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Abstract

In this paper, we show how to efficiently schedule the Brazilian OR conference using a matheuristic

approach. The event has traditionally around 300 presentations across a period of 3 to 4 days, and

building a schedule for the technical sessions is an arduous task. The proposed algorithm integrates

the concepts of iterated local search and simulated annealing with two mathematical programming-

based procedures. The idea is to first group the presentations via a clustering procedure, and handle

the side constraints in a subproblem via an integer programming formulation. A set partitioning

procedure is applied at the end of the algorithm to find the optimal combination of clusters found

during the search. We first assess the performance of the method by comparing our results with the

dual bounds attained in the literature on two existing sets of artificial instances derived from other two

conferences. Next, we executed our approach on the real-life instances derived from different SBPO

editions, and compared the solutions with the manual solutions, when available, or with dual bounds

found by an exact algorithm from the literature. The results obtained show that the matheuristic is

capable of achieving high quality solutions both on the artificial and real-life instances.

1 Introduction

The Brazilian Operations Research (OR) conference, officially called Simpósio Brasileiro

de Pesquisa Operaiconal (SBPO), is an event organized every year by the Brazilian OR

society, formally known as Sociedade Brasileira de Pesquisa Operacional (SOBRAPO).

SBPO has now reached more than 50 editions, and it is considered the main national OR

conference, gathering hundreds of participants, from undergraduate students to practi-

tioners and experienced researchers.

The event follows the format of a typical academic conference by including technical

sessions, plenary talks, short-term courses, poster sessions, social activities, and so on,

during a period of 4 days. We are particularly interested in solving the problem of
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scheduling the presentations of technical sessions, which is by far the most challenging

task for the organizers. The other activities can be easily scheduled without much effort.

Up to 2018, the problem was solved manually during several days, and finding high

quality solutions was viewed as an arduous task. The initiative of addressing the problem

using an optimization approach started that year, and it continues to be used to this

date. In this paper, we describe in detail the strategy developed for successfully solving

the problem.

The scheduling criteria specified by the SBPO organizers fit precisely the generic

clustering-based model recently introduced by Bulhões et al. [2020] for conference schedul-

ing (CS) problems. Nevertheless, the exact algorithm proposed by the authors was not

capable of solving all of the real-life instances (with up to 324 presentations) derived

from the referred event to optimality in an acceptable CPU time. Therefore, the main

contribution of this work is the development of an efficient matheuristic algorithm that

combines the principles of iterated local search (ILS) and simulated annealing (SA) with

two mathematical programming-based procedures. The idea is to group the presentations

with similar topics in a same session using a clustering procedure based on ILS and SA,

and then handle the side constraints in a subproblem via an integer linear programming

(ILP) formulation. A set partitioning procedure is applied at the end of the algorithm as

an attempt to find the optimal combination of clusters found during the search.

We first evaluate the performance of the matheuristic by means of extensive computa-

tional experiments on artificial benchmark instances derived from two other conferences,

and compare the results obtained by our method with the existing dual bounds produced

by the exact procedure devised in Bulhões et al. [2020]. We then compare the results

found by our approach on real-life instances derived from SBPO with the manual solu-

tions, or with the dual bounds provided by the exact algorithm, in order to confirm the

high performance of the proposed algorithm. Moreover, we believe that the matheuristic

devised in this work can be either directly applied or easily adapted to solve a wide range

of CS problems.

The remainder of the paper is structured as follows. Section 2 presents a brief liter-

ature review. Section 3 formally defines the problem. Section 4 describes the proposed

algorithm. Section 5 contains the results of the computational experiments. Section 6

concludes.
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2 Related work

The literature on CS dates back more than 30 years. Eglese and Rand [1987] were one of

the first to study the problem by trying to maximize the preference of the participants.

They proposed a formulation and a two-phase heuristic. Sampson and Weiss [1995] ad-

dressed an extended version of the problem by considering the capacity of the rooms. A

heuristic procedure was developed by the authors, that was also later used to examine

the influence of some factors (e.g., conference length) on the resulting schedule [Sampson

and Weiss, 1996]. Le Page [1996] devised a heuristic procedure for a CS problem that

aims at minimizing the conflicts of presentations assigned to parallel sessions based on

the preference of the attendees.

Thompson [2002] also studied a variant of the model suggested in Eglese and Rand

[1987] by assuming the existence of rooms with different capacities, and they put forward a

SA algorithm. Sampson [2004] later compared the preference-based CS with other related

problems, namely course timetabling and exam timetabling. The author also modified the

original model by Eglese and Rand [1987], and devised a SA approach for the problem.

Gulati and Sengupta [2004] developed a heuristic for a extended version of the model pre-

sented in Sampson [2004], which incorporated other criteria, namely reviewer evaluations

and session times.

Mori and Tanaka [2002], Tanaka et al. [2002] tackled a CS problem with the objective

of grouping the most similar works in a same session. The former proposed a genetic

algorithm, the latter a so-called self organizing map, which is based on the concept of

unsupervised neural network. Potthoff and Munger [2003] addressed the problem of as-

signing sessions containing 3 or 4 presentations, defined a priori, to time slots. They also

assumed that a presenter can perform other roles such as the coordinator (a.k.a. chair)

of the session. Therefore, one must ensure that he/she cannot be assigned to parallel

sessions. A mixed integer programming (MIP) formulation was proposed, which was used

to schedule the Annual Meeting of the Public Choice Society of 2001. Potthoff and Brams

[2007] later applied the same method to schedule the 2005 and 2006 editions of the same

conference but this time considering the availability of the presenters.

Nicholls [2007] implemented a heuristic for a CS problem that attempt to satisfy the

preferences of the presenters, whereas Ibrahim et al. [2008] applied combinatorial design

results to generate a balanced schedule. Edis and Sancar Edis [2013] proposed a model

that tries to optimize two objectives: (i) minimize the number of parallel sessions with

presentations of the same topic; and (ii) balance the number of presentations of the parallel

sessions. Quesnelle and Steffy [2015] developed a model to minimize attendee preference
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conflicts that also avoids presentations by a same author to be assigned to parallel sessions.

Rahim et al. [2017] implemented a so-called domain transformation approach to solve a

problem with a similar preference-based objective.

Vangerven et al. [2018] solved a CS problem aiming at maximizing the attendees’

preference and minimizing the number of hops, i.e., the number of times a participant

has to change rooms to attend a presentation of his/her interest. The authors proposed

a three-phase algorithm based on integer programming and heuristics to solve four real-

life conferences. Stidsen et al. [2018] addressed the problem of scheduling the EURO-k

conferences by solving five MIP models sequentially. The problem has several objectives

to cope with the hierarchical structure of the conference.

Finally, Bulhões et al. [2020] proposed a clustering-based approach to model CS con-

ferences in general. The idea is to group the presentations according to their level of

similarity and handle the specificities of the conference by means of side constraints.

They proposed three exact approaches: (i) a compact integer programming formulation;

(ii) an alternative formulation, in which lazy cuts are added on demand in case any of the

side constraints is violated; and (iii) a branch-cut-and-price algorithm over a set partition-

ing (SP) formulation. They reported results for real-life and artificial instances derived

from two conferences.

3 Problem definition

Historically, the organizers of SBPO have been grouping similar papers into a thematic

session (e.g., “Combinatorial Optimization”, “Metaheuristics”, etc.), and this format has

been well accepted by the participants. Moreover, they usually tend to avoid parallel

sessions with similar topics, as well as many sessions of a similar topic to occur in a

same day. They also try to avoid papers from a same author to be scheduled in parallel

sessions. Other particularities such as presenter’s availability are handled a posteriori,

once a scheduled has been built. The optimization problem defined in this section was

modeled exactly as specified by the organizers. We first introduce some notation, and

then we formally provide the objective function and constraints of the problem.

We are given the following sets:

• P = {1, . . . , n} – set of papers (or presentations);

• D – set of days;

• H – a set of non-overlapping time slots;
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• S – set of sessions;

• T – set of topics;

• A – set of authors;

• Pa ⊆ P – set of papers by author a ∈ A;

• Pt ⊆ P – set of papers associated with topic t ∈ T ;

• Tj ⊆ T – set of topics of paper j ∈ P ;

• Aj ⊆ A – set of authors of paper j ∈ P .

In addition, we denote by ds and hs the day and the time slot of session s ∈ S, respectively;

and we define the following additional sets:

• Sd = {s ∈ S : ds = d} set of sessions of day d ∈ D;

• Sh = {s ∈ S : hs = h} set of sessions of time slot h ∈ H;

• Sh
d = {s ∈ S : ds = d ∧ hs = h} set of parallel sessions of day d ∈ D and time slot

h ∈ H.

Each pair of distinct papers i, j ∈ P has an associated unrestricted benefit bij ∈ R if

both are assigned to a same session. The higher the number of common topics in both

papers, the higher the benefit. Each paper has at most three topics. The objective of the

problem is to maximize the total benefit, subject to the following constraints: (i) each

paper i ∈ P must be assigned to exactly one session s ∈ S; (ii) a non-empty session s ∈ S
must have at least ms papers and at most Ms papers; (iii) there cannot be more than one

paper i ∈ P by a same author a ∈ A assigned to parallel sessions; (iv) there should be at

most MD papers associated with topic t ∈ T per day; and (v) there should at most MH

papers associated with topic t ∈ T assigned to time slot h ∈ H on the same day d ∈ D,

regardless of the session.

Constraints (i)–(ii) can be seen as basic constraints, whereas constraints (iii)–(v) are

assumed to be side constraints. The last constraint was specifically imposed by the

SBPO organizers in order to prevent various papers with the same topic to be scheduled

in parallel sessions. The remaining constraints were defined in Bulhões et al. [2020], along

with the proof of NP-hardness.

Given a feasible solution, the order of presentations of each session can be arbitrarily

defined. The topic of the session is defined as the mode of the topics of the associated

papers.
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4 Proposed algorithm

The outline of the proposed multi-start algorithm, denoted as HILS, is presented in Algo-

rithm 1. At each of the IR restarts (lines 6–39), HILS tries to improve the initial solution,

generated via a greedy randomized procedure (line 7), by iteratively performing local

search (line 13) and perturbation (line 35) moves for at most IILS consecutive iterations

without improvements (lines 12–38).

Algorithm 1 HILS

1: Procedure HILS(IR, IILS , τ0, α)
2: f∗ ← 0 . Objective value of the best feasible solution

3: s∗ ← ∅ . Best feasible solution

4: ClusterPool← ∅
5: SolutionMemory ← ∅
6: for i := 1 to IR do
7: s ← GenerateInitialSolution()
8: s′ ← s
9: s′′ ← s

10: iterILS ← 0
11: τ ← τ0
12: while iterILS ≤ IILS do
13: s← LocalSearch(s)
14: if s /∈ SolutionMemory then
15: ClusterPool← UpdateClusterPool(s, ClusterPool)
16: SolutionMemory ← UptadeSolutionMemory(s)

17: if f(s) > f∗ and CheckFeasibility(s) = true then
18: s∗ ← s
19: f∗ ← f(s)
20: end if
21: end if
22: ∆← f(s)− f(s′)
23: if ∆ > 0 then
24: s′ ← s
25: s′′ ← s
26: iterILS ← 0
27: else
28: select x ∈ [0, 1] at random
29: if τ > 0 and x < e−∆/τ then
30: s′ ← s
31: else
32: s′ ← s′′

33: end if
34: end if
35: s ← Perturb(s′)
36: iterILS ← iterILS + 1
37: τ ← τ × α
38: end while
39: end for
40: s∗ ← SP(s∗, ClusterPool)
41: return s∗

42: end HILS.
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Each solution can be seen as a collection of clusters. A cluster contains the presen-

tations of a session. Hence, for each session, there is an associated cluster with a given

minimum and maximum limit of papers. The clusters from local optimal solutions are

stored in a pool (line 15). Such solutions are also stored along with their respective ob-

jective values in a structure denoted as SolutionMemory (line 16). In case one of these

solutions is found again, the local search is interrupted and the corresponding solution is

returned as the current local optimum.

At the end of each local search, the algorithm checks if the solution belongs to Solu-

tionMemory. If so, one verifies whether such solution satisfies the side constraints (lines

17–19) using an ILP formulation (see Section 4.1). If so, then the best feasible solution

s∗ is updated.

The criterion used to select the local optimal solution to be perturbed is based on SA

(lines 29–33). Parameter τ is initialized at each restart with τ0 (line 11), and its value

decreases at each iteration according to a factor α ∈ [0, 1] (line 37). The smaller the value

of τ , the smaller the probability (line 29) of accepting a non-incumbent local optimum

as the next solution to be perturbed. When the non-incumbent solution is not accepted,

the algorithm restores the current incumbent solution for applying the perturbation (line

32).

Finally, at the end of the procedure, the algorithm attempts to find the optimal com-

bination of clusters from the pool with a view of finding an improved solution (line 40).

This is done by an exact approach based on set partitioning (SP) (see Section 4.2).

4.1 Feasibility checking

Define C = {C1, C2, . . . , Cl} as a collection of clusters from a given solution, from which

we can derive the following sets:

• Ca ⊆ C – set of clusters containing the papers by author a ∈ A;

• Sj ⊆ S – set of sessions that cluster Cj ∈ C can be assigned to.

The amount of papers of cluster Cj ∈ C associated with topic t ∈ T is denoted by Qt
j.

Moreover, let the binary variable xsj assume value 1 if cluster Cj ∈ C is assigned to session

s ∈ S, 0 otherwise. We can write the model for checking feasibility as follows.

Min 0 (1)
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Subject to: ∑
s∈Sj

xsj = 1, ∀Cj ∈ C (2)

∑
Cj∈C:s∈Sj

xsj ≤ 1, ∀s ∈ S (3)

∑
Cj∈Ca

∑
s∈Shd∩Sj

xsj ≤ 1, ∀a ∈ A, ∀d ∈ D, ∀h ∈ H (4)

∑
Cj∈C

∑
s∈Sd∩Sj

Qt
jx

s
j ≤MD, ∀t ∈ T,∀d ∈ D (5)

∑
Cj∈C

∑
s∈Shd∩Sj

Qt
jx

s
j ≤MH , ∀t ∈ T,∀d ∈ D, ∀h ∈ H (6)

xsj ∈ {0, 1}, ∀Cj ∈ C,∀s ∈ Sj. (7)

Constraints (2) ensure that each cluster must be assign to exactly one session. Con-

straints (3) guarantee that at most one cluster is assigned to a session. Constraints (4)

avoid papers from a same author to be assigned to parallel sessions. Constraints (5) and

(6) impose a limit on the amount of papers from a same topic to be assigned in the same

day and time slot, respectively. Finally, constraints (7) define the domain of the decision

variables.

4.2 Set partitioning approach

Given a pool of clusters, we can define the following sets:

• C – set of clusters;

• K – set of session sizes;

• Ci – set of clusters containing paper i ∈ P ;

• Sk – set of sessions of size k ∈ K;

• Ck – set of clusters that can be assigned to a session of size k ∈ K.

Let b′j be the benefit of a cluster j ∈ C. Define yj as a binary variable that assumes

value 1 if cluster j ∈ C is selected, and 0 otherwise. The SP formulation can be expressed

as follows.

Max
∑
j∈C

b′jyj (8)
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Subject to:∑
j∈Ci

yj = 1, ∀i ∈ P (9)∑
j∈Ck

yj ≤ Sk, ∀k ∈ K (10)

yj ∈ {0, 1}, ∀j ∈ C. (11)

Objective function (8) maximizes the total benefit. Constraints (9) are the partitioning

constraints, i.e., they guarantee that each paper is assigned to exactly one cluster. Con-

straints (10) impose a limit on the number of clusters of size k ∈ K that can be selected.

Constraints (11) define the domain of the variables.

The formulation given by (8)–(11) is incomplete because it does not include the side

constraints. Therefore, we implemented a branch-and-cut algorithm with a lazy separation

procedure, that is, every time an incumbent solution is found, the procedure verifies its

feasibility using the model described in Section 4.1, and add a lazy cut to remove infeasible

solutions.

4.3 Constructive procedure

The constructive procedure works as follows. Initially, a random paper is assigned to each

cluster. The remaining papers are iteratively inserted in a greedy fashion, more precisely,

the best insertion is the one that yields the highest increase in the objective function.

After all papers are inserted, the procedure verifies if there are clusters that violate the

minimum limit of papers. If so, the papers from such clusters are removed from the

partial solution, and the algorithm tries to reinsert them in other clusters. If it is still not

possible to build a feasible solution, the papers that could not be reinserted are relocated

to a dummy cluster with negative benefit, which is naturally emptied during the local

search.

4.4 Local search

Two neighborhood structures are employed during the local search, namely:

• Relocate (N (1)) – one paper from a cluster is relocated to another one. Only feasible

moves are considered;

• Swap (N (2)) – two papers from distinct clusters are exchanged.
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Algorithm 2 presents the pseudocode of the local search procedure. The search is

performed in a variable neighborhood descent (VND) fashion [Mladenović and Hansen,

1997] (lines 4–16) but with random neighborhood ordering [Subramanian et al., 2010], as

opposed to the traditional version that utilizes a deterministic ordering.

Algorithm 2 Local Search

1: Procedure LocalSearch(s, SolutionMemory)
2: InitializeAuxiliaryDataStructures()
3: NL ← InitializeNeighborhoodList()
4: while NL 6= 0 do
5: Select a neighborhood N (η) ∈ NL at random
6: Find the best neighbor s′ of s ∈ N (η)

7: if f(s′) > f(s) then
8: s← s′

9: if s ∈ SolutionMemory then
10: return s
11: end if
12: else
13: Remove N (η) from NL
14: end if
15: UpdateAuxiliaryDataStructures()
16: end while
17: return s
18: end LocalSearch

Note that every time an improved solution is found, the algorithm checks whether

such solution is a local optimum that has been previously visited. If so, the solution

is returned because it is known that no further improvements can be performed, thus

avoiding unnecessary operations. Furthermore, auxiliary data structures (ADSs) (lines 2

and 15) were implemented to enhance the local search efficiency. The algorithm makes use

of the don’t look bits approach [Bentley, 1992] to examine only the moves with potential

chance of improvement, disregarding those that one already knows that will not yield

better solutions because they have been already evaluated.

Moves are evaluated in amortized O(1) operations, thanks to the ADSs that store

information such as the benefit of a cluster when removing/inserting a paper. These

ADSs are initialized and updated in O(n2) operations. Therefore, the overall complexity

of enumerating and evaluating all moves during the local search is O(n2), because each

neighborhood has size O(n2) and each neighbor solution is evaluated in constant time.

4.5 Perturbation mechanisms

One of the following two perturbation mechanisms is randomly selected to be applied

after local search, and only feasible perturbation moves are allowed.
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• Multiple relocate (P (1)) – Two clusters are randomly selected and one random paper

is relocated from one to another. The procedure is consecutively applied from 2 to 5

times.

• Multiple swap (P (2)) – Two clusters are randomly selected and one random paper

from one cluster is exchanged with another random paper from the other. As in the

previous case, the procedure is consecutively applied from 2 to 5 times.

5 Computational experiments

The proposed algorithm was coded in C++ (g++ 5.4.0) and the tests were executed on

an Intel® Xeon® CPU E5-2650 2.20 GHz with 128.0 GB of RAM running Linux Ubuntu

16.04.6 Operating System. CPLEX 12.7 and CBC from Coin-OR were used as ILP solvers

depending on the scenario. In particular, the latter was adopted in all practical uses of

our method due to license issues. Only a single thread was used for each test.

5.1 Instances

Table 1 presents the detailed information of the real-life instances derived from four SBPO

editions: 2016–2019. We assume that the value of bij is determined by the amount of

topics in common, in particular, 1, 10 and 100 for one, two and three topics in common,

respectively. The papers considered in these instances do not include those associated

with special sessions.

Table 1: Characteristics of the real-life instances
|P | |A| |S| |D| |T | Avg. |Tj | Avg. |Pt| Avg. |Aj | Avg. |Pa|

SBPO 2016 288 689 93 3 22 1.69 13.09 3.06 0.41
SBPO 2017 324 788 95 3 22 1.82 13.72 3.15 0.41
SBPO 2018 283 709 85 3 22 1.33 12.86 3.21 0.39
SBPO 2019 288 737 91 4 26 1.99 11.07 3.32 0.39

We also considered the artificial instances by Bulhões et al. [2020] that were derived

from two other conferences, namely: XV Latin American Robotic Symposium (LARS) and

from the Brazilian Logic Conference (EBL) of 2019. The main difference with respect to

SBPO is that constraint (v) was not taken into account by the organizers. In addition, the

number of presentations of both events is considerably smaller when compared to SBPO,

with 86 for LARS and 93 for EBL. For each of these two conferences, there are 18 groups

of 5 artificial instances with the same number of papers.
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5.2 Parameter tuning

In this section, we discuss how we tuned the main parameters of HILS, i.e., IR, IILS, τ0,

and α. We used a subset of the LARS and EBL instances for the tuning experiments

because we could compare the results with the dual bounds reported in Bulhões et al.

[2020]. The SP approach was not considered while performing the calibration tests. The

parameters were tuned one at a time. We tried different values and assume that one

setting is effectively better than the other if there is an average improvement of 0.5% on

the solution quality. This is to prevent unnecessary larger CPU times without significant

gains.

We first tuned parameter IILS. In this case, we disabled the SA acceptance criterion

and assumed IR = 1. The value of IILS was set as max(100, β|P |), where β is a positive

number. We tested three different values for β, namely 1, 1.5 and 2. The most interesting

configuration was obtained for β = 1. Next, we calibrated parameter IR. Experiments

were conducted with four values: 20, 30, 40 and 50 (also disregarding the SA procedure).

The results that yielded the best compromise were those found with IR = 40.

Regarding parameter α, we assumed τ = 1000, and tested three different values: 0.4,

0.6 and 0.8. The first setting was the one that led to better results, and thus α = 0.4 as

adopted. We then tried different values for τ , but we could find a better setting and we

therefore decided to set τ = 1000.

5.3 Assessing the performance of the proposed matheuristic on existing in-

stances

Tables 2 and 3 contain the aggregate results obtained on the LARS and EBL instances,

respectively. We report the average CPU time in seconds (Avg. Time (s)), as well as

the number of optimal solutions found (#opt) for the BCP algorithm, the gap between

the best objective value found by HILS and the dual bound achieved by BCP (Best Gap

(%)), and the gap between the average objective value found by HILS and the dual bound

achieved by BCP (Avg. Gap (%)) [Bulhões et al., 2020]. In this case, CPLEX was used

as ILP solver.

The results show that the proposed matheuristic obtained average gaps always smaller

than 0.80%. In case of LARS, HILS found 62 of the 67 known optima confirmed by BCP.

Regarding EBL, all known optimal solutions were found by our method. Moreover, while

the CPU times required by BCP rapidly increase with the size of the instance, HILS

is visibly more scalable and yet capable of attaining high quality solutions. The EBL

instances appear to be more challenging, demanding on average more CPU time, possibly
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Table 2: Aggregate results found on the LARS-based instances
BCP HILS

Instance group |P | Avg. #opt Best Avg. Avg. #opt

Time (s) Gap (%) Gap (%) Time (s)

1 26 0.4 5 0.00 0.00 1.64 5

2 34 8025.4 3 0.00 0.00 91.15 3

3 43 10870.7 3 0.00 0.47 154.10 3

4 52 63.8 5 0.00 0.00 7.52 5

5 60 14402.8 1 0.25 0.73 275.17 0

6 69 11518.0 2 0.00 0.66 200.88 2

7 77 12844.0 2 0.00 0.00 181.26 2

8 86 2014.2 5 0.00 0.00 58.19 5

9 95 1258.0 5 0.00 0.03 79.71 4

10 103 833.7 5 0.00 0.00 39.41 5

11 112 861.6 5 0.00 0.00 40.29 5

12 120 3172.4 5 0.00 0.00 53.35 5

13 129 8037.4 4 0.00 0.00 74.75 4

14 138 7241.1 5 0.00 0.00 81.94 5

15 146 15417.5 5 0.00 0.00 99.51 4

16 155 14592.6 4 0.00 0.07 118.92 2

17 163 15338.3 1 0.00 0.00 139.11 1

18 172 18000.0 2 0.00 0.02 172.14 2

Table 3: Aggregate results found on the EBL-based instances
BCP HILS

Instance group |P | Avg. #opt Best Avg. Avg. #opt

Time (s) Gap (%) Gap (%) Time (s)

1 28 0.5 5 0.00 0.00 2.16 5

2 37 8.9 5 0.00 0.00 3.49 5

3 47 69.8 5 0.00 0.00 6.51 5

4 56 3756.8 4 0.00 0.00 7.07 4

5 65 6938.3 4 0.00 0.00 11.17 4

6 74 18000.0 0 0.00 0.80 256.20 0

7 84 11073.8 2 0.00 0.06 137.92 2

8 93 18000.0 0 0.12 0.73 308.80 0

9 102 14414.4 1 0.00 0.19 177.83 1

10 112 11424.2 3 0.00 0.47 173.81 3

11 121 14451.4 1 0.00 0.20 218.06 1

12 130 11110.6 2 0.00 0.75 221.80 2

13 140 14728.6 1 0.00 0.13 201.68 1

14 149 18000.0 1 0.00 0.20 220.84 1

15 158 14969.9 1 0.00 0.00 158.84 1

16 167 15453.3 3 0.00 0.07 160.60 3

17 177 18000.0 2 0.00 0.15 268.31 2

18 186 18000.0 0 0.00 0.00 277.74 0
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due to symmetry issues as discussed in Bulhões et al. [2020].

5.4 Results obtained on real-life instances derived from SBPO

Table 4 presents the results found on the SBPO instances of 2016 and 2017. We provide

the objective values found by HILS, both when using CPLEX and CBC as ILP solvers,

as well as the one achieved by the manual solution. More precisely, we report the best

LB (LBBest), average LB (LBAvg), and average CPU time in seconds (Time (s)) for HILS.

Table 4: Results found on the real-life SBPO instances of 2016 and 2017
Manual HILS (CPLEX) HILS (CBC)

Instance |P | LB LBBest LBAvg Time (s) LBBest LBAvg Time (s)

SBPO 2016 288 718 2733 2693.6 1262.8 2678 2643 1561.8

SBPO 2017 324 1926 5706 5608.3 1928.5 5545 5504.6 2138.9

The results obtained suggest a considerable gain over the manual solution. However,

a direct comparison in terms of objective function might not be entirely representative

because of the order of magnitude of the values of bij. Therefore, to better illustrate the

benefits of adopting an optimized solution, we decided to compute the number of pairs of

papers assigned to a same section with 0, 1, 2 or 3 topics in common, as shown in Table

5.

Table 5: Number of pairs of papers assigned to a same section with 0, 1, 2 or 3 topics in common
Manual HILS (CPLEX) HILS (CBC)

Instance |P | 0 1 2 3 0 1 2 3 0 1 2 3

SBPO 2016 288 10 268 35 1 2 183 115 14 3 188 109 14

SBPO 2017 324 0 336 79 8 9 176 203 35 8 195 185 35

It can be observed that the manual solution assigned papers mostly with only one topic

in common to the same session, as opposed to the optimized solutions, in which more

papers with more than one topic in common were allocated to the same session. This

comparison visibly confirms the superiority of the solution achieved by HILS, regardless

of the solver, when compared to the manual solution.

Table 6 shows the results attained on the SBPO instances of 2018 and 2019. In this

case, because there were no manual solution available, we ran the BCP algorithm by

Bulhões et al. [2020] and report the best UB attained. At first, we imposed a time limit

of 12 hours for the exact algorithm for both instances, but since we observed that giving

an extra time for the 2019 instance allowed for proving its optimality, we let the method

run until its completion for such instance. It is important to highlight that best known
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LB achieved by HILS was provided as initial primal bound for the exact algorithm. The

table also reports the best LB (LBBest), average LB (LBAvg), best gap (Gap (%)), and

average CPU time in seconds (Time (s)) for HILS, considering both CPLEX and CBC as

ILP solvers. The value of the percentage gap with respect to the dual bound achieved by

BCP was computed as follows: Gap(%) = 100× [(UBBCP − LBBest)/LBBest].

Table 6: Results found on the real-life SBPO instances of 2018 and 2019
BCP HILS (CPLEX) HILS (CBC)

Instance |P | UB Time (s) LBBest LBAvg Gap (%) Time (s) LBBest LBAvg Gap (%) Time (s)

SBPO 2018 283 1398 46800.0 1398 1370.9 0.0 1202.0 1321 1321 5.51 1050.4

SBPO 2019 288 2800 43200.0 2683 2683 4.36 644.0 2683 2524.1 4.36 937.9

The solutions found using CPLEX were, on average, superior than those by found

using CBC, mainly because of the better performance of the former when solving the SP

problems. On the other hand, the time required to check feasibility can be considered

negligible when using both solvers. When analyzing the 2018 instance, HILS was capable

of finding the optimal solution in at least one of 10 executions, whereas on the 2019

instance, both methods attained the same best solution, but the optimality could not be

proven by the BCP algorithm.

The SBPO organizers were able to use the HILS algorithm by means of a web interface,

as depicted in Figure 1. The system developed not only executes HILS, but also allows

the organizers to modify the solutions generated. For example, two presentations can be

interchanged between sessions, or a presentation can be moved from one session to the

other.

The method also automatically determines the topic of each session based on the most

common topic among the papers assigned to that session (see Figure 2). In the solution

found on SBPO 2018, only one session had papers without a topic in common, and the

final program was almost entirely maintained, with few exceptions of presentations that

were relocated due to availability of the presenters. Regarding SBPO 2019, the solution

generated by the proposed algorithm was only slightly modified by the organizers to

accommodate the needs of some presenters.

6 Concluding remarks

In this work, we addressed the problem of solving the schedule of technical sessions of

SBPO, which is considered the main Brazilian OR conference. Given the large amount of

presentations (around 300), solving the problem manually is not only a time consuming
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Figure 1: Screenshot of the web system developed for the SBPO organizers. This screen shows the
program, as well as buttons that allow the user to perform small changes in the solution.

arduous task, but it can also lead to solutions far from the optimum. Therefore, the use

of optimization-based approaches can be very favorable to produce high quality solutions

in a reasonable time.

We implemented a matheuristic algorithm that employs the ideas of ILS and SA for

clustering the presentations of similar topics in a same session, and an ILP formulation

for dealing with the side constraints of the problem. The procedure stores the clusters

associated with all local optima found during the search, and at the end tries to find an

optimal combination of clusters via a SP-based procedure.

The efficiency of the proposed algorithm was assessed by computational experiments on

artificial instances derived from two other conferences that were generated in a previous

work. The results obtained were compared with the dual bounds found by an exact

algorithm [Bulhões et al., 2020], and it was possible to observe that our matheuristic

achieved high quality solutions. We then applied the method on four real-life instances

derived from SBPO and compared with the dual bounds attained by the exact algorithm,

as well as with the manual solution, when available. The results found were clearly

superior than those obtained manually, and the gaps with respect to the dual bounds

were relatively tight.

The method presented in this work has been successfully used by the organizers of

SBPO since 2018. We project that a large number of conferences can benefit from the
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Figure 2: Screenshot of the web system developed for the SBPO organizers. This screen shows all the
sessions and their respective topics.

contributions presented in this research. Future work may include testing the algorithm

on alternative scenarios involving different sets of side constraints. In addition, if one

wishes to adopt the preference-based policy, one can group the presentations according

to the perspective of the attendees. In that case, the value of the benefit of assigning two

presentations to a same session will be based on the interest that the participants have

demonstrated to attend both of them.

Acknowledgements

We would like to thank the SBPO organizers for providing the real-life data. This research

was partially supported by the Brazilian research agency CNPq, grant 307843/2018-1.

References

J. J. Bentley. Fast algorithms for geometric traveling salesman problems. ORSA Journal

on Computing, 4(4):387–411, 1992.

T. Bulhões, R. Correia, and A. Subramanian. Conference scheduling: a clustering-

based approach, 2020. URL http://www.optimization-online.org/DB_HTML/2020/

08/7988.html. Working paper.

17



E. Edis and R. Sancar Edis. An integer programming model for the conference timetabling

problem. Celal Bayar University Journal of Science, 9:55–62, 2013.

R. W. Eglese and G. K. Rand. Conference seminar timetabling. Journal of the Operational

Research Society, 38(7):591–598, 1987.

M. Gulati and A. Sengupta. Tracs: Tractable conference scheduling. In Proceedings of

the decision sciences institute annual meeting (DSI 2004), pages 3161–3166, 2004.

H. Ibrahim, R. Ramli, and M. H. Hassan. Combinatorial design for a conference: con-

structing a balanced three-parallel session schedule. Journal of Discrete Mathematical

Sciences and Cryptography, 11(3):305–317, 2008.

Y. Le Page. Optimized schedule for large crystallography meetings. Journal of Applied

Crystallography, 29(3):291–295, 1996.
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