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Abstract We describe a matrix-free trust-region algorithm for solving convex-
constrained optimization problems that uses the spectral projected gradient method
to compute trial steps. To project onto the intersection of the feasible set and
the trust region, we reformulate and solve the dual projection problem as a one-
dimensional root finding problem. We demonstrate our algorithm’s performance
on multiple problems from data science and PDE-constrained optimization. Our
algorithm shows superior performance when compared with five existing trust-
region and spectral projected gradient methods, and has the added benefit that it
is simple to implement.
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1 Introduction

We develop a matrix-free trust-region Newton method for the efficient numerical
solution of the optimization problem

min
xPH

fpxq subject to x P C, (1)
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where H is a Hilbert space, f : H Ñ R is a smooth function, and C Ď H is a
nonempty, closed and convex set. Many applications in science and engineering can
be formulated as the optimization problem (1), including optimal control, inverse
and design problems (see, e.g., [2,4,31]) as well as statistical learning problems
(see, e.g., [32]). In these applications, the objective function and its derivatives are
often expensive to evaluate, emphasizing the need for rapidly converging Newton-
type methods that do not require factorizations of, e.g., the Hessian matrix.

Motivated by the unconstrained spectral projected gradient (SPG) trust-region
method developed in [24] and the SPG quasi-Newton line search method developed
in [29], our proposed algorithm approximates a solution to the quadratic trust-
region subproblem using SPG [5,7]. In doing so, the computed step maintains
feasibility. This approach is simple to implement as it does not require, e.g., explicit
treatment of the active set [1,23] or projections onto constraint null spaces [23].
For comparison, the trust-region Newton method proposed in [23] applies only
to polyhedral feasible sets and employs a projected truncated conjugate gradient
(CG) algorithm, accounting for the inactive constraints, to approximately solve
the trust-region subproblem. The algorithm then performs a projected search to
restore feasibility and ensure sufficient decrease of the trial step. Aside from the
complicated machinery required to implement this algorithm, the CG solver may
terminate early due to negative curvature, resulting in poor steps for nonconvex
problems. In contrast, our proposed method is not affected by negative curvature
and often produces successful trial steps.

A key requirement for our approach is the ability to efficiently project onto
the feasible set C. Using this projection, we develop an algorithm to project onto
the intersection of C and the trust region. To do this, we reformulate the dual
problem associated with this projection as a one-dimensional root-finding problem,
which can be solved using any standard root-finding algorithm. Based on numerical
experience, we employ Brent’s method [10] to solve the dual problem. Basic secant-
type methods, such as the secant and regula falsi methods, suffer from short step
sizes due to the nature of the dual function. Brent’s method produces steps that
are no worse than bisection, but often exhibits rapid local convergence similar to
the secant method.

The paper is organized as follows. In Section 2, we describe our proposed
algorithm, which is an instance of the basic trust-region algorithm. Consequently,
the convergence of the algorithm is guaranteed in Hilbert space by the analysis
in [30]. In Section 3, we provide numerical comparisons of our method with five
existing trust-region and SPG-based methods on problems from data science and
partial differential equation (PDE) constrained optimization.

Notation. We denote the inner product on H by x¨, ¨y and the usual norm by
} ¨ }. We denote the projection of x P H onto a set S Ď H by PSpxq and recall that

}PSpxq ´ x} ď }y ´ x} @ y P S. (2)

We denote the gradient of a Fréchet differentiable function g : H Ñ R at x P H by
∇gpxq P H and recall that ∇gpxq is the Riesz representer of the Fréchet derivative
g1pxq P H˚, where H˚ is the topological dual space associated with H. Finally, we
denote the space of bounded linear maps from H into itself by LpHq.

To ensure convergence of our proposed algorithm, we assume that f : H Ñ R is
continuously Fréchet differentiable with Lipschitz continuous gradient on an open
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set containing C. We further assume that there exists γ P R such that the level set
Lγ :“ tx P C | fpxq ď γu is bounded. This assumption allows us to replace C with
the closed convex hull of Lγ (which is a subset of C). Although this substitution
may not be practical, it ensures that C is bounded as required in [30].

2 Trust-Region Algorithm

The trust-region convergence theory for the convex-constrained optimization prob-
lem (1) was established in [30] (see also, e.g., [11,13,14] for finite-dimensional
analysis). At each iteration, the trust-region algorithm approximately solves the
subproblem

min
xPH

mkpxq subject to x P C, }x ´ xk} ď ∆k, (3)

where mk : H Ñ R is a model of the objective function, xk P C is the kth iterate,
and ∆k ą 0 is the trust-region radius. We require that the model mk matches both
the objective function value and gradient at the iterate xk, i.e., mkpxkq “ fpxkq
and ∇mkpxkq “ ∇fpxkq. A typical choice for mk is the quadratic model

mkpxq “
1

2
xBkpx ´ xkq, px ´ xkqy ` x∇fpxkq, px ´ xkqy ` fpxkq, (4)

where Bk P LpHq is some approximation to the Hessian ∇2fpxkq. If Bk “ ∇2fpxkq,
we recover a globalized Newton’s method. To simplify the presentation, we denote
the model gradient by gk :“ ∇mkpxkq and the feasible arc along the projected-
gradient path by

dkptq :“ PCpxk ´ tgkq ´ xk.

To approximately solve (3), we first compute a generalized Cauchy point (GCP).
At the kth iteration, the GCP has the form

sGCP
k :“ dkptkq and xGCP

k :“ xk ` s
GCP
k

for some tk ą 0. Following [30], we require that the GCP satisfies both
#

}sGCP
k } ď ν1∆k

mkpx
GCP
k q ´mkpxkq ď µ1xgk, sGCP

k y
, (5a)

and at least one of the following conditions
#

tk ě ν2t
1
k with mkpxk ` dkpt

1
kqq ´mkpxkq ě µ2xgk, dkpt

1
kqy

tk ě mintν3∆k{}gk}, ν4u
. (5b)

Here, 0 ă µ1 ă µ2 ă 1, 0 ă ν3 ă ν1, 0 ă ν2 ď 1 and ν4 ą 0. To satisfy these
conditions, we perform the bi-directional projected search described in [23]. Once
the GCP has been computed, we seek an approximate solution, xk`1, to (3) that
satisfies the following three requirements

xk`1 P C (6a)

}xk`1 ´ xk} ď ν5∆k (6b)

mkpxkq ´mkpxk`1q ě µ3pmkpxkq ´mkpx
GCP
k qq (6c)
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for some fixed µ3 P p0, 1s and ν5 ě ν1.
Given the trial iterate xk`1, the trust-region algorithm accepts the iterate if

the ratio of actual and predicted reduction,

ρk :“
fpxkq ´ fpxk`1q

mkpxkq ´mkpxk`1q
, (7)

satisfies ρk ě η1 where η1 ą 0. Otherwise, xk`1 is set to xk. Finally, the trust-
region radius∆k`1 is decreased if ρk ă η1 and increased if ρk ą η2 with η2 P pη1, 1q.
Algorithm 1 lists the convex-constrained trust-region algorithm.

Algorithm 1 Convex-Constrained Trust Region

Require: An initial guess x0 P C, initial trust-region radius ∆0 ą 0, 0 ă η1 ă

η2 ă 1 and 0 ă γ1 ď γ2 ă 1
1: for k “ 1, 2, . . . do
2: Cauchy Point Computation: Compute xGCP

k P C that satisfies (5)
3: Step Computation: Compute xk`1 P C that approximately solves the

trust-region subproblem (3) and satisfies (6)
4: Step Acceptance and Radius Update: Compute ρk as in (7)
5: if ρk ă η1 then
6: xk`1 Ð xk
7: ∆k`1 P rγ1∆k, γ2∆ks
8: else if ρk P rη1, η2q then
9: ∆k`1 P rγ2∆k,∆ks

10: else
11: ∆k`1 P r∆k,8q
12: end if
13: end for

Spectral Projected Gradient Subproblem Solver. To compute a trial
step xk`1 that satisfies (6), we apply the SPG algorithm to approximately mini-
mize the quadratic model (4), using the GCP as the initial guess. To describe this
approach, we denote the feasible set for (3) by

Ck :“ tx P C | }x ´ xk} ď ∆ku

and we define the optimality criterion

χk,` :“ }PCk
pxk,` ´∇mkpxk,`qq ´ xk,`}.

The SPG algorithm computes iterates with the form

xk,``1 “ xk,` ` α`pPCk
pxk,` ´ λ`∇mkpxk,`qq ´ xk,`q,

where α` ą 0 is traditionally determined by a nonmonotone line search and λ` ą 0
is a safeguarded spectral (Barzilai-Borwein) step length. In our implementation,
we exchange the nonmonotone line search for an exact line search, computed by
minimizing a one-dimensional quadratic function over α P r0, 1s. We terminate the
SPG algorithm if either the iteration limit is exceeded or if the stopping condition

χk,` ď mintε1, ε2χk,0u
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is satisfied. Here, ε1 ą 0 and ε2 ą 0 are prescribed absolute and relative tolerances,
respectively. Algorithm 2 lists the SPG trust-region subproblem solver. Each it-

Algorithm 2 SPG Trust-Region Subproblem Solver

Require: The initial guess xk,0 “ xGCP
k , qk,0 “ mkpxk,0q, dk,0 “ ∇mkpxk,0q, an

integer L, and positive constants ε1, ε2, λmin ă λmax, and λ0 P rλmin,λmaxs.
1: Set ` “ 0
2: while ` ă L and χk,` ą mintε1, ε2χk,0u do
3: Set sÐ PCk

pxk,` ´ λ`dk,`q ´ xk,` and compute hÐ Bks
4: Set αÐ 1
5: if xh, sy ą 0 then
6: Set αÐ mint1,´xdk,`, sy{xh, syu
7: end if
8: Set xk,``1 Ð xk,` ` αs and dk,``1 Ð dk,` ` αh
9: Update the model value qk,``1 Ð q ` αxdk,`, sy `

1
2α

2
xh, sy

10: Compute λ``1 Ð maxtλmin, mintλmax, xs, sy{xh, syuu
11: Set `Ð ` ` 1
12: end while
13: Return xk`1 Ð xk,``1 as the approximate solution

eration of Algorithm 2 requires a single application of the Hessian Bk. Moreover,
due to the decreasing sequence of model values generated by Algorithm 2, (6c) is
guaranteed to be satisfied.

Subproblem Projection Algorithm. To ensure that Algorithm 2 is prac-
tical, we must efficiently compute the projection PCk

p¨q. In the following result,
we show that computing PCk

p¨q requires the solution to a one-dimensional root
finding problem.

Proposition 1 The projection of x P H onto Ck is given by

PCk
pxq “

"

PCpxq if }PCpxq ´ xk} ď ∆k
PCpxk ` t

‹
px ´ xkqq if }PCpxq ´ xk} ą ∆k

,

where t‹ P r0, 1s is any t P r0, 1s that satisfies

φptq :“ }PCpxk ` tpx ´ xkqq ´ xk} ´∆k “ 0. (8)

Here, φ is nondecreasing and continuous on r0, 1s with φp0q “ ´∆k and φp1q ą 0.

Proof If }PCpxq´xk} ď ∆k, then (2) ensures that PCk
pxq “ PCpxq. Now, suppose

}PCpxq´xk} ą ∆k. We first show that PCk
pxq satisfies the trust-region constraint

with equality. Set y “ PCpxq and yk “ PCk
pxq, and define

ψptq :“ }y ` tpyk ´ yq ´ x}
2
“ }y ´ x}2 ` 2txy ´ x, yk ´ yy ` t

2
}yk ´ y}

2. (9)

The second term in (9) is nonnegative by [30, L. 1] and therefore ψ is increasing
for t ě 0. Consequently, if }yk ´ xk} ă ∆k, then we arrive at a contradiction
by choosing t0 P r0, 1q to satisfy }y ` t0pyk ´ yq ´ xk} “ ∆k, and noting that
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ψpt0q ă ψptq. Now, to determine the explicit form for PCk
pxq, we reformulate the

projection problem as

min
yPH

#

sup
µě0

"

1

2
}y ´ x}2 `

µ

2
p}y ´ xk}

2
´∆2

kq

*

+

subject to y P C.

By [19, Th. 1], we can interchange the minimization and supremum to obtain

sup
µě0

min
yPH

""

1

2
}y ´ x}2 `

µ

2
p}y ´ xk}

2
´∆2

kq

*

subject to y P C
*

,

where the inner minimization problem has the unique solution

yptq :“ PCpxk ` tpx ´ xkqq.

Here, we have made the change of variables t “ 1{p1 ` µq P r0, 1s for µ ě 0. This
gives the desired form for PCk

pxq. By [30, L. 2], φ is nondecreasing. In fact, if
0 ď t ă t1 and yptq ‰ ypt1q, then φptq ă φpt1q. This ensures that if 0 ă t ă t1 ď 1
and both satisfy (8), then PCk

pxq “ yptq “ ypt1q. Finally, it is straightforward to
verify that φ is continuous with φp0q “ ´∆k and φp1q ą 0. [\

By Proposition 1, we can compute the projection PCk
p¨q by finding a root of

φ. In principle, one can compute a root of φ using any method. In our experience,
basic secant methods like regula falsi often take short steps, resulting in slow
convergence. For this reason, we employ Brent’s method [10], which safeguards
against small step sizes, while maintaining the rapid local convergence of the secant
method. Similar to bisection, Brent’s method is guaranteed to converge to a given
bracket size ε ą 0 in r´ log2pεqs

2 iterations, but often converges faster due to the
secant approximation.

3 Numerical Results

The feasible set C for each problem considered in this section is polyhedral and
can be written in the standard form

C “ tx P Rn | cJx “ d, l ď x ď uu.

for c P Rn, d P R, and l ď u P Rn. To project onto C, we employ the algorithm
described in [16]. This approach solves the dual problem associated with the pro-
jection onto C using bracketing and a modified secant method. We compare our
approach (denoted TRSPG) with the linearly constrained trust-region algorithm in
[23] (denoted LMTR), the line-search projected quasi-Newton method developed in
[29] (denoted PQN), the spectral projected gradient method (denoted SPG) [5] as
well as the bound-constrained augmented Lagrangian method [15] in which we
solve the augmented Lagrangian subproblem using LMTR (denoted AL-LMTR) and
TRSPG (denoted AL-TRSPG).

All algorithms are implemented in the Trilinos package Rapid Optimization
Library (ROL) [21]. ROL is an open-source C++ library consisting of numerous
matrix-free nonlinear optimization algorithms. The following examples are con-
tained in the directory

rol/examples/PDE-OPT/published/TRSPG Kouri2021
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of ROL. All numerical studies were performed on a Red Hat Enterprise Linux
(version 7.8) workstation with four Xeon E5-2670 v2 processors (10 cores, 2.50GHz
base frequency) and 64GB of RAM. All software was compiled with the Intel 19.0.5
C++ compiler icpc.

– LMTR is a realization of Algorithm 1. In fact, our implementations of LMTR

and TRSPG use the same GCP algorithm (see [23] for more details). LMTR and
TRSPG differ in the solution to the trust-region subproblem (3). In particular,
LMTR utilizes the quadratic model (4) with all active variables removed. LMTR
then applies a truncated projected CG algorithm to approximately solve the
resulting equality constrained quadratic subproblem. Since the CG step is not
guaranteed to be feasible, LMTR performs a projected search to restore feasibility
and to ensure that the fraction of Cauchy decrease condition (6c) is satisfied.
If the truncated CG algorithm finds a direction of negative curvature, then the
algorithm steps to the trust-region boundary along this direction. This feature
can produce poor steps for nonconvex problems.

– PQN is a line-search quasi-Newton method that uses the BFGS secant approx-
imation of the Hessian ∇2fpxq. At each iteration, PQN solves a quadratic sub-
problem similar to (3) without the trust-region constraint using the SPG algo-
rithm. To globalize, PQN performs a line search that ensures sufficient decrease.
The positive definite Hessian approximation used in PQN may result in small
steps if the objective function is nonconvex.

– AL-TRSPG and AL-LMTR penalize the linear equality constraints using an aug-
mented Lagrangian and approximately solve bound-constrained subproblems
using TRSPG and LMTR, respectively. These approaches are fundamentally differ-
ent than the previously described methods, which project onto the feasible set
C. By penalizing equality constraints, the required projection onto the bounds
is trivial. Consequently, it is interesting to compare the performance of these
algorithms to see if the more complicated projections onto C are worthwhile.

We terminate TRSPG, LMTR, PQN, and SPG based on the condition

}PCpxk ´∇fpxkqq ´ xk} ď 5 ˆ 10´6.

Furthermore, we stop AL-TRSPG and AL-LMTR based on the conditions

|cJxk ´ d| ď 5 ˆ 10´6 and }Prl,uspxk ´∇Lkpxkqq ´ xk} ď 5 ˆ 10´6.

Here, Lk denotes the augmented Lagrangian at the kth iteration. In addition, we
terminate if the number of iterations exceeds 200 or if the norm of a trial step
falls below 10´14. For all SPG-based algorithms, we use the following parameters:
λmin “ 10´12, λmax “ 1012, γ “ 10´4, σ1 “ 0.1, σ2 “ 0.9, and M “ 10. Here, σ1

and σ2 are line-search step size safeguards, γ is the sufficient decrease parameter,
and M is the storage limit for the nonmonotone line search. See [5] for more
details. For all trust-region algorithms, we set: ∆0 “ 20, η1 “ 0.05, η2 “ 0.9,
γ1 “ 0.25, and γ2 “ 2.5. For TRSPG, we choose L “ 25, ε1 “ 10´4 and ε2 “
10´2 in Algorithm 2, and the bracketing tolerance ε “ 10εmach, where εmach is
machine epsilon. Similar to TRSPG, we limit the SPG subproblem solver in PQN to
a maximum of 25 iterations and the subproblem solvers in AL-TRSPG and AL-LMTR

to a maximum of 40 iterations.
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We provide tables to summarize the performance of the six algorithms for
each example. The column headings in these tables are: the number of iterations
(iter), the number of objective function evaluations (fval), the number of gradi-
ent evaluations (grad), the number of Hessian applications (hess), the number of
projections onto C (proj), and the wall-clock time in seconds (time(s)). We note
that SPG and PQN do not use the Hessian and that AL-TRSPG and AL-LMTR do not
project onto C.

3.1 Data Science

The following two examples are quadratic programs arising in data science. The
first example is a convex lasso regression problem whereas the second is a dual
kernel support vector machine (SVM) problem. The objective functions and con-
straints for these examples were implemented using basic linear algebra subpro-
grams (BLAS) from the Intel Math Kernel Library (MKL).

Lasso Regression. In this example, we solve the lasso regression problem

min
xPRn

1
2m }ADx ´ b}22 subject to }Dx}1 ď t,

where t ą 0, x “ px1, . . . ,xnq
J, A P Rmˆn, b P Rm, and } ¨ }p denotes the usual

vector p-norm. We set the scaling matrix D P Rnˆn to be diagonal with entries
di “ 1{maxj |Aji| for i “ 1, . . . ,n. The entries in A and b are generated from the
houses dataset, which can be found in the StatLib dataset archive [25]. This data
was analyzed in [26] and consists of m “ 20,640 data points with n “ 9 factors. For
our experiments, we set t “ 1. To test LMTR, AL-LMTR and AL-TRSPG, we reformulate
this problem, by splitting x into positive and negative parts, as

min
u, vPRn

1
2m }ADpu ´ vq ´ b}22

subject to
n
ÿ

i“1

dipui ` viq ď t, ui ě 0, vi ě 0 i “ 1, . . . ,n,

where u “ pu1, . . . ,unq
J and v “ pv1, . . . , vnq

J. Table 1 summarizes the perfor-
mance of each algorithm. We ran each algorithm from the feasible initial guess

method iter fval grad hess proj time(s)

TRSPG 5 6 6 112 496 0.021
LMTR 3 4 4 19 22 0.009
PQN 13 14 14 --- 368 0.067
SPG 41 45 42 --- 84 0.007
AL-TRSPG 6 99 99 2464 --- 0.306
AL-LMTR 4 14 14 142 --- 0.020

Table 1: Algorithm comparison for the lasso regression example.

u ” 0 and v ” 0. All algorithms, excluding AL-TRSPG, performed comparably with
SPG and LMTR performing slightly better than the rest. Although TRSPG performed
well, it required more applications of the Hessian and more projections onto C
than both SPG and LMTR, which accounts for the additional computational time.
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Dual Support Vector Machine. In this example, we solve the dual form
for a sigmoid kernel SVM. The optimization problem is the quadratic program

min
αPRn

#

1

2

n
ÿ

i“1

n
ÿ

j“1

αiyikpxi, xjqyjαj ´
n
ÿ

i“1

αi

+

subject to
n
ÿ

i“1

αiyi “ 0, 0 ď αi ď 1 i “ 1, . . . ,n.

Here, xi P Rm is a data point and yi P t´1, 1u is the label corresponding to xi. In
addition, k : Rm ˆ Rm Ñ R is the sigmoid kernel given by

kpx, yq :“ tanhpκxJy ` cq

with κ “ 1{m and c “ ´0.1. We use the phishing data set [18], downloaded from
the LIBSVM data repository [12], to test the algorithms. This data set consists of
n “ 11,055 data points and m “ 68 features. Table 2 summarizes the performance
of each algorithm. We ran each algorithm from the feasible initial guess α ” 0. PQN

method iter fval grad hess proj time(s)

TRSPG 4 5 5 58 282 1.513
LMTR 17 18 16 874 662 17.923
PQN 200 201 201 --- 9300 82.314
SPG 23 24 24 --- 48 0.909
AL-TRSPG 165 3131 3131 80455 --- 1670.322
AL-LMTR 17 430 410 17058 --- 342.925

Table 2: Algorithm comparison for the dual SVM example.

did not converge within the iteration limit. However, the final optimality criterion
produced by PQN was 1.76ˆ10´5 and the final objective function value was within
4.297 ˆ 10´9% of the minimal value computed by the other algorithms. SPG and
TRSPG performed comparably for this example and both outperformed the other
algorithms. SPG was slightly faster than TRSPG since it required 234 fewer pro-
jections onto C than TRSPG. For further comparison, we solved this problem using
LIBSVM, which required roughly 14.199 seconds and 2,976 iterations. Consequently,
TRSPG (1.513 seconds), LMTR (17.923 seconds), and SPG (0.909 seconds) compare
favorably with LIBSVM.

3.2 PDE-Constrained Optimization

In this subsection, we test our approach on two discretized PDE-constrained opti-
mization problems. For both examples, Ω Ă R2 is the physical domain, H “ L2

pΩq
and the infinite-dimensional feasible set is given by

C “
"

ρ P L2
pΩq

ˇ

ˇ

ˇ

ż

Ω
ρpxqdx “ v0|Ω|, 0 ď ρ ď 1

*

.

Here, v0 P p0, 1q and |Ω| denotes the volume of Ω. We refer the reader to [20,31]
for more details on the numerical discretization and solution of PDE-constrained
optimization problems, including how to evaluate the objective function and its
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gradient as well as how to apply its Hessian to a vector. The objective functions
and constraints for these examples were implemented using the Trilinos packages
Intrepid [8] for finite element discretizations, Amesos [27] for linear solvers, and
Tpetra [3] for sparse linear algebra. Within Amesos, we employ the Pardiso solver
[28] from Intel MKL to solve the discretized PDEs.

Elastic Topology Optimization. Let Ω “ p0, 2q ˆ p0, 1q. We consider the
archetypal topology optimization problem of determining a distribution of material
ρ : Ω Ñ r0, 1s that minimizes the compliance of the resulting elastic structure and
satisfies a constraint on the volume. Here, ρpxq “ 0 represents a void and ρpxq “ 1
represents the material. This problem is written as

min
ρPC

ż

Γt

T pxqrSpρqspxqdx,

where the displacement field u “ Spρq solves the linear elasticity equations

´∇ ¨ pKpρq : εpuqq “ 0 in Ω

εpuq “ 1
2 p∇u `∇uJq in Ω

u “ 0 on Γfixed

Kpρq : εpuqn “ T on Γtract.

The function T : Γtract Ñ R2 is a traction force applied to the boundary segment
Γtract Ă BΩ and the structure is fixed on the boundary segment Γfixed Ă BΩ. We
employ the SIMP material model [4] and the Helmholtz filter [22].

We discretize ρ as a piecewise constant function on a mesh of 26,880 quadrilat-
eral elements. We further discretize the linear elasticity equations using continu-
ous piecewise linear finite elements on the same mesh. We note that the objective
function is nonlinear and highly nonconvex as it requires the solution to the linear
elasticity equations, which depend nonlinearly on ρ. Table 3 summarizes the per-
formance for the six algorithms. We ran each algorithm from the feasible initial

method iter fval grad hess proj time(s)

TRSPG 9 10 10 236 1187 14.88
LMTR 33 34 31 398 370 20.99
PQN 62 117 63 --- 2364 65.55
SPG 84 90 85 --- 170 41.24
AL-TRSPG 9 52 51 1154 --- 38.08
AL-LMTR 10 246 234 3803 --- 160.96

Table 3: Algorithm comparison for the elastic topology optimization problem.

guess ρ ” v0. TRSPG outperforms all other algorithms in function, gradient and
Hessian evaluations as well as wall-clock time. Although TRSPG and LMTR are both
versions of Algorithm 1, TRSPG outperforms LMTR (similarly, AL-TRSPG outperforms
AL-LMTR). A possible reason for this is that the objective function Hessian is indef-
inite, which causes the LMTR CG procedure to terminate after only a few iterations,
producing poor steps. In contrast, the TRSPG algorithm provides a more accurate
solution to the trust-region subproblem and tends to produce successful steps for
this example. Since this problem is nonconvex, it is worth noting that the final
objective function values produced by each algorithm were within 0.386% of each
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other, signifying convergence to stationary points with similar objective function
values.

Diffuser Design. Let Ω “ p0, 1q2. We consider the design of a diffuser using
topology optimization. As in the previous example, the optimization variables
represent the distribution of material in Ω. However, for this problem our goal is
to compute a material distribution that minimizes the total potential power of a
flow and satisfies a volume constraint. This problem is written as

min
ρPC

ż

Ω
t∇rSupρqspxq ¨∇rSupρqspxq ` rαpρqspxqrSupρqspxq ¨ rSupρqspxqudx,

where the flow velocity u “ Supρq and pressure π “ Sπpρq solve the steady Navier-
Stokes equations

´ν∆u ` u ¨∇u `∇π “ ´αpρqu in Ω

∇ ¨ u “ 0 in Ω

u “ uin on Γin

u “ 0 on Γwall

ν∇u ¨ n ´ πn “ 0 on Γout.

The parameter ν is the kinematic viscosity and uin is the prescribed inflow velocity.
The boundary BΩ is partitioned into three non-overlapping segments: the inflow
boundary Γin “ t0u ˆ r0, 1s, the outflow boundary Γout “ t1u ˆ r13 , 2

3 s and the
no slip boundary Γwall “ BΩzpΓin Y Γoutq. The function αpρq models the inverse
permeability and has the form

αpρq “ α ` pα ´ αq
ρp1 ` qq

q ` ρ
,

where α “ 2.5 ˆ 104, α “ 2.5 ˆ 10´4, and q “ 0.1. This problem is an extension
of the topology optimization problem considered in [9, § 4.2] to the Navier-Stokes
equations. See [17] for similar problems.

We discretize ρ as a piecewise constant function on a mesh of 30,720 quadri-
lateral elements and we discretize the Navier-Stokes equations using Taylor-Hood
finite elements on the same mesh. To evaluate the objective function, we solve the
discretized Navier-Stokes equations using a line-search Newton method. We again
note that the objective function is nonlinear and highly nonconvex. We summarize
the algorithmic performance in Table 4. We ran each algorithm from the feasible

method iter fval grad hess proj time(s)

TRSPG 11 12 12 306 1595 657.47
LMTR 22 23 20 730 317 1402.33
PQN 84 85 85 --- 3082 1344.72
SPG 130 308 131 --- 262 3178.22
AL-TRSPG 5 22 22 437 --- 935.01
AL-LMTR 4 33 33 1127 --- 2125.18

Table 4: Algorithm comparison for the diffuser design problem.

initial guess ρ ” v0. Similar observations can be made as in the previous example.
In particular, TRSPG significantly outperforms all other algorithms in wall-clock
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time as well as function, gradient and Hessian evaluations. Interestingly, for this
example, AL-TRSPG outperforms all methods with the exception of TRSPG, suggest-
ing that the cost difference between projecting onto C and the penalty iteration is
negligible. Since this problem is nonconvex, it is worth noting that the final objec-
tive function values produced by each algorithm were within p2ˆ 10´9

q% of each
other, signifying convergence to stationary points with similar objective function
values.

4 Conclusions

We described a trust-region subproblem solver for convex-constrained optimiza-
tion problems based on the SPG method. Our algorithm is simple to implement,
compared with other convex-constrained trust-region algorithms. In addition, our
approach is completely matrix free, enabling the solution of enormous problems.
In order for this approach to be practical, the projection onto the feasible set C
must be efficient to compute. This projection is often performed using iterative
methods, leading to inexact projections. An interesting future direction is the rig-
orous treatment of inexact projections akin to the work in [6]. In addition, the
SPG method employs a safeguarded spectral step, which can be quite large (e.g.,
λmax “ 1012 in our examples). When the spectral step length is large, the compu-
tation of the projection can become unstable, motivating research in specialized
procedures to accelerate these projections.
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