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Optimization problems with discrete decisions are nonconvex and thus lack strong duality, which limits the

usefulness of tools such as shadow prices. It was shown in Burer (2009) that mixed-binary quadratic programs

can be written as completely positive programs, which are convex. Completely positive reformulations of

discrete optimization problems therefore have strong duality if a constraint qualification is satisfied. We

apply this perspective by writing unit commitment in power systems as a completely positive program, and

then using the dual copositive program to design new pricing mechanisms. We show that the mechanisms

are revenue-adequate, and, under certain conditions, supports a market equilibrium. To the best of our

knowledge, one of our mechanisms is the first equilibrium-supporting scheme that uses only uniform prices.

To facilitate implementation, we also design a cutting plane algorithm for solving copositive programs exactly,

which we further speed up via a second-order cone programming approximation. We provide numerical

examples to illustrate the potential benefits of the new mechanisms and algorithms.
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1. Introduction

Markets with discrete decisions such as the startup and shutdown of power plants often lack

equilibria. A basic difficulty is the lack of convexity, which precludes the use of tools like strong

duality and the Karush-Kuhn-Tucker (KKT) conditions. Many discrete problems can be written

as mixed-integer programs (MIPs). Burer (2009) has shown that mixed-binary quadratic programs

(MBQPs), a generalization of MIPs, can be written as completely positive programs (CPPs). CPPs

and their dual copositive programs (COPs) are convex but NP-hard. While this does not point

to a better way of solving MBQPs, it does provide a new notion of duality. In this paper, we use

copositive duality to design a new pricing mechanism for nonconvex electricity markets.

Unit commitment (UC) makes electricity markets nonconvex because the decision to turn a

generator on or off is binary. It is commonly formulated as an MIP, for which efficient prices are

difficult to construct; see, e.g., Liberopoulos and Andrianesis (2016). We rewrite the MIP as a CPP,
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and use the dual COP to design a pricing mechanism based on shadow prices. The mechanism has

some desirable properties, e.g., it is budget balanced and, under certain conditions, individually

rational. It is also straightforward to incorporate additional features into this mechanism, such as

revenue adequacy of the generators, by adding constraints directly to the dual COP.

An immediate challenge in using copositive duality is the relatively small number of options for

solving COPs exactly. We design a novel cutting plane algorithm that exactly solves COPs when

it terminates. The algorithm consists of a sequence of MIPs, which can thus be implemented using

standard industrial solvers.

The remainder of the paper is organized as follows. In Section 2 we review the literature on

pricing in nonconvex markets and copositive programming, also detail our contributions. In Section

3 we provide the necessary background on CPPs and COPs. In Section 4 we design a COP-based

pricing scheme for UC. In Section 5 we present the new cutting plane algorithm for solving COPs.

In Section 6 we present the results of our computational experiments. We conclude the paper in

Section 7.

All proofs are in Section EC.2 of the e-companion.

2. Literature Review

In this section, we review the relevant literature. Section 2.1 surveys the pricing schemes for non-

convex markets. Section 2.2 reviews the relationship between CPPs, COPs, and integer programs,

and solution methods for COPs. Section 2.3 summarizes our contributions.

2.1. Pricing in Discrete Markets

Classical equilibrium theories assume that market participants make decisions by solving linear or

convex optimization models. Under this assumption, the market equilibrium prices are related to

the shadow prices of the social welfare optimization (Mas-Colell et al. 1995). These prices lead to

exchanges that maximize social welfare while respecting constraints.

However, in practice many markets have nonconvexities, e.g., due to binary decisions and indi-

visible goods. It is difficult to design efficient pricing mechanisms in such markets because of the

lack of strong duality. This has now been a subject of research for decades. We refer the reader to

Liberopoulos and Andrianesis (2016) for a more thorough review of pricing in nonconvex markets.

A basic source of nonconvexity in electricity markets is the binary startup and shutdown decisions

of generators. These decisions are optimized via UC, which is commonly formulated as an MIP



3

(Carrión and Arroyo 2006). The basic idea of most current approaches is to construct approximate

shadow prices for the MIP. O’Neill et al. (2005) eliminate the nonconvexity by fixing the binary

decisions at their optimal values and obtaining shadow prices from the resulting linear program

(LP). This scheme is called the restricted pricing (RP) in the literature. RP and its variants are used

by some independent system operators (ISOs) in the US, such as the Pennsylvania-New Jersey-

Maryland Interconnect (PJM). However, RP is often too low to cover the costs of generators, in

which uplift or make-whole payments are needed to ensure generator profitability, and it can be

volatile due to high sensitivity to the load. The convex hull pricing (CHP) of Hogan and Ring

(2003) and Gribik et al. (2007) uses the Lagrangian multipliers of the demand constraints as

prices, and has been shown to minimize uplift. Common methods for solving the Lagrangian dual

problem for CHP include the subgradient and cutting plane algorithms, both of which require some

parameter tuning and can suffer slow convergence. A modified version of CHP called extended

locational marginal pricing is used by the Midcontinent ISO. Ruiz et al. (2012) propose a primal-

dual approach for pricing, which combines the UC problem and the dual of its linear relaxation, as

well as revenue adequacy constraints that ensure nonnegative profit for each generator. We note

that such revenue adequacy constraints eliminate uplift, but also modify the original UC problem

and may therefore result in suboptimal decisions. Recently, Milgrom and Watt (2022) proposed

two linear pricing mechanisms for markets with nonconvexity, and showed that they are budget

balanced and approximately incentive compatible.

We use the CPP reformulation of MBQP to design a new pricing scheme, which we refer to

as copositive duality pricing (CDP). We construct CDP using the dual COP, which benefits from

strong duality and the flexibility of an explicit representation. CDP is budget balanced, supports

the optimal UC (i.e., the shadow prices incentivize the optimal startups and shutdowns for each

individual generator), and is flexible in that it provides direct access to the dual COP. We make

use of this feature by adding a revenue adequacy constraint without inducing nonuniform prices

or uplift. We refer to the augmented pricing scheme as revenue-adequate CDP (RCDP).

It is desirable for a pricing scheme to ensure individual rationality, i.e., that individual generators

have no incentive to deviate from the optimal UC solution. O’Neill et al. (2005) prove that RP is

individually rational. CHP satisfies individual rationality in some special cases, but in general it

does not support each individual generator’s profit-maximizing solution. For example, Gribik et al.

(2007) provide sufficient conditions for when CHP satisfies individual rationality. The primal-dual
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approach does not guarantee individual rationality either. CDP and RCDP do not in general lead

to individual rationality, but we provide simple-to-check sufficient conditions under which they do.

Table 1 compares the properties of several pricing schemes, where “X” and “×” respectively

represent true and false, and “◦” indicates the existence of a sufficient condition in the literature

for ensuring the property. Column “Uniform only” shows whether the scheme is able to cover total

costs with only uniform prices. “Optimal UC” shows whether the prices incentivize the optimal

UC solution. “Individual rationality” shows whether each pricing scheme is individually rational.

Table 1 Features of Pricing Schemes

Uniform Optimal Individual
Scheme only UC rationality

RP × X X
CHP × × ◦
Primal-dual X × ×
CDP × X ◦
RCDP X ◦ ◦

We also mention that there is a related literature stream focusing on markets with indivisible

goods. Recent papers include Danilov et al. (2001) and Baldwin and Klemperer (2019), which use

discrete convexity to prove the existence of equilibria.

2.2. Copositive Programming

Copositive programming has been shown to generalize a number of NP-hard problems, such as

quadratic optimization (Bomze and De Klerk 2002), two-stage adjustable robust optimization (Xu

and Burer 2018, Hanasusanto and Kuhn 2018), and MBQPs (Burer 2009). In particular, Burer

(2009) shows that an MBQP can be written as a CPP. This reformulation is the basis our work.

At present, no industrial software can directly solve COPs. Parrilo (2000) constructs a hierarchy

of semidefinite programs (SDPs), which is often used to approximate COPs. For example, it is used

by De Klerk and Pasechnik (2002) to find the stability number of a graph, and by Hanasusanto and

Kuhn (2018) for two-stage distributionally robust linear programs. An exact algorithm for COPs

based on simplicial partitions is proposed by Bundfuss and Dür (2009). Bomze et al. (2008) and

Bomze et al. (2010) use cutting planes to strengthen the SDP relaxation for COPs, but both are

problem specific and can only be used for quadratic programming and clique number problems,

respectively. In this paper, we develop a purely MIP-based cutting plane algorithm that exactly

solves COPs when it terminates. To speed up convergence, we strengthen the master problem with

a second-order cone programming (SOCP) approximation of the COP.
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2.3. Our Contributions

We use COP to construct a notion of duality for MIPs and MBQPs. We show that this has several

uses, such as (i) providing direct access to dual decisions that support optimal primal decisions

(e.g., prices), and this is particularly useful for modeling constraints involving both primal and

dual decisions, and (ii) theoretical analysis of problem structure (e.g., using strong duality).

Here we design a new pricing mechanism for UC in power systems, CDP, based on a CPP refor-

mulation of the UC MIP model. We use CPP-COP strong duality to prove that this pricing scheme

is revenue neutral, and to obtain sufficient conditions for individual rationality, both desirable fea-

tures in practice. We also design a modified version of the new pricing mechanism, RCDP, which

ensures another important property, revenue adequacy, enforced explicitly in the pricing model

using the direct access to dual (pricing) variables. To the best of our knowledge, RCDP is the first

pricing mechanism for UC that uses only uniform prices and, under certain conditions, supports

a market equilibrium. Due to its generality, copositive duality can potentially be used to design

pricing mechanisms for and analyze equilibria of other nonconvex markets.

To facilitate implementation, we also develop a novel cutting plane algorithm which exactly

solves COPs when it terminates. This algorithm is easier to implement than that of Bundfuss and

Dür (2009), which is to the best of our knowledge the only algorithm in the literature that exactly

solves COPs (also when it terminates). Ours is also the first algorithm that can handle COPs with

both continuous and discrete variables. In addition, we speed up convergence by tightening the

master problem with an SOCP restriction of the COP. The SOCP-based cutting plane algorithm

converges to a high-quality approximate solution, most notably one that is better than that from

the commonly-used SDP approximation.

While our cutting plane algorithm is a useful advance, the technology for solving COPs is not

mature. At the same time, there is much debate over which existing pricing mechanism for UC is

superior, as some are more tractable, while others have better properties. We therefore view our

pricing mechanism as a new conceptual direction, which we hope will lead to significant improve-

ments once there are more efficient tools for solving COPs.

There are numerous discrete and NP-hard problems that can be represented via COP. To date,

there have been relatively limited applications of COP to such problems. This is due to the fact that

much of the literature on COP is recent, and because at present there are few options for solving

COPs. We believe that, via tools like strong duality and the KKT conditions, there are many

promising applications of COP. We view our results on discrete energy markets as a significant
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step in this direction. We also believe the cutting plane algorithm is a useful advance in making

COP a tractable modeling framework.

3. Background

In this section, we define CPP and COP and state some basic results.

Throughout the paper, we use bold letters for vectors. Tr(·) denotes the trace of a matrix and

(·)> denotes the transpose of a vector or matrix. ek ∈Rn is the kth unit vector. opt(·) denotes the

optimal objective value of an optimization problem.

3.1. Preliminaries

Let Sn be the set of n-dimensional real symmetric matrices. The copositive cone Cn is defined as:

Cn =
{
X ∈ Sn | y>Xy≥ 0 for all y ∈Rn+

}
. (1)

The dual cone of Cn is the completely positive cone C∗n:

C∗n =
{
XX> |X ∈Rn×r+

}
. (2)

In COP (CPP), we optimize a linear function of the matrix X subject to linear constraints and

X ∈ Cn (X ∈ C∗n).

Because COP and CPP are convex, strong duality holds if a regularity condition is satisfied,

e.g., Slater’s condition, which requires the feasible region to have an interior point.

3.2. CPP Reformulation of MBQP

In this section, we state the CPP reformulation of MBQP given in Burer (2009). We also derive

its COP dual.

Consider the MBQP:

PMBQP : min x>Qx + 2c>x (3a)

s.t. a>j x = bj ∀j = 1, ...,m (3b)

xk ∈ {0,1} ∀k ∈B (3c)

x∈Rn+ (3d)

where B ⊆ {1, ..., n} is the set of indices of the binary elements of x. Without loss of generality we

assume the matrix Q is symmetric.
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Burer (2009) gives a CPP reformulation of PMBQP, which here we refer to as1 PCPP, obtained

by squaring the linear constraints and substituting lifted variables for the bilinear terms.

PCPP : min Tr(QX) + 2c>x (4a)

s.t. a>j x = bj ∀j = 1, ...,m (4b)

a>j Xaj = b2
j ∀j = 1, ...,m. (4c)

xk =Xkk ∀k ∈B (4d)[
1 x>

x X

]
∈ C∗n+1. (4e)

We now derive the dual of (4). For convenience, define:

Y =

[
1 x>

x X

]
; Q̃=

[
0 01×n

0n×1 Q

]
; C =

[
0 c>

c 0n×n

]
; Aj =

[
0 1/2a>j

1/2aj 0n×n

]
, ∀j = 1, ...,m. (5)

We also define the matrices Ãj = [0,a>j ]>[0,a>j ], ∀j = 1, ...,m, and, for each k ∈B, Bk such that

(Bk)l1,l2 =

 1/2 if l1 = k+ 1, l2 = 1 or l1 = 1, l2 = k+ 1
−1 if l1 = k+ 1, l2 = k+ 1
0 otherwise

.

Then, PCPP can be written as

min Tr(Q̃Y ) + Tr(CY ) (6a)

s.t. Tr(AjY ) = bj ∀j = 1, ...,m (6b)

Tr(ÃjY ) = b2
j ∀j = 1, ...,m (6c)

Tr(BkY ) = 0 ∀k ∈B (6d)

Y ∈ C∗n+1. (6e)

Let γγγo, βββo, δδδo,and Ωo be the respective dual variables of constraints (6b) - (6e). The dual of

PCPP is the following COP:

PCOP : max
γγγo,βββo,δδδo,Ωo

m∑
j=1

(
γoj bj +βoj b

2
j

)
(7a)

s.t. Q̃+C −
m∑
j=1

γojAj −
m∑
j=1

βoj Ãj −
∑
k∈B

δokBk−Ωo = 0 (7b)

Ωo ∈ Cn+1. (7c)

1 PCPP corresponds to (C) in Burer (2009).
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Burer (2009) shows that PMBQP and PCPP are equivalent, in the sense that (i) opt(PMBQP) =

opt(PCPP); and (ii) if (x∗,X∗) is optimal for PCPP, then x∗ is in the convex hull of optimal solutions

of PMBQP. The second point indicates that x∗ is not necessarily feasible for PMBQP, i.e., it is possible

for some x∗k with k ∈B to be fractional.

Remark 1. If x∗ is an optimal solution of PMBQP, then (x∗,x∗x∗>) is optimal for PCPP.

Remark 2. Let (x∗,X∗) be an optimal solution for PCPP. If Q� 0 and x∗ is feasible for PMBQP,

then x∗ is an optimal solution of PMBQP. Note that the condition Q� 0 ensures that the objective

value of PMBQP is optimal at x∗.

4. Pricing Unit Commitment

In this section we use copositive duality to design a pricing mechanism for UC. UC optimally

schedules the startups and shutdowns of the generators in a power system, typically over a 24

hour horizon. The problem is usually formulated as an MIP, in which the startup and shutdown

decisions are binary variables. We reformulate the MIP as a CPP in Section 4.1, and use the dual

to define prices in Section 4.2, which we modify in Section 4.3 to guarantee revenue adequacy for

individual generators.

Let G be the set of generators and T the set of time periods. For t ∈ T , dt denotes the load,

whereas cpg, c
u
g , pmin

g and pmax
g are respectively the production cost, startup cost, lower production

limit, and upper production limit for g ∈ G. For t∈ T and g ∈ G, the decision variable pgt represents

the production level, ugt is the binary decision to startup, and zgt is equal to 1 if the generator is

online and 0 if offline. A basic MIP model for UC is as follows:

min
∑
g∈G

∑
t∈T

(
cpgpgt + cugugt

)
(8a)

s.t.
∑
g∈G

pgt = dt ∀t∈ T (8b)

ugt ≥ zgt− zg,t−1 ∀g ∈ G, t∈ T \ {1} (8c)

pgt ≥ pmin
g zgt ∀g ∈ G, t∈ T (8d)

pgt ≤ pmax
g zgt ∀g ∈ G, t∈ T (8e)

pgt ≥ 0 ∀g ∈ G, t∈ T (8f)

zgt ∈ {0,1} ∀g ∈ G, t∈ T . (8g)

The objective (8a) minimizes the total cost of power production and generator startup. Constraints

(8b) ensure that the total production satisfies the load in each time period. Constraints (8c) link
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the startup decisions to the online/offline statuses. Constraints (8d) and (8e) set the lower and

upper bounds for power output when the generator is on, and ensure the production level is 0

when the generator is off. We impose binary restrictions only on the zgt variables, as the binary

constraints on the ugt variables are then implied by (8c) and the objective.

Problem (8) is a simplification of the UC model solved in practice (Carrión and Arroyo 2006, Tay-

lor 2015), which includes additional constraints such as transmission capacity, minimum up/down

time, ramping constraints, and energy storage. We omit these constraints to simplify exposition,

but could straightforwardly incorporate them in our pricing mechanisms.

To reformulate (8) as a CPP, we first add upper bound constraints (9) to all binary variables:

zgt ≤ 1 ∀g ∈ G, t∈ T . (9)

We then add slack variables to all inequality constraints to make them equality constraints. To

simplify notation, we write the reformulated model in a more compact form. Let ψjgt represent

the slack variable corresponding to inequality constraint j for generator g at time t. Let x> =

(u>,z>,p>,ψψψ>), with bold font denoting vectors. For example, u denotes the vector of variables

ugt for all g ∈ G, t ∈ T . Denote the vector of coefficients for a constraint as ajgt. The MIP model

(8) can be rewritten as:

UC : min
∑
g∈G

∑
t∈T

(
cpgpgt + cugugt

)
(10a)

s.t.
∑
g∈G

pgt = dt ∀t∈ T (10b)

a>jgtx = bjgt ∀j = 1, ...,m, g ∈ G, t∈ T (10c)

x∈Rn+ (10d)

zgt ∈ {0,1} ∀g ∈ G, t∈ T . (10e)

Constraints (10c) are the individual generator’s operational constraints, which include (8c) - (8e)

and (9), after the addition of slack variables. Constraints (10c) can also include other operational

constraints such as minimum up/down time and ramping constraints.

Thanks to constraints (9) and (10d), UC satisfies the key assumption (1) of Burer (2009), which

allows us to reformulate UC as a CPP.

4.1. CPP Reformulation of UC

We reformulate (10) in the form of PCPP. Let X be the matrix of lifted variables for x. Y is as

defined in (5). To make the correspondence between elements of X and variables in vector x more
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explicit, we denote by Xvw
k,q the element of X corresponding to the row of the vk variable and the

column of the wq variable. That is, Xvw represents the block of X with rows corresponding to the

variables v and columns to the variables w. For example, for the UC above, we have

X =


Xuu

11,11 X
uu
11,12 ... Xuψ

11,rl

Xuu
12,11 X

uu
12,12

...
...

. . .
...

Xψu
rl,11 .. ... Xψψ

rl,rl

 .
Let ht ∈Rn be the coefficient vector for the left-hand side of constraints (10b), i.e., the left-hand

side of (10b) can be written as h>t x, where ht is a binary vector with 1’s corresponding to pgt, and

0’s elsewhere. The CPP reformulation is as follows:

UCCPP : min
∑
g∈G

∑
t∈T

(
cpgpgt + cugugt

)
(11a)

s.t.
∑
g∈G

pgt = dt ∀t∈ T (λt) (11b)

a>jgtx = bjgt ∀j = 1, ...,m, g ∈ G, t∈ T (φjgt) (11c)

Tr(hth
>
t X) = d2

t ∀t∈ T (Λt) (11d)

Tr(ajgta
>
jgtX) = b2

jgt ∀j = 1, ...,m, g ∈ G, t∈ T (Φjgt) (11e)

zgt =Zgt ∀g ∈ G, t∈ T (δgt) (11f)

Y ∈ C∗n+1 (Ω). (11g)

Dual variables are shown to the right of the constraints.

The dual of (11) is:

UCCOP : max
∑
t∈T

(
dtλt + d2

tΛt +
m∑
j=1

∑
g∈G

(
bjgtφjgt + b2

jgtΦjgt

))
(12a)

s.t. (λλλ,φφφ,ΛΛΛ,ΦΦΦ,δδδ,Ω)∈FCOP, (12b)

where FCOP denotes the feasible region of the dual problem, which can be written in the form of

constraints (7b) - (7c).

4.2. Copositive Duality Pricing

In this section, we describe CDP, a new pricing mechanism for UC. A generator or an SO is revenue

neutral (also called budget balanced) under a pricing scheme if its revenue equals its costs. Similarly,

an entity is revenue adequate/deficient if its revenue is more/less than its costs. A pricing scheme
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is individually rational if the centralized UC decision also maximizes each generator’s individual

profit, and therefore each market participant has no incentive to deviate from the centrally optimal

solution (Winnicki et al. 2019). As shown later in this section, CDP is budget balanced and, under

certain conditions, individually rational.

Let x∗ be the optimal solution of UC, and set X∗ = x∗x∗>. According to Remark 1, (x∗,X∗) is

an optimal solution to UCCPP (11). The CDP mechanism is defined as follows:

Definition 1 (CDP Mechanism). Let (λλλ∗,φφφ∗,ΛΛΛ∗,ΦΦΦ∗) be an optimal solution for UCCOP. Under

the CDP mechanism, at hour t the system operator (SO):

• collects πL
t = λ∗tdt + Λ∗td

2
t +
∑m

j=1

∑
g∈G

(
bjgtφ

∗
jgt + b2

jgtΦ
∗
jgt

)
from the load, and

• pays πG
gt = λ∗tp

∗
gt+Λ∗tX

pp∗
gt,gt+

∑m

j=1

(
φ∗jgtajgtx

∗+ Φ∗jgtTr(ajgta
>
jgtX

∗)
)
+
∑

g′∈−g fgg′t to generator

g at time t, where −g= G \ {g}. fgg′t is the share of g’s revenue from the cross-term payment

2Λ∗tX
pp∗
gt,g′t. It must satisfy fgg′t + fg′gt = 2Λ∗tX

pp∗
gt,g′t, and if Xpp∗

gt,g′t = 0, then fgg′t = 0.

πL
t consists of uniform price payments, dtλ

∗
t and d2

tΛ
∗
t , and payments that depend on the shadow

prices of operational constraints with non-zero right-hand sides. Note that the quadratic term

d2
tΛ
∗
t corresponds to the lifted power balance (11d). The shadow price payments for operational

constraints are roughly comparable to transmission congestion rents. They could represent, for

example, a payment corresponding to a ramping constraint, which, if loosened, would improve the

objective. As we later show in Theorem 1, including non-uniform prices φ∗jgt and Φ∗jgt in the pricing

mechanism is necessary to balance the budget for both the generators and the SO. From a practical

point of view, it is not uncommon to charge non-uniform prices, as electricity bills usually include

both uniform volumetric charges and fixed charges.

πG
gt depends on generators’ optimal production levels and on/off statuses. It is obtained by

summing the products of the left-hand sides of constraints (11b) - (11e) with their corresponding

dual prices. As in the load payment, λ∗tp
∗
gt and Λ∗tX

pp∗
gt,gt are volumetric payments for which the

prices are uniform for all generators. Λ∗tX
pp∗
gt,gt corresponds to the lifted power balance (11d). We

also include non-uniform payments in πG
gt. In practice, SOs such as New York ISO and PJM provide

non-uniform lump-sum payments to generators, as uniform prices alone may not be enough to

recover all costs (O’Neill et al. 2005). For πG
gt, the terms in the first sum correspond to shadow

prices of various operational constraints. The shadow prices are not uniform as they depend on

the generator index, g. The second sum
∑

g′∈−g fgg′t corresponds to the off-diagonal entries in the

lifted matrix X∗. Since this payment involves two generators, it is an open question as to how this
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payment should be divided between those generators. For example, we can assign it to the generator

that loses money, or divide it evenly as in Section 4.3. If it is divided evenly, then fgg′t = Λ∗tp
∗
gtp
∗
g′t.

We now further examine non-uniform payments resulting from shadow prices. Constraint (9) is

the only operational constraint with a non-zero constant on the right-hand-side. The portion of

the payment resulting from constraint (9) and the corresponding lifted constraint are included in

πG
t . We refer to the shadow prices of these constraints the availability prices, as they signal the

availability of the generators at each hour. These are the only non-uniform prices in this example.

The following theorem shows that CDP is revenue neutral for both the SO and the generators.

Note that the individual generators are in general not revenue neutral under CDP.

Theorem 1 (Revenue neutrality of CDP). If strong duality holds for UCCPP, then CDP bal-

ances the revenue and the aggregate cost of the generators. It also balances the revenue and payment

of the SO.

Next, we provide a sufficient condition guaranteeing the individual rationality of CDP. The profit-

maximization problem of generator g is given by:

πGen
g (p−g) := max

∑
t∈T

(
λ∗tpgt + Λ∗tp

2
gt +

m∑
j=1

(
φ∗jgtbjgt + Φ∗jgtb

2
jgt

)
+
∑
g′∈−g

fgg′t

− cpgpgt− cugugt
)

(13a)

s.t. a>jgtx = bjgt ∀t∈ T , j = 1, ...,m (13b)

x∈Rn+ (13c)

zgt ∈ {0,1} ∀t∈ T . (13d)

where p−g denotes the production decision of all generators other than g. The first five terms in

the objective represent the total revenue of generator g. πGen
g (p−g) should not contain entries of

X, which are lifted variables that do not have direct physical meanings. As discussed in Remark

1, at optimality we can equivalently use (p∗gt)
2 in place of Xpp∗

gt,gt and p∗gtp
∗
g′t in place of Xpp∗

gt,g′t.

If the optimal solution of the profit-maximization problem (13) matches the corresponding por-

tion of the optimal solution of UC for all generators g ∈ G, then the market mechanism is individ-

ually rational.

Theorem 2 provides a sufficient condition for when CDP is individually rational.

Theorem 2 (Individual rationality of CDP). Assume strong duality holds for UCCPP. If the

price Λ∗ = 0, then CDP is individually rational.
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While it is difficult to guarantee when Λ∗ = 0, we observe in our experiments that its entries

are often small and sometimes all zero, such as in the Scarf’s example in Section 6.1. It may be

possible to derive other sufficient conditions for individual rationality, e.g., by decomposing the

conic constraint X ∈ C∗ using matrix completion (Drew and Johnson 1998). This is a topic of future

work.

A market achieves competitive equilibrium if the market clears and individual rationality holds.

In our pricing scheme, since production equals demand for all time periods due to constraints (11b),

the market always clears. If individual rationality holds, then the equilibrium is competitive.

4.3. Ensuring Individual Revenue Adequacy

CDP does not guarantee each individual generator’s revenue adequacy, i.e., nonnegative profit.

This is also the case with some other schemes, including RP and CHP. In CDP, we can enforce

revenue adequacy by adding constraints directly to the dual of UCCPP.

Revenue adequacy can be enforced through the non-uniform prices φ∗jgt and Φ∗jgt, which can be

different for each generator, and/or through the uniform prices λt and Λt. We use uniform pricing

because it is easier to implement in practice. In Section EC.3 of the e-companion, we present a

different version that uses availability prices as well.

We enforce revenue adequacy by adding a new constraint to the dual problem, which ensures

that the payment to each generator is no less than its costs. The resulting augmented dual problem

is given by:

max
∑
t∈T

(
dtλt + d2

tΛt +
m∑
j=1

∑
g∈G

(bjgtφjgt + b2
jgtΦjgt)

)
(14a)

s.t.
∑
t∈T

p∗gtλt + p∗2gtΛt +
∑
g′∈−g

p∗gtp
∗
g′tΛt

≥∑
t∈T

(
cpgp
∗
gt + cugu

∗
gt

)
∀g ∈ G (14b)

(λλλ,φφφ,ΛΛΛ,ΦΦΦ,δδδ,Ω)∈FCOP. (14c)

The objective (14a) and the constraint (14c) are the same as in the original dual problem, UCCOP.

The left-hand side of constraint (14b) is the total revenue of generator g, assuming that the cross-

term payments are divided evenly between generators. The right-hand side of (14b) is the total

cost of generator g.

The prices are computed by solving (14). The optimal values of primal variables, p∗gt and u∗gt,

could be obtained by solving UC. We refer to this pricing mechanism as Revenue-adequate CDP

(RCDP). More formally, the RCDP mechanism is defined as follows.
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Definition 2 (RCDP Mechanism). Let (λλλ∗,ΛΛΛ∗) be an optimal solution for (14). Under the

RCDP mechanism, at hour t the SO:

• collects πL′
t = λ∗tdt + Λ∗td

2
t from the load, and

• pays πG′
gt =

(
λ∗tp

∗
gt + Λ∗tX

pp∗
gt,gt

)
+
∑

g′∈−g p
∗
gtp
∗
g′tΛ

∗
t to the generator g.

A benefit of RCDP is that all generators are paid the same price in each hour, so that more

efficient generators with lower costs earn higher profit. The load also pays on a purely uniform

basis. Note that since we use only the uniform prices and ignore the availability prices, the total

payments under RCDP no longer equal the total costs. However, RCDP still balances the utility’s

revenue and payments. We formalize this result in the following proposition:

Proposition 1 (Revenue neutrality of RCDP). RCDP balances the revenue and payments

of the SO.

The optimal solution to the augmented dual problem (14) does not necessarily correspond to

the original primal problem UCCPP. The following proposition provides a straightforward way to

check whether RCDP incentivizes the optimal UC solution.

Proposition 2. RCDP incentivizes the optimal solution of UC if the optimal value of (14) equals

the optimal value of UCCOP.

Proposition 2 says that RCDP supports the optimal solution when the addition of constraints

(14b) do not change the optimal value of UCCOP, i.e., if UCCOP has multiple solutions, then con-

straints (14b) eliminate solutions that are not revenue adequate. In our experiments, we found that

the optimal objective value of (14) satisfied the condition (within a small numerical tolerance) in

most instances.

We are also interested in whether individual rationality holds under RCDP. Combining the

sufficient conditions in Theorem 2 and Proposition 2 yields following proposition:

Proposition 3 (Individual rationality of RCDP). Assume strong duality holds for UCCPP.

If the price Λ∗ = 0, and if the optimal value of (14) equals the optimal value of UCCOP, then the

market mechanism with RCDP is individually rational.

We omit the proof from the e-companion because it is similar to that of Theorem 2.

Because the addition of constraints (14b) restrict the original dual problem (12), it is worth

checking if the problem is still feasible. We know that if either the primal or dual is feasible,

bounded, and has an interior point, then the other is also feasible (Luenberger and Ye 2015). We
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therefore focus on the dual of (14). Let qg ≥ 0 be the dual multiplier of (14b). The dual of (14) is

the following:

min
∑
g∈G

∑
t∈T

(
cpgpgt + cugugt− (cpgp

∗
gt + cugu

∗
gt)qg

)
(15a)

s.t.
∑
g∈G

(
pgt− p∗gtqg

)
= dt ∀t∈ T (15b)

Tr(hth
>
t X)−

∑
g∈G

p∗2gt +
∑
g′∈−g

p∗gtp
∗
g′t

 qg = d2
t ∀t∈ T (15c)

(11c), (11e), (11f) (15d)

qg ≥ 0 g ∈ G (15e)

Y ∈ C∗n+1. (15f)

Observe that this is similar to UCCPP, but with additional terms multiplying qg in the objective

and constraints. Note that (15) includes both pgt, a variable, and p∗gt, part of the solution to UCCPP.

The CPP (15) is feasible because we recover UCCPP by setting all qg to zero. It is bounded due

to the equality (15b), and the fact that the production level pgt is usually bounded by generator

capacity. If the problem has an interior, then its dual, (14), is feasible.

To summarize, when the conditions of Theorem 2 and Proposition 3 are satisfied, CDP and

RCDP support optimal UC solutions and market equilibrium. CDP includes both uniform and

non-uniform prices, as well as uplift, while RCDP only needs uniform prices, which are more fair.

In our experiments, RCDP always leads to higher payments from consumers than CDP, so the

choice between CDP and RCDP can be viewed as a tradeoff between efficiency and fairness.

Our pricing schemes satisfy many important properties and can be viewed as a natural extension

of uniform, equilibrium-supporting shadow prices from convex markets to discrete markets. In

particular, RCDP is to the best of our knowledge the first shadow pricing-based scheme for discrete

markets that uses only uniform prices, is uplift-free, and supports a market equilibrium.

In addition to the revenue-related properties mentioned in Sections 4.2 and 4.3, there are some

other measures that practitioners care about such as uplift payments and consumer’s payments.

We provide a more detailed discussion on those topics in Section EC.4 of the e-companion.

5. Cutting Plane Algorithm

At present, no industrial solver can handle COPs. In the literature they are often approximately

solved via SDPs (see Section EC.1 of the e-companion). To solve COPs exactly, we design a novel
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cutting plane algorithm, which returns the optimal solution when it terminates. To the best of

our knowledge, this is the first algorithm that uses Anstreicher’s copositivity certificate within a

cutting plane framework.

5.1. The Algorithm

The cutting plane algorithm is applicable for the following general type of COPs with linear

constraints over a copositive cone:

max q>λλλ+ Tr(H>Ω) (16a)

s.t. d>λλλ+ Tr(D>i Ω) = gi ∀i= 1, ...,m (16b)

λλλ≥ 0 (16c)

Ω∈ Cnc (16d)

where λλλ is an nl-dimensional vector, L is the index set for integer variables in λλλ, Ω∈Rnc×nc . Cnc is

an nc-dimensional copositive cone. Note that the COP problems PCOP (7) is a special case of the

COP (16).

The algorithm starts by removing the conic constraint (16d) to obtain the initial master prob-

lem, which is iteratively refined by the addition of cuts. At each iteration, we solve the master

problem to obtain an optimal solution, denoted by (λ̄λλ, Ω̄). To determine whether Ω̄ is copositive,

we employ the MIP problem proposed by Anstreicher (2021), which checks copositivity using a

recent characterization of copositive matrices given in Dickinson (2019). This MIP problem, which

serves as the separation problem in our cutting plane algorithm, is given by:

SP(Ω) : max w (17a)

s.t. Ωz≤−w1 +M>(1−u) (17b)

1>u≥ q (17c)

w≥ 0 (17d)

0≤ z≤ u (17e)

u∈ {0,1}nc (17f)

where q = 1 (or a larger integer, depending on problem structure), 1 is a vector of all ones, and

M ∈Rnc×nc++ is a matrix of large numbers. By Theorem 2 of Anstreicher (2021), Ω̄ is copositive if

and only if the optimal objective of SP(Ω̄) is zero.
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At any iteration, if the optimal value of the subproblem is zero, then the master problem solution

is feasible and optimal for the COP (16), and we can terminate the algorithm. Otherwise, as Ω̄ is

not copositive, we add the following cut to the master problem:

z̄>Ωz̄≥ 0 (18)

where z̄ is an optimal solution of SP(Ω̄).

Proposition 4. If the optimal value of SP(Ω̄) is nonzero, then (18) cuts off Ω̄.

Therefore, if Ω̄ is not copositive, then the MIP (17) produces a vector z̄ that violates the inequality

z>Ω̄z≥ 0.2

Note that the cut (18) does not eliminate any feasible solutions from (16). This is because for

any z̄∈Rnc+ , any copositive matrix Ω satisfies z̄>Ωz̄≥ 0.

Since SP(Ω̄) is an MIP, we can strengthen its LP relaxation to improve its computational

efficiency. Anstreicher (2021) suggests doing so by setting Mik = 1 +
∑nc

j=1, j 6=i{Ω̄ij : Ω̄ij > 0}, ∀k=

1, ..., nc. Another way to strengthen the separation problem is to let q= 2, which is valid if diag(Ω̂)≥

0 (Anstreicher 2021). In our algorithm, diag(Ω̂) ≥ 0 is a valid inequality because Ω ∈ Cnc . Thus,

when initializing the master problem, we can add the constraint diag(Ω) ≥ 0, and set q = 2 in

SP(Ω̄).

In some cases the master problem is unbounded at initialization. There are several ways to deal

with this. One is to impose a large upper bound on the elements of Ω. This bound can be gradually

relaxed and then removed eventually.

It is worth noting that our algorithm can also solve COPs with integer variables, in which case

the master problem becomes a MIP. To the best of our knowledge, our algorithm is the first that

can handle COPs with both continuous and discrete variables.

In this paper, we reformulate the MBQP as a CPP, then dualize the CPP to obtain a COP.

Usually the original MBQP can be solved with reasonable efficiency, but it is the solution of the

dual COP that we are interested in. We can use solutions of the MBQP problem, and the strong

duality property between CPP and COP to help the cutting plane algorithm in the following ways:

• If the optimal objective of the MBQP and the cutting plane algorithm are equal, then the

algorithm has terminated at the optimal solution.

2 This result is not stated explicitly in Anstreicher (2021), but is useful to show the validity of the cutting planes.



18

• Suppose x∗ is optimal for the MBQP. Then we can tighten the master problem by adding the

complementary slackness constraint Tr(x∗x∗>Ω) = 0.

In addition, since Ω∈ C, the constraint Tr(x∗x∗>Ω)≥ 0 is always valid even when strong duality

does not hold, and this constraint is helpful in speeding up the computation in our experiments.

We were unfortunately unable to prove that the cutting plane algorithm terminates in finitely

many iterations. However, note that the objective of the master problem is nonincreasing through-

out the algorithm. In addition, note that the other exact algorithm for COPs, the simplicial parti-

tion method (Bundfuss and Dür 2009), is also shown to be exact only in the limit. We find in our

numerical experiments that the cutting plane algorithm usually converges in a reasonable compu-

tational time, and when it does not, the approximate solution obtained from the last iteration is

often still useful.

5.2. Tightening the Master Problem

We can further improve performance of the cutting plane algorithm, in regards to obtaining exact

or approximate solutions, with a tighter master problem initialization. A natural choice for such

a master problem would be the use of the SDP approximation of the COP. Let S+
n be the n-

dimensional positive semidefinite (PSD) cone and Nn be the cone of n-dimensional entrywise

nonnegative matrices. Then S+
n +Nn ⊆Cn (Parrilo 2000). Therefore, introducing the new decision

matrices V and N , we can approximate the constraint Ω∈ Cn with the restriction:

V +N = Ω (19a)

N ≥ 0 (19b)

V ∈ S+
n . (19c)

Unfortunately, solving an SDP master problem at each iteration is a substantial computational

burden. Furthermore, the SDP approximation might be very restrictive.

For better tractability and approximation, we relax the SDP constraints to second-order cone

(SOC) constraints (Kim and Kojima 2003). Using the fact that any V ∈ S+
n has nonnegative

diagonal entries and principal minors, we replace (19c) with the following constraints:

Vii ≥ 0 ∀i= 1, . . . , n (20a)

ViiVjj ≥ V 2
ij ∀i 6= j; i, j = 1, . . . , n, (20b)



19

where (20b) are SOC constraints that require all two-by-two principal minors to be nonnegative.

Accordingly, we obtain the following strengthened initial master problem:

max q>λλλ+ Tr(H>Ω) (21a)

s.t. d>λλλ+ Tr(D>i Ω) = gi ∀i= 1, ...,m (21b)

λλλ≥ 0 (21c)

V +N = Ω (21d)

Vii ≥ 0 ∀i= 1, . . . , n (21e)

ViiVjj ≥ V 2
ij ∀i 6= j; i, j = 1, . . . , n (21f)

N ≥ 0. (21g)

Enforcing Ω ∈ Cnc with the addition of cutting planes, the algorithm will either converge to a

feasible (not necessarily optimal) solution of the original problem, the COP (16), or prove infeasi-

bility of the restricted COP due to the inclusion of the constraints (21d)-(21g). Note that in the

former case the solution will be no worse than that of the commonly used SDP approximation

of the COP. Moreover, in order to obtain a feasible solution in the latter case, and if desired to

further improve the obtained feasible solutions (even to converge to an optimal COP solution), we

can continue running the cutting plane algorithm by gradually removing constraints (21d)-(21g)

from the master problem. In our computational experiments, we found that the algorithm with

the SOC-restricted initial master problem converged significantly faster than its exact version and

to generally good approximations of prices for CDP and RCDP.

6. Numerical Results

In this section we present our numerical experiments. Section 6.1 implements several pricing

schemes on Scarf’s example. Section 6.2 compares different pricing schemes for a nonconvex elec-

tricity market. Section 6.3 showcases the performance of our cutting plane algorithm and its en-

hancements on various UC instances. We also include a comparison of our COP cutting plane

algorithm with other COP algorithms on a commonly used benchmark problem in e-companion

Section EC.5.

All experiments are implemented in Julia using the optimization package JuMP.jl (Dunning et al.

2017). The COP cutting plane algorithm was implemented using CPLEX (CPLEX, IBM ILOG

2022), and the SOCP master problems in the strengthened cutting plane algorithm are solved

using Gurobi (Gurobi Optimization, LLC 2023). We use Mosek (MOSEK ApS 2022) to solve SDP

approximations.
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6.1. Pricing in Scarf’s Example

Scarf’s example is often used to compare pricing schemes for nonconvex markets. We use the

modified version from Hogan and Ring (2003) to compare CDP with RP and CHP, which are

currently used by utilities in the U.S.. In the modified Scarf’s example, there are three types of

generators: smokestack, high technology, and medium technology. Let Gi be the set of generators

of type i= 1,2,3. We have |G1|= 6, |G2|= 5, |G3|= 5. The binary variables ugi , gi ∈ Gi, i= 1,2,3, rep-

resent startup decisions, and the continuous variables pgi , gi ∈ Gi, , i= 1,2,3, represent production

decisions. Scarf’s example solves the following cost minimization problem:

min
∑
g1∈G1

(53ug1 + 3pg1) +
∑
g2∈G2

(30ug2 + 2pg2) +
∑
g3∈G3

7pg3 (22a)

s.t.
∑
g1∈G1

pg1 +
∑
g2∈G2

pg2 +
∑
g3∈G3

pg3 = d (22b)

pg3 ≥ 2ug3 ∀g3 ∈ G3 (22c)

pg1 ≤ 16ug1 ∀g1 ∈ G1 (22d)

pg2 ≤ 7ug2 ∀g2 ∈ G2 (22e)

pg3 ≤ 6ug3 ∀g3 ∈ G3 (22f)

pg ≥ 0, ug ∈ {0,1} ∀g ∈ G1,G2,G3 (22g)

where the objective is to minimize the total cost. Constraint (22b) ensures the total production

equals the demand. Constraints (22c) set the lower bound for the production of medium technology

generators when they are on. Constraints (22d)-(22f) set the capacity of each generator.

We experiment with various demand levels from 5 to 160, with a step length of 5. In Figure 1

we compare the following aspects of RP, CHP, CDP and RCDP:

1. The uniform prices. Notice that for CDP and RCDP, both λ∗t and Λ∗t are uniform prices. In

all of our experiments Λ∗t equals zero. Therefore, we report only λ∗t for those schemes.

2. Generator profits, as calculated by deducting costs from total revenue, which includes both

price-based payments and uplift.

3. The payments from non-uniform prices φ∗jgt and Φ∗jgt.

4. The make-whole uplift payments. This payment is made when the revenue from electricity

prices is not enough to cover the costs. It is equal to the difference between the revenue and

costs.
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Figure 1 Comparison of different pricing schemes for (a) uniform prices, (b) profits, (c) payments from

non-uniform prices, (d) make-whole uplift payments.

Mosek solves all instances in under ten seconds. Because the cutting plane algorithm is signif-

icantly slower, we only use it when the demand level is less than 100. When the demand level is

higher, we present results from the SDP approximation.

Figure 1a shows that a small change in demand level can result in significant volatility in RP. This

observation is consistent with results in the literature. Interestingly, CHP and CDP are equivalent

for all demand levels. RCDP is higher than CDP for lower demand, and equals COP when the

demand is high.

In Figure 1b, we find that RP and CDP have zero profit for all instances. CHP generates near-

zero profits at lower demand level and higher profits at higher demand levels. RCDP generates the

highest profits among all pricing schemes, and match the profits of CHP at higher demand levels.

In Figure 1c, both CHP and RCDP have no non-uniform prices due to the fact that both only

use uniform prices corresponding to the demand constraint. CDP produces near-zero negative

non-uniform prices at low demand levels, and more negative prices at higher demand levels. RP

produces volatile and large non-uniform prices in many instances. As explained by O’Neill et al.
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(2005), the negative non-uniform prices are used to discourage the entry of marginal plants when

it is uneconomic to do so. In practice, utilities usually disregard such negative prices.

Figure 1d shows that RP requires zero make-whole payment, which is also consistent with the

results in Azizan et al. (2020). RCDP ensures revenue adequacy and thus also needs no make-whole

payment. CHP requires make-whole payments, as expected, because Lagrangian duals of MIPs do

not in general have strong duality. Interestingly, CDP also requires make-whole payments in many

instances, as in those instances strong duality does not hold.

The advantages of RCDP are that it does not rely on non-uniform/make-whole uplift payments

to ensure revenue adequacy, and its uniform prices are less volatile than RP.

6.2. Pricing in Electricity Markets

In this section we compare pricing schemes for unit commitment, as described in Section 4. Note

that in the experiments of Sections 6.2 and 6.3 we use the formulation in (8) for the UC problem.

Our test instances are based on the adapted California ISO dataset of Guo et al. (2022). The

parameters for the generators are listed in Table 2, the first three of which are coal and the rest

natural gas.

Table 2 Generator Parameters

Gen. 1 Gen. 2 Gen. 3 Gen. 4 Gen. 5 Gen. 6

cpg 25.0 25.5 26.0 44.7 44.7 44.7
cug 140.9 140.9 140.9 86.3 86.3 86.3
pmin
g 297 238 198 198 198 198
pmax
g 620 496 413 620 620 620

In Table 3 we list the instances used in Sections 6.2 and 6.3. “Coals”, “NGs”, and “Hours”

are respectively the number of coal generators, natural gas generators and hours. To ensure the

instances are feasible with fewer generators in the system, we scale down the load by dividing it

with the value in “Scale”. “Bound” is the bound on the absolute values of the entries in Ω. A larger

bound improves accuracy while slowing down convergence.

We first consider two generators over four hours with Scale equals 26, which we refer to as Case

1. We set dt = [508,644,742,776] and use Generators 1 and 2 in Table 2. We use the cutting plane

algorithm of Section 5.1 to solve the CDP and RCDP COPs. Note that in this case, Mosek fails to

solve the SDP approximation of the RCDP problem (returns “UNKNOWN RESULT STATUS”),

while the cutting plane algorithm converges in 244.47 seconds. When using the cutting plane
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Table 3 Instances for Electricity Markets

Case Coals NGs Hours Scale Bound

1 2 0 4 26 5000
2 2 0 4 16 5000
3 1 1 4 26 5000
4 1 3 4 12 5000
5 3 1 4 12 5000
6 1 1 8 26 5000
7 1 3 8 12 3000
8 1 1 12 26 5000
9 1 3 12 12 3000

10 1 1 24 26 3000

algorithm, we set the bound for each element of the copositive matrix to 5000, and add constraint

Tr(x∗x∗>Ω)≥ 0.

We compare the following aspects of RP, CHP, CDP and RCDP and present the results in Table

4:

1. Generator profits.

2. The payments from non-uniform prices (absolute value).

3. The make-whole uplift payments.

4. The percentage increase in total payment compared with RP.

Table 4 Comparison of Pricing Schemes for Case 1

RP CHP CDP RCDP

Gen. 1 profit 0 839.4 259.6 1183.8
Gen. 2 profit 0 0 0 0
Total profit 0 839.4 259.6 1183.8
Non-uniform payment 497.9 0 0 0
Make-whole uplift 0 95.3 259.6 0
vs RP payment (%) 0 1.2 0.4 1.8

RP results in zero profit for both generators, but relies on the revenue from non-uniform prices for

Generator 2. CHP uses a make-whole uplift payment to avoid a loss for Generator 2. Interestingly,

CDP results in positive profit for Generator 1, and uses a make-whole uplift equal to Generator 1’s

profit to cover the loss of Generator 2. As expected, CDP is revenue neutral in aggregate, but not

for individual generators. RCDP is the only pricing scheme that has no non-uniform or make-whole

uplift payments. It also ensures the generators with lower costs receive higher profits, which is

desirable and to be expected in a market with only uniform prices. The marginal generator has

zero profit, which is similar to the outcome of shadow pricing-based schemes in convex markets.
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Consumers pay less under RP, while schemes that mainly rely on uniform prices, such as CHP

and RCDP, have higher payments. This is because RP has non-uniform prices and thus can lower

the payment via price discrimination. Therefore, the increased payment under CHP and RCDP

may be viewed as tradeoff for fairness.

For the second example we use Case 8, which has two generators over 12 hours. In Table 5,

we again compare the profit, generator dependent payment, make-whole uplift and total payment

for each pricing scheme. In this case, Mosek is unable to solve the SDP approximation for the

RCDP COP, and the SOCP-based cutting plane algorithm solves the problems to 16.13% (CDP)

and 0.91% (RCDP) optimality gaps after 2 hours (where optimality gap is calculated based on the

optimal UC solution, as explicitly defined in the next section).

Although the prices from CDP and RCDP are not optimal, we observe that the total revenue

from uniform and availability prices, as well as the profit, have decreasing trends as more cuts are

added (see e-companion Section EC.6). This indicates that adding more cutting planes brings the

prices closer to satisfying the theoretical properties of CDP and RCDP.

Table 5 Comparison of Pricing Schemes for Case 8

RP CHP CDP RCDP

Gen. 1 profit 0 43146.1 27453.0 47588.4
Gen. 2 profit 0 0 2825.7 0
Total profit 0 43146.1 30278.7 47588.4
Non-uniform payment 23977.8 0 42345.7 0
Make-whole uplift 0 56.9 0 0
vs RP payment (%) 0 23.0 16.1 25.3

The results for Case 8 are similar to Case 1. RCDP is the only pricing scheme that does not result

in non-uniform or uplift payments. The consumer payments are higher under CHP and RCDP.

Note that in practice, the payment under RP is usually higher than our computed value because

negative non-uniform prices are ignored (O’Neill et al. 2005).

Results from the other instances in our experiments are similar to the two examples above. Note

that a large optimality gap upon termination (see Table 7 for optimality gaps) can lead to higher

total payment, which highlights the importance of efficient COP algorithms.

6.3. Computational Performance

In this section we compare the computational performance of our cutting plane algorithms for the

instances in Table 3. All experiments in this section are completed on Linux workstations with

Intel Xeon CPUs, 28 cores and 125 GB memory.
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Table 6 and Table 7 show the computational performance for instances in Table 3. The optimality

gap (“Gap”) is the normalized difference between the COP dual and the original MIP:

opt(UCCOP)− opt(UC)
opt(UC)

.

In the tables “LP” and “SOC” correspond to results from the cutting plane algorithm with LP and

SOCP master problems, respectively. “#Iter” reports the total number of iterations. All instances

are run with a time limit of 2 hours. Smaller instances such as Cases 1-3 converge within the time

limit, so we report their computation time (“Time”) in Table 6, while instances in Table 7 did not

terminate automatically within the time limit. Note that we use the constraint Tr(x∗x∗>Ω)≥ 0 for

Cases 1-3, and leave it out in other instances so as to compare optimality gaps more accurately

when the algorithm does not converge.

If the algorithm terminates automatically with no optimality gap, then strong duality holds and

we have the optimal solution. If the algorithm terminates automatically with a negative optimality

gap, then it could be because (i) strong duality does not hold; (ii) the imposed bounds on entries

of Ω are restrictive; (iii) SOC constraints (20b) are restrictive; or (iv) individual revenue adequacy

constraints (14b) are restrictive. Due to possible negative optimality gaps, when the algorithm

does not terminate automatically, it can be difficult to tell from the optimality gap how close the

solution is to optimality. Nonetheless, our results show that when the optimality gap is low, CDP

and RCDP lead to lower total payment. Regardless of the optimality gap, RCDP remains the only

scheme that do not need non-uniform or uplift payments.

Table 6 Time (seconds), Optimality Gap (%) and Number of Iterations of Cases 1-3

CDP LP CDP SOC RCDP LP RCDP SOC

Case Time Gap #Iter Time Gap #Iter Time Gap #Iter Time Gap #Iter

1 187.4 0 1051 80.2 -0.34 121 244.5 0 1303 50.4 0 55
2 195.3 0 1038 89.1 0 62 249.5 0 1339 76.2 0 55
3 536.7 -4.97 1635 68.5 -7.28 131 319.5 -4.18 1310 78.0 -7.34 146

The SOCP-based cutting plane algorithm outperforms its counterpart in all instances, leading

to either less computation time or smaller optimality gaps (if the time limit is met). The SOCP-

based algorithm also requires fewer iterations, which indicates the tightness of the SOCP master

problem. In each case, the computational performance for CDP and RCDP are mostly similar

when solved with the same algorithm. The only exception is Case 9, where RCDP is solved to
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Table 7 Optimality Gap (%) and Number of Iterations of Cases 4-10

CDP LP CDP SOC RCDP LP RCDP SOC

Case Gap #Iter Gap #Iter Gap #Iter Gap #Iter

4 14.41 3279 3.32 212 15.43 3212 3.77 207
5 14.80 3750 5.85 230 15.03 2985 4.15 243
6 9.08 2979 -1.25 310 4.95 3247 -0.93 394
7 88.78 1171 18.71 99 110.13 909 17.63 109
8 49.04 3895 16.13 228 27.06 5496 0.91 344
9 106.28 1549 21.35 102 130.37 1734 21.52 132

10 80.94 1724 17.96 224 132.40 1826 18.12 250

much smaller optimality gaps than CDP using both algorithms. This could be because the extra

individual revenue adequacy constraints under RCDP restrict the feasible region and tighten the

master problems.

The computational performance of the algorithms is more likely to be affected by the number

of generators than the length of the time horizon. For example, compared with Case 6, Case 4

has twice as many generators and half the number of hours, and Case 6 converges faster than

Case 4. The algorithms behave similarly on instances with the same time horizon and number of

generators.

In Table 8 we compare solution times for the master problem (“Master”) and subproblem (“Sub”)

for Cases 4-10. In all instances more time is spent on the MIP subproblems than the LP/SOCP

master problems. The SOCP master problem usually takes less time in total than its LP coun-

terpart. It also takes much fewer iterations to converge. On the other hand, the subproblems in

the SOCP-based cutting plane algorithm take much longer to solve compared with the original

algorithm. This shows that with better master problem solutions, the subproblem becomes more

difficult to solve.

Table 8 Master Problem and Subproblem Solving Time (hours) of Cases 4-10

CDP LP CDP SOC RCDP LP RCDP SOC

Case Master Sub Master Sub Master Sub Master Sub

4 0.08 1.92 0.03 1.97 0.07 1.93 0.02 1.98
5 0.09 1.91 0.02 1.98 0.07 1.93 0.03 1.97
6 0.07 1.93 0.02 1.98 0.07 1.93 0.05 1.95
7 0.07 1.93 0.02 1.98 0.05 1.95 0.02 1.98
8 0.22 1.78 0.02 1.98 0.36 1.64 0.05 1.95
9 0.20 1.80 0.14 1.86 0.22 1.78 0.27 1.73

10 0.25 1.77 0.06 1.94 0.24 1.76 0.08 1.92
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7. Conclusion

MBQPs can be equivalently written as CPPs, which are NP-hard but convex. Given an MBQP, we

straightforwardly derive its dual COP. Due to convexity, if a constraint qualification is satisfied, the

CPP and COP have strong duality. This provides a new and general notion of duality for discrete

optimization problems.

We use this perspective to design a new pricing mechanism for nonconvex electricity markets,

which has several useful theoretical properties. One direction of future study is the design of

economic mechanisms for other nonconvex markets, e.g., surge pricing in transportation. To enable

implementation, we design a new cutting plane algorithm for COPs, which we use to solve our

numerical examples.

There are several promising avenues of future work. It would be useful to identify classes of

MBQP that, when reformulated as CPPs, always have strong duality. It would also be interesting

to explore the properties of CDP and RCDP after incorporating network constraints. Our COP-

based pricing schemes make it possible to model market equilibrium in discrete markets as KKT

conditions, which can then be used in applications such as modeling strategic behaviors in energy

markets. Finally, it may be possible to improve the cutting plane algorithm by deriving conditions

under which the algorithm is guaranteed to terminate. Our work shows that COP-based pricing

schemes are of potentially significant value to electricity and other discrete markets, and will

become more practical in the future as solution algorithms improve.
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e-Companion

EC.1. SDP Approximation for COP

Let S+
n be the n-dimensional positive semidefinite (PSD) cone and Nn be the cone of n-dimensional

entrywise nonnegative matrices, then we have C∗n ⊆S+
n ∩Nn and S+

n +Nn ⊆Cn (Dür 2010). Taking

advantage of these relationships, we can relax and approximately solve CPP as an optimization

problem over the intersection of S+
n and Nn cones, and restrict the COP problem as an optimization

over the Minkowski sum of S+
n and Nn cones.

In our work, we reformulate MBQP models to CPPs using the method by Burer (2009), to

utilize the dual COP problems. We summarize the relationship between all those mathematical

programming problems in Figure EC.1.

CPP

COP

MBQP Optimization over S+
n ∩Nn

Optimization over S+
n +Nn

Reformulation

Dualization

Relaxation

Restriction

Figure EC.1 Relationships between MBQP, CPP, COP and their approximations

We need to solve COPs in this work. One method often used in the literature, as mentioned in

Section 5.2, is to use the relationship S+
n +Nn ⊆Cn for approximation. More specifically, we replace

the conic constraint Ω∈ Cn with the following restriction:

V +N = Ω

N ≥ 0

V ∈ S+
n ,

which can be solved with SDP solvers such as Mosek and SeDuMi.

Another method to obtain a solution of a COP is to solve its dual CPP problem using a com-

mercial solver, then query the duals of CPP constraints via the solver. However, there is not any

solver that directly solves CPPs, so we instead solve an SDP relaxation of the CPP problem, then
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query the duals of the SDP relaxation. More specifically, we relax the conic constraint X ∈ C∗n to

the following constraints:

X ∈ S+
n

X ≥ 0,

which can then be solved with SDP solvers.

EC.2. Proofs

Theorem 1. If strong duality holds for UCCPP, then CDP balances the revenue and the aggregate

cost of the generators. It also balances the revenue and payment of the SO.

Proof of Theorem 1. Fix all primal and dual variables at the optimal values. Multiplying con-

straints (11b) - (11e) by their corresponding dual variables yields∑
g∈G

λ∗tp
∗
gt = λ∗tdt ∀t∈ T (EC.1b)

φ∗jgta
>
jgtx

∗ = φ∗jgtbjgt ∀j = 1, ...,m, g ∈ G, t∈ T (EC.1c)∑
g∈G

Λ∗tX
pp∗
gt,gt + 2

∑
g1<g2,g1,g2∈G

Λ∗tX
pp∗
g1t,g2t

= Λ∗td
2
t ∀t∈ T (EC.1d)

Φ∗jgtTr(ajgta
>
jgtX

∗) = Φ∗jgtb
2
jgt ∀j = 1, ...,m, g ∈ G, t∈ T . (EC.1e)

Summing all the constraints in (EC.1), we obtain

∑
t∈T

(∑
g∈G

(
λ∗tp

∗
gt + Λ∗tX

pp∗
gt,gt +

m∑
j=1

(
φ∗jgtajgtx

∗+ Φ∗jgtTr(ajgta
>
jgtX

∗)
))

+ 2
∑

g1<g2,g1,g2∈G

Λ∗tX
pp∗
g1t,g2t

)

=
∑
t∈T

(
dtλ
∗
t + d2

tΛ
∗
t +

m∑
j=1

∑
g∈G

(
bjgtφ

∗
jgt + b2

jgtΦ
∗
jgt

))
(EC.2)

where the left-hand side and the right-hand side are respectively equal to ΠG :=
∑

g∈G
∑

t∈T π
G
gt

and ΠL :=
∑

t∈T π
L
t (using the definitions of πG

gt and πL
t in Definition 1). This shows that the total

payment ΠG is equal to the total revenue ΠL, thus CDP is revenue neutral for the SO.

Because we have assumed that strong duality holds for UCCPP, and considering the optimal

objective of UCCOP equals πL, we have:

πG =
∑
g∈G

∑
t∈T

(
cpgp
∗
gt + cugu

∗
gt

)
.

Therefore, for the generators the total payment from the SO equals the total cost. �
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Theorem 2. Assume strong duality holds for UCCPP. If the price Λ∗ = 0, then CDP is individually

rational.

Proof of Theorem 2. In UCCPP we dualize demand constraints (11b) and lifted demand con-

straints (11d) with their respective optimal dual prices λ∗t and Λ∗t . We obtain the following La-

grangian relaxation problem:

min
∑
g∈G

∑
t∈T

(
cpgpgt + cugugt

)
+
∑
t∈T

λ∗t

(
dt−

∑
g∈G

pgt

)

+
∑
t∈T

Λ∗t

d2
t −
∑
g∈G

Xpp
gt,gt +

∑
g′∈−g

Xpp
gt,g′t

 (EC.3a)

s.t. (11c), (11e)− (11g). (EC.3b)

Since we have strong duality, and because the Lagrangian multipliers are fixed at their optimal

values, an optimal solution (x∗,X∗) for CPP (11) is also optimal for its Lagrangian relaxation

(EC.3).

Because Λ∗ = 0, the objective function is equivalent to

∑
g∈G

∑
t∈T

(
cpgpgt + cugugt

)
+
∑
t∈T

λ∗t

(
dt−

∑
g∈G

pgt

)
, (EC.4)

which transforms the CPP (EC.3) to the form of PCPP, with (EC.4), (11c), (11e), (11f) and (11g)

respectively corresponding to (4a), (4b), (4c), (4d) and (4e). Due to the equivalence between PMBQP

and PCPP, (EC.3) is equivalent to the following MIP:

min
∑
g∈G

∑
t∈T

(
cpgpgt + cugugt

)
+
∑
t∈T

λ∗t

(
dt−

∑
g∈G

pgt

)
(EC.5a)

s.t. (11c) (EC.5b)

x∈Rn+ (EC.5c)

zgt ∈ {0,1} ∀g ∈ G, t∈ T . (EC.5d)

Ignoring the constant term λ∗tdt in the objective, problem (EC.5) can be separated into individual

optimization problems, one per generator. Solving problem (EC.5) is equivalent to solving the

following maximization problem for all g ∈ G:

max
∑
t∈T

(
λ∗tpgt− cpgpgt− cugugt

)
(EC.6a)

s.t. a>jgtx = bjgt ∀t∈ T , j = 1, · · · ,m (EC.6b)
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x∈Rn+ (EC.6c)

zgt ∈ {0,1} ∀t∈ T . (EC.6d)

When Λ∗ = 0, (EC.6) is the same as the profit-maximization problem (13) (except for the constant

terms φ∗jgtbjgt and Φ∗jgtb
2
jgt). Therefore, if a solution (x∗,X∗) is optimal for CPP (11), then x∗ also

solves (13) optimally. In other words, under CDP, the generators’ profit-maximizing actions align

with the centrally optimal dispatch. �

Proposition 1. RCDP pricing balances the revenue and payments of the SO.

Proof of Proposition 1. According to equation (EC.2) in the proof of Theorem 1, we have

∑
t∈T

(∑
g∈G

(
λ∗tp

∗
gt + Λ∗tX

pp∗
gt,gt +

m∑
j=1

(
φ∗jgtajgtx

∗+ Φ∗jgtTr(ajgta
>
jgtX

∗)
))

+ 2
∑

g1<g2,g1,g2∈G

p∗g1tp
∗
g2t

Λ∗t

)

=
∑
t∈T

(
dtλ
∗
t + d2

tΛ
∗
t +

m∑
j=1

∑
g∈G

(
bjgtφ

∗
jgt + b2

jgtΦ
∗
jgt

))
. (EC.7)

The utility’s revenue from demand at hour t is λ∗tdt + Λ∗td
2
t , while its total payments

to generators at hour t is
∑

g∈G

(
λ∗tp

∗
gt + Λ∗tX

pp∗
gt,gt +

∑
g′∈−g p

∗
gtp
∗
g′tΛ

∗
t

)
. We can prove that

those two expressions are equivalent, by eliminating terms containing availability prices, i.e.,∑m

j=1

(
φ∗jgtajgtx

∗+ Φ∗jgtTr(ajgta
>
jgtX

∗)
)

and
∑m

j=1

∑
g∈G

(
bjgtφ

∗
jgt + b2

jgtΦ
∗
jgt

)
from either side of

(EC.7), as they are equivalent. �

Proposition 2. RCDP incentivizes the optimal solution of UC if the optimal value of (14) equals

the optimal value of UC.

Proof of Proposition 2. Since an optimal solution of (14) is in FCOP, it is feasible for UCCOP.

If the optimal solution corresponds to an objective value that equals the optimal value of UCCOP,

then it is also optimal to UCCOP. An optimal solution of UCCOP incentivizes the optimal solution

of UC. �

Proposition 4. If the optimal value of SP(Ω̄) is nonzero, then (18) cuts off Ω̄.

Proof of Proposition 4. Because of (17c) and the fact that q = 1, there is at least one element

in u that is nonzero, i.e. β = {i|ui = 1, i = 1, ..., nc} 6= ∅. Denote Ωββ as the submatrix of Ω that

consists of rows and columns with indices in β. Similarly we define the subvector zβ. From the

fact that the optimal objective w̄ > 0, we know from constraint (17b) that Ω̄ββ z̄β < 0 and thus

z̄β 6= 0. Therefore, z̄>β Ω̄ββ z̄β < 0. Also, let α= {1, ..., nc}\β, then z̄α = 0 due to (17e), which means

z̄>Ω̄z̄ = z̄>β Ω̄ββ z̄β < 0. Thus, Ω̄ violates the cut (18). �
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EC.3. Individual Revenue Adequacy with Both Uniform and Availability Prices

If we include both uniform and availability prices in the revenue adequacy constraints, we have the

following pricing problem to solve:

max
∑
t∈T

(
dtλt + d2

tΛt +
m∑
j=1

∑
g∈G

(bjgtφjgt + b2
jgtΦjgt)

)
(EC.8a)

s.t.
∑
t∈T

p∗gtλt + p∗2gtΛt +
∑

g′∈G\{g}

p∗gtp
∗
g′tΛt +

m∑
j=1

(
a>jgtx

∗φjgt + Tr(ajgta
>
jgtX

∗)Φjgt

)
≥
∑
t∈T

(
cpgp
∗
gt + cugu

∗
jgt

)
∀g ∈ G (EC.8b)

(λλλ,φφφ,ΛΛΛ,ΦΦΦ,δδδ,Ω)∈FCOP. (EC.8c)

Again, we use (p∗gt)
2 in place of Xpp∗

gt,gt and p∗gtp
∗
g′t in place of Xpp∗

gt,g′t.

If (EC.8) is feasible, then prices from (EC.8) should satisfy revenue neutrality for generators. This

is because if we sum up left-hand sides of (EC.8b) over g, then the value equals the objective (EC.8a)

(proved by (EC.2)), which represents the total revenue of generators. One the other hand, (EC.8)

can be viewed as imposing extra constraints on the original CDP problem (12), whose objective

value, according to weak duality, is no more than the total costs
∑

g∈G
∑

t∈T

(
cpgp
∗
gt + cugu

∗
gt

)
. But

(EC.8) also restricts the total revenue of generators to be no less than the total costs. Therefore,

a feasible solution of (EC.8) should ensure revenue neutrality for generators.

In addition, we actually have revenue neutrality for every generator, so each generator is paid

exactly its cost. To understand why this result is true, assume towards contradiction if any generator

has a strictly positive profit, then because of revenue neutrality of the whole system, some other

generator must have a strictly negative profit, which violates (EC.8b).

In comparison, we do not have revenue neutrality for individual generators in RCDP, i.e., in that

case generators could have strictly positive profits.

Similar to the case of RCDP, with this pricing scheme, it can be proved that (EC.8) is guaranteed

to be feasible if its dual problem has an interior.

EC.4. Uplift Payment, Profit, and Consumer’s Payment

In this section, we compare our pricing schemes with the RP and CHP schemes in terms of up-

lift payment, profit, and consumer’s payment. We assume strong duality always holds for UCCPP

throughout the section.

A generator’s revenue can come from both price-based and uplift payments. The uplift payment

to a revenue-deficient generator equals the difference between its price-based revenue and costs. In
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this work, we call a generator’s profit without uplift the pre-uplift profit. This is different from the

profit after uplift which is always non-negative.

The consumer’s payment equals the total revenue of generators. Since the load is inelastic, a

lower consumer payment is desirable to the consumers.

(1) Payments and Profit Under CDP and RCDP: We denote the prices under CDP as

(λλλCDP,φφφCDP,ΛΛΛCDP,ΦΦΦCDP). Before the uplift, some generators earn positive pre-uplift profit if their

revenue from prices exceeds the cost, while others have negative pre-uplift profit. The ones with

negative pre-uplift profit receive uplift and end up with zero profit. Since revenue neutrality holds

under CDP, the total positive pre-uplift profit should equal the absolute value of the total negative

pre-uplift profit, which also equals the total uplift payment.

Under CDP, the price-based payments equals opt(UC) because of revenue neutrality. Therefore,

consumer’s payment under CDP = opt(UC) + uplift payments under CDP.

On the other hand, under RCDP all generators are revenue-adequate, and thus there is no uplift

payment and the consumers only pay for the price-based payments. Further, those payments are

all from uniform prices, which we denote by (λλλRCDP,ΛΛΛRCDP):

consumer’s payment under RCDP = payments from (λλλRCDP,ΛΛΛRCDP).

If the condition in Proposition 2 holds, then there exists a set of prices (λλλCDP,φφφCDP,ΛΛΛCDP,ΦΦΦCDP)

under CDP such that λλλCDP =λλλRCDP and ΛΛΛCDP = ΛΛΛRCDP.

In general, it is difficult to compare the consumer’s payments under CDP and RCDP. In our

experiments, we observe that the payment under CDP is always lower.

(2) Comparison with RP: RP is obtained by solving the following LP:

UCRP : min
∑
g∈G

∑
t∈T

(
cpgpgt + cugugt

)
(EC.9a)

s.t.
∑
g∈G

pgt = dt ∀t∈ T (λt) (EC.9b)

a>jgtx = bjgt ∀j = 1, ...,m, g ∈ G, t∈ T (φjgt) (EC.9c)

zgt = z∗gt ∀g ∈ G, t∈ T (ιgt) (EC.9d)

x∈Rn+, (EC.9e)

which is the same as UC except that the binary variables are fixed to their optimal solutions in

UC by constraints (EC.9d). RP is obtained from optimal dual variables of constraints (EC.9b) and
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(EC.9d), which we denote (λλλRP,ιιιRP). The SO collects
∑

t∈T

(
λRP
t dt +

∑
g∈G ι

RP
gt z

∗
gt

)
from the load,

and pays
∑

t∈T

(
λRP
t p∗gt + ιRP

gt z
∗
gt

)
to generator g. It is straightforward to check that RP balances

the revenue and payment of the SO.

Due to strong duality of LP, we have∑
g∈G

∑
t∈T

(
cpgpgt + cugugt

)
=
∑
t∈T

(
λRP
t dt +

∑
g∈G

(
ιRP
gt z

∗
gt +

m∑
j=1

φRP
jgtbjgt

))
.

If all bjgt = 0, as for UCRP if we ignore the redundant upper bounds on zgt, then RP balances the

aggregated revenue and cost of generators. It is mentioned in the literature that under RP every

generator’s net profit is zero (Azizan et al. 2020). Our numerical experiments in Section 6 show

that with UC formulation (8), each generator is revenue neutral under RP. If we add constraints

with nonzero bjgt, such as ramping constraints, to (8) and if they are binding, then individual

revenue neutrality may no longer hold.

When every generator’s net profit is zero, there is no uplift payment under RP, and we have

consumer’s payment under RP = opt(UC),

which indicates that consumer’s payment under RP ≤ consumer’s payment under CDP. Since

under RCDP each generator is revenue adequate, we also have consumer’s payment under RP ≤

consumer’s payment under RCDP.

(3) Comparison with CHP: CHP can be obtained via the following Lagrangian dual problem (Wang

et al. 2013):

UCCHP : max
λλλ

min
x

∑
g∈G

∑
t∈T

(
cpgpgt + cugugt

)
+
∑
t∈T

λt(dt−
∑
g∈G

pgt) (EC.10a)

s.t. a>jgtx = bjgt ∀j = 1, ...,m, g ∈ G, t∈ T (EC.10b)

x∈Rn+ (EC.10c)

zgt ∈ {0,1} ∀g ∈ G, t∈ T . (EC.10d)

We denote the vector of prices under CHP as λλλCHP, which corresponds to optimal values of the

Lagrangian multipliers λt,∀t∈ T . Due to nonconvexity, generally strong duality does not hold for

the Lagrange dual problem, and the optimal solution of x does not equal x∗.

CHP does not necessarily ensure revenue adequacy for each generator, and thus may have nonzero

uplift payments. Therefore,

consumer’s payment under CHP = payments from λλλCHP + uplift payments under CHP.
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If all generators are revenue-neutral under RP, then consumer’s payment under RP ≤ consumer’s

payment under CHP, since with the uplift payment each generator has a nonnegative profit.

Because prices under CHP do not correspond to the optimal UC solution, it is difficult to

analytically compare the consumer’s payment under CHP with that under CDP and RCDP. In

our experiments, the consumer’s payment under CHP is usually higher compared with CDP, and

a bit lower compared with RCDP.

EC.5. COP Algorithms Comparison for Maximum Clique Problem

We compare the performance of our cutting plane algorithm with other COP algorithms in the

literature on the maximum clique problem, which is commonly used to benchmark COP algorithms.

In the maximum clique problem, one tries to find the maximum clique number of a graph G =

(N ,E), which is equivalent to finding the stability number of G’s complementary graph, Ḡ = (N , Ē).

Let ω be the maximum clique number of G. We can formulate the maximum clique problem as the

following MIP, which finds the stability number of graph Ḡ:

ω= max
n∑
i=1

xi (EC.11a)

s.t. xi +xj ≤ 1 ∀(i, j)∈ Ē (EC.11b)

xi ∈ {0,1} ∀i= 1, ..., n. (EC.11c)

Let A be the adjacency matrix of G. Then we have A=Q− Ā, where Q= ee>− I, and Ā is the

adjacency matrix of Ḡ. Applying this relationship to the COP model in Corollary 2.4 of De Klerk

and Pasechnik (2002), we obtain the following COP model for the maximum clique number of G:

ω= min λ (EC.12a)

s.t. λ(ee>−A)− ee> = Y (EC.12b)

Y ∈ Cn. (EC.12c)

In our experiment we use 10 max-clique problem instances from the second DIMACS challenge

(DIMACS 1992). We compare the following ways of solving the COP (EC.12):

(1) Approximately solve the COP with SDP, as shown in Section EC.1. This is the method

suggested by De Klerk and Pasechnik (2002). Note that the SDP approximation is a restriction

to the dual COP model, and thus overestimates the maximum clique number of G. We use Mosek

9.1.2 to solve the SDPs.

(2) Exactly solve the COP with the cutting plane algorithm of Section 5.
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(3) Exactly solve the COP with the simplicial partition method of Bundfuss and Dür (2009).

We use Linux workstation with 3.6 Hz Intel Core i9-9900K CPUs and 128 GB memory for

experiments using methods (1) and (2). We directly cite the results for Method (3) from Bundfuss

and Dür (2009) for comparison, as it is not straightforward to implement and the source code is

not available.

Note that we can strengthen the master problem in our cutting plane algorithm by providing

bounds for Y in the initialization stage. Since the maximum clique number ω cannot exceed the

number of total nodes, |N |, and elements of ee> are all 1’s while elements of A are either 0 or 1,

from constraints (EC.12b) we have that the elements of Y should be in the range of [−1, |N |−1].

We present the results of the comparison between methods (1) and (2) in Table EC.1, where

we list the number of nodes, |N |, number of edges, |E|, and the maximum clique number of the

graph, ω for each instance. We measure the computational performance of the SDP approximation

in terms of the objective (“Obj”), optimality gap (“Gap”, compared with the true ω), and the

computational time (“Time”). For our cutting plane algorithm we list the computational time and

the number of iterations needed for convergence; we do not list the objectives because the cutting

plane algorithm always converges to an exact solution.

Table EC.1 Algorithm Comparison for Maximum Clique Dual COP Model

Mosek Cutting plane

Instance |N | |E| |E|
|N | ω Obj Gap(%) Time(sec) Time(sec) #Iter

c-fat200-1 200 1534 7.67 12 12 0 566.81 13.87 2
c-fat200-2 200 3235 16.18 24 24 0 638.72 18.90 2
c-fat200-5 200 8473 42.37 58 60.35 3.89 606.33 12.19 2
hamming6-2a 64 1824 28.50 32 32 0 1.51 6.05 2
hamming6-4a 64 704 11.00 4 4 0 1.59 1.55 4
johnson8-2-4 28 210 7.50 4 4 0 0.20 9.53 2
johnson8-4-4 70 1855 26.50 14 14 0 2.47 11.82 2
johnson16-2-4a,b 120 5460 45.50 8 8 0 31.88 62.75 2
keller4 171 9435 55.18 11 13.47 18.34 426.16 - -
MANN a9 45 918 20.40 16 17.48 8.47 0.45 547.62 2
a Obtained by setting q = ω̄ in the separation problem, see text for explanation.
b Obtained by early termination of the separation problem.

When solving instances “hamming6-2”, “hamming6-4” and “johnson16-2-4” with cutting planes,

we encounter some very hard separation problems that take a long time to solve. To speed up the

process, we use instead a strengthened version of the separation problem with q= ω̄ in constraint

(17c) (Anstreicher 2021), where ω̄ is the current master problem solution for ω. Even with this
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enhancement, the instance “johnson16-2-4” still has a hard separation problem which achieves a

nonzero lower bound early on (thus proving that the matrix is not copositive), but cannot converge

after an extended period of time. In this case we set a time limit of 1 minute and use the non-

converged solution. Finally, when solving the instance “keller4” we encounter a very hard separation

problem after a few iterations. CPLEX fails to find a feasible solution for this separation problem,

and we had to stop the algorithm due to memory usage. However, we still obtain useful information

from the master problem objective, which upper bounds the COP objective. When we stopped the

algorithm for “keller4” the master problem objective was 11, which is the correct value of ω, and

is therefore superior to the bound provided by the SDP approximation (13.47).

We observe that in some instances, the SDP approximation fails to provide the correct maximum

clique number. Also, in certain instances such as “c-fat200-1”, “c-fat200-2” and “c-fat200-3”, the

cutting plane algorithm is faster than the SDP approximation. Both methods tend to struggle with

instances that have higher |E||N | ratios, though there are exceptions such as “c-fat200-1”, where the

|E|
|N | ratio is relatively low, yet both methods need longer time to solve.

We also compare our algorithm with the simplicial partition method of Bundfuss and Dür (2009),

which to the best of our knowledge is the only exact algorithm for general linear COPs in the

literature. Because of the difference in computer setups, this comparison is not an exact one, and is

meant to provide a general idea to the readers. Bundfuss and Dür (2009) also solve the maximum

clique instances from the second DIMACS challenge. They report that their computation time

for “johnson8-2-4” and “hamming6-4” are respectively 1 minutes 33 seconds and 57 minutes 52

seconds. In all other instances, their algorithm produces relatively loose bounds within two hours.

Their algorithm was implemented in C++ on a Pentium IV, 2.8GHz Linux machine with 1GB

RAM. Since Intel Core i9-9900K CPUs can be up to 7.4 times faster than Pentium IV, 2.8GHz

CPUs (UserBenchmark 2023), we compare the two algorithms by multiplying the computation time

of the cutting plane algorithm by 7.4. We find that our algorithm performs better in all instances.

Note that the cutting plane algorithm terminates in very few iterations in almost all test in-

stances. This is not generally the case with the cutting plane algorithm when solving other COP

problems. One reason for this is the use of a strong formulation of the maximum clique problem.

For example, if we use the weaker COP formulation (EC.13) below, then the cutting plane algo-

rithm takes longer to terminate: the simplest instance (in terms of the number of nodes and edges)

“johnson8-2-4” now takes 200.64 seconds and 690 iterations.

ω= min λ (EC.13a)
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s.t. λI +
∑

(i,j)∈Ē

xijEij − ee> = Y (EC.13b)

Y ∈ Cn. (EC.13c)

Here Eij ∈Rn×n is a matrix with ones at ith row and jth column and jth row and ith column, and

with zeros in all other positions.

EC.6. Plots for Trends of Revenue and Profit

In Figure EC.2 we show the revenue and profit trends in the cutting plane algorithm (without the

constraint Tr(x∗x∗>Ω) ≥ 0) for the UC Case 1. We observe that for both CDP and RCDP, the

revenue and profit have decreasing trends. Similar trends are observed for the UC Case 8 in Figure

EC.3. Those trends show a tendency of convergence, which means that the algorithm still produces

meaningful results even if we terminate it early.
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(d)
Figure EC.2 Trends of the cutting plane algorithm for UC Case 1 in (a) revenue of CDP, (b) profit of

CDP, (c) revenue of RCDP, (d) profit of RCDP.
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Figure EC.3 Trends of the cutting plane algorithm for UC Case 8 in (a) revenue of CDP, (b) profit of

CDP, (c) revenue of RCDP, (d) profit of RCDP.
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