dynamic approach that aligns patient severity and the requirements
for in-home treatment.

To the best of our knowledge, this study establishes the first optimization formulation to solve
the challenges of CP selection, routing, and scheduling, valid over any planning period. Routing
and scheduling challenges for mobile and HHC services have seen exposure in recent literature,
as further detailed in Section 2; however, the authors are only aware of manual approaches to
tackle CP delivery challenges. We use optimization-based approaches to transform perhaps the
most challenging part of the CP puzzle: replacing the complex, manual decision-making process of
selecting patients – routing healthcare providers to visit patients and scheduling CP visits while
respecting patient time windows.

Given existing resources and a set of patients to be visited, our optimization-based framework
answers the following questions concerning the efficient management of a CP program: 1) Who
are the priority-weighted patients that must be visited, by which vehicle, and in what order? 2)

1A fly car is a minimally equipped emergency medical service vehicle that is not designed to transport patients.
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How should CP resources be most efficiently allocated and routed? 3) Are there some patients
who must be seen? 4) If there are insufficient resources available to visit all patients who must be
seen, what level of supplemental resources are necessary to do so? We anticipate that answering
these questions will reveal critical insights into efficiently managing a CP program. In addition
to revealing the most efficient ways to select patients and schedule and route medical workers to
maximize patient and hospital benefits, our framework informs the number of patients that can be
treated in a program, the type of patients that should be visited, and the number of vehicles and
personnel required to initiate a new program, or equivalently, are needed to sustain the program
through acquisition or outsourcing.

Our optimization formulation makes several novel contributions to the HHC operations re-
search literature. These include the introduction of a new objective function to maximize overall
patient welfare, while secondarily minimizing the total distance traveled by the healthcare providers.
Among ways to do so, we incorporate means to eliminate unnecessary distance traveled through a
subsidiary objective function component. Moreover, we construct a unique way to consider fair-
ness in selecting patients via a prioritization scheme according to associated clinical features. This
novelty ensures that visiting emergent patients are prioritized.

Our model also accommodates the mandatory nature of visiting emergent patients, in that we
require certain patient categories (patients with mandatory visits) to be visited using the available
resources. Should existing resources prove insufficient, our model also prescribes the remaining
supplemental resources that are necessary to accommodate the needs of these emergent patients.
Moreover, we carefully structure our novel optimization formulation to ensure supplemental re-
sources are used only when the existing resources are insufficient to meet the needs of the emergent
patients, while ensuring the supplemental resources travel no more than necessary. Lastly, we
present a thorough computational analysis using real data from our problem context, discuss re-
sults, and provide meaningful managerial insights.

The remainder of this study is organized as follows. In Section 2, we survey the related literature,
focusing on existing CP pilot programs in the United States, as well as routing and scheduling of
HHC services. In Section 3, we establish a new mixed integer linear formulation for optimizing
CP service delivery and extend our baseline model to address further challenges that may occur
in a CP program. In Section 4, we introduce our case study and its characteristics, conduct
computational experiments on de-identified data from our partner organization to assess the validity
of our mathematical formulations, and discuss the results of our computational experiments and
insights. We draw conclusions and discuss future research directions in Section 5.

2. Literature Review

Within the operations research literature, the authors are unaware of any studies to model the
selection, routing, and scheduling of visits for a CP program. We first survey the existing CP
pilot programs in the United States, followed by a discussion of the analytical approaches used for
related problems in HHC routing and scheduling literature.

2.1 Community Paramedicine Pilot Programs in the United States

In many countries including the United States, ED resources are limited by space, equipment,
personnel, and budget [10]. At the same time, demands on ED services are frequent, and include
interactions that can be categorized as true emergencies such as trauma, heart attacks, strokes,
major organ dysfunction, or systemic infections (sepsis); lower acuity conditions such as disease
complications (COPD, diabetes), wound care and minor trauma, ambulatory-sensitive conditions;
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bouncebacks such as ED high utilizers; and readmissions such as recently discharged patients with
complications that risk an unplanned readmission. It is important to reserve limited and expensive
ED resources to quickly respond to true emergencies, as service delays for such patients may be
life threatening [11]. Community paramedicine holds promise as a cost-effective healthcare delivery
innovation, enabling healthcare systems to make better use of their limited resources by visiting
potential bounceback, readmission, and lower-acuity patients proactively outside of the ED and
hospital, while conserving limited ED resources for true emergencies.

In the United States, CP programs have been explored only recently, piloting in at least 20
states as of 2016 [12]2. Characteristics and outcomes of several recent CP implementations in
the United States are summarized in Table 1. These pilot programs differ in targeted patients
and treatment offered at the patient home. Targeted patients are commonly frequent users of
the ED, chronically ill patients, elderly populations, hospice patients, and patients with non-acute
conditions, immunization needs, or patients at high-risk of unplanned hospital readmissions. CP
treatments commonly offered include wound care and chronic disease management, primary care,
follow-up care after hospital and ED discharge, and educating patients on the difference between
urgent care and primary care [12].

Several pilot programs attempt to evaluate CP impacts in terms of reducing healthcare provider
costs and improving societal health. Between 2010 and 2015, MedStar Mobile Healthcare in Dallas
and Fort Worth, Texas, claims to have prevented a total of 1.893 ED transports for 146 patients,
saving Medicare more than 800 million USD [12]. An initial evaluation of a small pilot program in
Abbeville County, South Carolina, found measurable improvements in patient health. In particular,
a key finding was that many patients previously in need of consistent services only required occa-
sional check-ups [4]. Another program in Eagle County, Colorado, reported saving 124.071 USD
in healthcare costs over a two-year implementation [4]. While such examples illustrate the impact
of CP, the emphasis of this study is on determining how best to route and schedule patients after
target populations and services are defined, rather than evaluating the impact of CP programs.

The CP concept originated in rural settings as a strategy to increase access to basic healthcare
needs. More recently, it has found increased use in more urban areas like Albuquerque, New
Mexico [13]. Community paramedicine is a part of the Emergency Medical Service Agenda 2050
outlining the future version of emergency medical service in the United States [14]. At the same
time, the 2050 Agenda underscores the importance of using analytical approaches to design and
implement CP programs. In the next section, we investigate the HHC problem which, from an
operations research viewpoint, is the most related context to CP.

2Community paramedicine pilots may be more widespread since 2016.
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Table 1: Examples of Community Paramedicine Pilot Program in the United States.

Location Proactive Treatment Targeted Patients Reported Benefits

Livingston County,
NY [15]

Trained EMTs treat
geriatrics at home

Geriatric None reported

Madison,WI
[12]

Paramedics provide wound
care & chronic disease management

Chronically ill patients None reported

Clayton County, GA
[12]

Paramedics treat
patients at home

ED high utilizers:
≥ 17 visits/year

None reported

Dallas and Fort Worth,
TX [12]

Educate & monitor patients
Chronically ill

patients
ED visits: 1893 (↓)

Medicare saving: > $800 million

Albuquerque,
NM [13]

Visit & educate
patients

ED superusers & patients
at high risk for readmission

Frequent users’ utilization
of ED: 70% (↓)

Rugby, N.D.
[16]

Paramedics & EMTs bring
medical care at home

Chronically ill &
hospice patients

ED & hospital admissions: (↓)
Patient satisfaction: (↑)

Abbeville County, SC
[4]

Visit patient
at home

Frequent ED users:
≥ 1 chronic disease

ED visits: 58.7% (↓)
Inpatient stays: 68.8% (↓)

30-day readmission rates: 41.2% (↓)

Eagle County, CO
[4]

Paramedics treat
patients at home

Patients with non-acute
condition or immunization need

Healthcare cost saving: $124,071
Average saving per visit: $1,969

Central Jackson County,
MO [17]

Paramedics followed up
with patients for a year

Congestive heart failure patients Readmission rate: 15% (↓)

2.2 Scheduling and Routing of Home Health Care Services

CP is a unique operational model that shares some similarities with HHC. We now survey related
works in the HHC domain from an operations research perspective and highlight the features that
distinguish CP from other health delivery models in the literature. The use of operations research
approaches to address and mitigate HHC challenges is a relatively new and challenging area of
study, and considers issues such as caregiver-to-patient assignment, scheduling of patient requests,
and caregiver routing [18, 19]. Such factors create a complex decision-making environment which
is difficult to address in a rigorous and formal way, and results in the individual planning aspects
generally being considered separately in the literature.

While it is challenging to mathematically model and subsequently optimize all aspects of the
HHC problem, a number of studies consider separate aspects in a mathematical model [18–26]. Eve-
born et al. [23] formulate the combined scheduling and routing problem as a set partitioning prob-
lem. Cappanera and Scutellà [18] propose an integrated approach to jointly address assignment,
scheduling, and routing decisions in the home care problem through a novel concept of patterns,
which specifies a possible schedule for skilled visits. They use patterns as a key strategy to reduce
the complexity. Clapper et al. [27] address the design of caregiver shift patterns, considering the
timing and type of caregiver to be scheduled.

Nikzad et al. [28] propose a two-stage stochastic mixed integer model with uncertainty in
travel and service times. They partition the set of patients and caregivers into districts in the
first stage while considering operational costs, handling routing and assignment decisions in the
second stage. Uncertainty in service and travel times has more recently been considered in the HHC
domain. Di Mascolo et al. [29] provide a literature survey on routing and scheduling problems
in HHC, highlighting prominent techniques such as stochastic, dynamic, and robust optimization.
In stochastic modeling approaches, uncertain variables may follow known distributions such as
normal [30–32] and uniform [33]. Relatedly, Hoot et al. [34] develop a discrete event simulation
of an emergency department (ED) and emphasize that ED procedures differ in their distributions.
They use the lognormal distribution for evaluation and treatment of patients in the ED.
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Fikar and Hirsch [35] provide a review of the HHC scheduling and routing studies from an
operations research perspective, dividing HHC scheduling and routing studies into single period
and multi-period timeframes. Many HHC studies [20, 21, 23–25, 36] model the problem in a single-
period, assuming a single working day as the planning horizon. In multi-period HHC studies [18, 37–
41], service requests and availability of nurses may change over the planning horizon, with the
planning period being defined as different days of a week or month.

Fikar and Hirsch [35] also categorize HHC scheduling and routing studies in terms of their
objective functions. Common objective functions include minimizing travel time [21, 24, 36], travel
cost [20, 23, 25], wait time [21], overtime [21, 36], as well as maximizing nurse preferences [20, 21,
24, 25, 36] and balancing workload among nurses [18, 19]. Alkaabneh and Diabat [42] propose two
different algorithms that aim to minimize service and routing costs while maximizing compatibility
between caregivers and patients by putting weights on the objective function. Recently, Cinar et al.
[39] appear to be the first to consider maximizing the total priority of the visited patients primarily
and minimizing the total traveling time secondarily in a single vehicle HHC problem. To the best
of our knowledge, we are the first to do so in the context of multiple nonhomogeneous vehicles and
differing patient priority scores: that is, consider maximizing overall patient welfare, while favoring
shorter tours.

The vast majority of HHC studies focus on visiting all patients [18, 19, 43]. However, in CP
settings, healthcare systems must prioritize their resources and often have insufficient capacity
to visit all patients. Given insufficient resources to visit all patients, it becomes necessary to
prioritize visiting patients with the greatest need, which we refer to as emergent patients. Typical
HHC models of routing service providers, based on classical problems like the traveling salesman
problem and variations of the vehicle routing problem, are not appropriate for CP, as they assume
all patients must be visited, when in reality available resources require patient selection. We instead
employ a team orienteering approach with time windows to model CP delivery challenges, which
selects patients for visits, routes the healthcare providers to visit the selected patients, and in so
doing prescribes schedules for the selected visits, while respecting patient time windows.

The classical vehicle routing problem aims to minimize either the number of vehicles serving all
vertices or the total travel distance for a fixed number of vehicles, making it challenging to compare
with the team orienteering problem due to distinct objectives. However, in the selective vehicle
routing problem, not all vertices can be visited due to constraints such as limitations on vehicle
tour length, and vehicle capacity for serving vertices with specific demands. The selective vehicle
routing problem seeks to maximize the possible reward without violating any of its constraints. The
selective vehicle routing problem and the team orienteering problem primarily differ in the type of
constraints. The team orienteering problem has additional constraints based on attributes unique
to each vertex (such as service time; entrance fee), while the distance constraint in the selective
vehicle routing problem is based on distances between vertices and is therefore dependent on the
visit sequence [44–47].

The orienteering problem is a combination of node selection and determining the shortest Hamil-
tonian path between the selected nodes. In the orienteering problem, each node has a certain score
and the objective is to maximize the total collected score by visiting as many (priority-weighted)
nodes as possible, whereas the traveling salesman problem attempts to minimize the cost (as mea-
sured by time, distance, or economic costs) to visit all nodes. Team orienteering is an extension
of the orienteering problem that considers a specific number of agents conducting tours, with each
respecting individual time limits [45]. Over the last decade, a number of challenging practical
applications have been modeled using the team orienteering framework [45]. However, Cinar et al.
[39] is the only study that uses the orienteering viewpoint in the HHC literature, and we are the
first to model CP delivery challenges via the team orienteering viewpoint. Furthermore, only a
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few exact approaches [18–20, 39] have been proposed that deal simultaneously with the various
planning aspects in HHC. Cinar et al. [39] exactly solve instances of moderate size, but to generate
solutions for larger problems they resort to an Adaptive Large Neighborhood Search algorithm and
a matheuristic.

In real life situations such as CP, the limited availability of resources makes visiting all sites
potentially impractical. In such settings, a number of important questions arise that can be ad-
dressed through proper mathematical modeling and analysis: 1) Who are the priority-weighted
patients that should be visited, by which vehicle, and in what order? 2) How should community
paramedicine resources be most efficiently allocated and routed? 3) Are there some patients that
must be seen? 4) If there are insufficient resources available to visit all patients who must be seen,
what level of supplemental resources are necessary to do so? Our optimization-based framework
can answer all of these questions within a single optimization formulation, offering key insights and
analytical support for medical decision makers.

While studies exist in the literature that address some aspects of our approach, none are able
to simultaneously consider all of the elements we do. We consider selecting patients in addition to
routing and scheduling of healthcare providers, as well as fairness in the selection decisions through
the construction of a functional representation of the benefit of visiting each patient based on the
associated health features. Our model is the first optimization formulation in the HHC literature to
ensure treatment is provided for patients with severe health conditions by including an obligation
to visit certain categories of patients during the planning period (such as those that are emergent).
Our model also incorporates the ability to find routes that are not longer than necessary. Finally,
given the limited resources available to visit patients coupled with the necessity that some patients
must be visited, it may be necessary for healthcare systems to obtain additional resources (either
through outsourcing, or increasing their own internal resources) to ensure emergent patients are
visited – our model considers this aspect for the first time and determines the required amount of
supplemental resources.

3. Methodological Developments

In this section, we address the core challenges of the CP service delivery system through mathe-
matical modeling. We begin with a formal problem description, provide a baseline formulation for
the problem, and extend the baseline model to solve realistic challenges that may occur in a CP
program.

3.1 Mixed-Integer Optimization Model for Community Paramedicine

A formal problem description of CP begins with requiring vehicles to start and end their tour at
pre-specified depots. We attribute to each patient a single value called the priority score, indicating
the urgency of a CP visit for such patients based on their clinical assessment. While it is desirable
to visit all patients, it is assumed that there are insufficient resources to do so. The goal is to
visit as many (priority-weighted) patients as possible while respecting travel times, time windows,
and time budgets. We assume there exists a set of patients who should be scheduled over a given
planning period.

Sets. Let P represent the set of patients and their associated locations, indexed by i. The set
of clinical features affecting a patient priority score is denoted by F . The set of vehicles is denoted
as V, indexed by v. The set of all nodes, including the origin depot, patient locations and the
destination depot, is denoted by N , indexed by i. Where notationally convenient we assume an
ordered set of nodes, patients and vehicles. We denote the origin and destination depots either as
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nodes corresponding to the indices i = 0 and i = |N |, or as nodes O and D, and use one or the
other based on notational convenience.

Parameters. Denote the priority score for each patient i ∈ P as pi, where the function

p : P × F 7→ IR
|P|
+ defines these priority scores, and where pi > pj implies that patient i has a

greater priority than patient j. The visit duration for node i ∈ N is di, the travel time from node
i ∈ N to node j ∈ N is tij (i ̸= j), and the given time budget for vehicle v ∈ V is Tv. Let M be a
large enough constant to upper bound the start time of servicing any node. Denote the lower and
upper bounds on the start of service for node i ∈ P as li and ui, respectively.

Variables. Let binary variable yvi equal 1 if patient i ∈ P is visited by vehicle v ∈ V, and 0
otherwise. Let binary variable xvij (i ̸= j) equal 1 if a visit to node i ∈ N is followed by a visit
to node j ∈ N by vehicle v ∈ V, and 0 otherwise. Denote the start of service for node i ∈ N by
vehicle v ∈ V as nonnegative continuous variable svi .

With the above notation, we formulate the following mixed-integer optimization model that
maximizes the total priority score from visiting patients:

maximize

|V|∑
v=1

|P|∑
i=1

piy
v
i (1a)

subject to:

|V|∑
v=1

|N |−1∑
j=1

xv0,j =

|V|∑
v=1

|N |−1∑
i=1

xvi,|N |, (1b)

|V|∑
v=1

|N |−1∑
j=1

xv0,j ≤ |V|, (1c)

|N |−1∑
i=0,
i ̸=k

xvik =

|N |∑
j=1,
j ̸=k

xvkj = yvk ∀ k ∈ P, ∀ v ∈ V, (1d)

|V|∑
v=1

yvi ≤ 1 ∀ i ∈ P, (1e)

|N |−1∑
i=0

|N |∑
j=1,
j ̸=i

tijx
v
ij +

|P|∑
i=1

diy
v
i ≤ Tv ∀ v ∈ V, (1f)

svi + tij + di − svj ≤ M(1− xvij) ∀ i, j ∈ N (i ̸= j),∀ v ∈ V, (1g)

liy
v
i ≤ svi ≤ uiy

v
i ∀ i ∈ P,∀ v ∈ V, (1h)

svi ≥ 0 ∀ i ∈ P,∀ v ∈ V, (1i)

xvij ∈ {0, 1} ∀ i, j ∈ N (i ̸= j),∀ v ∈ V, (1j)

yvi ∈ {0, 1} ∀ i ∈ P,∀ v ∈ V. (1k)

Constraint set (1b) ensures that all tours start and end at origin and destination depots, and
constraint (1c) ensures that the number of tours does not exceed the maximum number of vehicles.
Constraint set (1d) guarantees the connectivity of the path for each vehicle. Constraint set (1e)
ensures that each patient is visited at most once, while constraint set (1f) ensures all travel and
servicing adheres to time budget limitations. Constraint set (1g) determines the timeline of the
path for each vehicle, effectively serving to eliminate subtours. Constraint set (1h) ensures that
the start time of patient visits occurs within time windows. Variable domains appear in (1i)– (1k).
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3.2 Distance Prioritization

We can prioritize shorter tours with the following objective function, which maximizes the total
weighted priority score of visited patients while favoring shorter tours:

maximize

|V|∑
v=1

|P|∑
i=1

piy
v
i − α

 |V|∑
v=1

|N |−1∑
i=0

|N |∑
j=1,
j ̸=i

tijx
v
ij +

|V|∑
v=1

|P|∑
i=1

diy
v
i

 (2a)

where α > 0 is a small enough constant to ensure that the contribution of the second objective
function component is always strictly less than the smallest benefit that could accrue from the first
objective function component.

3.3 Ensuring Treatment of Emergent Patients

In reality, there may exist some patients that must be visited during any given planning period.
Assume such a set of patients H ⊆ P exists, indexed by i. These patients must be visited during
the present planning period because of the severity of their health conditions. Constraint set (3b)
enforces this condition. This extension of the model replaces constraint set (1e) with constraint
set (3a) and constraint set (3b).

|V|∑
v=1

yvi ≤ 1 ∀ i ∈ P \ H, (3a)

|V|∑
v=1

yvi = 1 ∀ i ∈ H. (3b)

If the new setH is empty, constraint set (3b) is vacuous, and constraint set (3a) simply reduces to
constraint set (1e). When H is nonempty, additional required resources may need to be determined
for fulfilling the needs of these emergent patients, which we next investigate in Section 3.4.

3.4 Determining Supplemental Resources

Even in the best circumstances, a situation may occur in which there are insufficient resources to
serve all emergent patients requiring a visit in a defined time period. For such circumstances, we
propose to add a supplemental set of resources in the model to determine the additional level of
vehicles and time necessary to ensure all emergent patients are visited within the budgeted time.
This feature of our framework can inform decision-makers to better understand the tradeoffs around
available and needed resources, for example the acquisition of additional resources or outsourcing.
Denote the set of existing vehicles as V1, indexed by v; and denote the set of supplemental vehicles
as V2, indexed by v. Denote the set of all vehicles including available and supplemental vehicles as
V+ = V1∪V2, indexed by v. If emergent patients are not visited in the planning period via available
vehicles v ∈ V1 due to limited time resources, they will be visited by supplemental vehicles v ∈ V2.

The benefit of adding supplemental vehicles v ∈ V2 transforms the problem from one of being
infeasible, to both ensuring that a feasible solution exists, as well as simultaneously capturing the
minimum amount of supplemental resources needed to accommodate all emergent patients.

The objective function is structured so as to prioritize the use of available resources first,
and supplemental resources only when necessary to ensure feasibility. To ensure that the use
of supplemental resources only occurs when the available vehicles are exhausted, supplemental
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vehicles v ∈ V2 are not considered in the first term of the objective function. With the new
notation, we present a final mixed-integer optimization model that maximizes the total priority
score of visited patients via existing vehicles v ∈ V1, while favoring shorter tours for both available
and supplemental vehicles. A small penalty β > 0 is also added to the model to favor shorter tours
for the supplemental vehicles v ∈ V2. Our final model is presented as follows.

maximize

|V1|∑
v=1

|P|∑
i=1

piy
v
i − α

 |V1|∑
v=1

|N |−1∑
i=0

|N |∑
j=1,
j ̸=i

tijx
v
ij +

|V1|∑
v=1

|P|∑
i=1

diy
v
i



− β

 |V2|∑
v=1

∑
i∈H∪{O}

∑
j∈H∪{D},

j ̸=i

tijx
v
ij +

|V2|∑
v=1

∑
i∈H

diy
v
i

 (4a)

subject to:

|V+|∑
v=1

|N |−1∑
j=1

xv0,j =

|V+|∑
v=1

|N |−1∑
i=1

xvi,|N |, (4b)

|V+|∑
v=1

|N |−1∑
j=1

xv0,j ≤ |V+|, (4c)

|N |−1∑
i=0,
i ̸=k

xvik =

|N |∑
j=1,
j ̸=k

xvkj = yvk ∀ k ∈ P, ∀ v ∈ V+, (4d)

|V1|∑
v=1

yvi ≤ 1 ∀ i ∈ P \ H, (4e)

|V+|∑
v=1

yvi = 1 ∀ i ∈ H, (4f)

|N |−1∑
i=0

|N |∑
j=1,
j ̸=i

tijx
v
ij +

|P|∑
i=1

diy
v
i ≤ Tv ∀ v ∈ V+, (4g)

svi + tij + di − svj ≤ M(1− xvij) ∀ i, j ∈ N (i ̸= j),∀ v ∈ V+, (4h)

liy
v
i ≤ svi ≤ uiy

v
i ∀ i ∈ P,∀ v ∈ V+, (4i)

svi ≥ 0 ∀ i ∈ P, ∀ v ∈ V+, (4j)

xvij ∈ {0, 1} ∀ i, j ∈ N (i ̸= j), ∀ v ∈ V+, (4k)

yvi ∈ {0, 1} ∀ i ∈ P,∀ v ∈ V+. (4l)

In optimization formulation (4a)–(4l), the parameters α, β, and M need to be appropriately set so
as to suitably affect the performance of the solver and model outcomes. An appropriate value for
each of these parameters is introduced in the next section.

3.5 Model Enhancements

Optimization formulations (1a)–(1k) and (4a)–(4l) contain big-M terms that are used to determine
timeline of each path. We derive a large enough value for M to upper bound the start of service
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for each node, supporting off-the-shelf solvers in coping with these formulations. We also calculate
appropriate values for α and β used to prevent available and supplemental resources from traveling
more than necessary. Finally, we propose a novel functional representation for priority scores,
considering the notion of fairness to prioritize patients with more urgent needs over patients with
less urgent needs.

Deriving A Sufficient Big-M Value for Timeline. A sufficient value for the big-M constant
for each vehicle v ∈ V in constraints (4h) is defined as

Mv = Tv + γ, ∀ v ∈ V (5)

where γ is a small enough positive constant. A straightforward argument can be made that the
start of service for any node i ∈ N cannot be larger than time budget of vehicle v ∈ V that may
visit node i.

Deriving Sufficient α and β Values. The objective function (4a) represents a lexicographic
objective function, with alpha and beta parameters set to hierarchically prioritize the three objective
components. The primary objective aims to maximize the total weighted priority score of visited
patients, while the secondary objective is concerned with finding shorter tours for both existing
and supplemental vehicles. The secondary objective, when appropriately weighted as in Section 4,
can be considered as a tie-breaker that selects among multiple optima of the primary objective.
In this way, the goal of maximizing the total weighted priority score of visited patients is given
preference over minimizing the total length of vehicle tours. Therefore, the primary objective does
not necessarily select the highest priority patients. By doing so, more emphasis is placed on potential
savings from the intervention, which involves reducing the total number of emergency department
visits. In some cases, this may mean that certain patients, based on geography or population
density, may be disadvantaged. However, this approach enables resources to be more effectively
allocated, ultimately resulting in improved outcomes for the population overall. A sufficient value
for α is

α =
min
i∈P

pi − ϵ∑|V1|
v=1 Tv

(6)

where ϵ is a small, positive constant.

The value of α should fulfill α ≤ mini∈P pi∑|V1|
v=1

∑|N|−1
i=0

∑|N|
j=1 tijx

v
ij+

∑|V1|
v=1

∑|P|
i=1 diy

v
i

, and
∑|V1|

v=1 Tv is a valid

upper bound on the denominator of the right-hand side of this inequality. Subtracting ϵ from the
numerator ensures that in the worst case, the first objective function component that maximizes
collective priority scores remains the emphasis. The value of β is set to 1∑

v∈V2
Tv

to penalize longer

tours for supplemental vehicles, consistent with the structure of the primary purpose of the objective
function to maximize the total weighted priority score of visited patients by available vehicles.

Priority Score Calculation. There is a strict preference in the patient selection process for
the class of patients that we want to prioritize. It is unfair to let patients who are emergent wait
a long time or even wait until the next planning period simply because visiting patients with less
urgent needs is less expensive in terms of travel distance. We construct a function to accommodate
this notion of fairness and to prioritize patients with more urgent needs over patients with less
urgent needs. To facilitate the ensuing discussion, we assume that there is a modest number of
levels of patient urgency over which there is a weak ordering3, so that some patients may have
identical urgency.

3If there are more than a modest number of levels representing urgency, or even continuous values, this can still
be accommodated by stratification into a smaller number of levels.
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The importance of visiting patient i is controlled via priority score pi in objective function (4a).
To prioritize visits so that patients with more urgent needs are visited first, it is necessary to assign
a large enough score to these patients so that visiting multiple patients with less urgent needs
would not be more favorable in the objective function than visiting a single emergent patient. In
equation (7), we derive an appropriate expression for pi that ensures more critical patients have a
higher visit priority in the model.

For each patient i ∈ P, let Li be the set of all patients ℓ ∈ P with less urgent needs than patient
i. Define pi as

pi =
∑
ℓ∈Li

pℓ + ϵ (7)

where ϵ is a small, positive constant.
In the worst case scenario, there are enough resources to visit all patients with less urgent needs

than patient i within a given time frame, and yet patient i is not visited due to limited available
resources. The total benefit obtained from visiting patient ℓ ∈ Li is

∑
ℓ∈Li

pℓ. Therefore, visiting
patient i will be preferred only if pi is greater than

∑
ℓ∈Li

pℓ. Hence,
∑

ℓ∈Li
pℓ+ϵ suffices. Therefore,

calculating pi for each patient i ∈ P according to equation (7), ensures that patients with more
severe health conditions have higher visit priority.

In practice, a health system can establish the initial priority scores based on a combination of
factors, not solely on the physician-indicated acuity level. These factors include: 1) ED acuity,
the acuity level assigned to a patient upon arrival at the ED, which provides an initial indication
of the patient’s medical urgency; 2) Assigned acuity on discharge, which accounts for the acuity
level assigned to a patient at the time of discharge, and may differ from the initial ED acuity,
offering a more accurate representation of the patient condition after evaluation and treatment;
3) Chief complaint, the primary concern or symptom reported by the patient during triage, which
plays a critical role in differentiating the needs of low acuity and emergent patients and identifying
those who may most benefit from the CP visits; 4) Net gain of home treatment, representing the
potential benefits of providing home treatment such as preventing ED or inpatient events, and
assists in identifying patients who may experience significantly improved health outcomes and
optimized resource utilization through home treatment. By considering these factors, the initial
priority scores provide a comprehensive assessment of each patient’s needs and the potential benefits
of the CP visit.

4. Computational Experiments

In this section we conduct computational experiments on test instances inspired by real hospital
system data, to study the performance of optimization formulation (4a)–(4l). We begin by intro-
ducing our case study and addressing characteristics of our test instances. We then present the
results of our computational experiments and discuss managerial insights related to our findings.
While we consider loose patient time windows in our experiments that are in accordance with
the expressed preference of our case study organization, we also investigate the performance of
our model with tighter patient time windows. We further report our findings with uncertain visit
duration and explore the use of supplemental vehicles.

All experiments are run on parallel computing resources with 1 node and 8 cores. We use Gurobi
Optimizer version 8.0.4 [48] with Python 3.6.5 interface for solving optimization formulation (4).
We use default Gurobi parameter settings for all of our experiments, and set a time limit of 10
hours (wall-clock) for each instance. All pairwise distances between nodes in set N are calculated
via the HERE Map API [49].
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4.1 Community Paramedicine in Canton-Potsdam Hospital: A Case Study

Potsdam is a rural town in St. Lawrence County, New York, with a population of 14,901 according
to the latest available 2020 census. Canton-Potsdam Hospital is the sole hospital serving the
town and surrounding community within a 50 mile radius, encompassing approximately 25,000
people. We use data from Canton-Potsdam Hospital in our computational experiments to help
assess the feasibility of implementing a rural CP program for their patient population. A challenge
to managing and implementing CP for this hospital is that the large and sparse population must
be served via the limited resources of the hospital or a local rescue squad. It is therefore necessary
to find the most efficient way to select the patients who should be visited and treat them with the
existing resources. We next show that our model can provide answers for Canton-Potsdam Hospital
concerning the management, design and implementation of an efficient delivery system for CP.

We generate various test instances inspired by real data from Canton-Potsdam Hospital, and
measure the performance of our optimization model by varying key parameters affecting the problem
size. We create test instances by varying the number of patients in the panel, number of vehicles,
and time budget for each vehicle, as detailed in Table 2. We assume an equal time budget of Tv

for all available vehicles. Appropriate values for α, β, and M are calculated according to values
introduced in Section 3.5.

Table 2: Characteristics of Instances Used in Computational Experiments.

Number of Patients
Number of

Available Vehicles

Time Budget for Each

Available Vehicle (Hours)

10
1 {2, 3, 4, 5, 6}
2 {2, 3, 4}

20
1 {2, 3, 4, 5, 6, 7, 8}
2 {2, 3, 4, 5, 6}

30
1 {4, 5, 6, 7, 8, 9, 10}
2 {4, 5, 6, 7}

{40, 50} {1, 2} {4, 5, 6, 7, 8, 9, 10}

{60, 70, 80, 90, 100} {1, 2, 3} {6, 7, 8, 9, 10, 11, 12}

Our case study data is sorted by patient discharge times from the hospital. For a particular
scenario with |P| patients, we select the first consecutive unique |P| patients starting from a par-
ticular date in January. We repeat this sampling procedure for a random start date in June and
October. This sampling method generates three instances that we used for each scenario with |P|
patients. It is worth noting that the patients in each instance may be from different days, as the
main purpose of our experiments is testing the model for a wide range of patients in the panel.

Our model uses data that includes patient address, acuity level, estimated visit duration, and
patient time windows. Patient acuity level, assigned by a physician, is available for each patient
indicating a patient’s clinical assessment; this is indicated by an integer number between one and
five (from least to most severe). We consider acuity level as a feature affecting the priority score.
Based on clinical expertise about patient needs and CP services, we assume specified visit durations
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for various acuity levels4, as detailed in Table 3. In our case study, we assume that patients with
acuity level one and two do not require CP visits. Thus, the panel only includes patients with
acuity level three, four, and five. We further explore uncertain visit duration following truncated
lognormal distribution, which will be discussed in the next section.

Table 3: Visit Duration for Patients with Varying Acuity Levels.

Acuity Level Visit Duration (Minutes)

3 15

4 20

5 30

Table 3 indicates that there are three groups of patients who constitute the panel. Patients
with acuity level of five have the highest urgency for visitation, while patients with an acuity level
of three have the lowest urgency. We assume a CP program would require patients with the highest
acuity level to be visited in the present planning period. Thus, the set of emergent patients5 H
consists of patients with acuity level five, and we designate vehicles v ∈ V2 that can only be used for
visiting this group of patients. If patients with acuity level five are not visited via available vehicles
v ∈ V1 due to limited time availability, they must be visited with vehicles v ∈ V2. This capability
allows our model to flex so as to determine the supplemental resources necessary to visit these
acuity level five patients, thereby preventing the model from becoming infeasible due to constraint
set (3b).

While each patient has their individual acuity level, the determination of objective function
coefficients is dictated by equation (7), in particular because we aim to prioritize the most emergent
patients over those that are less emergent in optimization formulation (4). Given a unique panel
of patients, each instance has its own objective coefficients (priority scores) based on the panel
properties. For calculating priority scores, we assume that ϵ is equal to 1 in equation (7).

Section 4.2 reveals key managerial insights we derive from our computational experiments.
Canton-Potsdam Hospital staff generally requires patients to be available for the entire duration
of the day. We thus set the patient time windows to be at their widest so that the lower bound
on starting service for any patient is at the beginning of the day, while the upper bound is at
the end of the day. Even so, to understand the effect of stricter time windows on the computa-
tional performance of optimization formulation (4), we conduct a thorough study on various time
window scenarios. We also explore the significance of uncertainty in visit duration by conducting
experiments with stochastic visit duration.

4.2 Managerial Insights from Computational Experiments

The model is designed to provide insights in answering critical questions for managers that oversee
CP programs. First, given a set of priority-weighted patients needing services, as well as a set of
vehicles with predetermined characteristics, who are the patients that should be visited, by which
vehicle, and in what order, while ensuring that CP resources are most efficiently allocated and
routed? Another important question to managers, as expressed by our partnering hospital, is

4We evaluate the effect of considering longer visit durations on the model performance and results in Appendix C.
5The set of emergent patients H was introduced in Section 3.3.
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whether it is possible to visit all emergent patients with available resources. Finally, if our model
determines that the available resources are insufficient to visit all emergent patients, it also is able
to answer two key, related questions: i) What percentage of emergent patients are not visited by
available resources? ii) What level of additional resource is needed to visit these patients? In the
short term, this information might be used for an existing program to explore outsourcing options.
Over the longer term, such data might be used to provide justification for investment in additional
vehicles. In planning a new program, running the model multiple times to reflect different scenarios
can provide insight regarding necessary resources.

We address these questions by studying the computational results for a variety of scenarios
created by varying numbers of patients, numbers of vehicles, and time budgets per vehicle, using the
instances outlined in Table 2. We evaluate computational times and optimality gaps to demonstrate
the feasibility of our model in multiple dynamic settings beyond the standard case study setting,
in particular scenarios with longer visit durations, as well as scenarios with patient-specified time
windows.

Results Assuming A Standard Work Day. We discuss computational results under a
standard eight hour work day assumption. Table 4 presents results from running optimization
formulation (4) for instances with patient discharge times in January, while the time budget for
each available vehicle Tv is eight hours. Note the column titled “Number of Vehicles” represents all
vehicles including available vehicle(s) and one supplemental vehicle. We assume that the set V2 of
supplemental vehicles includes only one vehicle with a large enough time budget to visit all patients
with the highest acuity level should these patients not be visited via available vehicles v ∈ V1 due
to their limited time availability. We can therefore find supplemental time for visiting emergent
patients who are not visited by available vehicles6. In Appendix B, we include experimental results
for 20, 40, 60, 80, and 100 patients, varying the number of vehicles, and even time budget values
per vehicle, omitting the detailed results with 10, 30, 50, 70, and 90 patients and odd time budget
values, as these results are similar to the reported results.

In Table 4, over all instances that are not solved to global optimality within the 10 hour time
limit, the optimality gap is no more than 5.2%, on average 1.46%. We also highlight the time to
find the best incumbent solution. In instances with limited resources and a considerable number
of emergent patients with acuity level of five–such as the instances with 100 patients and two
vehicles–available and supplemental vehicles are used to visit only emergent patients.

These findings reveal the following insight: our model can identify the required amount of
available resources (how many vehicles, how much time budget) needed to visit k% of the patients,
for k = 100, or any k ∈ [0, 100] if insufficient resources are present for k = 100.

6In Appendix A, we present Algorithm A1 to determine the minimum number of supplemental vehicles needed to
visit emergent patients.
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Table 4: Selected Results of Solving Formulation (4) for Varying Number of Patients and Vehicles, While Time Budget for Each Available Vehicle is
Eight Hours; a “–” indicates reaching time limit prior to solving to optimality.

# Patients # Vehicles
# Patients Supplemental

Time (Hours)

Seen Patients via Vehicle(s) Runtime

(Seconds)

Time to Find Best

Incumbent (Seconds)

Optimality

GapAcuity 5 Acuity 4 Acuity 3 Available Supplemental

10 2 5 1 4 0 10 (100.0%) 0 (0.0%) 2 1 0%

20 2 5 7 8 0 13 (65.0%) 0 (0.0%) 3 2 0%

30 2 7 11 12 0 13 (43.3%) 0 (0.0%) 2 2 0%

40
2

11 16 13
2.4 14 (35.0%) 2 (5.0%) 5 5 0%

3 0 26 (65.0%) 0 (0.0%) 5,730 1,827 0.01%

50
2

14 21 15
3.16 12 (24.0%) 3 (6.0%) 10 9 0%

3 0 28 (56.0%) 0 (0.0%) – 577 1.28%

60

2

18 22 20

5.7 12 (20.0%) 6 (10.0%) 21 18 0%

3 0 26 (43.3%) 0 (0.0%) – 34,913 1.49%

4 0 40 (66.7%) 0 (0.0%) – 26,821 3.09%

70

2

21 27 22

7.46 12 (17.1%) 9 (12.9%) 118 84 0%

3 3.09 26 (37.1%) 2 (2.9%) – 21,544 2.45%

4 0 40 (57.1%) 0 (0.0%) – 6,860 4.07%

80

2

22 30 28

9.06 14 (17.5%) 11 (13.8%) 1,380 1,261 0%

3 3.67 27 (33.8%) 3 (3.8%) – 29,157 2.56%

4 0 42 (52.5%) 0 (0.0%) – 22,340 3.92%

90

2

27 32 31

12.52 13 (14.4%) 15 (16.7%) 3,472 1,411 0%

3 7.0 27 (30.0%) 7 (7.8%) – 26,379 1.99%

4 0 37 (41.1%) 0 (0.0%) – 9,014 5.20%

100

2

32 36 32

15.15 13 (13.0%) 19 (19.0%) 9,965 9,538 0.01%

3 8.46 26 (26.0%) 9 (9.0%) – 31,087 2.36%

4 3.63 40 (40.0%) 3 (3.0%) – 30,020 3.61%
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Which Patients Should be Visited, by Which Vehicle, and in What Order? To
illustrate that the optimization approach addresses the first managerial question regarding which
patients are visited and the routes and resources used, we present sample results considering differ-
ent time budgets. In Figure 1 we plot the optimal routes for an instance with 10 patients, a single
available vehicle, and one supplemental vehicle, while varying vehicle time budgets over six values.
The location of patients with acuity level of three, four, and five are depicted via green, blue, and
red empty circles, respectively. A black diamond indicates the location of the Canton-Potsdam
Hospital depot. A yellow tour highlights the optimal route for the available vehicle, and a pink
tour shows the optimal route for the supplemental vehicle.

In Figure 1a, the available vehicle time budget is set to just two hours. The available vehicle
visits one patient with acuity level of five and a patient with acuity level of four. In this case, a
supplementary vehicle is required to visit all patients with acuity level of five. In Figure 1b, we
increase the available vehicle time budget to three hours. As a result, two patients with an acuity
level of five and one patient with an acuity level of four are visited via the available vehicle, and
the hospital needs less supplemental resources to visit all emergent patients.

Comparing the subplots in Figure 1 from top left to bottom right reveals less need for the
supplemental vehicle as the time budget for the available vehicle increases – the optimal constructed
tours become more similar and more reasonable in shape. In observing the optimal routes in
Figure 1, it becomes clear that patients with higher acuity level are more frequently visited, while
the patients who are at lower risk are visited only if sufficient resources exist. The last panel,
Figure 1f, demonstrates that if there is a seven hour time budget, nearly all patients are visited by
the available resource.

These findings reveal the following insight: a tradeoff exists between the level of allowable
resources and the performance of the optimization model in terms of visiting emergent, and other
less severe patients. When resource levels are relatively low, only emergent patients are prioritized
(as specified by the assumptions of the CP problem), whereas relatively more resources allow for
additional emergent and even less severe patients to be visited. The existence of a model to inform
decision making concerning the number of available vehicles and corresponding time budgets is
vital to understanding these tradeoffs and their implications on improving the overall welfare of
the served community.

Who Are the Unseen Patients, and How Can Their Needs Be Accommodated? We
consider the effect of varying time budgets on supplemental resource usage to answer the following
key questions to managers: i) Is it possible to visit all emergent patients with available resources?
ii) What percentage of emergent patients are not visited by available resources? iii) What level of
additional resource (measured in time) is needed to visit these patients?

For instances with 50 patients, Figure 2 uses output from the optimal solutions to plot the
average percentage of seen patients and the supplemental time necessary for visiting unseen emer-
gent patients across increasing values of Tv, the time budget for each available vehicle v ∈ V1.
For |P| = 50, V+ ∈ {2, 3}, and Tv ∈ {4, 5, ..., 10} for available vehicle v ∈ V1, we have three
different instances of optimization formulation (4). Figure 2 depicts the average results over the
three instances with |P| = 50 patients, while varying the number of vehicles and the time budget.
In Figure 2a, only one available vehicle exists for visiting patients, while Figure 2b demonstrates
the results for two available vehicles. In both figures, the time budget in hours appears along the
x-axis, against the left y-axis of average percent of seen patients, and the right y-axis of average
supplemental necessary time, in hours, to visit unseen emergent patients.

In Figure 2, each bar represents the average percentage of seen patients via available (green) and
supplemental (blue) vehicles. For the runs with lower available vehicle time budgets, the average
percentage of seen patients via the supplemental vehicle, and consequently the average supplemental
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Figure 1: Comparing optimal routes for an instance with 10 patients, as the available vehicle time budget
increases hour by hour.

(a) Two hour time budget. (b) Three hour time budget.

(c) Four hour time budget. (d) Five hour time budget.

(e) Six hour time budget. (f) Seven hour time budget.
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time necessary, is larger. If two vehicles are available, the time required for supplemental vehicles
is reduced when compared to the same run with only one available vehicle. For the runs depicted
in Figure 2, if there are two available vehicles, and each with at least a nine hour time budget, no
supplemental resources are necessary for visiting emergent patients with acuity level five.

These findings reveal the following insight: our model can identify which patients, including
those that are emergent, are unable to be visited with available resources. This allows the hospital
system to either allocate additional resources to visit such patients, as well as to contact such
patients (via phone or email) to check up on their health condition to gauge whether they can be
visited at a later time period.

Optimality Analysis. We assess computational times and optimality gaps while varying
key parameters affecting the problem size, to demonstrate the computational performance of our
optimization model. Figure 3 is divided into two sections by the dashed vertical line. For instances
in Table 2, the left section indicates the computational run time in hours, while the right section
depicts the final optimality gap achieved after 10 hours of run time. The green line corresponds
to smaller instances with 10 to 50 patients, whereas the blue line represents instances with 60 to
100 patients. The y-axis is the number of instances either solved by the corresponding time (left
section), or with an optimality gap less than or equal to the values on the x-axis (right section). As
observed in Figure 3, the optimality gap is no more than 15% in the worst case. Among instances
with 10 to 50 patients, the large majority of them (≈ 81%) are solved to global optimality via
Gurobi in less than 2 hours, and around 87% are solved to global optimality within 10 hour time
limit with optimality gap ≈ 4% in the worst case. In instances with 60 to 100 patients, the average
optimality gap over all instances is ≈ 3%, and it is ≈ 4% over instances that are not solved to
global optimality within a 10 hour time limit.

We now separate the results of larger instances with 60, 70, 80, 90, and 100 patients for two
, three and four vehicles in Figure 4. It appears that the solution time is highly sensitive to the
number of vehicles. While a majority of instances (≈ 74%) with two vehicles are solved to global
optimality within the time limit, the same can be said for only several instances with three and four
vehicles. Over all instances with three and four vehicles that are not solved to global optimality
within the time limit, the average optimality gap is 3.9%. As can be clearly seen in Figure 4, a
vertical jump occurs to the right of the 0% optimality gap and adjacent to it. This suggest that
nearly all of the gain in the first objective component of (weighted) patients has been achieved,
and only minor distance improvements are being fine-tuned. We also investigate the performance
of the model for various levels of patients in Appendix B.

These findings reveal the following insight: the considered instances are able to be solved,
in reasonable times, to (near-)optimality, demonstrating the practicality of using mixed-integer
optimization to inform managerial decision making concerning key features of CP programs.

Experiments with Patient Time Windows. We now generate synthetic patient time win-
dows to investigate the performance of our optimization model under the scenario that patients
may specify their preferred time for a visit by a community paramedic. We consider an eight-hour
working day beginning at 9:00 and divide it into two time windows: [9:00, 13:00] and [13:00, 17:00].
We consider three conditions: (1) In the first with “None” time windows, we set the patient avail-
ability time windows to be at their widest settings from 9:00 to 17:00; (2) In the second with “Mild”
time windows, we randomly allocate these two time windows to half of the patients, and we assume
that the remaining patients are available for visits during the entire eight-hour working day; (3) In
the third with “Strict” time windows, we assign a time window to each patient randomly, reflecting
the scenario where all patients have preferred time window for visitation.

Emergent patient preferences for a specific time window may be high in demand. Even so, the
capability of our model to determine necessary supplemental resources guarantees feasibility. Thus,

20



Figure 2: Analysis of Available and Supplemental Resources for Instances with 50 Patients.

(a) One Available Vehicle and One Supplemental Vehicle.

(b) Two Available Vehicles and One Supplemental Vehicle.
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Figure 3: Cumulative distribution plot of Gurobi performance on optimization formulation (4) for various
instances detailed in Table 2. The green line depicts the results for smaller instances and the blue line
demonstrates the performance of model for larger instances. Note that total number of smaller instances is
177, and total number of larger instances is 315.

Figure 4: Cumulative distribution plot of Gurobi performance on optimization formulation (4) for instances
with 60 to 100 patients and varying number of vehicles detailed in Table 2. The orange, purple, and green
lines demonstrate the performance of model for instances with two, three, and four vehicles, respectively.
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in this study we allow for multiple supplemental vehicles v ∈ V2, up to two supplemental vehicles
when necessary. We assume that |P| ∈ {50, 100} and solve our optimization formulation (4) for the
instances with these parameters. The optimality gap is below 10% for a full 93% of the experiments,
with even the worst case instance having an optimality gap of less than 17.3%. Table 5 details
summary results for instances with patient discharge times in June.

These findings reveal the following insight: time window restrictions affect the percentage of seen
patients via available and supplemental vehicles. The percentage of seen patients via supplemental
vehicles may increase in scenarios with stricter time windows because it is not possible to visit some
of the emergent patients who were visited via available vehicles in scenarios with less strict time
windows. These emergent patients are thus visited via supplemental vehicles, resulting in larger
unused time budgets for available vehicles. This additional time is used to visit more patients with
lower acuity levels. When the number of patients is fixed, as the number of vehicles increases,
the percentage of seen patients via available vehicles increases, the percentage of seen patients via
supplemental vehicles decreases, and the optimality gap often increases.
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Table 5: Computational results for experiments with patient time windows for varying number of patients and vehicles, while time budget for each
available vehicle is eight hours

; a “–” in “Runtime” column indicates reaching time limit prior to solving to optimality.

# Patients
# Available

Vehicle(s)

Time

Window

Time used Supplemental Vehicles Seen Patients via Vehicle(s) Runtime

(Seconds)

Time to Find Best

Incumbent (Seconds)

Optimality

GapVehicle 1 (Hours) Vehicle 2 (Hours) Available Supplemental

50 1 None 4.14 0 11 (22.0%) 3 (6.0%) 162 120 0%

50 1 Mild 4.72 0 12 (24.0%) 4 (8.0%) 173.73 77 0%

50 1 Strict 4.32 0 10 (20.0%) 3 (6.0%) 2.27 0 0%

50 2 None 2.05 0 27 (54.0%) 1 (2.0%) – 34,442 3.73%

50 2 Mild 2.05 0 25 (50.0%) 1 (2.0%) – 30,904 7.60%

50 2 Strict 2.05 0 25 (50.0%) 1 (2.0%) 17,958 2,186 0.01%

100 1 None 12.89 0 12 (12.0%) 14 (14.0%) – 19,629 5.07%

100 1 Mild 14.52 0 12 (12.0%) 15 (15.0%) – 31,831 10.19%

100 1 Strict 9.10 6.35 13 (13.0%) 16 (16.0%) – 32,624 3.58%

100 2 None 7.09 0 25 (25.0%) 6 (6.0%) – 13,031 6.18%

100 2 Mild 5.73 3.97 27 (27.0%) 9 (9.0%) – 33,482 6.79%

100 2 Strict 5.73 4.31 26 (26.0%) 9 (9.0%) – 9,114 8.28%

100 3 None 5.16 0 41 (41.0%) 4 (4.0%) – 16,079 9.75%

100 3 Mild 7.36 0 41 (41.0%) 6 (6.0%) – 33,685 17.21%

100 3 Strict 6.53 0 39 (39.0%) 5 (5.0%) – 30,083 8.30%
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Experiments with Stochastic Visit Duration. We now explore the effect of stochastic
visit durations by running experiments with visit durations that follow truncated lognormal distri-
butions. Hoot et al. [34] considered the lognormal distribution for modeling ED patient evaluation
and treatment times. As CP patients also require evaluation and treatment procedures for their
medical needs, in our experiments we elect to model uncertain service times with the truncated
lognormal distribution. We determine appropriate mean values for the truncated lognormal distri-
bution that, after truncation, result in mean values that approach their deterministic counterparts,
namely acuity levels 3, 4, and 5 have means approximately equal to 15, 20, and 30 minutes using
truncation ranges of [10, 100], [15, 120], and [20, 140], respectively.

Table 6 shows the mean visit time of patients visited by available resources, supplemental
resources, and unseen patients, per acuity level. Means are calculated over instances where there
were positive values. This table reveals the following insights: emergent patients with longer
duration times tend to be visited by supplemental resources. Moreover, there is a tendency for
non-urgent patients to be unseen as expected visitation duration increases. Figure 5 reveals optimal
routes of vehicles under stochastic visit durations between patients. Larger diameter nodes indicate
longer visit durations. Figure 5 illustrates another useful insight: supplemental vehicles are used to
visit nodes that have longer expected service durations, are more distant from other patient routes,
or both.

Table 6: Computational Results for Experiments with Stochastic Visit Duration; Mean Duration Times
(Min).

# Patients # Vehicles
Time

Budget

Mean Visit Duration of

Seen Patients via

Available Resources (Min)

Mean Visit Duration of

Seen Patients via

Supplemental Resources (Min)

Mean Visit

Duration of

Unseen Patients ( Min)

Supplemental Vehicle

Time (Hours)

Acuity 5 Acuity 4 Acuity 3 Acuity 5 Acuity 4 Acuity 3

10 1 2 23.90 27.27 - 52.38 30.72 22.85 2.47

10 2 2 27.76 18.78 17.32 68.60 26.40 19.74 1.81

20 1 2 28.18 20.59 10.96 50.56 32.26 24.82 1.60

20 1 3 29.38 24.47 17.27 33.27 23.33 25.81 2.27

20 1 4 28.43 18.11 12.05 60.80 34.71 32.73 1.27

20 2 2 26.91 21.93 10.09 89.18 27.54 23.25 1.89

20 2 3 32.56 20.00 13.40 48.63 33.51 18.65 2.12

20 2 4 43.97 22.18 16.29 107.15 39.02 26.08 2.24

50 1 8 32.18 18.54 - 58.83 28.39 21.55 6.92

50 2 8 41.90 21.73 11.17 - 35.90 20.40 -
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Figure 5: Comparing optimal routes of supplemental vehicle for illustrative 20 patient instances.

(a) Two hour time budget and one vehicle. (b) Two hour time budget and two vehicles.

(c) Three hour time budget and one vehicle. (d) Three hour time budget and two vehicles.

5. Concluding Remarks

Community paramedicine is a recent healthcare innovation that proactively treats chronic disease
and potential ED repeat visits and inpatient readmissions at home, thereby preventing unnec-
essary ED visits and unplanned hospital readmissions. To date, only manual selecting, routing
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and scheduling approaches exist to tackle CP delivery challenges. This study establishes the first
optimization-based framework to investigate the management of efficiency within a community
paramedicine program. Through a broad set of computational experiments we validate the ability
of our model to derive managerial insights for a variety of key questions related to the feasibility,
efficiency and viability of community paramedicine programs.

We elaborate on several key insights. First, we highlight the ability of our modeling to reveal
the needed amount of available resources to visit a specific percentage of patients, from 100% or
less if desired or dictated by resource limitations. Second, while only emergent patients are visited
when resources levels are low, less severe patients are visited when available resources are relatively
high. Third, we highlight that our model can identify patients that are not visited via available
resources, so as to either use supplemental resources to visit a patient (if emergent), or to contact
and evaluate whether such patients can be visited at a later time period. Fourth, our mixed-integer
optimization formulation (4) finds (near-)optimal tours in reasonable times, signifying its ability in
a rural CP practice setting to answer key managerial questions. Fifth, with stricter patient time
windows, supplemental vehicles may be responsible to visit an increased percentage of emergent
patients; also, the percentage of seen patients with lower acuity levels by available vehicles may
increase. Sixth, patients who are emergent and have longer expected visit duration, are more
distant from other patient routes, or both, are more likely to be visited by supplemental resources,
increasing their utilization. Seventh, patients not in urgent need of care are less likely to be seen
by caregivers as the expected visit duration increases.

Figure 1 substantiates our results: for every vehicle, we clearly demonstrate the optimal selection
and order for visiting priority-weighted patients, while favoring shorter tours. Moreover, we ensure
that all mandatory patients are visited by existing resources, or if not, then we provide a solution
with the minimal supplemental resources needed to do so. We propose a new objective function to
improve societal health by maximizing the collected benefit of visiting patients, while secondarily
favoring shorter tours for healthcare providers. The benefit is related to patient health features, and
we propose a novel functional representation that preserves the priority of visiting more emergent
patients.

We also address the notion of fairness in selecting patients, by prioritizing patients who are
emergent according to our customized representation. Our approach has important societal impli-
cations for ensuring the overall welfare of our communities, and also provides for the treatment of
a class of emergent patients who must be visited over the planning period. Moreover, our approach
can accommodate for planning periods of a single day or potentially longer, in the following man-
ner: the number of vehicles is multiplied by the number of days in the considered planning period,
with the product equal to the number of available vehicles. To accommodate the situation when
available resources are insufficient for visiting emergent patients, we propose to use supplemental
vehicles. The supplemental vehicles guarantee model feasibility and serves a dual purpose – find-
ing the minimal supplemental resources required to visit emergent patients and must be visited
during the planning period. As CP is a relatively new innovation and the quantity of resources
required for implementing a CP program is often uncertain, our model can help emergency medical
service and hospital management determine the required resources for starting a CP program and,
as appropriate, expand and improve an existing program by adding supplemental resources.

There are some limitations to the present study. Hospital systems, especially rural ones, are
budget-strapped and may not have resources available to purchase state-of-the-art solvers. It
remains an open question whether open source technologies can perform reasonably well on such
problems. While our study focuses on the optimization aspect of CP programs, we acknowledge that
establishing the feasibility of such a program is a critical precursor. This study assumes the existence
of a functional CP program, and we recognize the importance of considering practical aspects such
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as personnel availability, training, and budget constraints when implementing a CP program. Our
model has been developed within a specific context and its customization to different settings
remains an open question. Factors such as local healthcare policies, patient demographics, and the
availability of resources might necessitate adjustments to the model to ensure its applicability in
other contexts. Our study considers a limited number of patients within a certain geographical
region. Handling a larger number of patients, especially in smaller geographical areas, presents
another open question. Additionally, our model may need to be adapted to account for different
forms of transportation, such as public transit or walking, which could impact travel times and
resource allocation.

More computational testing and algorithmic development would be needed to scale up to larger
healthcare settings. In practice, such problems of the order presented in Table 5 can be solved
overnight, which is within normal operating timeframes in the decision-making process (with sup-
plemental vehicles serving to avoid infeasibility). As a result, we feel that our approach remains
practically applicable for real-life scenarios. While those are the largest addressed in our manuscript,
there are a few strategies that can be considered to manage the computational time for even larger
instances. One possibility is to divide the problem into smaller, more manageable parts. This can
be done by separating the problem based on different drivers, patients, or geographical areas, solve
each partition individually, and then reconstruct an overall solution. Another way to handle large
problems would be to modify the optimality gap according to the decision-maker’s preferences. By
allowing a slightly larger optimality gap, it is possible to reduce the computational time needed to
obtain a near-optimal solution, while still providing valuable insights for decision-making.

Community paramedicine belongs to the Emergency Medical Service Agenda 2050 [14]. Using
analytical approaches to design and implement CP programs is critical for efficient delivery of
the future version of emergency medical service in the United States, and it opens a number of
directions for future work. The integration of this idea into a rolling horizon to deal with uncertainty
associated patient priority score and travel time between nodes, while intriguing, remains in the
scope of future work. Our case study assumes the existence of one or more dedicated vehicles
for CP. Moreover, should the same personnel or vehicles provide a variety of emergency medical
services, such as responding to unpredictable true emergencies and doing CP visits, this would
warrant additional investigation.
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Appendix

A. Finding The Minimum Number of Supplemental Vehicles

We present Algorithm A1 to find the minimum number of supplemental vehicle(s) to visit all
emergent patients who are not visited via available vehicles. Let δ represents the minimum number
of needed supplemental vehicles. We use instances from Table 4 where the minimum time used
by the supplemental vehicle is more than eight hours, to test the algorithm. We also compare
the results for two approaches: i) We allow the model to use multiple supplemental vehicles with
an eight hour time budget and find the minimum number of needed supplemental vehicles δ via
Algorithm A1; ii) We assume there exists a single supplemental vehicle with a 24 hour time budget.
In the former experiment, we assume all available and supplemental vehicles have an eight hour
time budget.

The results in Table A.1 demonstrate that should the minimum extra time needed to visit all
emergent patients turn out to be approximately eight hours in approach ii), the minimum number
of supplemental vehicles δ is equal to the results of approach i). The reason for this behavior is
that the total percentage of seen patients reduces in the results of approach i), as some of the
patients with a lower acuity level are not visited via available vehicle(s) as compared to approach
ii). Indeed, the model is more conservative in using supplemental vehicle(s) because the value of β
is larger in approach i).

In the instances for which the total supplemental time is much larger than eight hours (e.g.
row five in Table A.1), and the minimum number of supplemental vehicles is equal to two vehicles
in approach i), the total time used by two vehicles is a bit larger as compared to approach i).
Generally, the special structure of the model finds the minimum extra needed resources, and from
that information the minimum number of supplemental vehicle(s) can be easily estimated.

Algorithm A1 Determine Minimum Number of Supplemental Vehicle(s)

Input : δ = 0
1 do
2 Status = Solve optimization formulation (4a)–(4l) (δ)

if Status = Infeasible then
3 δ = δ + 1

4 while Status = Infeasible;

Table A.1: Minimum Number of Supplemental Vehicle(s) via Algorithm A1, versus One Supplemental Vehicle
with Large Time Budget.

# Patients
# Available

Vehicle(s)
Algorithm A1?

# Supplemental

Vehicle(s)

Time Used Supplemental Vehicles Seen Patients via Vehicle(s) Runtime

(Seconds)

Time to Find Best

Incumbent (Seconds)

Optimality

GapVehicle 1 (Hours) Vehicle 2 (Hours) Available Supplemental

80 1
Yes 1 7.98 15.0% 12.5% 2,745 2.12%

No 1 9.06 17.5% 13.8% 1,380 1,261 0.00%

90 1
Yes 2 7.71 5.39 14.4% 16.7% 6,393 4,800 0.00%

No 1 12.52 14.4% 16.7% 3,472 1,411 0.00%

100 1
Yes 2 7.78 7.93 13.0% 19.0% 34,169 13,353 0.01%

No 1 15.15 13.0% 19.0% 9,965 9,538 0.01%

100 2
Yes 1 7.64 24.0% 8.0% 27,002 3.08%

No 1 8.46 26.0% 9.0% 31,087 2.36%
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B. Computational Results

In this section, we show the experimental results of solving formulation (4) for instances with 20,
40, 60, 80, and 100 patients, varying number of vehicles and time budget values that are even. In
the following tables, each instance is named according to the convention “Instance group– Number
of patients – Number of vehicles – Time budget for each available vehicle” to show the considered
levels of varying parameters. Instance group is one, two, or three referring to discharge time of
patients were in January, June, or October, respectively. In the following tables, a “–” in “Runtime”
column indicates reaching time limit prior to solving to optimality.

Table B.2: Results for 20 Patients, Varying Number of Vehicles and Time Budgets.

Problem Code
Supplemental

Time (Hours)

Seen Patients via

Available Vehicle(s)

Seen Patients via

Supplemental Vehicle

Runtime

(Seconds)

Time to Find Best

Incumbent (Seconds)

Optimality

Gap

1–20–1–2 2.43 15.0% 15.0% 0.8 0 0.00%

1–20–1–4 0 25.0% 0% 1.4 0 0.00%

1–20–1–6 0 45.0% 0% 1.0 0 0.01%

1–20–1–8 0 65.0% 0% 2.6 2 0.00%

1–20–2–2 1.10 30.0% 5.0% 6.6 2 0.00%

1–20–2–4 0 55.0% 0% 3.7 3 0.00%

1–20–2–6 0 100.0% 0% 30.9 30 0.01%

2–20–1–2 4.39 15.0% 20.0% 1.5 1 0.00%

2–20–1–4 2.43 25.0% 10.0% 2.1 2 0.00%

2–20–1–6 0 35.0% 0% 1.2 1 0.00%

2–20–1–8 0 55.0% 0% 2.8 1 0.00%

2–20–2–2 3.87 25.0% 15.0% 3.2 1 0.00%

2–20–2–4 0 55.0% 0% 25.2 20 0.00%

2–20–2–6 0 90.0% 0% 12.0 11 0.01%

3–20–1–2 0 10.0% 0% 0.9 0 0.00%

3–20–1–4 0 30.0% 0% 1.0 0 0.00%

3–20–1–6 0 45.0% 0% 3.1 1 0.00%

3–20–1–8 0 65.0% 0% 50.6 32 0.00%

3–20–2–2 0 30.0% 0% 6.7 4 0.00%

3–20–2–4 0 60.0% 0% 29.5 29 0.01%

3–20–2–6 0 95.0% 0% 2,529 565 0.01%
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Table B.3: Results for 40 Patients, Varying Number of Vehicles and Time Budgets.

Problem Code
Supplemental

Time (Hours)

Seen Patients via

Available Vehicle(s)

Seen Patients via

Supplemental Vehicle

Runtime

(Seconds)

Time to Find Best

Incumbent (Seconds)

Optimality

Gap

1–40–1–4 5.18 17.5% 15.0% 4.0 4 0.00%

1–40–1–6 3.51 22.5% 7.5% 4.4 3 0.00%

1–40–1–8 2.40 35.0% 5.0% 5.1 5 0.00%

1–40–1–10 1.69 45.0% 2.5% 6.7 6 0.00%

1–40–2–4 2.79 32.5% 5.0% 235.5 161 0.00%

1–40–2–6 0 50.0% 0% 2,404 1,053 0.00%

1–40–2–8 0 65.0% 0% 5,730 1,827 0.01%

1–40–2–10 0 87.5% 0% – 8,547 0.25%

2–40–1–4 5.63 12.5% 12.5% 4.0 3 0.00%

2–40–1–6 4.14 20.0% 7.5% 5.4 4 0.00%

2–40–1–8 2.05 25.0% 2.5% 56.4 55 0.00%

2–40–1–10 2.05 40.0% 2.5% 296.1 121 0.00%

2–40–2–4 2.05 20.0% 2.5% 388.9 119 0.00%

2–40–2–6 2.05 47.5% 2.5% – 29,753 3.16%

2–40–2–8 0 62.5% 0% – 6,729 0.44%

2–40–2–10 0 87.5% 0% – 8,356 0.18%

3–40–1–4 4.26 12.5% 7.5% 2.0 1 0.00%

3–40–1–6 2.54 22.5% 5.0% 5.0 4 0.00%

3–40–1–8 3.72 35.0% 5.0% 160.8 160 0.00%

3–40–1–10 1.77 42.5% 2.5% 478.8 234 0.00%

3–40–2–4 3.72 32.5% 5.0% 398.2 391 0.00%

3–40–2–6 0 47.5% 0% 4,808 740 0.01%

3–40–2–8 0 65.0% 0% 32,675 13,473 0.01%

3–40–2–10 0 92.5% 0% – 21,417 0.17%
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Table B.4: Results for 60 Patients, Varying Number of Vehicles and Time Budgets.

Problem Code
Supplemental

Time (Hours)

Seen Patients via

Available Vehicle(s)

Seen Patients via

Supplemental Vehicle

Runtime

(Seconds)

Time to Find Best

Incumbent (Seconds)

Optimality

Gap

1–60–1–6 7.54 15.0% 15.0% 196.5 196 0.00%

1–60–1–8 5.70 20.0% 10.0% 21.4 18 0.00%

1–60–1–10 4.90 28.3% 8.3% 208.6 108 0.00%

1–60–1–12 2.77 33.3% 5.0% 222.6 82 0.00%

1–60–2–6 3.02 31.7% 5.0% 30,785 10,189 0.01%

1–60–2–8 0 43.3% 0% – 34,913 1.49%

1–60–2–10 0 58.3% 0% – 4,116 1.45%

1–60–2–12 0 70.0% 0% – 14,766 1.37%

1–60–3–6 0 51.7% 0% – 30,894 4.44%

1–60–3–8 0 66.7% 0% – 26,821 3.09%

1–60–3–10 0 88.3% 0% – 24,180 0.33%

1–60–3–12 0 100.0% 0% 44.9 44 0.00%

2–60–1–6 5.59 13.3% 8.3% 58.3 16 0.00%

2–60–1–8 4.11 18.3% 5.0% 734.3 311 0.00%

2–60–1–10 3.49 25.0% 3.3% 588.3 421 0.00%

2–60–1–12 2.04 31.7% 1.7% – 23,751 1.39%

2–60–2–6 2.04 28.3% 1.7% – 31,791 3.75%

2–60–2–8 2.04 45.0% 1.7% – 20,660 4.08%

2–60–2–10 0 56.7% 0% – 17,299 2.50%

2–60–2–12 0 68.3% 0% – 1,360 0.38%

2–60–3–6 0 48.3% 0% – 10,326 6.97%

2–60–3–8 0 66.7% 0% – 32,281 0.43%

2–60–3–10 0 91.7% 0% – 35,106 0.15%

2–60–3–12 0 95.0% 0% – 135 0.12%

3–60–1–6 5.87 15.0% 8.3% 9.3 8 0.00%

3–60–1–8 4.65 20.0% 5.0% 74.6 72 0.00%

3–60–1–10 2.93 26.7% 3.3% 351.7 351 0.00%

3–60–1–12 1.77 31.7% 1.7% 4,818 3,295 0.01%

3–60–2–6 4.65 35.0% 5.0% – 29,052 3.39%

3–60–2–8 0 45.0% 0% – 33,908 2.14%

3–60–2–10 0 56.7% 0% – 35,486 2.72%

3–60–2–12 0 70.0% 0% – 30,016 0.22%

3–60–3–6 0 50.0% 0% – 14,388 6.38%

3–60–3–8 0 63.3% 0% – 33,636 0.59%

3–60–3–10 0 96.7% 0% – 35,422 0.08%

3–60–3–12 0 98.3% 0% – 703 0.07%
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Table B.5: Results for 80 Patients, Varying Number of Vehicles and Time Budgets.

Problem Code
Supplemental

Time (Hours)

Seen Patients via

Available Vehicle(s)

Seen Patients via

Supplemental Vehicle

Runtime

(Seconds)

Time to Find Best

Incumbent (Seconds)

Optimality

Gap

1–80–1–6 10.19 12.5% 16.3% 121 120 0.00%

1–80–1–8 9.06 17.5% 13.8% 1,379 1,261 0.00%

1–80–1–10 6.12 20.0% 8.8% 3,176 600 0.00%

1–80–1–12 4.21 22.5% 5.0% 122 106 0.00%

1–80–2–6 6.14 25.0% 8.8% – 750 4.00%

1–80–2–8 3.67 33.8% 3.8% – 29,157 2.56%

1–80–2–10 0 42.5% 0% – 27,355 3.24%

1–80–2–12 0 53.8% 0% – 22,256 1.09%

1–80–3–6 2.08 36.3% 2.5% – 18,085 6.75%

1–80–3–8 0 52.5% 0% – 22,340 3.92%

1–80–3–10 0 66.3% 0% – 28,006 2.49%

1–80–3–12 0 86.3% 0% – 35,060 1.34%

2–80–1–6 10.87 11.3% 15.0% 34,381 7,808 0.01%

2–80–1–8 9.03 13.8% 11.3% 13,202 11,111 0.00%

2–80–1–10 8.24 20.0% 10.0% 35,371 34,549 0.01%

2–80–1–12 5.77 22.5% 6.3% 28,346 19,414 0.01%

2–80–2–6 5.82 21.3% 6.3% – 715 7.14%

2–80–2–8 3.75 31.3% 3.8% – 23,435 3.63%

2–80–2–10 2.75 40.0% 1.3% – 33,323 5.41%

2–80–2–12 2.75 52.5% 1.3% – 29,762 3.64%

2–80–3–6 2.75 31.3% 1.3% – 32,383 9.59%

2–80–3–8 2.75 48.8% 1.3% – 34,090 6.99%

2–80–3–10 0 61.3% 0% – 21,314 1.74%

2–80–3–12 0 78.8% 0% – 29,129 1.87%

3–80–1–6 10.29 11.3% 15.0% 73.3 73 0.00%

3–80–1–8 9.19 16.3% 12.5% 78.8 46 0.00%

3–80–1–10 7.14 18.8% 8.8% 1,897 1,063 0.00%

3–80–1–12 4.86 21.3% 5.0% 24,316 20,026 0.01%

3–80–2–6 6.54 23.8% 7.5% – 989 3.82%

3–80–2–8 3.71 32.5% 2.5% – 35,898 3.10%

3–80–2–10 1.77 43.8% 1.3% – 4,895 1.60%

3–80–2–12 0 52.5% 0% – 2,603 1.74%

3–80–3–6 2.51 36.3% 2.5% – 30,712 7.17%

3–80–3–8 1.99 52.5% 1.3% – 12,463 5.32%

3–80–3–10 0 62.5% 0% – 29,084 4.73%

3–80–3–12 0 81.3% 0% – 34,743 0.38%
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Table B.6: Results for 100 Patients, Varying Number of Vehicles and Time Budgets.

Problem Code
Supplemental

Time (Hours)

Seen Patients via

Available Vehicle(s)

Seen Patients via

Supplemental Vehicle

Runtime

(Seconds)

Time to Find Best

Incumbent (Seconds)

Optimality

Gap

1–100–1–6 17.13 11.0% 22.0% 452.1 451 0.01%

1–100–1–8 15.15 13.0% 19.0% 9,965.1 9,538 0.01%

1–100–1–10 13.41 17.0% 16.0% 1,496.4 1,486 0.00%

1–100–1–12 11.58 20.0% 13.0% 9,153.7 6,713 0.01%

1–100–2–6 11.58 19.0% 13.0% – 14,274 0.77%

1–100–2–8 8.46 26.0% 9.0% – 31,087 2.36%

1–100–2–10 6.44 34.0% 6.0% – 1,307 2.16%

1–100–2–12 3.05 40.0% 3.0% – 14,803 3.57%

1–100–3–6 8.00 29.0% 8.0% – 19,239 5.36%

1–100–3–8 3.63 40.0% 3.0% – 30,020 3.61%

1–100–3–10 2.68 52.0% 2.0% – 4,837 5.29%

1–100–3–12 0 61.0% 0% – 34,342 2.83%

2–100–1–6 15.34 10.0% 18.0% – 35,850 6.34%

2–100–1–8 12.89 12.0% 14.0% – 19,629 5.07%

2–100–1–10 12.24 17.0% 13.0% – 18,749 3.59%

2–100–1–12 9.18 18.0% 9.0% – 27,492 5.16%

2–100–2–6 12.24 21.0% 13.0% – 1,013 9.47%

2–100–2–8 7.09 25.0% 6.0% – 13,031 6.18%

2–100–2–10 5.16 33.0% 4.0% – 27,835 5.00%

2–100–2–12 4.16 39.0% 2.0% – 27,378 5.85%

2–100–3–6 7.72 29.0% 7.0% – 30,520 10.78%

2–100–3–8 5.16 41.0% 4.0% – 16,079 9.75%

2–100–3–10 2.99 51.0% 1.0% – 7,138 4.67%

2–100–3–12 0 61.0% 0% – 24,733 2.57%

3–100–1–6 13.07 10.0% 17.0% 31,061 22,859 0.01%

3–100–1–8 11.35 12.0% 14.0% – 19,022 2.51%

3–100–1–10 9.45 15.0% 11.0% – 35,479 1.78%

3–100–1–12 7.50 18.0% 8.0% 29,623 17,222 0.01%

3–100–2–6 8.17 18.0% 9.0% – 14,742 6.38%

3–100–2–8 5.48 24.0% 4.0% – 4,338 4.15%

3–100–2–10 1.99 32.0% 1.0% – 2,027 2.84%

3–100–2–12 0 42.0% 0% – 26,620 1.90%

3–100–3–6 6.35 30.0% 5.0% – 32,015 7.41%

3–100–3–8 2.51 42.0% 2.0% – 29,400 7.46%

3–100–3–10 0 56.0% 0% – 27,416 4.08%

3–100–3–12 0 64.0% 0% – 19,648 5.69%
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In the following plots, we depict the cumulative distribution plot for instances with 60, 70, 80,
90, and 100 patients while varying the time budget for available vehicles. We separate the plots for
two vehicles, three vehicles, and four vehicles.

Figure B.1: Cumulative distribution plot of Gurobi performance on optimization formulation (4) for instances
with 60 to 100 patients and two vehicles. The blue, orange, green, red, and purple lines demonstrate the
performance of model for instances with 60, 70, 80, 90, and 100 patients, respectively.

Figure B.2: Cumulative distribution plot of Gurobi performance on optimization formulation (4) for instances
with 60 to 100 patients and three vehicles. The blue, orange, green, red, and purple lines demonstrate the
performance of model for instances with 60, 70, 80, 90, and 100 patients, respectively.
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Figure B.3: Cumulative distribution plot of Gurobi performance on optimization formulation (4) for instances
with 60 to 100 patients and four vehicles. The blue, orange, green, red, and purple lines demonstrate the
performance of model for instances with 60, 70, 80, 90, and 100 patients, respectively.
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C. Experiments with Longer Visit Durations.

We increase the visit duration for patients with acuity levels three, four, and five to 30, 60, 120 min-
utes, respectively. The results in Table C.7 show that the percentage of seen patients via available
vehicles reduces remarkably, and the amount of supplemental vehicles significantly increases.

Table C.7: Results for Longer Visit Durations.

Problem Code
Supplemental

Time (Hours)

Seen Patients via

Available Vehicle(s)

Seen Patients via

Supplemental Vehicle

Runtime

(Seconds)

Optimality

Gap

1-10-1-4 9.24 30.0% 40.0% 0.20 0%

1-10-1-6 6.93 30.0% 30.0% 0.21 0%

1-10-2-4 6.97 60.0% 30.0% 0.86 0%

1-20-1-4 9.24 15.0% 20.0% 0.47 0%

1-20-1-6 6.93 20.0% 15.0% 0.83 0%

1-20-1-8 4.90 20.0% 10.0% 0.46 0%

1-20-2-4 6.93 30.0% 15.0% 1.96 0%

1-20-2-6 2.60 35.0% 5.0% 2.33 0%

1-30-1-4 13.81 10.0% 20.0% 0.78 0%

1-30-1-6 11.89 13.3% 16.7% 1.58 0%

1-30-1-8 9.57 16.7% 13.3% 0.86 0%

1-30-1-10 7.45 16.7% 10.0% 1.23 0%

1-30-2-4 11.89 20.0% 16.7% 3.44 0%

1-30-2-6 7.45 23.3% 10.0% 12.81 0%

1-40-1-4 22.69 7.5% 25.0% 0.73 0%

1-40-1-6 20.91 10.0% 22.5% 1.58 0%

1-40-1-8 18.63 12.5% 20.0% 0.89 0%

1-40-1-10 16.28 12.5% 17.5% 6.79 0%

1-40-2-4 20.74 15.0% 22.5% 1.99 0%

1-40-2-6 16.78 20.0% 17.5% 1.31 0%

1-40-2-8 11.96 22.5% 12.5% 76.01 0%

1-40-2-10 7.52 25.0% 7.5% 61.99 0%
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[19] Paola Cappanera, Maria Grazia Scutellà, Federico Nervi, and Laura Galli. Demand uncertainty
in robust home care optimization. Omega, 80:95–110, 2018.

[20] Matias Sevel Rasmussen, Tor Justesen, Anders Dohn, and Jesper Larsen. The home care crew
scheduling problem: Preference-based visit clustering and temporal dependencies. European
Journal of Operational Research, 219(3):598–610, 2012.

[21] Andrea Trautsamwieser, Manfred Gronalt, and Patrick Hirsch. Securing home health care in
times of natural disasters. OR spectrum, 33(3):787–813, 2011.

[22] Salma Chahed, Eric Marcon, Evren Sahin, Dominique Feillet, and Yves Dallery. Exploring
new operational research opportunities within the home care context: The chemotherapy at
home. Health Care Management Science, 12(2):179–191, 2009.

[23] Patrik Eveborn, Patrik Flisberg, and Mikael Rönnqvist. LAPS care–an operational system for
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