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Abstract. We provide a tutorial-type review on stochastic dual dynamic programming (SDDP),4
as one of the state-of-the-art solution methods for large-scale multistage stochastic programs. Since5
introduced about 30 years ago for solving large-scale multistage stochastic linear programming prob-6
lems in energy planning, SDDP has been applied to practical problems from several fields and is7
enriched by various improvements and enhancements to broader problem classes. We begin with8
a detailed introduction to SDDP, with special focus on its motivation, its complexity and required9
assumptions. Then, we present and discuss in depth the existing enhancements as well as current10
research trends, allowing for an alleviation of those assumptions.11
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1. Introduction. In many decision-making situations at least some of the data15

are uncertain. While this uncertainty is often disregarded, the importance of taking16

it into account during the decision process was already recognized in 1955 by George17

Dantzig [44]. In stochastic programming, a common approach to achieve this is to split18

up this process into two different stages: At the first stage, decisions have to be taken19

before any uncertain data are revealed and to hedge against the existing uncertainty20

(so-called here-and-now decisions). At the second stage, corrective actions, called21

recourse or wait-and-see decisions, can be taken, once the realization of the uncertain22

data is known [26]. Typically, the aim is to determine an optimal decision rule in23

expectation or with respect to some risk measure.24

In many practical applications, not only two, but multiple subsequent decisions25

have to be taken [7]. If these decisions cannot be taken independently, but are coupled26

by their effects on a system state, e.g., hydroelectric generation affecting the water27

level of a reservoir, or orders affecting the size of an inventory stock, this can be28

modeled as a multistage stochastic problem with several subsequent recourse decisions29

(this is also referred to as dynamic programming, and was recently coined sequential30

decision problem in [169]). In such a problem, trade-offs have to be made between31

using an existing resource immediately or saving it up for later stages, taking into32

account the future uncertainty.33

Stochastic dual dynamic programming (SDDP) is an algorithm to tackle such34

multistage stochastic problems in order to compute, or at least approximate, an opti-35

mal policy, that is, a strategy or decision rule providing the best here-and-now decision36

as well as the best wait-and-see decisions for any stage and any given realization of37

the uncertain data. It was first proposed by Pereira and Pinto in 1991 in [152].38

Historically, SDDP has its roots in two separate research streams dealing with39

sequential decision problems. The first one is stochastic dynamic programming (SDP),40

which is closely related to stochastic optimal control and Markov decision processes.41

Here, a crucial assumption is that the uncertain data on different stages of the decision42

process are independent of each other (or at least Markovian). In this case, multistage43

stochastic problems can be expressed by dynamic programming equations (DPE),44

which decompose the large-scale problem by stages into several smaller subproblems.45
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These DPE exploit the famous optimality principle by Bellman [13], which allows one46

to express the optimal objective value from some stage t onwards, given some state47

xt−1, recursively by means of some stage-t objective function and a so-called expected48

value function Qt(·), modeling the expected optimal objective value from stage t+ 149

onwards, given the new state xt. We formally introduce these concepts in Section 2.4.50

The DPE can be solved exactly by SDP solution methods, such as value iteration51

[13]. Basically, this method is based on traversing the stages backwards and eval-52

uating the expected value functions Qt(·) for all possible states xt−1 (concept of a53

lookup table). Each such evaluation requires solving an optimization problem for all54

possible realizations of the uncertain data, which, in turn, requires finding an optimal55

decision over all possible actions. For this evaluation to be possible, it is assumed that56

the state space, the action space and the scenario space are finite – otherwise they57

have to be discretized. However, even in the discrete case, enumerating all possible58

combinations is computationally intractable for all but low dimensions, as the number59

of evaluations suffers from combinatorial explosion. This phenomenon is known as60

the curse of dimensionality of SDP [168]. In order to circumvent this, approximate61

dynamic programming (ADP) methods have been developed, where expected value62

functions are approximated instead of being evaluated exactly (or where optimal poli-63

cies are approximated using different strategies) [168, 169]. SDDP can be regarded64

as one such method. Due to its close relation with SDP it also heavily relies on the65

assumption of stagewise independence.66

A second perspective on SDDP is one from stochastic programming. Traditionally,67

in this field, multistage uncertain data are often modeled by a scenario tree, which68

branches at each stage and consists of finitely many possible scenarios. Scenario69

trees do not require the stochastic data process to be stagewise independent. Using70

finite scenario trees and assuming linearity, a multistage stochastic program can be71

reformulated as a large-scale linear programming problem [178]. However, in this72

extensive form such a problem usually is way too large to be solved by monolithic73

approaches, since the number of decision variables and constraints grows exponentially74

in the number of stages. To cope with this challenge, special solution techniques are75

required which decompose the problem. Based on the L-shaped method for solving76

two-stage stochastic programs [226] (a special variant of Benders decomposition [17]),77

one such idea is the extension of Benders-type solution methods to the multistage78

setting. The nested Benders decomposition (NBD) method by Birge [24] is such an79

extension. It can be interpreted as a nested sequence of solving two-stage stochastic80

programs while traversing the scenario tree. In contrast to SDP, in NBD the functions81

Qt(·) are not evaluated at all possible states, but iteratively approximated by linear82

functions called cutting-planes or cuts, starting from a rough initial relaxation. Such83

approximation is possible, since Qt(·) can be proven to be convex in xt−1 for LPs. It84

also allows to consider a continuous state space without discretization.85

While NBD is a reasonable method to solve multistage stochastic linear programs86

of moderate time horizons (maximum 4 or 5 time steps), for larger problems, it is still87

computationally prohibitive, as the scenario tree grows exponentially in the number of88

stages. As a relief, several methods have been proposed to combine the cutting-plane89

approximations in NBD with sampling techniques from simulation [38, 53, 101]. The90

most prominent among these methods is SDDP. From this perspective, SDDP can be91

considered a sampling-based variant of NBD. In order to use the sampling step in a92

beneficial way, compared to NBD, SDDP comes with the additional prerequisite that93

the data process is stagewise independent.94

Application-wise, the development of SDDP is closely related to hydrothermal95
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operational planning, which attempts to determine cost-optimal generation decisions96

for thermal and hydroelectric power plants over several stages, while ensuring system97

balance and satisfaction of technical constraints. Since future water availability is98

affected by uncertain inflows into hydro reservoirs, this optimization problem can be99

considered multistage, stochastic, and thus very complex.100

Prior to SDDP, various solution techniques had been proposed to tackle this101

type of problem. Among those are simulation models, linear programming techniques102

(either based on assuming inflows as deterministic or based on reformulating stochastic103

LPs into a deterministic equivalent), special variants of dynamic programming and104

SDP [228]. However, all of these techniques either do not consider the uncertain105

nature of inflows, suffer from the aforementioned curses of dimensionality or do not106

guarantee convergence. For operating a large-scale power system dominated by hydro107

power these shortcomings are severe, as they prohibit a cost-minimal and reliable, but108

at the same time computationally efficient operational planning. The development of109

SDDP by Pereira and Pinto was directly driven by the endeavor to replace SDP with a110

more efficient optimization technique in operating the Brazilian power system. While111

it avoids some of the computational drawbacks of SDP or NBD (sometimes advertized112

as “breaking the curse of dimensionality”), SDDP comes with its own shortcomings,113

as we thoroughly discuss in this paper.114

Since its invention in 1991 SDDP has gained enormous interest, both from a115

theoretical and an application perspective. To this date, it can be considered one of the116

state-of-the-art solution methods for large-scale multistage stochastic problems. For117

this reason, it is used in various practical applications to optimize decision processes,118

for instance hydrothermal operational planning, portfolio optimization or inventory119

management, see Section 9.120

Several extensions and improvements of SDDP have been proposed by now, many121

of them attempting to relax the originally required theoretical assumptions, making122

SDDP applicable to broader problem classes. Others strive for improving the per-123

formance of SDDP because, despite its merits, the algorithm may take too long to124

converge for large problem instances.125

Due to both, the sheer amount and the variety of proposed enhancements, SDDP126

has developed into a wide-ranging research area with several sub-branches, becoming127

increasingly difficult to keep track of. In this article, we give a comprehensive tutorial-128

type review on SDDP-related research, covering its basic principle and assumptions,129

strengths and weaknesses, existing extensions and current research trends.130

1.1. Structure. The structure of this review is summarized in Table 1. The131

review can be divided into four major parts. In the first part (Sections 2 to 8), we132

discuss the basic mechanism of SDDP. This includes formal preliminaries to formu-133

late multistage stochastic decision problems, but also the main algorithmic steps of134

SDDP and a complexity analysis. In particular, we point out crucial assumptions for135

standard SDDP to work. In the second part (Sections 9 and 10), we discuss appli-136

cations, which underline the practical relevance of SDDP, but also the requirement137

to relax some of the standard assumptions. In the third part (Sections 11 to 20),138

we discuss various extensions of SDDP to cases where the standard assumptions are139

relaxed. These extensions comprise modifications of SDDP itself as well as modifi-140

cations or reformulations of the considered decision problems. Finally, in the fourth141

part (Section 21), we discuss approaches to improve the computational performance142

of SDDP.143
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Table 1: Table of contents.

Part I: The Mechanism of SDDP
Section 2 Preliminaries p. 5
Section 3 Standard SDDP p. 13
Section 4 Convergence & Complexity p. 21
Section 5 Comparison with Related Methods p. 24
Section 6 Sampling p. 27
Section 7 Stopping Criteria p. 31
Section 8 Exact Upper Bounds and Dual SDDP p. 33

Part II: Applications of SDDP
Section 9 Applications p. 39
Section 10 Software p. 43

Part III: Extensions of SDDP
Section 11 Handling Continuous Uncertainty p. 44
Section 12 Handling Risk-Aversion p. 49
Section 13 Handling Distributional Uncertainty p. 66
Section 14 Handling Stagewise Dependent Uncertainty p. 71
Section 15 Handling Nonlinear Convex Problems p. 84
Section 16 Handling Mixed-integer and Non-convex Problems p. 86
Section 17 Handling Infeasibility p. 89
Section 18 Handling Non-block-diagonal Problems p. 92
Section 19 Handling Infinite Horizons p. 92
Section 20 Handling Random Horizons p. 93

Part IV: Accelerating SDDP
Section 21 Performance Improvements p. 94

Section 22 Outlook p. 106

1.2. Terminology and Notation. As already mentioned, SDDP is linked to144

several different research fields and communities, such as stochastic programming,145

dynamic programming, Markov decision processes, optimal control or reinforcement146

learning, each using different terminology and notation. This aggravates a presenta-147

tion of SDDP in a form that is familiar and accessible to all those interested.148

To our knowledge, the majority of active research on SDDP is conducted by149

researchers from the stochastic programming community. For this reason, in many150

sections we resort to stochastic programming language and notation. On the other151

hand, this review is also dedicated to offer an access to SDDP for practitioners and152

researchers from fields in which different perspectives and notation are standard.153

Therefore, we address these differences if required for the understanding of SDDP,154

and attempt to avoid heavy mathematical programming notation whenever possible,155

especially in early sections introducing SDDP.156

For a general, not SDDP-specific, attempt at unifying different disciplines related157

to optimization under uncertainty and sequential decision processes into a common158

framework, we refer to the excellent book [169].159

In the following, we denote random variables by bold letters, e.g., ξ, and their160

realizations by letters in normal font, e.g., ξ. To enhance readability, we summarize161
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Table 2: Abbreviations that are used throughout the text.

(P)AR (Periodic) Autoregressive process
DPE Dynamic programming equations
LP Linear program
MI(N)LP Mixed-integer (non-)linear program
MSLP Multistage stochastic linear programming problem
NBD Nested Benders Decomposition
RHS Right-hand side
SDP Stochastic Dynamic Programming
SDDP Stochastic Dual Dynamic Programming

some recurring abbreviations in Table 2.162

2. Preliminaries for SDDP. In order to present SDDP in its standard form,163

we start by formally introducing the considered decision problem. In particular, we164

point out assumptions which are crucial for the presented SDDP method to work.165

We consider a multistage decision process where decisions xt have to be taken166

over some horizon [T ] := {1, . . . , T} consisting of T stages, with the aim to minimize167

some objective function subject to constraints. For now, the horizon T is assumed to168

satisfy the following condition:169

Assumption 1 (Finite and deterministic horizon). The number T ∈ N of stages170

is finite and deterministic.171

We discuss later how SDDP may be applied to cases where this is not satisfied, see172

Sections 19 and 20.173

2.1. Modeling the Uncertainty. The data in the considered decision process174

can be subject to uncertainty, which is revealed over time. To this end, we consider a175

filtered probability space (Ω,F ,P) with sample space Ω, σ-algebra F and probability176

measure P, which models the uncertainty over the horizon [T ]. Further let F1, . . . ,FT177

with FT := F be a sequence of σ-algebras containing the events observable up to time178

t, thus defining a filtration with F1 ⊆ F2 · · · ⊆ FT , and let Ωt be the sample space179

restricted to stage t ∈ [T ]. We then define a stochastic process (ξt)t∈[T ] with random180

vectors ξt : Ωt → Rκt , κt ∈ N, over the probability space. These random vectors are181

assumed to be Ft-measurable functions. We denote their support by Ξt ⊆ Rκt for all182

t ∈ [T ]. For the first stage, the data are assumed deterministic, i.e., Ξ1 is a singleton.183

For each random vector ξt, we denote a specific realization by ξt.184

As a crucial ingredient for SDDP to work, we assume that the uncertainty on185

different stages does not depend on each other.186

Assumption 2 (Stagewise independence). For all t ∈ [T ], the random vector ξt187

is independent of the history ξ[t−1] := (ξ1, . . . , ξt−1) of the data process.188

Under Assumption 2, the random vectors ξt are often referred to as noises. This189

assumption is common in dynamic programming, but not standard in stochastic pro-190

gramming. In practical applications it may not be satisfied. We address how to apply191

SDDP to problems with stagewise dependent uncertainty in Section 14.192

Additionally, we take the following assumptions for the stochastic process.193

Assumption 3 (Known distribution). The probability distribution Fξ of the data194
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process (ξt)t∈[T ] is known.195

Assumption 4 (Exogeneity). The random variables ξt are exogeneous, i.e., the196

distribution Fξ of the data process (ξt)t∈[T ] is independent of decisions (xt)t∈[T ].197

Assumption 5 (Finite randomness). The support Ξt of ξt is finite for all t ∈ [T ].198

The number of noise realizations at stage t ∈ [T ] is given by qt ∈ N with q1 = 1.199

We discuss how to apply SDDP if Assumption 3 is not satisfied in Section 13. If200

Assumption 4 is not satisfied, the problem is said to have decision-dependent uncer-201

tainty [114]. As this case is not covered in the literature on SDDP so far, we do not202

discuss the relaxation of this assumption.203

Assumption 5 is a key assumption for SDDP and standard in dynamic program-204

ming and stochastic programming in order to obtain computationally tractable prob-205

lems. We discuss possible ways to relax it in Section 11. As ξt is a discrete and206

finite random variable for all t ∈ [T ], its distribution Fξ is defined by finitely many207

realizations ξtj , j = 1, . . . , qt, and assigned probabilities ptj .208

The stagewise independent and finite data process (ξt)t∈[T ] can be illustrated by209

a recombining scenario tree [178], also called scenario lattice [128]. On each stage210

t ∈ [T ], its nodes represent the possible noise realizations ξtj , j = 1, . . . , qt. Due to211

stagewise independence (Assumption 2) all nodes at the same stage have an identical212

set of child nodes with the same noise realizations and associated probabilities. We213

call paths ξ = (ξt)t∈[T ] through the complete tree (stage-T ) scenarios and index214

them by s ∈ S. Note that for each scenario ξs, there exists some js ∈ {1, . . . , qt}215

such that ξst = ξtjs . The total number of different scenarios modeled by the tree is216

|S| =∏t∈[T ] qt. An example of a recombining scenario tree is presented in Figure 1.217

t = 3t = 2t = 1

ξ6

Fig. 1: Recombining tree with 3 realizations per stage and highlighted scenario ξ6.

2.2. The Decision Process. With the stochastic process in mind, we can now218

turn to the decision process. At stage 1, the here-and-now decision x1 is taken to hedge219

against the uncertainty in the following stages. At those stages, recourse decisions220

xt ∈ Rnt , nt ∈ N, can be taken under knowledge of the realization of the data process221

at stage t. This decision process is illustrated in Figure 2.

t = 1 t = 2 t = 3 · · · t = T

ξ2 ξ3 ξT

x1 x2 x3

Fig. 2: Multistage decision process with uncertainty.
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In other words, the paradigm is that decisions can be taken after the uncertainty222

corresponding to stage t has unfolded (so-called wait-and-see decisions), making xt(ξt)223

a function of ξt, and by that a random variable. We account for that using a bold224

symbol. Importantly, xt(·) does only depend on realizations up to stage t, but does225

not anticipate future events or decisions. Future events are only considered using226

distributional information. Therefore, xt(·) is Ft-measurable [200]. As we will see,227

xt(·) may also depend on the choice for xt−1(·) and so on, so that despite stagewise228

independence (Assumption 2), xt(·) is actually a function of the whole history ξ[t] of229

the data process.230

A sequence of decision functions
(
xt(ξ[t])

)
t∈[T ]

is called a policy and provides a231

decision rule for all stages t ∈ [T ] and any realization of the data process. By the232

previous arguments, such a policy is non-anticipative, modeling a sequence of nested233

conditional decisions. The aim of the decision process is to determine an optimal234

policy with respect to a given objective function and a given set of constraints.235

In this context, the following assumptions are standard for SDDP.236

Assumption 6 (Linearity). All functions occurring in the objective and the237

constraints are linear.238

Assumption 7 (Consecutive coupling). Only decisions on consecutive stages239

can be linked by constraints.240

Assumption 8 (Risk-neutral policy). The aim is to determine an optimal risk-241

neutral policy.242

As not all of these assumptions are guaranteed to be satisfied for an arbitrary243

problem in practice, we discuss possible ways to relax them in Sections 15 and 16 (for244

Assumption 6), Section 18 (for Assumption 7) and Section 12 (for Assumption 8).245

Under Assumptions 6 and 8, the optimization objective can be expressed as246

(2.1) min
x1,x2,...,xT

E

∑
t∈[T ]

(
ct(ξt)

)⊤
xt(ξ[t])

 ,247

with data vectors ct ∈ Rnt for all t ∈ [T ] and E[·] denoting the expected value.248

Under Assumptions 6 and 7, for all t ∈ [T ], the constraints on the decisions can249

be expressed using the Ft-measurable set-valued mappings Xt(·), which for any xt−1250

and any ξt ∈ Ξt are defined by251

(2.2) Xt(xt−1, ξt) :=
{
xt ∈ Xt ⊂ Rnt : Tt−1(ξt)xt−1 +Wt(ξt)xt = ht(ξt)

}
.252

Here, ht ∈ Rmt are data vectors (for mt ∈ N), Tt and Wt are (mt+1 × nt) and253

(mt × nt) data matrices and Xt is a non-empty polyhedron, e.g., modeling non-254

negativity constraints.255

As stated before, some (or all) of the problem data can be subject to uncertainty.256

Hence, for all t ∈ [T ], we consider random variables ct(ξt),Tt−1(ξt),Wt(ξt) and ht(ξt)257

depending on realizations of ξt. Xt is considered deterministic. Note again that the258

first stage is assumed to be deterministic, and that T0 ≡ 0 and x0 ≡ 0. Hence, we259

define X1 :≡ X1(x0, ξ1).260

Remark 2.1. For notational simplicity, when we deal with finite random variables261

ξt in this paper, we often index the vectors and matrices ct, Tt−1,Wt and ht with262

j = 1, . . . , qt if we address specific realizations, e.g., ctj := ct(ξtj).263
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Remark 2.2 (Dynamic programming perspective). In dynamic programming,264

Markov decision processes or optimal control, usually a slightly different perspective265

on sequential decision processes is chosen (see [169] for a comprehensive overview).266

The main difference is that the occurring variables are differentiated into state vari-267

ables and actual decisions. State variables st ∈ St model the system state at some268

stage t. St is called the state space. Importantly, state variables may not only com-269

prise the resource state, but also the information or belief state of a system. Local270

decision variables model decisions on a stage t given a state st. In dynamic pro-271

gramming they are usually discrete and called actions at ∈ At(st), in optimal control272

they are usually continuous and called controls ut ∈ Ut(st). At(st) and Ut(st) are273

the action space or control space, respectively. The actions or controls are what an274

agent actually decides on given the current state st, whereas the new state st+1 is275

uniquely determined as st+1 = Tt(st, ut, ξt+1) using a given transition function Tt(·)276

which captures the system dynamic. Therefore, from this perspective, a policy is a277

sequence of mappings πt : St → Ut from the state space to the control (or action)278

space. Further note that by proper modeling of the state variable, Assumption 7 is279

naturally satisfied.280

In our above setting, states and actions are intertwined. We can set st = (xt−1, ξt)281

and ut = xt to switch perspectives [6]. The state space, control space and transition282

function are then implicitly given by (2.2) and the definition of ξt.283

Whereas our above definitions are prevalent in the literature on SDDP, sometimes284

also an optimal control perspective is adopted, e.g., in the French community working285

on SDDP (see for example [78]). However, in this case usually only the resource state286

rt is explicitly considered as a state variable (while not including information on ξt).287

Translating our above setting, this implies that rt = xt−1 with state space Rt = Xt,288

ut = xt and due to rt+1 = ut, both the control space Ut(rt, ξt) and the transition289

function Tt(rt, ut, ξt) are given by the equations in (2.2).290

Given the constraint sets (2.2) for all t ∈ [T ], let X0 := {x0} and recursively define291

Xt :=
⋃

xt−1∈Xt−1

⋃
ξt∈Ξt

Xt(xt−1, ξt)292

for all t ∈ [T ] [71]. Using these definitions, we are able to state assumptions which we293

require for the feasibility of our decision problem:294

Assumption 9. (Feasibility and Compactness)295

(a) For all t ∈ [T ], all xt−1 ∈ Xt−1 and almost all ξt ∈ Ξt, the set Xt(xt−1, ξt) is296

a non-empty compact subset of Rnt .297

(b) The set Xt is bounded for all t ∈ [T ].298

Remark 2.3. Note that the linearity assumption (see Assumption 6), immediately299

implies that Assumption 9 (a) is not only satisfied for all xt−1 ∈ Xt−1, but for all300

xt−1 ∈ conv(Xt−1), where conv(S) denotes the convex hull of a set S.301

The set Xt ∈ Rnt is called reachable set in [71] and effective feasible region in302

[116]. It may as well be referred to as the state space sometimes, because in our303

setting xt also takes the role of a state variable. However, in other cases the larger304

polyhedral set Xt may be called state space.305

The boundedness of Xt in (b) is required for some of the convergence results on306

SDDP presented in Section 4. It follows naturally if Xt is bounded, since Xt ⊆ Xt.307

Property (a) is convenient, but not necessarily required. We discuss possible ways to308

relax it in Section 17.309
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With all the ingredients defined, we can now model the decision problem in a310

form that can be tackled by SDDP. Based on its properties, in the following we311

refer to this problem as a multistage stochastic linear programming problem (MSLP).312

If not specified otherwise, throughout this paper, we assume that (MSLP) satisfies313

Assumptions 1 to 9. We first discuss two different modeling approaches which are314

common in the literature.315

2.3. Single-problem Formulation. One way to model the decision problem316

(MSLP) is to formulate it as a single optimization problem. This modeling approach317

is common in the stochastic programming community. The optimization problem can318

be obtained by combining (2.1) with the constraints in (2.2) for all t ∈ [T ].319

Then, under Assumptions 1 to 9, (MSLP) can be written as320

(2.3) v∗ :=


min

x1,x2,...,xT

E

∑
t∈[T ]

(
ct(ξt)

)⊤
xt(ξ[t])


s.t. x1 ∈ X1

xt ∈ Xt(xt−1(ξ[t−1]), ξt) ∀ξt ∈ Ξt ∀t = 2, . . . , T.

321

Importantly, the decision variables xt ∈ Rnt depend on ξt (and on xt−1), so in322

this representation we optimize over policies. A policy (xt(ξ[t]))t∈[T ] is called feasible323

(or admissible) if it satisfies the constraints in (MSLP) for almost every realization of324

the random data [200].325

Assumption 9 (a) implies that the feasible set of (MSLP) is compact and non-326

empty, and by linearity of the objective (Assumption 6) it follows that v∗ is finite.327

Even more, (MSLP) has relatively complete recourse, as we discuss in detail in the328

next subsection.329

Due to optimizing over policies, without Assumption 5, (MSLP) is an infinite-330

dimensional optimization problem. With Assumption 5, however, it can be reformu-331

lated to a more accessible form. More precisely, it can be reformulated to a large-scale332

deterministic problem, the so-called deterministic equivalent of (MSLP) in extensive333

form (see [200]). To this end, let S denote the set of all (stage-T ) scenarios. Then, for334

each scenario s ∈ S a separate copy xst of variables xt can be introduced, so that the335

optimization over implementable policies translates to an optimization over a finite336

number of decision variables. However, the problem size grows exponentially in the337

number of stages T . Therefore, even for a finite number of scenarios, this large-scale338

LP is too large to be solved by off-the-shelf solvers for all but very small instances.339

A preferable solution approach is therefore to use tailored solution techniques340

which decompose (MSLP) into smaller subproblems. Note that from Assumption 7341

and the definition of Xt(·) in (2.2), it is evident that the constraints of (MSLP) are342

block-diagonal, as only consecutive stages are coupled in the constraints. This is343

visualized in Figure 3.344

This sequential and block-diagonal structure can be exploited to achieve the re-345

quired decomposition. This is crucial for the derivation of SDDP. Interestingly, this346

decomposition idea directly leads to the second common modeling approach for our347

decision problem.348

2.4. Dynamic Programming Equations. An alternative, but equivalent way349

to model (MSLP) is to exploit the well-known optimality principle by Bellman [13] and350

to formulate a recursion of so-called dynamic programming equations (DPE), where351

a multistage decision process with stagewise independent (or Markovian) uncertainty352

is modeled as a coupled sequence of optimization problems.353
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W1

T1 W2

T2 W3

. . .

TT−1 WT

h1

h2

h3

...

hT

x1 x2 x3 xT−1 xT

Fig. 3: Block-diagonal structure of constraints in (MSLP).

Whereas this modeling approach is often used in stochastic programming as a354

way to reformulate and decompose the single problem (2.3) into a computationally355

tractable form, in dynamic programming it often serves as the starting point of mod-356

eling decision problems. However, in contrast to many approaches in dynamic pro-357

gramming we do not discretize xt, see also Section 5.1.358

Under Assumptions 1 to 9, for t = T, . . . , 2, the DPE are given by359

(2.4) Qt(xt−1, ξt) :=

{
min
xt

(
ct(ξt)

)⊤
xt +Qt+1(xt)

s.t. xt ∈ Xt(xt−1, ξt),
360

where361

(2.5) Qt+1(xt) := Eξt+1
[Qt+1(xt, ξt+1)]362

and QT+1(xT ) ≡ 0. Qt(·, ·) is called value function and Qt(·) is called expected value363

function, (expected) cost-to-go function, future cost function or recourse function. For364

the first stage, we obtain365

(2.6) v∗ =

{
min
x1

c⊤1 x1 +Q2(x1)

s.t. x1 ∈ X1.
366

For a formal proof of the equivalence of (2.3) and its DPE, we refer to [200] and367

Section 12. Importantly, in subproblem (2.4) xt is a deterministic variable and not a368

function, since a fixed realization of ξt is considered.369

We should emphasize that the equivalence of (2.3) and its DPE does not re-370

quire Assumption 5. This implies that also the DPE (2.4)-(2.6) are computationally371

intractable in case of general continuous random variables. While the subproblems372

are deterministic and finite-dimensional, there exist infinitely many value functions373

Qt(·, ·) and the evaluation of Qt(·) requires the evaluation of (multidimensional) in-374

tegrals. Therefore, also from this perspective Assumption 5 is crucial.375

Remark 2.4 (Dynamic programming control perspective). Recall Remark 2.2.376

Using a distinction between state variables rt and controls ut, the DPE to (MSLP)377

can be formulated as378

(2.7) Qt(rt, ξt) = min
ut∈Ut(rt,ξt)

ft(ut, ξt) +Qt+1(Tt(rt, ut, ξt)).379

Bellman Operator. In the French literature on SDDP, in addition to taking the380

optimal control perspective discussed in Remarks 2.2 and 2.4, a more formal way to381
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define the DPE is prevalent, see [71, 118] for instance. To this end, a linear Bellman382

operator B̂t is introduced, which applied to some lower semicontinuous function V :383

Rnt → R ∪ {+∞} is defined as [71]384

(2.8) B̂t(V )(xt−1, ξt) := min
xt∈Xt(xt−1,ξt)

(
ct(ξt)

)⊤
xt + V (xt),385

i.e., it maps (xt−1, ξt) to the optimal value of an optimization problem containing386

function V (·). We can then further define the operator387

(2.9) Bt(V )(xt−1) := E
[
B̂t(V )(xt−1, ξt)

]
.388

Setting V to Qt(·) for t = 2, . . . , T , the (expected) value functions can then be389

recursively defined in a very compact form. We summarize the different notations for390

a better overview:391

B̂t(Qt+1)(xt−1, ξt) = Qt(xt−1, ξt)

Bt(Qt+1)(xt−1) = Qt(xt−1)
392

In the remainder of this work, we stick to notation (2.4), as it is most common in393

the literature on SDDP which we reference in this paper.394

We obtain the following properties for the DPE which are standard for SDDP:395

Lemma 2.5. Under Assumptions 1 to 9, for the DPE defined by (2.4)-(2.6) the396

following properties hold:397

(a) We have relatively complete recourse, i.e., for any xt−1 ∈ Xt−1, the stage-t398

subproblem (2.4) is feasible for all ξt ∈ Ξt.399

(b) The value functions Qt(·, ·) and expected value functions Qt(·) are finite-400

valued on conv(Xt−1) for all t = 2, . . . , T and all ξt ∈ Ξt.401

(c) Problem (2.6) is feasible and bounded.402

Remark 2.6. In addition to Remark 2.2, we should highlight that (MSLP) (both,403

in single-problem formulation (2.3) and DPE (2.4)-(2.6)) can be straightforwardly404

enhanced with local decision variables yt ∈ Yt and local constraints, not appearing405

in different stages. In principle, they can even be incorporated without changes to406

our models by extending the dimension of the (state) variables xt and adapting the407

matrices Tt and Wt accordingly. However, as we explain in Section 4, the complexity408

of SDDP grows exponentially in the dimension of the state space, so this is com-409

putationally detrimental and should be avoided. Instead, purely local variables and410

constraints should be handled separately from the ones we introduced above. This411

approach is referred to as generalized dual dynamic programming (GDDP) in [18].412

While almost every practical application will require the introduction of these413

additional elements, in this work, for the most part we restrict to coupling variables414

and constraints which are required to illustrate the mechanics of SDDP.415

Remark 2.7. Further note that the local objective functions may also include the416

states xt−1 instead of just depending on xt and ξt. For notational simplicity, we417

consider a less general form of the objective function in this review.418

2.5. Approximations of the Value Functions. The main challenge in ex-419

ploiting the DPE to solve (MSLP) is that the (expected) value functions are not420

known in analytical form in advance. The key idea in SDDP is to iteratively approxi-421

mate them from below using linear functions, which are called cutting-planes, or short422
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cuts. Together, these linear functions build polyhedral outer approximations Qt(·) of423

Qt(·) for all t = 2, . . . , T , which we refer to as cut approximations. In that regard,424

SDDP can be considered as a special variant of Kelley’s cutting-plane method [110]425

and closely related to Benders decomposition [17], see also Section 5.2. Note that in426

contrast to SDP this avoids a state discretization, as Qt(·, ·) and Qt(·) do not have427

to be evaluated at all possible states, but only at well-chosen trial points where new428

cuts are constructed, cf. Section 5.1.429

For this approximation by cuts, the following properties are crucial.430

Theorem 2.8 ([26]). Let ht, Tt−1, ct be elements of some convex sets and xt−1 ∈431

conv(Xt−1). Then, under Assumptions 1 to 9, for all t = 2, . . . , T and a given noise432

realization ξt, the value function Qt(·, ξt)433

(a) is piecewise linear and convex in (ht, Tt−1),434

(b) is piecewise linear and concave in ct,435

(c) is piecewise linear and convex in xt−1 on conv(Xt−1).436

The main idea here is that given the definition of Xt−1(·) in (2.2), ht, Tt−1 and437

xt−1 do only appear in the right-hand side (RHS) of problem (2.4). Therefore, the dual438

feasible set is independent of those elements. It possesses finitely many extreme points.439

This assures piecewise linearity of Qt(·, ·), as known from parametric optimization.440

The convexity follows with the linearity (Assumption 6) and all vectors and matrices441

being part of convex sets.442

Theorem 2.8 directly implies the piecewise linearity and convexity of Qt(·).443

Corollary 2.9 ([26]). Under Assumption 5 and the premises of Theorem 2.8,444

for all t = 2, . . . , T , Qt(·) is piecewise linear and convex in xt−1 on conv(Xt−1).445

Theorem 2.8 and Corollary 2.9 also directly imply the Lipschitz continuity of the446

(expected) value functions.447

Corollary 2.10. Under Assumptions 1 to 9, for all t = 2, . . . , T and all ξt ∈ Ξt,448

Qt(·, ξt) and Qt(·) are Lipschitz continuous on conv(Xt−1).449

Replacing the true expected value functions with cut approximations in (2.4), we450

can define approximate value functions451

(2.10) Q
t
(xt−1, ξt) :=

{
min
xt

(
ct(ξt)

)⊤
xt +Qt+1(xt)

s.t. xt ∈ Xt(xt−1, ξt).
452

Trivially, for QT+1(·) ≡ 0, we have QT+1(·) ≡ 0. In SDDP, it is important that Qt(·)453

should be initialized with a finite and valid lower bound for all t = 2, . . . , T to prevent454

termination due to the occurrence of unbounded subproblems.455

Note that apart from xt−1 and ξt, Qt
(·, ·) is also a function of the cut approxi-456

mation Qt+1(·). This is especially relevant when these approximations are iteratively457

updated in SDDP, leading to different approximate value functions. Using the Bell-458

man operators defined in (2.8)-(2.9) this can be expressed in a very concise way:459

Q
t
(·, ·) = Bt(Qt+1)(·, ·).460

Similarly, we could express this by adding an argument to Q
t
(·, ·), i.e., by writing461

Q
t
(xt−1, ξt |Qt+1) or Q

t
(Qt+1)(xt−1, ξt). However, for notational simplicity, we do462

not state this explicitly, but when dealing with SDDP use the iteration index i for463

distinction. This means that Qi

t
(·, ·) indicates that Q

t
(·, ·) is considered with cut464

approximation Qi
t+1.465
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We summarize the different notations for a better overview:466

(2.11)
B̂t(Q

i
t+1)(xt−1, ξt) = Qi

t
(xt−1, ξt)

Bt(Q
i
t+1)(xt−1) = Qi

t(xt−1) := Eξt

[
Qi

t
(xt−1, ξt)

]467

Finally, we can observe that given that the cut approximationsQt+1(·) are polyhe-468

dral, the approximate value functions Q
t
(·, ·) inherit the previously stated properties469

from Qt(·, ·). In particular:470

Lemma 2.11. Let xt−1 be element of some convex set and Qt+1(·) a polyhedral471

function. Then, under Assumptions 1 to 9, for all t = 2, . . . , T and a given noise472

realization ξt, Qt
(·, ξt) is piecewise linear and convex in xt−1 on conv(Xt−1).473

On the other hand, as they are polyhedral, the cut approximations Qt(·) for474

t = 2, . . . , T are nonlinear functions. Therefore, the subproblems defined by (2.10) are475

no LPs, even if (MSLP) is a stochastic linear problem. Importantly, for computations,476

subproblems (2.10) can be reformulated as equivalent LPs by using a partial epigraph477

reformulation and the fact that Qt(·) is polyhedral, that is, defined as the maximum478

of finitely many affine functions modeled by some set K with |K| ∈ N:479

(2.12) Q
t
(xt−1, ξt) =


min

xt,θt+1

(
ct(ξt)

)⊤
xt + θt+1

s.t. xt ∈ Xt(xt−1, ξt)

− (βi
t+1,k)

⊤xt + θt+1 ≥ αi
t+1,k, ∀i ∀k ∈ K.

480

This problem is an LP, but contains an additional decision variable θt+1 and481

finitely many additional linear constraints indexed by i and k. The structure and482

indexing of these constraints become clear in the next section when we present the483

cut generation process for SDDP.484

3. Standard SDDP. We are now able to introduce SDDP in its standard form.485

3.1. Main Principle. SDDP consists of two main steps in each iteration i, a486

forward pass and a backward pass through the stages t ∈ [T ].487

In each forward pass, using the approximate value functions Qi

t
(·, ·) (recall that488

this means that we use cut approximation Qi
t+1(·) in (2.10)), a sequence of trial points489

(xt)t∈[T ] is generated, at which then new cuts are constructed in the following back-490

ward pass to improve the approximation. These trial points are also called incumbents491

or candidate solutions, and their sequence is called a state trajectory (especially in492

optimal control). The idea behind this approach is that the approximate value func-493

tions implicitly define a feasible (suboptimal) policy for problem (MSLP). The trial494

points are generated by evaluating this policy for one or several scenarios which are495

sampled from S, i.e., by solving the respective subproblems. This has the advantage496

that cuts are constructed at points which (at least for some scenario) are optimal497

given the current cut approximation. This step can also be interpreted as a Monte498

Carlo simulation of the current policy.499

In the backward pass, dual information of the subproblems at the trial points is500

used to construct cuts, passing them back to the previous stage and updating Qi
t(·)501

to Qi+1
t (·) for all t = 2, . . . , T . This way, if not optimal, the current policy is amended502

(at least if the right scenario is sampled). In this step, also a true lower bound v for503

v∗ is determined.504

Remark 3.1 (Statistical learning perspective). The basic principle of SDDP can505

also be interpreted from a perspective of supervized learning as learning a policy (or506
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expected value functions Qt(·) for all t = 2, . . . , T ) or training a model of this policy507

(or cut approximations Qt(·) for all t = 2, . . . , T ) using backpropagation. In the508

forward pass the inputs are propagated through the stages using the current model,509

and in the backward pass cuts (representing the error of the current approximation)510

are propagated back through the stages to update the model.511

Algorithm 3.1 provides a pseudo-code for SDDP. We now provide a more detailed512

and technical look at the algorithmic steps.513

Algorithm 3.1 SDDP

Input: Problem (MSLP) satisfying Assumptions 1 to 9. Bounds θt, t = 2, . . . , T .
Stopping criterion.

Initialization

1: Initialize cut approximations with θt ≥ θt for all t = 2, . . . , T .
2: Initialize lower bound with v0 = −∞.
3: Set iteration counter to i← 0.

SDDP Loop

4: while Stopping criterion not satisfied do
5: Set i← i+ 1.

Forward Pass

6: Sample a subset K ⊆ S of scenarios.
7: Solve the approximate first-stage problem (3.1) to obtain trial point xi1 = xik1

for all k ∈ K.
8: for stages t = 2, . . . , T do
9: for samples k ∈ K do

10: Solve the approximate stage-t subproblem (2.10) associated with
Qi

t
(xikt−1, ξ

k
t ) to obtain trial point xikt .

11: end for
12: end for

Backward Pass

13: for stages t = T, . . . , 2 do
14: for samples k ∈ K do
15: for noise terms j = 1, . . . , qt do
16: Solve the updated approximate stage-t subproblem (2.10) associated

with Qi+1

t
(xikt−1, ξtj). Store the optimal value and dual vector πikj

t .

17: end for
18: Use relations (3.4)-(3.5) and (3.7) to create an optimality cut for Qt(·).
19: Update the cut approximation Qi

t(·) to Qi+1
t (·) using relation (3.6).

20: end for
21: end for
22: Solve the approximate first-stage problem (3.8) to obtain a lower bound vi.
23: end while
Output: (Approximately) optimal feasible policy for (MSLP) defined by xi1 and cut

approximations Qi
t(·), t = 2, . . . , T . xi1 defines an (approximately) optimal solu-

tion to problem (2.6) with viK ≈ v∗.
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3.2. Forward Pass. At the start of each iteration i, at first a subset K ⊆ S of514

scenarios is sampled with |K| ≪ |S| (note that we may equivalently sample stage by515

stage during the forward pass). The number of samples |K| may vary by iteration, but516

we do not state this possible dependence explicitly. Traditionally, and most commonly,517

in SDDP some random sampling is used, but also a deterministic sampling is possible.518

We further discuss sampling techniques in Section 6.519

Then, at the first-stage, the approximate subproblem520

(3.1) min
x1∈X1(x0)

c⊤1 x1 +Qi
2(x1).521

is solved, which yields the trial point xi1 = xik1 for all k ∈ K. Afterwards, for each522

stage t = 2, . . . , T and each sample k ∈ K, recursively the approximate value functions523

Qi

t
(xikt−1, ξ

k
t ) are evaluated (this means that the subproblems (2.10) are solved for xikt−1,524

ξkt and the current cut approximation Qi
t+1(·)). This way, for each sample k ∈ K, a525

sequence of trial points (xikt )t∈[T ] is obtained.526

The forward pass of SDDP is illustrated in Figure 4 for the recombining scenario527

tree from Figure 1 and K = {1, 3, 9}, i.e., |K| = 3. The three sampled scenario paths528

are highlighted in green. The figure shows that for sample paths ξ3 and ξ9 the same529

node is reached at stage 3.530

t = 3t = 2t = 1

Fig. 4: Illustration of SDDP forward pass for |K| = 3.

3.3. Backward Pass. Main Principle. The backward pass starts at stage531

T . Here, for all samples k ∈ K, we consider subproblems (2.10) for the trial point532

xikT−1 computed in the forward pass, all noise realizations ξTj , j = 1, . . . , qT , and533

Qi+1
T+1(·) ≡ 0. That is, we consider functions Qi+1

T
(xikT−1, ξtj) for j = 1, . . . , qT .534

As Qi+1

T
(·, ξTj) is convex in xT−1 by Lemma 2.11, it can be underestimated by535

a linear function using some subgradient βi
Tkj ∈ ∂Qi+1

T
(·, ξTj) for any j = 1, . . . , qT536

and any k ∈ K:537

Qi+1

T
(xT−1, ξTj) ≥ Qi+1

T
(xikT−1, ξTj) + (βi

Tkj)
⊤(xT−1 − xikT−1).538

Since Qi+1

T
(·, ξTj) is a lower approximation of the true value function QT (·, ξTj),539

this directly implies540

QT (xT−1, ξTj) ≥ Qi+1

T
(xikT−1, ξTj) + (βi

Tkj)
⊤(xT−1 − xikT−1).541
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Taking expectations with respect to ξT on both sides, we obtain542

(3.2)

QT (xT−1)

≥ EξT

[
Qi+1

T
(xikT−1, ξT )

]
+ EξT

[
(βi

T j)
⊤(xT−1 − xikT−1)

]
= EξT

[
Qi+1

T
(xikT−1, ξT )− (βi

Tk)
⊤xikT−1

]
+
(
EξT

[
βi
Tk

])⊤
xT−1

=

qT∑
j=1

pTj

(
Qi+1

T
(xikT−1, ξTj)− (βi

Tkj)
⊤xikT−1

)
︸ ︷︷ ︸

=:αi
Tk

+

( qT∑
j=1

pTjβ
i
Tkj︸ ︷︷ ︸

=:βi
Tk

)⊤
xT−1,

543

where we exploit the finiteness of ξT (Assumption 5). αi
Tk is called cut intercept and544

βi
Tk is called cut gradient. Defining545

ϕiTk(xT−1) := αi
Tk + (βi

Tk)
⊤xT−1,546

we can express (3.2) as547

(3.3) QT (xT−1) ≥ ϕiTk(xT−1).548

Inequality (3.3) defines a cut for the expected value function QT (·). Such a cut is549

constructed for each k ∈ K. With these new cuts, the cut approximation Qi
T (·) is550

updated to551

Qi+1
T (xT−1) := max

{
Qi

T (xT−1), ϕ
i
T1(xT−1), . . . , ϕ

i
T |K|(xT−1)

}
.552

Thus, assuming that |K| does not change over the iterations, Qi+1
T (·) consists of i|K|553

affine functions ϕiTk(·), cf. formulation (2.12).554

In the same way, for stages t = T − 1, . . . , 2, cuts for Qt(·) can be constructed by555

solving subproblems (2.10) for the trial points xikt−1 computed in the forward pass and556

all noise realizations ξtj , j = 1, . . . , qt. Importantly, by going backwards through the557

stages, at stage t we can already factor in the cuts that have been constructed at the558

following stage t + 1, thus using a better approximation as the basis to construct a559

new cut. This means that we consider Qi+1
t+1(·) and by that Qi+1

t
(·, ·) with index i+1560

in the backward pass of iteration i.561

As for stage T , we obtain562

(3.4)
Qt(xt−1) ≥

qt∑
j=1

ptj

(
Qi+1

t
(xikt−1, ξt)− (βi

tkj)
⊤xikt−1

)
︸ ︷︷ ︸

=:αi
tk

+

( qt∑
j=1

ptjβ
i
tkj︸ ︷︷ ︸

=:βi
tk

)⊤
xt−1,

563

where βi
tkj denotes a subgradient of Qi+1

t
(·, ξtj) at xikt−1 for k ∈ K, j = 1, . . . , qt.564

Again, by defining565

ϕitk(xt−1) := αi
tk + (βi

tk)
⊤xt−1,566

we can obtain a cut567

(3.5) Qt(xt−1) ≥ ϕitk(xt−1)568
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for each k ∈ K and can update the cut approximation to569

(3.6) Qi+1
t (xt−1) := max

{
Qi

t(xt−1), ϕ
i
t1(xt−1), . . . , ϕ

i
t|K|(xt−1)

}
.570

Computing Subgradients. So far, we have discussed the main idea of the571

cut generation process in the backward pass of SDDP, which is based on evaluating572

approximate value functions Qi+1

t
(·, ·) and using subgradients for them at trial points573

xikt−1. For the interested reader, we now address in more detail how to compute those574

subgradients. This step uses dual information, i.e., it is based on duality theory of575

linear programs. For simplicity, we assume Xt = {xt ∈ Rnt : xt ≥ 0} for all t ∈ [T ].576

Consider stage T , some k ∈ K and some j ∈ {1, . . . , qT }. Then, the dual problem577

to the linear stage-T subproblem (2.10) is578 {
max
πT

(
hTj − TT−1,jx

ik
T−1

)⊤
πT

s.t. W⊤
TjπT ≤ cTj .

579

Let πikj
T be an optimal dual basic solution. Such solution does always exist by580

relatively complete recourse and boundedness (see Assumption 9 and Lemma 2.5).581

By strong duality of linear programs, it follows582

Qi+1

T
(xikT−1, ξTj) =

(
hTj − TT−1,jx

ik
T−1

)⊤
πikj
T

= −(πikj
T )⊤TT−1,jx

ik
T−1 + (πikj

T )⊤hTj .
583

Importantly, the dual feasible set does not depend on xT−1, but remains un-584

changed for all trial points. In particular, πikj
T is always dual feasible, but not neces-585

sarily dual optimal for all xT−1. Therefore, and because of minimization, it follows586

Qi+1

T
(xT−1, ξTj) ≥ −(πikj

T )⊤TT−1,jxT−1 + (πikj
T )⊤hTj

= −(πikj
T )⊤TT−1,j(xT−1 + xikT−1 − xikT−1) + (πikj

T )⊤hTj

= Qi+1

T
(xikT−1, ξTj)− (πikj

T )⊤TT−1,j(xT−1 − xikT−1).

587

Hence,588

βi
Tkj = −(πikj

T )⊤TT−1,j589

is a subgradient of Qi+1

T
(·, ξTj) at x

ik
T−1.590

The previous derivation provides some additional insight. Since the dual feasible591

set is polyhedral and does not depend on xT−1, for each noise term ξTj , j = 1, . . . , qT ,592

there exist only finitely many dual extreme points (dual basic solutions) that can be593

attained. Therefore, only finitely many different cut coefficients can be generated.594

This is crucial for some convergence proofs of SDDP, as we discuss later.595

For earlier stages t = T − 1, . . . , 2, the dual problem to subproblem (2.10) looks596

a bit more sophisticated, as the cut approximations Qi+1
t+1(·) have to be taken into597

account, which requires additional dual multipliers ρrt for all cuts r ∈ Γt+1, where598

Γt+1 denotes the index set of cuts generated for the following stage. However, the599

derivation is completely analogous and, again, we arrive at600

Qi+1

t
(xt−1, ξtj) ≥ Qi+1

t
(xikt−1, ξtj)− (πikj

t )⊤Tt−1,j(xt−1 − xikt−1),601
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so that602

(3.7) βi
tkj = −(πikj

t )⊤Tt−1,j603

is a subgradient of Qi+1

t
(·, ξtj) at xikt−1. Interestingly, the optimal dual multipliers604

ρrikjt are not explicitly required in this formula.605

3.4. Bounds and Stopping. At the first stage, the subproblem606

(3.8) vi := min
x1∈X1(x0)

c⊤1 x1 +Qi+1
2 (x1).607

is solved. As Qi+1
2 (·) is a lower approximation of Q2(·), vi is a valid lower bound to608

the optimal value v∗ of (MSLP). This bound can be initialized with v0 = −∞ or any609

a priori known lower bound for v∗.610

In contrast, we are not guaranteed to obtain a valid upper bound for v∗ during611

iterations of standard SDDP, as we only consider a small subset K ⊆ S of all scenarios.612

This means that in the forward pass, the feasible policy for (MSLP), which is implicitly613

defined by the current cut approximations Qi
t(·), t = 2, . . . , T, is only evaluated for a614

subset of all scenarios. By evaluating these scenarios in the objective of (MSLP) and615

taking the sample average616

(3.9) viK :=
1

|K|
∑
k∈K

T∑
t=1

(
ct(ξ

k
t )
)⊤
xikt︸ ︷︷ ︸

=:vi(ξk)

617

we only obtain an unbiased estimator of the true upper bound vi (a statistical upper618

bound) associated with the current policy, see Section 7 for more details.619

After each iteration of SDDP, one or several stopping criteria are checked, which620

may or may not be based on viK. We discuss different stopping criteria in detail in621

Section 7. If SDDP does not stop, a new iteration i+1 is started with a forward pass.622

It is worth mentioning that the first-stage subproblems (3.1) and (3.8) are the623

same for consecutive backward and forward passes, and in principle only have to be624

solved once. The same is true for consecutive forward and backward pass problems625

at the final stage T .626

3.5. Cut Properties. We discuss convergence of SDDP in Section 4. It relies627

on three key properties of the derived cuts:628

Lemma 3.2. For any stage t = 2, . . . , T and any k ∈ K, the functions ϕitk(·) are629

(a) valid lower approximations of Qt(·),630

(b) tight for Qi+1
t (·) (as defined in (2.11)) at xikt−1,631

(c) finite, i.e., only finitely many different cuts can be generated, if we restrict to632

dual basic solutions to generate cuts.633

Proof. Property (a) follows immediately from (3.3) and (3.5). (b) holds because634

of strong duality for linear programs and taking expected values over the obtained635

optimal values. Alternatively, we can rearrange the RHS of inequality (3.4) to obtain636

(3.10) ϕitk(xt−1) = Qi+1
t (xikt−1) +

qt∑
j=1

ptj(β
i
tkj)

⊤(xt−1 − xikt−1).637

Inserting xikt−1 yields ϕitk(x
ik
t−1) = Qi+1

t (xikt−1).638
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Property (c) follows by induction using the arguments on the dual feasible region639

previously discussed for stage T .640

Note that ϕitk(·) is not necessarily tight for the true expected value function Qt(·)641

in early iterations for t ̸= T , but rather might provide a loose cut only. However,642

by the finiteness and tightness properties it can be shown recursively, that eventually643

the derived cuts become tight for Qt(·) as well. In fact, after finitely many steps, the644

polyhedral function Qt(·) is represented exactly for all t = 2, . . . , T . This is a key645

property for the convergence of SDDP.646

3.6. Illustrative Example. To illustrate the key steps of SDDP, we present a647

simple example.648

Example 3.3. Consider the 3-stage (MSLP)649

(3.11)

min x1 + x2 + x31 + x32

s.t. x1 ≤ 6

x2 ≥ ξ2 − x1
x31 − x32 = ξ3 − x2
x1, x2, x31, x32 ≥ 0,

650

which is inspired by Example 2 in Chapter 5 of [26]. The uncertain data in the RHS is651

stagewise independent and uniformly distributed with ξ2 ∈ {4, 5, 6} and ξ3 ∈ {1, 2, 4}.652

Problem (3.11) has not entirely the same structure as problem (MSLP), but can be653

easily converted to it by introducing slack variables. However, for illustrative purposes,654

we abstain from this. The problem can be expressed by means of the value functions655

(3.12) Q3(x2, ξ3) =


min
x3

x31 + x32

s.t. x31 − x32 = ξ3 − x2
x31, x32 ≥ 0

656

and657

Q2(x1, ξ2) =


min
x2

x2 +Q3(x2, ξ2)

s.t. x2 ≥ ξ2 − x1
x2 ≥ 0.

658

The first-stage problem then is659

v∗ =

{
min
x1

x1 +Q2(x1)

s.t. x1 ∈ [0, 6].
660

The optimal solution is given by x∗1 = 3 with v∗ = 53
9 .661

As shown in [26], the stage-3 value functions can be written in closed-form as662

Q3(x2, ξ2, ξ3) = |ξ3− x2| for all scenarios. Taking expectations, a closed-form expres-663
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sion for Q3(·) can be derived, and by recursion we obtain664

Q2(x1) =



23

3
− 16

9
x1, x1 ∈ [0, 1]

67

9
− 10

9
x1, x1 ∈ [1, 2]

59

9
− 10

9
x1, x1 ∈ [2, 3]

47

9
− 2

3
x1, x1 ∈ [3, 4]

31

9
− 2

9
x1, x1 ∈ [4, 5]

7

3
, x1 ∈ [5, 6].

665

The optimal value is v∗ = 56
9 .666

We apply SDDP for illustration. We assume loose initial bounds θ2, θ3 ≥ −10667

for simplicity. In the forward pass, we sample one scenario path per iteration, i.e.,668

|K| = 1. In iteration 1, let (ξ2, ξ3) = (5, 4) define this path. Solving the approximate669

subproblems (2.10) for all stages t = 1, 2, 3 and (ξ2, ξ3) = (5, 4), we obtain viK = 6. In670

fact, this is no valid upper bound for v∗.671

In the backward pass, cuts for Qt(·), t = 2, 3, are derived at the trial points. For672

stage 3, the cut gradient is β3(4) = 1. Moreover, Q2
3(4) = 5

3 . With formulas (3.5)673

and (3.10) this yields the cut Q3(x2) ≥ − 7
3+x2, which is incorporated into the stage-2674

subproblems. Solving these problems yields the cut Qt(x1) ≥ 23
3 − 2x1. At the first675

stage, the lower bound computes to v1 = 5
3 .676

The expected value functions and the obtained cuts for three iterations are depicted677

in Figure 5. In the second and the third iteration, the same scenario path (ξ2, ξ3) =678

(6, 1) is sampled in the forward pass.679

Figure 6 displays the bounds vi and viK for ten iterations of SDDP. It shows that680

the lower bounds stabilize quickly at v∗, whereas the values of viK oscillate around v∗.681
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Q
3
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Q
2
(x

1
)

Fig. 5: Expected value functions for Example 3.3 with cuts obtained in first three
iterations depicted in blue, green and red.

3.7. Policy Assessment. As mentioned before, in standard SDDP no valid682

upper bound v for v∗ is determined. While in each iteration a statistical upper683
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viK
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Fig. 6: Bounds for 10 iterations of SDDP applied to Example 3.3.

bound (3.9) can be computed, the number of samples |K| may often be too small684

to appropriately assess the quality of the current policy. In particular, |K| is often685

chosen to be 1 in practice, and thus viK is not a meaningful estimate for v.686

Therefore, to assess the obtained policy, usually an additional forward simulation687

is conducted once SDDP has terminated. For this simulation a much higher number688

of sample paths through the scenario tree is used, e.g. |K| ∈ {1000, 10000}, leading689

to a reasonable estimator vK. In this step, the simulation can be either performed in-690

sample (using sample paths through the recombining scenario tree) or out-of-sample691

(using the true underlying distribution, e.g., if ξt is a continuous random variable that692

is discretized to satisfy Assumption 5, see Section 11).693

Remark 3.4. In the light of Remark 3.1 this policy assessment step can also be694

interpreted from a statistical learning perspective. After the model has been trained,695

a model validation (using in-sample data) or a model test (using out-of-sample data)696

are performed.697

4. Convergence and Complexity. The convergence behavior of SDDP has698

been thoroughly analyzed over the years. We discuss the main convergence results699

in this section. We first focus on finite convergence of SDDP, and then afterwards700

discuss the actual convergence rate, i.e., the computational complexity of SDDP. Our701

overview is loosely based on the review chapter in [71].702

4.1. Finite Convergence. The first convergence analyses related to SDDP have703

been conducted in [38] and [124], however implicitly assuming independence of sam-704

pled random variables and convergent subsequences of algorithm iterates. A first705

complete convergence proof is given by Philpott and Guan in [163] for the case where706

uncertainty only enters the RHS of (MSLP) (in fact, they consider a more general707

algorithm than SDDP, including sampling in the backward pass). The same reasoning708

is used by Shapiro [197] for the case where also Wt, ct and Tt−1 are uncertain.709

The convergence behavior of SDDP can be explained using two main arguments:710

First, as stated in Lemma 3.2, only finitely many different cuts, and by that only fi-711

nitely many different cut approximations Qt(·) can be constructed for all t = 2, . . . , T .712

This result requires linearity (Assumption 6) and finite random variables (Assump-713

tion 5). Moreover, these finitely many cuts also satisfy some tightness property, which714

implies that they are sufficient to exactly represent the polyhedral (expected) value715
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functions (see Theorem 2.8). For a deterministic algorithm, this would result in finite716

convergence to the true optimal point and value (see the convergence properties of717

Benders decomposition [17] and Kelley’s cutting-plane method [110]).718

For SDDP, it has to be taken into account that scenarios are sampled in the719

forward pass. This means that the cut approximations might not further improve720

for some iterations if the wrong scenarios are sampled. Therefore, the second key721

argument for many proofs of finite convergence of SDDP is that each scenario is visited722

infinitely many times with probability 1 given that the algorithm does not terminate.723

Intuitively, this means that after finitely many iterations the right scenarios will be724

sampled with probability 1, leading to the construction of a new cut. This requirement725

is satisfied under independent sampling, that is, if the sampling in the forward pass726

of Algorithm 3.1 is random and independent of previous iterations. It is also satisfied727

for an exhaustive enumeration of all scenarios in the sampling process.728

Using these two arguments, the following main convergence result can be obtained729

Theorem 4.1 (Almost sure finite convergence of SDDP). Under Assumptions 1730

to 9 and using an independent random sampling procedure in the forward pass, SDDP731

converges with probability 1 to an optimal policy of (MSLP) in a finite number of732

iterations.733

Importantly, almost sure finite convergence to an optimal policy of (MSLP) does734

not imply that the trajectories (xikt )t∈[T ], k ∈ K, and the corresponding sample aver-735

ages viK obtained in SDDP converge, as both are random and depend on the current736

sample K. However, the lower bounds vi obtained in SDDP converge to v∗.737

Deterministic Sampling. Recently, convergence analyses of SDDP and related738

algorithms have often made use of deterministic sampling techniques instead of ran-739

dom sampling [10, 11]. Here, the idea is that the approximation error in SDDP can740

be controlled and guided to zero in a deterministic way if in each iteration scenarios741

are sampled for which the current approximation gap is maximized. This requires,742

however, that the approximation gap itself can be bounded rigorously. Therefore, in743

addition to the lower cut approximation Qt(·) also an upper approximation Qt(·) is744

constructed and iteratively refined [10, 229], so that deterministic lower bounds vi and745

upper bounds vi are computed in each iteration. For more details on deterministic746

sampling and deterministic upper bounds we refer to Sections 6 and 8.747

Generalizations. It has been shown that some of the basic assumptions (As-748

sumptions 1 to 9) can be relaxed without compromising convergence of SDDP. Gi-749

rardeau et al. [78] analyze the case where SDDP is applied to multistage problems750

with nonlinear convex subproblems, i.e., Assumption 6 is relaxed. In this case, the751

value functions Qt(·) are no longer polyhedral, but still convex. The authors show that752

almost sure convergence is still satisfied as long as some convexity and compactness753

assumptions and some tightened recourse assumption are satisfied. We discuss this754

result in detail in Section 15 when we formally introduce convex multistage stochastic755

nonlinear problems. The main idea is that even without polyhedrality, Qt(·) can be756

guaranteed to be Lipschitz continuous, so that the approximations of Qt(·) get better757

in a whole neighborhood of the trajectories (xikt )t∈[T ], k ∈ K.758

Guigues generalizes this convergence result to the risk-averse case where Assump-759

tion 8 is relaxed [85]. Forcier and Leclère provide convergence results for a generalized760

framework of SDDP-related algorithms, including SDDP with inexact cuts or regu-761

larization (see also Section 21), risk-averse SDDP (see also Section 12) and extensions762

to convex nonlinear or non-convex mixed-integer (nonlinear) problems (see also Sec-763

tions 15 and 16). Moreover, they prove convergence for (MSLP) without finite ran-764
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domness, i.e., dropping Assumption 5. Further convergence proofs are provided for765

multi-cut SDDP [8], SDDP with cut selection [8, 87], adaptive partition-based SDDP766

[205] (see also Section 21), using SDDP with saddle cuts [55] (see also Section 14) and767

variants of distributionally robust SDDP [65, 161] (see also Section 13), Another proof768

of almost sure finite convergence for extensions to non-convex problems is provided769

in [229].770

4.2. Complexity. Theorem 4.1 guarantees almost sure finite convergence of771

SDDP. While this result is of theoretical interest, it may not be very relevant in772

practical applications, as it provides no result on the rate of convergence. As pointed773

out in [71], especially the argument of scenarios being sampled repeatedly (infinitely774

many times) is almost never applicable to SDDP in practice due to the sheer amount775

of scenarios in S. Important for the rate of convergence are the computational cost776

per iteration and the required number of iterations.777

Cost per Iteration. For the computational cost per iteration, the number of778

LPs to be solved in the backward pass is crucial. Per sample k ∈ K in the forward779

pass, qt subproblems are solved for each stage except for t = 1 in the backward pass.780

Therefore, the total number of LPs solved is 1 + |K|∑T
t=2 qt. Hence, the number of781

problems to be solved grows linearly in the number of stages T , in the number of782

samples |K| and in the number of noise terms qt [178].783

Expected Number of Iterations. The computational bottleneck for SDDP is784

the expected required number of iterations to achieve convergence. Recently, there785

has been active research on computing theoretical bounds on this number, with Lan786

[116] as well as Zhang and Sun [229] publishing similar results using slightly different787

approaches. In both cases, the authors start by considering some case of deterministic788

sampling (in [116] the associated algorithm is referred to as explorative dual dynamic789

programming (EDDP)) before enhancing their results to the random sampling variant790

of SDDP. We discuss deterministic sampling in more detail in Section 6. The main791

idea to derive iteration bounds is the following: By exploiting Lipschitz continuity of792

Qt(·) and Qt(·), it is possible to control the approximation error also at points where793

no cuts are constructed, as long as they lie in a neighborhood of some trial point xikt .794

As long as the state space is bounded for all t ∈ [T ] (cf. Assumption 9), it can be795

completely covered by finitely many such neighborhoods [229]. A similar reasoning is796

applied in [71].797

More formally, Lan [116] introduces the notion of saturated points x̄t−1, in which798

the approximation of Qt(·) is already ε-close for some predefined tolerance ε > 0, i.e.,799

Qt(x̄t−1)−Qi
t(x̄t−1) ≤ ε,800

and distinguishable points x̄t−1, which have at least a δ-distance to the set Xsat
t−1 of801

already saturated points for some δ > 0, that is802

∥x̄t−1 − xt−1∥ > δ, ∀xt−1 ∈ Xsat
t−1.803

If some trial point xikt is saturated and distinguishable, the iteration i can be804

called effective [71]. Using deterministic sampling, all iterations in SDDP can be805

shown to be effective, and thus the number of iterations can be bounded in the806

aforementioned way. For random sampling, this is not true, but the probability for807

an effective iteration is at least 1
N with N := ΠT−1

t=2 nt.808

In the light of Assumption 9 (b), for any t ∈ [T ], we call the bound Dt satisfying809

∥xt − x′t∥ ≤ Dt, ∀xt, x′t ∈ Xt810
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the diameter of the state space. Additionally, let L denote a Lipschitz constant for811

the objective function of (MSLP), which exists due to Corollary 2.10.812

Then, the following complexity results are satisfied by SDDP.813

Theorem 4.2 (Complexity of SDDP [116, 229]). Let Dt ≤ D for all t ∈ [T ].814

For some arbitrary ε > 0, the (expected) number of required iterations of SDDP815

(Algorithm 3.1) to obtain816

• an ε-optimal solution using deterministic sampling is817

– polynomial in T, ( 1ε ), L and D,818

– exponential in nt,819

• a (Tε)-optimal solution using deterministic sampling is820

– linear in T ,821

– linear in T and X if Xt is finite with cardinality |Xt| ≤ X,822

• an ε-optimal solution using random sampling is823

– polynomial in qt, T, (
1
ε ), L and D,824

– exponential in T and nt.825

This means that for standard SDDP (using random sampling) the expected num-826

ber of iterations grows exponentially in the horizon T and the dimension nt of the827

state space. This is computationally important. The exponential complexity with828

respect to the state dimension is not that surprising, as it is well-known for cutting-829

plane methods [145] and inherited by SDDP. Similarly, the exponential complexity830

with respect to the number of stages directly follows from the exponential number of831

scenarios that may have to be sampled in the worst-case. Interestingly, under deter-832

ministic sampling, the complexity is independent of the number qt of noise terms per833

stage, as this number only affects the computational cost per iteration.834

We see that using some deterministic sampling scheme a polynomial or even linear835

iteration complexity in T can be achieved, whereas the iteration complexity in the836

state space cannot be alleviated [229].837

5. Comparison with Related Methods. We briefly compare SDDP to solu-838

tion methods that it is (historically) related to, as discussed in Section 1.839

5.1. Relation to SDP. SDDP is closely related to stochastic dynamic program-840

ming (SDP). SDP usually is applied in a setting where not only state variables, but841

additional local variables are considered, see Remarks 2.2 and 2.4. Therefore, the842

DPE and value functions are considered in the form of (2.7), which we repeat here843

for convenience:844

Qt(xt−1, ξt) = min
ut∈Ut(xt−1,ξt)

ft(ut, ξt) +Qt+1(Tt(xt−1, ut, ξt)).845

The main idea of SDP is to explicitly evaluate the (expected) value functions for846

all possible cases during a forward or backward iteration through the stages t ∈ [T ].847

This is only possible if the support Ξt of ξt and the state space Xt ⊂ Xt are finite for848

all t ∈ [T ]. Otherwise, infinitely many evaluations would be required. Additionally, it849

is required that also the action space Ut(xt−1, ξt) is finite for all xt−1 ∈ Xt−1, ξt ∈ Ξt,850

so that the minimum in (2.7) can be computed by finitely many evaluations. For this851

reason, all these sets may have to be discretized first [168].852

The computational effort of SDP scales linearly in T and in the cardinalities853

|Xt|, |Ut(xt−1, ξt)| and |Ξt|. The three sets might be multidimensional, and thus854

require to be discretized in each dimension dt−1, κt and d̃t. Hence, their cardinality855

grows exponentially in these dimensions, which is computationally prohibitive for856
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high-dimensional problems. This is known as the curse of dimensionality of SDP, see857

also Section 1.858

SDDP avoids the requirements of state space and action space discretization by859

not evaluating Qt(·), t ∈ [T ], exactly for all (finitely many) possible actions and states,860

but approximating them by an iteratively refined polyhedral outer approximation861

Qt(·), constructed by linear cuts. It can thus be considered an approximate dynamic862

programming (ADP) method.863

5.2. Relation to NBD. In stochastic programming, it is common practice to864

consider problems (MSLP) with finite randomness (Assumption 5), but without the865

requirement of stagewise independence of ξt (Assumption 2). In that case the uncer-866

tainty can be modeled by a finite scenario tree, which compared to the recombining867

tree from Section 2 exhibits some path dependence and satisfies the usual tree prop-868

erty that each node n has a finite set of child nodes C(n), but a unique parent node869

a(n). An example of a scenario tree with T = 3 and |S| = 9 is illustrated in Figure 7.870

This scenario tree represents the same number of scenarios |S| as the recombining one871

in Figure 1, but requires
∑T

t=2 q
t−1
t + 1 instead of

∑T
t=2 qt + 1 nodes.872

t = 3t = 2t = 1

ξ6

Fig. 7: Scenario tree with 9 scenarios and ξ6 highlighted.

To solve (MSLP) associated with a general scenario tree, in principle the same873

approach as in SDDP can be used to approximate Qt(·) with linear cuts. However,874

due to the path dependence, the value functions Qt(·) and expected value function875

Qt(·) depend on the history ξ[t−1] of the data process (ξt)t∈[T ]. In other words,876

each node n has its own value function Qn(·), and with each node (except for leaf877

nodes) is associated an expected value function QC(n)(·). Therefore, to update the878

approximations Qi
C(n)(·) of all QC(n)(·) in each iteration, all nodal subproblems have879

to be solved in the backward pass, which in turn requires to compute trial points xia(n)880

for all nodes, i.e., solving all nodal subproblems in the forward pass as well.881

Because of its close relation to the L-shaped method for solving two-stage sto-882

chastic linear programs [226] and to Benders decomposition [17] this solution method883

is called nested Benders decomposition (NBD) or just nested decomposition. It was884

first proposed by Birge in 1985 [25] and can be interpreted as a decomposition method885

for the extensive form of the deterministic equivalent of (MSLP). Contrary to SDDP,886

NBD guarantees that valid lower bounds v and upper bounds v of v∗ are determined887
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in each iteration and by that allows for a deterministic stopping criterion in a straight-888

forward way. The upper bounds can be computed as889

vi := E

[∑
n∈T

cnx
i
n

]
,890

where T is the set of all nodes in the scenario tree.891

On the other hand, due to the sheer amount of subproblems to be solved in892

each iteration, which grows exponentially in T , it is computationally tractable for893

problems of moderate size. By moderate we mean instances with some hundreds or a894

few thousand scenarios, and 4 or 5 stages at maximum [225].895

Note that for general scenario trees also sampling scenarios from S in the forward896

pass does not necessarily help to reduce the computational burden and to speed-up897

the solution process, as it reduces the computational effort per iteration, but at the898

same time implicates that the cut approximations Qi
C(n)(·) are only improved for some899

QC(n)(·) in each iteration.900

Under stagewise independence (Assumption 2) this is different. The scenario tree901

collapses to a recombining tree, and there exists only one expected value function902

Qt(·) for each t = 2, . . . , T . If now only a sample K ⊂ S of scenarios is considered903

in each iteration i, as in SDDP, still the cut approximations Qi
t(·) for all Qt(·) are904

updated with new cuts. The key difference is that in the stagewise independent case,905

for some stage t differing scenarios still share the same nodes, and thus value functions906

in the recombining scenario tree.907

From this perspective, SDDP can be interpreted as a sampling variant of NBD908

which reduces the computational effort per iteration significantly [178], but heavily909

relies on stagewise independence of (ξt)t∈[T ] in order to leverage the sampling with910

respect to value function approximations.911

Remark 5.1 (Cut-sharing). In the literature, the previous property of SDDP is912

often referred to as cut-sharing. The idea behind this phrase is the following. Consider913

a stagewise independent data process (ξt)t∈[T ]. Even if not being the best possible914

representation, this process can be modeled using a classical finite scenario tree instead915

of a recombining one – hiding the fact that there exists no path dependence. In each916

iteration of SDDP now only a sample K of scenarios is considered, i.e., only a subset917

of nodes from T is visited. Nonetheless, the constructed cuts are valid for all scenarios918

or nodes, respectively, no matter if they have been visited or not. This leads to the919

impression that despite being generated using a specific scenario, cuts can be shared920

with other scenarios.921

Arguably, the phrase can be considered misleading, though, as it is based on a922

classical scenario tree perspective and may evoke the connotation that cuts are actu-923

ally shared between different approximations Qi
C(n)(·). However, the crucial point is924

that due to stagewise independence, there is only one function Qt(·) to be approxi-925

mated for each stage, with no need to share cuts. Cuts are shared between scenarios926

because these scenarios share nodes in the recombining scenario tree.927

5.3. Complexity Comparison. We summarize the main complexity results for928

SDDP and the related methods in Table 3.929

In contrast to SDP, SDDP does not require a state space and action space dis-930

cretization. Especially, the later is computationally important in practice, while the931

former at least does not translate into an improvement of the worst-case complexity932

class. On the other hand, SDDP does not have linear complexity in T .933
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Table 3: Complexity of SDDP and related solution methods.

Det. Equiv. NBD SDDP SDP

Requirements
stagewise independence no no yes yes*
state discretization no no no yes
action discretization no no no yes

Complexity
in T exponential exponential exponential linear
in nt linear linear exponential exponential
in qt polynomial polynomial polynomial polynomial

* Markovian uncertainty is possible as well.

Compared to NBD, SDDP mainly reduces the computational effort per iteration934

significantly, but does not get rid of the exponential growth of the computational cost935

with respect to T . In return, it heavily relies on stagewise independence (Assump-936

tion 2) and has worse complexity with respect to the state dimension nt.937

We can conclude that SDDP, while mitigating some of the weaknesses of SDP938

and NBD (sometimes advertized as “breaking the curse of dimensionality”), does not939

manage to leave the respective worst-case complexity classes. On the contrary, it940

inherits some of the complexity drawbacks of both methods. Still, in many applica-941

tions (where not worst-case complexity is decisive) it shows considerable performance942

improvements compared to SDP and NBD, especially for problems with continuous943

action space, a medium number of stages T and a moderate state dimension nt.944

While Theorem 4.2 indicates that convergence may take extremely long in large-scale945

applications, and too long to be computationally tractable, SDDP has shown good946

performance for large-scale instances of (MSLP) in many applications, as we discuss in947

Section 9. This is also due to various improvements, which we address in the following948

sections.949

6. Sampling. Sampling is a central element of SDDP, see Section 3. In the950

forward pass, a finite number |K| of scenarios is sampled to simulate the current951

policy and compute a trajectory of trial points (xikt )t∈[T ] for all k ∈ K. Often, this952

sampling is done from a finite set of scenarios S (see Assumption 5), with |K| ≪ |S|.953

Alternatively, it is possible to directly sample from a given (continuous) distribution.954

In this section, we discuss different sampling techniques which can be used in955

SDDP. As indicated in Sections 3 and 4, we can distinguish between random sam-956

pling and deterministic sampling methods. In standard SDDP, as originally proposed957

in [151], random sampling is used. For random sampling, the main requirement is958

that the samples should be independent and identically distributed (i.i.d.). This is959

important for two reasons:960

(1) This way, almost sure finite convergence of SDDP can be ensured, as any961

scenario is sampled infinitely many times with probability 1, assuming that962

the algorithm does not terminate, see Section 4.963

(2) In the originally proposed stopping criterion of SDDP a confidence interval is964

used, which is built using the sample mean viK (3.9), see Section 7. However,965

by the Central Limit Theorem, even an approximate confidence interval can966
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only be obtained for a sequence of i.i.d. random variables.967

6.1. Monte Carlo Sampling. The simplest sampling method satisfying the968

above requirement is Monte Carlo (MC) sampling. Here, samples are drawn ran-969

domly from the probability distribution of ξt in each iteration, by first sampling from970

a uniform distribution and then using appropriate transforms. Under stagewise inde-971

pendence (Assumption 2), this is done independently for each stage t ∈ [T ].972

As the quantities vi(ξk) are i.i.d., the value viK (3.9) that can be computed in the973

SDDP forward pass is an unbiased estimator of vi and according to the Strong Law of974

Large Numbers converges to vi for |K| approaching infinity. Still, the sampling error975

can be significant. The variance of viK can be estimated by 1
|K|
(
σi
v,K
)2
. This means976

that the variance can be reduced either by increasing the number of samples |K| or by977

reducing the sample variance
(
σi
v,K
)2
. Increasing the sample size may look promising978

at first glance, but may become computationally intractable in practice [149]. Recall979

that for every sample k ∈ K a number of 1 +
∑T

t=2 qt subproblems has to be solved980

in the backward pass of each iteration. Therefore, the more promising approach is981

combining MC sampling with variance reduction techniques [149].982

6.2. Variance Reduction Techniques. Incorporating variance reduction tech-983

niques into sampling in SDDP is studied extensively in [104, 149]. For a review on984

sampling techniques in stochastic programming in general, we refer to [103].985

Randomized QMC Sampling. In [104], it is proposed to use Quasi-Monte986

Carlo (QMC) sampling within SDDP. In this case, instead of randomly sampling987

from the uniform distribution, a deterministic sequence of points u1, . . . , uN from988

(0, 1)κt is chosen. This is done in such a way that the sampled points fill (0, 1)κt989

as homogeneously as possible (so the empirical distribution is as close to a uniform990

distribution as possible). Then, after an appropriate transformation, they provide a991

better representation of ξt than randomly sampled points.992

A drawback of QMC methods is that the sample points are not random, the ob-993

tained estimator is biased and no confidence interval can be established. Randomized994

QMC (RQMC) methods, where the choice of QMC points is combined with some kind995

of randomness, avoid this drawback and allow for standard error estimation [104].996

Compared to MC sampling, RQMC methods achieve better convergence rates of997

O
(
|K|−1(log|K|)κt

)
, and thus are considered more efficient. However, the convergence998

rate depends on the dimension κt of ξt [104].999

Latin Hypercube Sampling. In Latin Hypercube Sampling (LHS) [140], the1000

space (0, 1)κt is divided into equidistant subintervals and then scenarios are sampled1001

from each subinterval in such a way that in each row and column of the grid only one1002

point is sampled. This is illustrated in Figure 8 (a).1003

In this way, again, a more homogeneous distribution of the sample points can1004

be obtained, and compared to MC sampling, the variance can be reduced. On the1005

flipside, poor space-filling or correlation between the sample points has to be ruled1006

out, see Figure 8 (b), which requires significant additional effort.1007

Incorporation into SDDP. It is important to notice that while reducing the1008

variance compared to the classical MC estimators, scenarios sampled by RQMC and1009

LHS are no longer i.i.d. Therefore, both sampling techniques cannot be incorporated1010

into SDDP without modification, if convergence properties (and the stopping crite-1011

rion) should not be compromised. Homem-de-Mello et al. therefore suggest to build1012

sampling blocks [104]. This means that the total number of samples |K| is divided1013

into M blocks ℓ = 1, . . . ,M with M ≥ 5 a divisor of |K|. Then, for each block1014
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(b) Correlated sample points.

Fig. 8: Latin Hypercube Sampling for two dimensions.

ℓ, |K′| := |K|/M scenarios are obtained using conditional sampling with RQMC or1015

LHS, which are not independent. For each k′ ∈ K′, values vi(ξk
′
) are determined and1016

averaged to vi,ℓ.1017

This is repeated for each block ℓ. Then, the mean viK of all values vi,ℓ, ℓ =1018

1, . . . ,M, and the sample variance are determined. As the scenarios of different blocks1019

are independent, this still yields a useful confidence interval to stop the algorithm.1020

Another challenge reported in [104] is that it is computationally expensive to1021

generate samples using RQMC for high dimensions. To reduce the computational1022

effort, it may be reasonable to apply RQMC only to important components, e.g., to1023

early stages in [T ], and standard MC or LHS to the other ones. This strategy is called1024

padding and applied after 6 or 12 stages for numerical tests in [104].1025

Experiments in [104] imply that RQMC and LHS both lead to upper bounds vK1026

oscillating around the lower bound v more quickly compared to MC sampling.1027

6.3. Importance Sampling. In [149], Parpas et al. propose incorporating im-1028

portance sampling into SDDP. Importantly, in difference to the previously described1029

techniques, it can be used to obtain i.i.d. samples in the forward pass.1030

The main idea of importance sampling in general is to attach different importance1031

to subregions of the sample space and to sample more often from subregions of higher1032

importance. In context of SDDP, this means that it is sampled with priority from1033

scenarios that contribute more to the value of the expected value functions Qt(·).1034

This is achieved by sampling from a different distribution than the original one,1035

the so-called importance sampling distribution, but correcting the bias introduced by1036

this difference. Then, an importance sampling estimate of v can be calculated as1037

vIS,iK :=
1

|K|
∑
k∈K

vi(ξk)Λ(ξk)1038

with Λ(ξ) := f(ξ)
g(ξ) , where f denotes the original distribution and g the importance1039

sampling distribution. The likelihood function Λ(·) is used to correct for sampling1040

from the wrong distribution. It can be shown that importance sampling can reduce1041

the variance of sampling estimators significantly. In the SDDP case, as shown in [149],1042
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the variance is minimized for choice1043

g∗t (ξt) :=
|Qt(x

ik
t−1, ξt)|

Ef |Qt(xikt−1, ξt)|
ft(ξt).1044

However, clearly, this zero-variance distribution is a theoretical construct and not1045

known, which is referred to as the curse of circularity. Therefore, it is proposed to1046

first approximate g∗ using a framework including Kernel density estimation [149].1047

In numerical experiments, SDDP with importance sampling is shown to outper-1048

form MC and QMC sampling based methods, in case that it is difficult to sample1049

from the original probability distribution and that the original problem has moderate1050

or high variance [149].1051

6.4. Deterministic Sampling. As already discussed in Section 4, in step 6 of1052

SDDP (Algorithm 3.1) also some deterministic sampling can be used. In this case,1053

|K| = 1. In the literature, two different approaches are considered.1054

Worst Approximation Sampling. The first one requires that in addition to1055

the (lower) cut approximation Qt(·) of Qt(·) also an upper approximation Qt(·) is1056

constructed and iteratively refined in SDDP. Assume that in the forward pass on1057

stage t−1 the trial point xit−1 has been computed. Then, for stage t the approximate1058

subproblem (2.10) is solved for xit−1 and for all noise terms ξtj , j = 1, . . . , qt, yielding1059

optimal states xtj . For the next stage, the trial point xit = xtj′ is chosen such that1060

j′ ∈ argmax
j=1,...,qt

{
Q

i

t(xtj)−Qi
t(xtj)

}
,1061

i.e., that the gap between the current upper and lower approximations is maximized.1062

This corresponds to sampling noise term ξtj′ on stage t.1063

This form of deterministic sampling is used for SDDP in [229]. Its computational1064

drawback is that at each stage qt subproblems have to be solved instead of only1065

|K| ≪ qt. A similar approach was first proposed by Baucke et al. in [10, 11] and1066

called problem-child node selection. However, their setting differs a bit from original1067

SDDP, as each subproblem contains specific variables xtj , j = 1, . . . , qt, for all random1068

outcomes, and therefore in their case only one subproblem has to be solved in the1069

sampling step. Another related sampling scheme is used in robust dual dynamic1070

programming (RDDP) [76]. In that case, ξtj′ is determined by solving a special upper1071

bounding problem containing Q
i

t(·)1072

Explorative Sampling. Explorative deterministic sampling is proposed in [116]1073

as part of EDDP. It is based on the concepts of saturated and distinguishable points,1074

which we introduced in Section 4.2. As for the previous sampling scheme, the idea is1075

to solve the forward pass subproblems for all ξtj , j = 1, . . . , qt. Instead of maximizing1076

an approximation gap, however, the trial point xit = xtj′ is chosen such that1077

j′ ∈ argmax
j=1,...,qt

min
xt∈Xsat

t

∥xtj − xt∥,1078

i.e., the minimum distance to already saturated points is maximized. In other words,1079

a maximum distinguishable point is chosen.1080

As shown in [71], worst approximation sampling and explorative sampling are1081

equivalent in the sense that both approaches are guaranteed to lead to effective iter-1082

ations, see Section 4.2.1083
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7. Stopping Criteria. In each iteration i of SDDP, a valid lower bound vi for1084

the optimal value v∗ is determined. Additionally, a statistical upper bound viK can be1085

computed. Since the latter is not necessarily valid, an important question is when to1086

consider an obtained policy (xt(ξ[t]))t∈[T ] as (approximately) optimal and to stop the1087

SDDP method. If the stopping criterion is too conservative, the algorithm may iterate1088

much longer than required, if it is too optimistic, then SDDP may stop prematurely.1089

Confidence Stopping Criteria. In their seminal work on SDDP, Pereira and1090

Pinto propose to use a confidence interval based stopping criterion [152]. An approx-1091

imate confidence interval for a true valid upper bound vi is determined as follows1092

using the estimates vi(ξk) from (3.9).1093

Under random independent sampling, the values vi(ξk) are i.i.d. random variables1094

with expected value vi and variance (σi)2. Moreover, knowing the sample mean viK1095

(3.9), we can define a standardized random variable1096

(7.1) Zi
K :=

viK − vi
σi√
K

.1097

According to the Central Limit Theorem, this random variable asymptotically,1098

that is, for |K| → ∞, follows a standard normal distribution N (0, 1). This implies1099

that for sufficiently large |K|, Zi
K is approximately standard normal distributed.1100

Due to symmetry of the standard normal distribution, it follows1101

P(−z1−α/2 ≤ Zi
K ≤ z1−α/2) ≈ 1− α,1102

where z1−α/2 denotes (1− α
2 )-quantiles of N (0, 1) for some level α ∈ (0, 1).1103

Inserting (7.1) and rearranging yields an approximate (1−α)-confidence interval1104

for the true upper bound vi:1105 [
viK − z1−α

2

σi√
|K|

, viK + z1−α
2

σi√
|K|

]
.1106

As σi is unknown, it can be replaced by the sample standard distribution σi
v,K1107

which is defined by the sample variance1108

(σi
v,K)

2 :=
1

|K| − 1

∑
k∈K

(vi(ξk)− viK)2.1109

In that case, the standardized variable approximately follows a Student’s t-distribution1110

with degree of freedom |K| − 1. In the literature on SDDP, even in this case, the1111

(1−α)-confidence interval for the true upper bound vi is usually approximated using1112

a standard Normal distribution [200], though, which yields:1113

(7.2)

[
viK − z1−α

2

σi
v,K√
|K|

, viK + z1−α
2

σi
v,K√
|K|

]
.1114

Pereira and Pinto propose choosing α = 0.05, which implies z1−α/2 = 1.96, and1115

stopping SDDP if the lower bound vi is included in this confidence interval [152].1116

As pointed out by Shapiro [197], this stopping criterion has several flaws. For1117

instance, the higher the sample variance (σi
v,K)

2, the earlier vi exceeds the lower end1118

of the confidence interval, which provides a misguided incentive to increase (σi
v,K)

2.1119
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The same is true for increasing the confidence 1− α, which contradicts the intuition1120

behind α. Additionally, faster stopping can be achieved by reducing the sample size1121

|K|. Finally, the above stopping criterion may favor premature stopping, as it is rather1122

unlikely that vi is located exactly at the lower bound of the confidence interval.1123

For this reason, Shapiro proposes a more conservative stopping criterion where1124

SDDP terminates if the difference between the upper bound of the confidence inter-1125

val (7.2) and vi is sufficiently small.1126

Sometimes it is also suggested to include values vj(ξk) from previous iterations1127

j < i in (3.9), for instance if |K| is too small to obtain a reasonable bound. However,1128

this destroys the independence between the different samples. Thus, the Central Limit1129

Theorem can no longer be applied and the confidence-based stopping criteria are not1130

applicable. [49].1131

Hypothesis Test Criteria. Considering that hypothesis tests and confidence1132

intervals are closely related, the above stopping criterion can also be interpreted in1133

terms of a hypothesis test with hypotheses [104]:1134

H0 : vi = vi, against H1 : vi ̸= vi.1135

The null hypothesis H0 is tested using the test statistic viK, which is assumed to1136

be approximately normal distributed. This can be reasoned using the Central Limit1137

Theorem for sufficiently large |K|. Then, the region of acceptance for H0 in iteration1138

i is given by the interval (7.2). By choosing α, the type I error (rejecting optimality1139

although SDDP has converged) can be controlled. However, this comes at the cost of1140

a possibly high type II error (stopping the algorithm prematurely) [104].1141

To avoid stopping prematurely, Homem-de-Mello et al. propose a modified hy-1142

pothesis test controlling type I and type II errors simultaneously [104]. First, it is1143

checked whether1144

ρiK :=
viK − z1−α

σi
v,K√
|K|

vi
,1145

is larger than 1. ρiK describes the ratio between the lower bound of the region of1146

acceptance related to a one-sided hypotheses test with H0 : vi ≤ vi, and the lower1147

bound vi. If it is larger than 1, then optimality is rejected. This is completely in line1148

with the original SDDP hypothesis test.1149

However, if ρiK ≤ 1, optimality is not directly retained. Instead, the idea is to1150

predefine a bound γ > 0 on the probability of a type II error given that the true upper1151

bound vi exceeds the lower bound vi by more than a percentage δ. This means that1152

at least for large deviations, the type II error can be controlled. For given γ and α,1153

and given sample estimates, the value δ can be computed for which γ satisfies this1154

bound criterion:1155

δi = (z1−α + z1−γ)
σi
v,K

vi
√
|K|

.1156

If δi is below some predefined threshold δ, the sample estimates guarantee that for1157

deviations larger than δ, the type II error is under control. Therefore, SDDP stops.1158

Otherwise, the control of the type II error is not considered sufficient, and the algo-1159

rithm proceeds.1160

Computational experiments with δ = 0.1 and γ = 0.05 indicate that this stopping1161

criterion is effective in preventing SDDP from premature stopping [104]. Still, it is1162
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a heuristic, and so far, no proposed statistical testing procedure guarantees that the1163

probability of stopping prematurely is bounded by some γ > 0 in general.1164

Predefined Criteria. The previous statistical stopping criteria are computa-1165

tionally demanding and require |K| to be sufficiently large to yield reasonable approxi-1166

mate confidence intervals. Furthermore, in practical applications (MSLP) is often too1167

large to achieve convergence in reasonable time. Finally, the statistical stopping cri-1168

teria do not necessarily generalize to extensions of SDDP, such as risk-averse variants,1169

see Section 12. Therefore, in practice often more convenient stopping criteria are used1170

for SDDP. For instance, it is common to stop SDDP after a fixed number of iterations1171

I ∈ N, after a fixed number of cuts |K|I, after a predefined time or if the lower bounds1172

vi have stalled. Neither guarantees that an optimal policy is determined, though.1173

Deterministic Stopping. Finally, SDDP can be stopped deterministically as1174

long as valid upper bounds vi for v∗ are computed in addition to lower bounds vi.1175

In that case, for some predefined optimality tolerance ε > 0, SDDP stops with an1176

(approximately) optimal policy if vi − vi ≤ ε.1177

This stopping criterion requires significant additional computational effort to de-1178

termine true upper bounds vi. Hence, there is a trade-off between achieving a more1179

reasonable stopping criterion and spending computational resources on computations1180

offside of the core elements of SDDP. We address how such exact upper bounds can1181

be computed in the next section.1182

Summarizing, despite various attempts at developing reasonable termination cri-1183

teria for SDDP, optimally stopping SDDP remains an open challenge.1184

8. Exact Upper Bounds and Upper Approximations. The idea of com-1185

puting deterministic upper bounds v for v∗ and deterministic upper approximations1186

Qt(·) of Qt(·) has drawn a lot of interest in the research community recently, both1187

in analyzing the convergence behavior of SDDP, see Section 4, and in developing1188

deterministic stopping criteria, see Section 7.1189

An intuitive way to determine upper approximations Qt(·) of Qt(·) is based on1190

the observation that due to convexity all secants of Qt(·) lie above or on its graph.1191

Therefore, an upper approximation is possible by a convex combination of points1192

(xt−1,Qt(xt−1)). From another perspective, the convex epigraph epi(Qt) of Qt(·)1193

can be approximated by the convex hull conv(w1
t−1, . . . , w

Mt
t−1) of finitely many points1194

wt−1 := (xt−1,Qt(xt−1)) in epi(Qt). Outside of this convex hull, this inner approxi-1195

mation can be extended using a Lipschitz constant Lt of Qt(·) to obtain an approx-1196

imation on the whole state space. Such constant exists according to Corollary 2.10.1197

In this light, Qt(·) can also be constructed as [229]1198

Qt(·) := conv
(
Qt(x

m
t−1) + Lt∥xt−1 − xmt−1∥,m = 1, . . . ,Mt

)
.1199

This idea is illustrated in Figure 9.1200

In principle, there are two different approaches to realize this idea. One uses1201

the above perspective, which we refer to as primal, and one is related to some dual1202

perspective on SDDP and its value functions [97, 118].1203

8.1. Primal Inner Approximation. Similar to subproblems (2.10), based on1204

upper approximations Qt(·) of Qt(·), approximating subproblems can be defined by1205

replacing Qt(·) with Qt(·) in the DPE for all t ∈ [T ]. This idea is first introduced by1206

Philpott et al. [160]. As they consider only the RHS of (MSLP) to be uncertain, we1207

adopt this assumption, although it is not required.1208

For stages t = T − 1, . . . , 2, each element m in a given set of points x1t , . . . , x
Mt−1

t1209
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Fig. 9: Inner and outer approximation of Qt(·).

and each ξtj , j = 1, . . . , qt, the following subproblem can be solved by backward1210

recursion:1211

(8.1) Qt(x
m
t−1, ξtj) :=

{
min
xt

c⊤t xt +Qt+1(xt)

s.t. xt ∈ Xt(x
m
t−1, ξtj).

1212

Here, as indicated above, the upper approximation Qt+1(·) is defined as a convex1213

combination of points
(
xmt ,Qt+1(x

m
t )
)
,m = 1, . . . ,Mt. The only difference is that1214

instead of Qt+1(x
m
t ) here Qt+1(x

m
t ) := E

[
Qt+1(x

m
t , ξt+1)

]
is used, as Qt+1(·) is not1215

known:1216

(8.2) Qt+1(xt) :=



min
w

Mt∑
m=1

wmQt+1(x
m
t )

s.t.

Mt∑
m=1

wmx
m
t = xt

Mt∑
m=1

wm = 1

wm ≥ 0, m = 1, . . . ,Mt.

1217

By recursion, it can be shown that1218

Qt(x
m
t−1, ξtj) ≥ Qt(x

m
t−1, ξtj)1219

for all m = 1, . . . ,Mt−1 and j = 1, . . . , qt. This implies1220

Qt(x
m
t−1) ≥ Qt(x

m
t−1).1221

The first-stage problem then yields1222

vIA :=

{
min
xt

c⊤1 x1 +Q2(x1)

s.t. x1 ∈ X1,
1223
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with vIA an exact valid upper bound to v∗.1224

The main challenge with this approach is to appropriately choose the set of points1225

xmt−1,m = 1, . . . ,Mt−1. On the one hand, they should be chosen such that as much1226

of Xt−1 is spanned as possible. On the other hand, choosing (at least some of) those1227

points as extreme points leads to Mt ≥ 2nt points, i.e., the number of required points1228

grows exponentially in the dimension of the state space.1229

An alternative is to use the trial points from the SDDP forward pass [160]. Even1230

using these points, the computational effort may become excessive, though. Similarly1231

to the SDDP backward pass, subproblems (8.1) have to be solved for each stage t ∈ [T ],1232

each point xmt−1,m = 1, . . . ,Mt−1, and each noise term ξtj , j = 1, . . . , qt. However,1233

in contrast to the backward pass, the number Mt−1 of points to be considered grows1234

with each iteration, as it contains all previous trial solutions. It is therefore suggested1235

to only use the upper bound computation every few hundred iterations, and not to1236

permanently incorporate it into the backward pass [160]. This hinders using the upper1237

bounds vIA in the stopping criterion of SDDP in each iteration, though.1238

Moreover, the obtained bounds vIA may be very loose, especially in problems1239

(MSLP) with a high number of stages. Computational tests are required to assess1240

whether the information gain justifies the additional computational effort and, possi-1241

bly, higher number of iterations.1242

Baucke et al. provide a different perspective on the previous inner approximation1243

idea [10]. Instead of (8.2), they use its dual representation1244

(8.3) Qt+1(xt) =

max
µ,λ

x⊤t λ+ µ

s.t. (xmt )⊤λ+ µ ≤ Qt+1(x
m
t ), m = 1, ...,Mt.

1245

This shows that Qt+1(·) can be equivalently described by maximizing over the1246

coefficients of all supporting hyperplanes for points
(
xmt ,Qt+1(x

m
t )
)
,m = 1, . . . ,Mt.1247

In [10], the dual problem is additionally regularized, i.e., enhanced by constraint1248

∥λ∥ ≤ Lt,1249

with Lt denoting a Lipschitz constant ofQt(·, ·). This way, a reasonable approximation1250

is also achieved for points outside of the convex hull of the set defined by the points1251

xmt ,m = 1, . . . ,Mt.1252

Using this expression for the inner approximation functions, Baucke et al. propose1253

a deterministic algorithm for multistage stochastic convex programs. In their case,1254

subproblems (8.1) are solved in each backward pass iteration, and Q
i

t+1(·) is updated1255

by adding constraint (xm̃t )⊤λ+µ ≤ Qi

t+1(x
m̃
t ) for the current iterate xm̃t . The proposed1256

algorithm differs in further regards from standard SDDP, for instance it requires a1257

multi-cut approach, see Section 21. Moreover, choosing a reasonable and valid value1258

for Lt can be very challenging, but is crucial for the proposed method to work as1259

intended.1260

8.2. Dual SDDP. To compute deterministic upper bounds v for v∗ recently a1261

dual perspective on SDDP and the DPE (2.4) has gained attention.1262

Using Convex Conjugates of Value Functions. The first proposal in this1263

context, by Leclère et al. [118], exploits convex conjugates and the related duality1264

concepts to derive dual value functions for (MSLP) where uncertainty only appears1265

in the RHS ht(ξt).1266
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Let f : Rn → R ∪ {−∞,∞}. Then its convex conjugate f∗(·) is defined as [185]1267

f∗(λ) := sup
x∈Rn

λ⊤x− f(x).1268

For (MSLP), the convex conjugates Dt(·) := Q∗
t (·) of the value functions Qt(·) can1269

be considered as dual value functions for t = 2, . . . , T . It can be shown that these1270

functions also satisfy some DPE with linear subproblems on each stage. Whereas1271

Leclère et al. consider a more general setting including control variables ut (see1272

Remark 2.2), for (MSLP) as defined in Section 2 (and especially under Assumption 5),1273

for t = 2, . . . , T , these subproblems can be expressed by1274

(8.4) Dt(λt−1) :=



min
λt,µt,γt

qt∑
j=1

ptj

(
− h⊤tjµtj +Dt+1(λtj)

)
s.t. T⊤

t−1

(
qt∑
j=1

ptjµtj

)
−

qt∑
j=1

ptjγtj + λt−1 = 0

W⊤
t µtj = λtj + ct, j = 1, . . . , qt

γtj ≤ 0, j = 1, . . . , qt.

1275

For the first stage, we obtain a deterministic problem, which by T0 ≡ 0 simplifies to1276

D1(λ0) = min
µ1

h⊤1 µ1 +Dt

(
W⊤

1 µ1 − c1
)

1277

for some arbitrary initial λ0 ≤ 0 (note that more general formulations of (MSLP) may1278

lead to a dependence on λ0).1279

Using this dynamic recursion, it is possible to apply an SDDP-type algorithm,1280

called dual SDDP, to Dt(·), using iteratively improving outer approximations Di
t(·)1281

for Dt(·). Analogously to SDDP, this iterative method yields a converging determin-1282

istic lower bound for the first-stage optimal value, i.e., Di
1(λ0) ≤ D1(λ0). Applying1283

conjugacy theory again, we obtain1284

vi =
(
Di

1

)∗
(x0) ≥ D∗

1(x0) = Q∗∗
1 (x0) = Q1(x0) = v∗.1285

Hence, deterministic upper bounds for v∗ can be obtained as conjugates of the first-1286

stage approximations Di
t(·) evaluated at x0 = 0, and (vi)i defines a sequence converg-1287

ing to v∗ [118].1288

Using the Dual of (MSLP). Guigues et al. propose an alternative way to1289

define dual value functions and DPE that can be exploited in a dual SDDP algorithm1290

[97]. Instead of working with conjugates of the primal value functions Qt(·), they first1291

derive the dual to (MSLP) formulated as a single problem (2.3), and then show that1292

this dual problem can be decomposed using DPE and dual value functions1293

(8.5) D̃t(πt−1) :=


max
πt

qt∑
j=1

ptj

(
− h⊤tjπtj + D̃t+1(πtj)

)
s.t.

qt∑
j=1

ptj

(
T⊤
t−1,jπtj

)
+W⊤

t−1πt−1 ≤ ct−1.

1294

It can be argued that these dual DPE are simpler and more intuitive, as they do1295

not require conjugacy theory. Moreover, we immediately obtain that the first-stage1296

This manuscript is for review purposes only.



STOCHASTIC DUAL DYNAMIC PROGRAMMING 37

optimal value D̃1(π0) equals v
∗ by strong duality for linear programs. Therefore, using1297

outer approximations D̃i
t(·) of these value functions in dual SDDP, again a sequence1298

(vi)i of deterministic and valid upper bounds converging to v∗ can be computed [97],1299

but without requiring to consider conjugates. On the other hand, the dual value1300

functions D̃t(·) cannot be directly related to the original value functions Qt(·).1301

Remark 8.1. Even if the dual DPE (8.4) and (8.5) are derived using different1302

tools and perspectives, they are still closely related. Note that subproblem (8.4) can1303

be reformulated as1304

Dt(λt−1) =



min
πt,µt

qt∑
j=1

ptj

(
− h⊤tjµtj +Dt+1(λtj)

)
s.t. T⊤

t−1

(
qt∑
j=1

ptjµtj

)
+ λt−1 ≤ 0

W⊤
t µtj = λtj + ct, j = 1, . . . , qt.

1305

Using the last constraint, the state λt−1 can be expressed through the dual vari-1306

ables µt−1 from the previous stage: λt−1 = W⊤
t−1µt−1 − ct−1. Replacing this, the1307

subproblems only contain dual variables µt, which have to be considered as state1308

variables. By adapting the optimization sense in the objective, we get exactly the1309

structure of (8.5).1310

We can make the following additional observations with respect to the dual1311

DPE (8.4) and (8.5). Firstly, in both cases, the subproblems are not necessarily1312

bounded. Therefore, in both cases, artificial bounds are introduced. In [97] they are1313

chosen as πt ∈ [πt, πt], whereas in [118] Lipschitz continuity of Qt(·) is exploited to1314

impose the bounds ∥λt∥∞ ≤ Lt for Lipschitz constants Lt, t ∈ 2, . . . , T . It is assumed1315

that these bounds are chosen sufficiently large to not affect the optimal solutions.1316

Secondly, even if the primal DPE (2.4) are assumed to have relatively complete1317

recourse (see Assumption 9 and Lemma 2.5), this does not necessarily translate to1318

the dual subproblems. To ensure feasibility, Guigues et al. propose to either use1319

feasibility cuts (also see Section 17) or a penalization approach [97].1320

Thirdly, in contrast to the primal perspective, the subproblems do not decompose1321

by realizations of ξt, but contain separate dual variables πtj (or λtj , µtj , γtj , respec-1322

tively) for all j = 1, . . . , qt. In the forward pass of dual SDDP the trial point πi
t (or1323

λit) that is used as a parameter in the following stage is sampled from these variables.1324

Finally, if Wt and ct become uncertain as well, then the value functions and1325

subproblems additional depend on ξt. In fact, in formulation (8.5) the state space has1326

to be extended to include the history ξt−1 of the stochastic process, as the problem1327

contains Wt−1 and ct−1 [97].1328

Again, an SDDP-type algorithm, also referred to as dual SDDP in [97], can1329

be applied to the DPE (8.5). This algorithm is presented in Algorithm 8.1. The1330

two variants of dual SDDP have been extended to the risk-averse case [40] (see also1331

Section 12) and to problems with infinite horizon (see also Section 19) [199].1332

Dual Inner Approximation. First and foremost, dual SDDP is an alternative1333

to (primal) SDDP to approximate v∗ by converging deterministic upper bounds v.1334

However, as shown in [118], if the dual DPE (8.4) are used, then the obtained approx-1335

imations Di
t(·) may be translated to inner approximations Q

i

t(·) of the primal value1336

functions Qt(·). This way, policies (xt(ξ[t]))t∈[T ] for (MSLP) can be computed. The1337

inner approximations can be computed as Lipschitz regularizations (see Sect. 17) of1338
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Algorithm 8.1 Dual SDDP from [97]

Input: Dual to problem (MSLP) satisfying Assumptions 1 to 9. Appropriate multi-
plier bounds. Stopping criterion.

Initialization

1: Initialize cut approximations with bounded D̃0
t (·) for all t = 2, . . . , T .

2: Initialize upper bound with v0 = +∞.
3: Set iteration counter to i← 0.

Dual SDDP Loop

4: while Stopping criterion not satisfied do
5: Set i← i+ 1.

Forward Pass

6: Solve the first-stage problem (defined by replacing D̃2(·) with D̃i
2(·) and adding

multiplier bounds in (8.5)). Store the trial point πi
1.

7: for stages t = 2, . . . , T do
8: Solve the stage-t subproblem (defined by replacing D̃t+1(·) with D̃i

t+1(·)
and adding multiplier bounds in (8.5)) for πi

t−1 to obtain πi
tj , j = 1, . . . , qt.

9: Sample j̃ from j = 1, . . . , qt and set πi
t = πtj̃ .

10: end for

Backward Pass

11: for stages t = T, . . . , 2 do
12: Solve the updated stage-t subproblem (2.10) (defined by replacing D̃t+1(·)

with D̃i+1
t+1(·) and adding multiplier bounds in (8.5)) for πi

t−1. Store the

optimal value Dt(π
i
t−1) and the optimal dual vector xit−1.

13: Compute

αD,i
t := Dt(π

i
t−1)−

(
βD,i
t

)⊤
πi
t−1

and
βD,i
t := −Wt−1x

i
t−1.

14: Update the cut approximation of D̃t(·) to

D̃i+1
t (xt−1) := min

{
D̃i

t(xt−1), α
D,i
t +

(
βD,i
t

)⊤
πt−1

}
.

15: end for
16: Solve the first-stage problem (defined by replacing D̃2(·) with D̃i+1

2 (·) and
adding multiplier bounds in (3.8)) to obtain an upper bound vi.

17: end while
Output: Upper bound vi for v∗.

the convex conjugate of the outer approximations Di
t(·), which is shown to be equiv-1339

alent to solving problem (8.3) with regularization ∥λ∥∞ ≤ Lt. The key difference to1340

the approach in [10] is the way the primal supporting points xmt are determined, that1341

is, by the slopes of the dual outer approximation [118].1342

Incorporation into SDDP. While dual SDDP can be applied on its own to1343
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approximate v∗, and even compute policies (xt(ξ[t]))t∈[T ], it seems reasonable to in-1344

corporate it into (primal) SDDP in order to compute deterministic upper and lower1345

bounds for v∗. Guigues et al. suggest to use both variants of SDDP in parallel [97].1346

In contrast, Leclère et al. propose a framework where primal and dual SDDP are1347

intertwined [118]:1348

1. Run a forward pass of (primal) SDDP, yielding trial solutions (xit)t∈[T ] for1349

the sampled scenario path (the authors choose |K| = 1).1350

2. Run a backward pass of (primal) SDDP using the trial solutions xit−1, ob-1351

taining new slopes πi
t from the cuts.1352

3. Run a backward pass of dual SDDP using the slopes λit = πi
t, obtaining new1353

cuts for the dual problem.1354

4. Run a forward pass of dual SDDP, to obtain a new dual trajectory (λit)t∈[T ]1355

and update the cuts along this trajectory.1356

One computational drawback of this framework, and of dual SDDP in general,1357

is that each iteration of dual SDDP is much more computational expensive than1358

for standard (primal) SDDP. This hampers the application of a solely deterministic1359

stopping criterion for very large problems [97, 118].1360

9. Applications. In this section, we present different application areas of SDDP.1361

We also point out applications in which some of the Assumptions 1 to 9 are not1362

satisfied, and therefore either modifications of (MSLP) or algorithmic extensions are1363

required in order to apply SDDP. These use cases can be regarded as a motivation1364

for the enhancements of SDDP that we cover in the following sections.1365

9.1. Power System Optimization. By far the dominating application field of1366

SDDP is power system optimization, in particular, the operational planning of energy1367

systems including hydro storages by a central planner. This is due to its adequacy1368

for such problems, but also due to its origins in optimizing the operational planning1369

of the Brazilian hydrothermal system [151, 152].1370

In general, solving power system optimization problems is a very complex task, as1371

it allows for incorporation of various technical and economical details and uncertainties1372

[109, 148, 181, 182, 183, 207, 208, 230]. Including all these details in one single1373

problem is computationally intractable. Therefore, usually a hierarchy of problems1374

is considered, dealing with different time-scales and perspectives [47], such as short-1375

term dispatch (a few days or weeks), mid-term operational planning (1-2 years) and1376

long-term operational planning (3-5 years) [72, 81]. Results from a long-term model1377

can then be incorporated into one with a shorter horizon, but more detail in other1378

modeling aspects.1379

9.1.1. Long-term Operational Planning. SDDP is most prominently used1380

for long-term operational planning (LTOP) of hydrothermal power systems, also called1381

long-term hydrothermal scheduling (LTHS). In the research literature, SDDP has1382

been applied to LTOP of various hydrothermal systems, with the most prominent1383

ones being the hydro power dominated systems in Brazil [15, 30, 31, 32, 42, 47, 48,1384

49, 52, 84, 97, 104, 125, 126, 128, 132, 135, 160, 165, 201, 202, 203, 206, 214, 224],1385

other Central or South American countries [6, 70, 178, 211], Norway [80, 186] and New1386

Zealand [159, 161, 227]. Additionally, to this day, SDDP is applied by the Brazilian1387

system operator ONS in practice [133, 134].1388

The aim in LTOP is to determine an optimal policy for the amount of power to1389

be generated by thermal and hydroelectrical utilities over some planning horizon of1390

several years (usually with monthly resolution) such that demand is satisfied, technical1391
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constraints are fulfilled and the expected cost is minimized [159]. The main focus is1392

on managing hydro reservoirs, and thus the water resource efficiently. This is not1393

trivial. While there is an incentive to use all the water in a reservoir immediately,1394

as no fuel costs occur, also the potential value of storing water for later stages has1395

to be considered, with taking into account the uncertainty of future inflows. For this1396

reason, it can be beneficial to retain water in wet periods for following dryer periods.1397

The ability to store water in reservoirs leads to a temporal coupling of the stages. The1398

number of inflow realizations qt per stage is typically chosen in a range between 201399

and 100. For T = 60, this yields a scenario tree with about 1.15e78 or 1e120 scenarios.1400

Per forward pass, either a single scenario [48] or 100 to 200 scenarios are sampled.1401

LTOP can be used to illustrate some of the challenges and limits of standard1402

SDDP, and thus motivate the necessity of extensions.1403

Autoregressive Uncertainty. In LTOP, the main source of uncertainty are1404

future (usually monthly) inflows into the reservoirs. These inflows often show sea-1405

sonality and a temporal or spatial coupling which has to be considered in modeling.1406

Therefore, usually autoregressive (AR) processes are used to model and forecast them,1407

in particular periodic autoregressive (PAR) [132, 133] and related models [138]. This1408

means that for each reservoir and each month a different AR model is fitted, or in other1409

words, that the parameters in the AR model are allowed to differ between months.1410

Additionally, often hydro reservoirs are organized in cascade systems. Then, the1411

generation of one turbine may affect the inflow of downstream reservoirs, such that1412

they cannot be managed separately. For this reason, inflows often do not only show1413

temporal correlation and seasonality, but also spatial correlation. To address this,1414

instead of PAR, spatial periodic autoregressive (SPAR) models can be used [126].1415

Such model is still linear, but instead of only autoregressive components, i.e., lags of1416

ξit for some reservoir i, also lags of the inflows of neighboring reservoirs i′ are used to1417

explain ξit. Apart from inflow lags, also different exogenous variables, such as climate1418

indices, precipitation or sea temperature can be used to explain inflows [123, 164].1419

Whenever an AR process is used for the uncertain data, the assumption of stage-1420

wise independence (Assumption 2) is not satisfied. This motivates an extension of1421

SDDP able to handle stagewise dependent uncertainty. We discuss this in Section 14.1422

Nonlinear Uncertainty. When modeling hydro inflows, the error terms in the1423

AR process are usually assumed to be i.i.d. with normal or log-normal distribution1424

[47, 126]. In the latter case, the model is also referred to as a geometric PAR (GPAR)1425

model [128]:1426

(9.1) ln(ξt) = γt +Φt ln(ξt−1) + ηt.1427

GPAR models are usually more accurate in modeling inflows, as these often tend to1428

positive skewness and are thus not normally distributed. Moreover, they have the1429

advantage that the requirement of non-negative inflows is naturally satisfied.1430

On the other hand, solving (9.1) for ξt yields an AR process with multiplicative1431

instead of additive error terms [202], which is a nonlinear model. Incorporating this1432

into the DPE destroys the convexity of Qt(·), making a direct application of SDDP1433

impossible. Instead, the nonlinear model has to be approximated linearly [202]. An-1434

other idea is to normalize the inflows first using a Box-cox transformation. As such a1435

transformation is nonlinear, still a linear approximation is required afterwards, though1436

[167]. Further strategies to avoid non-negative inflows and nonlinearities are discussed1437

in [47, 176]. In [45] it is suggested to apply bootstrapping to resample directly from1438

the historical residuals instead of applying a nonlinear transformation.1439
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Continuous Uncertainty and Distributional Uncertainty. As stated be-1440

fore, usually a normal or log-normal distribution is assumed for the error terms in the1441

inflow models, both being continuous distributions (an exception is [170] where inflows1442

are modeled as a continuous process with discrete random errors). For this reason,1443

the assumption of finite discrete random variables (Assumption 5) is not satisfied.1444

Additionally, the chosen distribution for the model may not coincide with the true1445

distribution of the uncertain data. This raises the questions of how to handle contin-1446

uous uncertainty and distributional uncertainty in SDDP. We address these questions1447

in Section 11 and Section 13.1448

Computational Performance. Despite the amenities of SDDP, its performance1449

may suffer for problems with a large number of state variables, due to its exponential1450

complexity in the state dimension dt, see Section 4.2. For instance, SDDP is computa-1451

tionally prohibitive for a complete model of the Brazilian energy system consisting of1452

about 150 thermal plants and more than 150 hydro storages [48]. This is aggravated1453

if the state dimension is artificially increased, e.g., in order to deal with stagewise1454

dependent uncertainty, see Section 14. As a relief, it is common practice to aggregate1455

reservoirs based on their region and hydrological properties in so-called energy equiv-1456

alent reservoirs (EER) [4], thus reducing the state dimension [134]. However, this1457

comes with an increased abstraction, and may lead to suboptimal policies. Moreover,1458

as outlined in [47], the EER modeling may introduce some nonlinearities into the1459

system, which have to be mitigated by linearization.1460

The computational complexity with respect to the state space also makes general1461

performance improvements for SDDP indispensable, which we discuss in Section 21.1462

End-of-horizon Effect. Another challenge when applying SDDP to LTOP in1463

practice is the so-called end-of-horizon effect. It relates to the effect that obtained1464

policies do not guarantee a continuous and reliable energy supply after the planning1465

period, because in an optimal policy, all energy remaining in the reservoirs will be1466

used at the end of the planning period. A typical planning horizon for LTOP are 51467

years with a monthly resolution, leading to 60 stages. A common practice to mitigate1468

the end-of-horizon effect is to add 60 more stages to the problem, i.e., to consider a1469

problem with 120 stages [202], even if only decisions of the first half are about to be1470

implemented. Alternatively, it seems natural to analyze how SDDP can be applied1471

for problems with an infinite horizon or with a random horizon, where Assumption 11472

is not satisfied. We address this in Sections 19 and 20.1473

Risk-aversion. Due to the high importance of system reliability and stability to1474

prevent outages and electricity shortages, system planners may favor more risk-averse1475

policies compared to the risk-neutral ones obtained by standard SDDP. Therefore,1476

there has been an increased interest recently to take risk aversion into account when1477

applying SDDP to LTOP [107, 206]. However, as Assumption 8 is no longer satisfied,1478

this requires to extend standard SDDP to a risk-averse variant. We discuss different1479

approaches to achieve this in Section 12.1480

9.1.2. Medium-term Operational Planning. Structurally, medium-term op-1481

erational planning problems (MTOP) do not differ much from LTOP. The main differ-1482

ence is that a shorter, one- or two-year time horizon is considered [47, 159, 160, 178].1483

Price Uncertainty in the Objective. Especially on a medium-term time1484

horizon, SDDP has also been adopted from the traditional setting with a single system1485

operator to more market-driven systems, in which several electricity suppliers are1486

active. In such systems, besides inflows also spot prices can be considered uncertain.1487

This imposes an additional challenge to SDDP, as it leads to stagewise dependent1488
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uncertainty in the objective. We discuss this in detail in Section 14. To deal with this1489

challenge, for instance, for the operational planning of the Norwegian hydro-storage1490

system, usually a combined SDP/SDDP approach is used [79, 80, 81, 99, 100].1491

Water Head Effect. In LTOP the so-called water head effect of hydro storages1492

is often disregarded, but it may become decision-relevant in (MTOP). This effect de-1493

scribes that the production of a hydro plant increases with the net head of the reser-1494

voir. As this production function is multiplied with the water discharge, it introduces1495

non-convexities to the problem. Therefore, if this nonlinear effect is explicitly consid-1496

ered, suitable extensions of SDDP to non-convex problem are required [36, 102, 162].1497

We cover such extensions in Section 16.1498

9.1.3. More Energy Applications. We briefly summarize further applications1499

of SDDP in power system optimization.1500

Short-term Dispatch. SDDP is particularly suited for long-term planning, but1501

it can also be applied to short-term economic dispatch problems [37, 51, 117, 147].1502

For shorter time horizons, it may be reasonable to include additional system aspects,1503

for instance power flow and security constraints, reserve energy or different ancillary1504

services [131, 214]. If security constraints are considered, usually linear DC power1505

flow models are used, but recently also AC power flow has gained interest [111].1506

Another research stream considers CO2 emissions, which can be covered by im-1507

posing an emission quota system [14, 179, 177] or by introducing emission trading1508

[180]. The first approach leads to an (MSLP) which has no block-diagonal structure1509

(Assumption 7). We discuss how SDDP can be applied in this case in Section 18.1510

Using a reasonable extension to mixed-integer programs, see Section 16, also unit1511

commitment problems are accessible by the SDDP idea [232].1512

Different Storage Systems. As different types of storage systems can be mod-1513

eled similar to hydro storages, SDDP is also applicable to such systems, for instance,1514

to optimize gas storage facilities [225] or energy storages in microgrids [22].1515

Optimal Bidding. Instead of minimizing expected system cost from the per-1516

spective of a central system operator, in strategic bidding problems power plant op-1517

erators attempt to determine an optimal bidding policy in order to maximize their1518

expected revenue, while taking into account information uncertainty, for example with1519

respect to inflows or the market-clearing price; see [210, 212] for an overview.1520

Since the future revenue functions of the price-maker have a sawtooth shape, the1521

resulting problem is non-convex [211]. Therefore, to apply the SDDP idea, tailor-1522

made extensions are required, e.g., convexifications, approximations by saddle cuts1523

[55] or by step functions [162, 227]. For methodological details, we refer to Section 16.1524

Recently, also applying SDDP to optimize trading in continuous intraday markets1525

has gained attention [204].1526

Investment Planning. An important long-term optimization problem in power1527

systems is to make optimal (risk-averse) investment decisions, either with respect to1528

the expansion of renewables [33, 122, 213] or to conventional projects.1529

For conventional power systems, common investment problems address the ques-1530

tions of generation expansion or transmission expansion. The main challenge with1531

such problems is that they naturally impose the introduction of integer decision vari-1532

ables. Therefore, in such a case relaxations [146] or appropriate extensions of SDDP,1533

e.g., SDDiP [232], have to be used (see Section 16). Alternatively, SDDP can be1534

incorporated into a larger Benders decomposition framework, where at the first stage1535

binary investment decisions are taken and at the second stage a multistage stochastic1536

linear program is solved by SDDP [177]. Similar applications are considered in [52]1537
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and [41] with a special focus on risk and reliability constraints.1538

Coping with Renewable Uncertainty. An increasing share of renewable en-1539

ergy sources introduces more variability to an energy system, which has to be taken1540

into account and balanced by appropriate mechanisms. The usage of distributed1541

grid-level storage, such as batteries or electric vehicles, for smoothing out the variable1542

generation of renewables is examined using SDDP in [66, 233].1543

9.2. Water Resource Management. In many energy applications of SDDP,1544

managing water resources plays a key role, as it couples subsequent stages. Apart from1545

energy optimization, SDDP is also applied to more general water resource manage-1546

ment problems, where not only energy production, but also water usage for irrigation1547

in agriculture [154, 219], flow requirements for navigation [219], groundwater [136]1548

or ecological constraints [218] are taken into account in the operational planning of1549

reservoirs. Also related is the problem of river basin management [187].1550

Additionally, SDDP is used for assessing various quantities in hydrological sys-1551

tems, e.g., the value of water [222], risk for dam projects [2, 221], resource vulnera-1552

bilities [188] or benefits and costs of cooperation or non-cooperation [137, 220].1553

9.3. Portfolio Management. The optimal management of a portfolio of in-1554

vestments, also referred to as asset allocation, can be modeled as an (MSLP) [43].1555

The aim is to distribute a fixed investment sum among a finite number of assets with1556

uncertain returns, in such a way that the expected return at the end of the considered1557

horizon is maximized. By selling or buying certain amounts of assets, the investor can1558

restructure his portfolio in each time period. Usually, both operations are associated1559

with transactions costs, which leads to a very complex problem [223].1560

In the literature on SDDP, asset allocation problems are quite popular to test1561

proposed improvements and enhancements of SDDP, such as regularization [90], cut-1562

sharing [84] or inexact cuts [8]. Since most investors are risk-averse, asset allocation1563

problems are a popular application [60, 63, 64, 105, 112, 113], but also one of the main1564

drivers for the development of risk-averse SDDP, which we introduce in Section 12.1565

For applications of practical interest, asset allocation becomes very challenging,1566

as pointed out in [223]. Firstly, risk aversion parameters such as λt or αt, see Sec-1567

tion 12, are not intuitive to choose in such a way that the true preferences of an1568

investor are appropriately represented. For this reason, the authors propose to solve1569

a risk-constrained model with one-period conditional CVaR constraints instead of a1570

usual risk-averse SDDP approach. Secondly, assuming stagewise independence of as-1571

set returns may prove unrealistic, requiring a more sophisticated approach such as1572

incorporating a Markov chain, see Section 14. Moreover, the large supply of potential1573

assets leads to a high-dimensional state space.1574

9.4. Further Applications. Although the focus is on the previous applications,1575

occasionally also other types of applications are investigated using SDDP. Among1576

those applications are dairy farming [61, 83], newsvendor problems [5, 149], inventory1577

management [8, 59, 87, 97], lot-sizing [216] and routing problems [60]. In [50] and [232]1578

airline revenue management is explored, which is an established problem in dynamic1579

programming, but requires integer variables.1580

10. Software. Until recently, SDDP implementations have been solely restricted1581

to closed research projects or commercial products. For commercial products, most1582

established is the SDDP implementation by PSR, a Brazilian energy consultancy1583

[171]. A newer stochastic programming software, which also includes SDDP ideas, is1584

provided by Quantego and can be accessed using MATLAB, Python and Java [172].1585
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For research projects, various different implementations exist, covering programming1586

languages like AMPL, C++, Fortran, GAMS, Java or MATLAB, see [57].1587

In the last few years, open-source implementations have gained more and more in-1588

terest, with the aim to increase research transparency, enhance research exchange and1589

benchmarking, and facilitate access to SDDP in industry and science [57]. The most1590

prominent programming language in this regard is Julia [21], which provides its own1591

algebraic modeling language JUMP [62] and is increasingly used in operations research1592

and especially stochastic progamming. By now, with StochDynamicProgram.jl [119],1593

StructDualDynProg.jl [120] and SDDP.jl [57] there exist three SDDP implementa-1594

tions in Julia. Similarly, SDDP packages are available in MATLAB (FAST [34]), C++1595

(StOpt [77]) and Python (msppy [50]).1596

Currently, SDDP.jl, which is based on Dowson’s concept of policy graphs [56],1597

can be considered the most comprehensive package. It provides many of the features1598

described in this paper, such as cut selection, parallelism, Markov chain SDDP, ob-1599

jective states, belief states, SDDiP, as well as different stopping criteria and sampling1600

approaches. Moreover, it includes some of the approaches discussed for distribution-1601

ally robust and risk-averse SDDP. However, as most other packages, it requires the1602

underlying stochastic process to be finite. Thus, if Assumption 5 is not satisfied,1603

some discretization has to be applied a priori. Then, the results obtained by SDDP1604

are valid for the discretized problem, but not put into perspective with respect to1605

the true problem. msppy, on the other hand, integrates both, the discretization by1606

SAA and the solution by SDDP in one package and, thus, can naturally be applied1607

to problems with continuous uncertainty [50].1608

A more detailed comparison of currently available libraries is presented in [57].1609

11. SDDP for Continuous Uncertainty [relaxing Assumption 5]. So far,1610

we assumed the uncertainty in (MSLP) to be modeled by some discrete and finite1611

random process, see Assumption 5, in order for SDDP to be applicable. Until the1612

recent work by Forcier and Leclère [71], also all convergence proofs for SDDP lever-1613

aged Assumption 5. However, in many practical applications, this assumption is not1614

justified. For example, if the stochastic process governing the uncertain data is mod-1615

eled by a time series model, the random error terms are usually assumed to follow1616

a continuous distribution [197], see Section 9. In the remainder of this section, we1617

denote a problem with such a continuous data process by (P̃ ).1618

As pointed out in Section 2.3, for problems with sizes of practical interest, prob-1619

lem (P̃ ) is computationally intractable. Therefore, if the true distribution Fξ of the1620

stochastic process (ξt)t∈[T ] is continuous, usually an approximation with finitely many1621

scenarios is used. In the literature on multistage stochastic programming, a variety1622

of techniques are proposed to generate (and reduce) scenario tree approximations of1623

continuous stochastic processes. For an overview we refer to [127].1624

11.1. Sample Average Approximation (SAA). The most common approx-1625

imation approach is to use random sampling. That means that the distribution Fξ is1626

approximated using an empirical distribution F̃N with a finite number N of scenarios,1627

which is obtained by sampling from Fξ [197]. This yields an approximating problem1628

(P̃N ), which then can be handled by SDDP. Often, this technique is referred to as1629

sample average approximation (SAA), especially, if classical Monte Carlo sampling is1630

used. We discuss SAA and the application of SDDP to solve an SAA problem in more1631

detail now. For a general analysis of SAA, we refer the interested reader to [200].1632

SAA and SDDP. Under stagewise independence of (ξt)t∈[T ] (Assumption 2),1633
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it is desirable to preserve this property in the SAA problem, especially if the latter1634

should be solved by SDDP. To achieve this, random sampling can be applied to each1635

stage t = 2, . . . , T independently with sample size q̃t [197]. The obtained SAA has a1636

total number of N =
∏T

t=2 q̃t scenarios, i.e., the number of scenarios is exponentially1637

growing in the number of stages [197].1638

For the SAA problem (P̃N ), for each stage t = 2, . . . , T and each sample j =1639

1, ..., q̃t, the DPE can be written as1640

(11.1) Q̃t

(
xt−1, ξ̃tj

)
:=

{
min
xt

(
ct
(
ξ̃tj
))⊤

xt + Q̃t+1(xt)

s.t. xt ∈ Xt(xt−1, ξ̃tj)
1641

where1642

(11.2) Q̃t+1(xt) :=
1

Nt+1

q̃t+1∑
j=1

Q̃t+1(xt, ξ̃t+1,j)1643

and Q̃T+1 ≡ 0. For the first stage, we obtain1644

(11.3) ṽN :=

{
min
x1

c⊤1 x1 + Q̃2(x1)

s.t. x1 ∈ X1.
1645

The DPE (11.1)-(11.3) can be approached by SDDP as described in Section 3.1646

However, in contrast to the problems considered there, the SAA problems are random,1647

as they depend on a sample from the true data process (ξt)t∈[T ].1648

SAA Properties. Since the aim is to solve the original problem (P̃ ), the central1649

question is how the solution and the bounds obtained by applying SDDP to the SAA1650

problem (P̃N ) relate to the solution of (P̃ ). We denote the optimal value of (P̃ ) by1651

ṽ∗ and the bounds obtained by SDDP in iteration i with ṽi and ṽ
i

K. We summarize1652

important properties of SAA.1653

(P.11.1) Consistency. It can be shown that the optimal value ṽN provides a consistent1654

estimator of the true optimal value ṽ∗, i.e., limq̃2,...,q̃T→∞ E[ṽN ] = ṽ∗ with1655

probability 1 [197, 200]. The intuition behind this is that asymptotically, the1656

structure of the true process (ξt)t∈[T ] is recovered. In practical applications,1657

increasing q̃t to infinity is computationally intractable, though.1658

(P.11.2) Bias. ṽN is a biased estimator of ṽ∗, more precisely, E[ṽN ] ≤ ṽ∗ for all N1659

[200], since only a subset of all scenarios is considered and the decisions are1660

optimized with respect to these scenarios [48]. This means that solving the1661

SAA problem provides a (converging) estimator of a lower bound for ṽ∗ [194].1662

(P.11.3) Lower Bounds. In each iteration i of SDDP, we have ṽi ≤ ṽN . Therefore,1663

E[ṽi] ≤ ṽ∗ [197], and the SDDP lower bound is a statistical lower bound for1664

ṽ∗. Note, however, that both, ṽN and ṽi, are lower bounds in expectation1665

only, whereas this is not clear for one specific SAA problem (P̃N ).1666

(P.11.4) Upper Bounds. Applying SDDP to the DPE (11.1)-(11.3) yields a policy.1667

Under relatively complete recourse (see Assumption 9) with respect to the1668

true data process (ξt)t∈[T ], this policy also yields feasible decisions if applied1669

to any realization (ξt)t∈[T ] of this true process. By computing1670

(11.4) E

[
T∑

t=1

(
ct(ξt)

)⊤
xi
t

(
ξ[t]
)]

1671
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with the expectation taken with respect to the true process, a valid upper1672

bound for ṽ∗ can be obtained [197].1673

(P.11.5) The sample mean ṽ
i

K determined in iteration i in SDDP is an unbiased and1674

consistent estimator of (11.4). Hence, E
[
ṽ
i

K
]
≥ ṽ∗.1675

Even with these theoretical properties, solving (P̃ ) using SAA may be computa-1676

tionally intractable. Shapiro shows that even under relatively complete recourse (see1677

Assumption 9) and stagewise independence (Assumption 2) of the true data process1678

(ξt)t∈[T ], the total number of scenarios required in SAA problem (P̃N ) to solve (P̃ )1679

with a reasonable accuracy ε > 0 grows exponentially in the number of stages [195].1680

Therefore, he proposes to use smaller sample sizes q̃t for later stages, although then1681

the accuracy of the solution cannot be guaranteed anymore [196].1682

Clearly, there exists a trade-off between the quality of the obtained bounds for1683

ṽ∗ and the computational tractability of the SAA problem. Approximating Fξ with1684

FN using very large sample sizes q̃t for all t = 2, . . . , T , a much better representation1685

of the original process (ξt)t∈[T ] is obtained, leading to a better approximation of1686

ṽ∗. However, in this case, it may be even impossible to solve the SAA problem to1687

optimality in reasonable time, as it may take too long until all scenarios are eventually1688

sampled [197]. On the other hand, a very rough approximation yields a problem (P̃N ),1689

which can be solved efficiently by SDDP, but does not provide reasonable information1690

about the solution to the true problem (P̃ ) [113].1691

11.2. Assessing Policy Quality. As it is computationally intractable to solve1692

an SAA problem of (P̃ ) with a sample size that guarantees a predetermined accuracy,1693

in practice, usually moderate sample sizes are used. For example, in [48], sample sizes1694

with branching numbers q̃t between 5 and 200 are tested.1695

The bounds ṽi and ṽ
i

K in SDDP are determined using one specific sample of1696

(ξt)t∈[T ]. Therefore, they only measure the in-sample performance of the determined1697

feasible policy
(
xt(ξ[t])

)
t∈[T ]

. To assess its quality for the original problem (P̃ ), i.e.,1698

its out-of-sample performance, it is required to evaluate it with respect to the original1699

process (ξt)t∈[T ]. Such an evaluation also allows one to compare policies obtained1700

for different SAA problems, which can be helpful in designing appropriate sampling1701

techniques and sample sizes [48].1702

Various techniques have been proposed in stochastic programming to measure1703

the performance of feasible policies, such as analyzing optimality conditions, assessing1704

solution stability or estimating the optimality gap [48]. Specifically for SDDP, Morton1705

et al. have made substantial contributions [39, 48, 113], which are based on estimating1706

the optimality gap ([113] analyzes a risk-averse variant of SDDP, see Section 12).1707

We discuss their ideas for the risk-neutral case thoroughly in the remainder of this1708

subsection. In accordance with [48], we only consider uncertainty in the RHS of (P̃ ).1709

Estimating the Optimality Gap. For some feasible policy
(
xt(ξ[t])

)
t∈[T ]

, let1710

ṽ(ξ) =
∑T

t=1 ctxt
(
ξ[t]
)
denote the random cost for some arbitrary scenario path ξ =1711

(ξ1, . . . , ξT ). From (P.11.4) we have E[ṽ(ξ)] ≥ ṽ∗. Therefore, the optimality gap1712

induced by policy
(
xt(ξ[t])

)
t∈[T ]

can be expressed as1713

∆ := E[ṽ(ξ)]− ṽ∗ ≥ 0.1714

This gap cannot be directly evaluated because the optimal value ṽ∗ is not known.1715

Using some lower bound for ṽ∗, ∆ can be overestimated though. Such lower bound1716
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is given by E[ṽ], see (P.11.3). This yields1717

(11.5) E[ṽ(ξ)]− E[ṽ] ≥ ∆ ≥ 0.1718

Still, the left-hand side of (11.5) is computationally infeasible to evaluate. It1719

requires excessive computational effort to evaluate policy
(
xt(ξ[t])

)
t∈[T ]

for all possible1720

scenarios to obtain E[ṽ(ξ)]. Furthermore, from SDDP only one specific realization of1721

ṽ is known. Therefore, in [48] it is proposed to use estimators for both terms to derive1722

an approximate one-sided confidence interval bounding ∆ from above.1723

Upper Bound Estimation. The SDDP policy
(
xt(ξ[t])

)
t∈[T ]

is feasible for the1724

original problem (P̃ ), see (P.11.4). Hence, it can be evaluated for any realization of1725

(ξt)t∈[T ] to assess its out-of-sample performance. Let us sample Mu i.i.d. scenario1726

paths from (ξt)t∈[T ]. For each of those sampled scenarios ξℓ, ℓ = 1, . . . ,Mu, the SDDP1727

subproblems (2.10) are solved in forward direction, yielding xt(ξ
ℓ
[t]) and ṽ(ξ

ℓ) [48]. An1728

upper bound estimator is then defined by the sample mean1729

(11.6) UMu
:=

1

Mu

Mu∑
ℓ=1

ṽ(ξℓ).1730

Similarly to the in-sample estimator, this estimator is an unbiased and consistent1731

estimator of E[ṽ(ξ)]. Its sample variance is given by [48]1732

(11.7) σ2
U :=

1

Mu − 1

Mu∑
ℓ=1

(ṽ(ξℓ)− UMu
)2.1733

Alternatively, an upper bound estimator can be obtained by sampling a finite1734

number of different SAA problems, and applying the SDDP policy
(
xt(ξ[t])

)
t∈[T ]

to1735

each of them [39]. This comes at the cost of increased computational effort.1736

Lower Bound Estimation with Several SAA Problems. From SDDP, only1737

one single realization of ṽ is known. Hence, it is not directly possible to determine a1738

sampling error for this point estimate and to derive a confidence interval for E[ṽ].1739

One approach to derive a lower bound estimator is to solve a finite number of1740

different SAA problems with SDDP and to determine the mean of the lower bounds1741

ṽ. To be precise, Ml different SAA problems are constructed, each by sampling q̂t1742

realizations per stage from (ξt)t∈[T ]. Then SDDP is run, yielding the lower bounds1743

ṽℓ, ℓ = 1, . . . ,Ml [48]. The sample mean1744

(11.8) LMl
:=

1

Ml

Ml∑
ℓ=1

ṽℓ1745

then defines an estimator for E[ṽ] with sample variance1746

σ2
l :=

1

Ml − 1

Ml∑
ℓ=1

(ṽℓ − LMl
)2.1747

Note that instead of lower bounds ṽℓ, also the optimal values ṽℓN could be used1748

in estimator (11.8) [48]. We already discussed in Section 11.1 that it may be compu-1749

tationally intractable to solve one single SAA problem to optimality, though. Thus,1750

using ṽℓ may be computationally preferable.1751
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In principle, applying SDDP to not only one, but several SAA problems and1752

building the mean of the obtained bounds seems very reasonable from a statistical1753

perspective, as the outcome of one SAA problem is random. This also has another1754

possible benefit: If SDDP is run for Ml different SAA problems (P̃ l
N ), each of these1755

problems yields a different feasible policy. By calculating the upper bound estimator1756

UMu
(11.6) for each of them, directly Ml different policies could be compared.1757

However, for problems with multiple stages and for sufficiently high N̂t, this1758

becomes computationally intractable, even without solving (P̃ l
N ) exactly. Therefore,1759

de Matos et al. [48] follow the strategy to run SDDP once for some SAA problem1760

with larger branch size q̃t to determine a high quality policy and then, afterwards,1761

to run SDDP for Ml SAA problems with smaller branch size q̂t only to produce the1762

lower bound estimate LMl
and assess the quality of that policy. In their numerical1763

tests, they choose values between 5 and 200 for q̃t and 5 for q̂t. In general, it is not1764

clear though, how to choose q̂t to reach a reasonable trade-off between computational1765

tractability and an appropriate quality of the lower bound estimator.1766

Lower Bound Estimation with One SAA Problem. An alternative and1767

less costly lower bound estimator is derived by only using the existing SAA problem,1768

which has been applied to determine the policy that is to be assessed [48].1769

The idea is then to use the SDDP outcome ṽ as the point estimate LMl
for the1770

lower bound. To estimate the unknown sampling error of ṽ, the sampling error of the1771

in-sample upper bound estimator is used. This means that Ml scenarios are sampled1772

from FN (the SAA problem distribution) and formulas (11.6) and (11.7) with Ml in1773

the role of Mu are used to compute an upper bound estimate ṽMl
and sample error1774

σ2
l . The idea behind applying this sampling error is that ṽ and E[ṽMl

] are equal if1775

SDDP has been run to optimality. However, this also implies that if SDDP has not1776

converged (or if q̃t is not sufficiently large) the sampling error may be underestimated,1777

and thus the confidence intervals drawn from this become overly optimistic [48].1778

Confidence Intervals. Using the bound estimators and their sample variances,1779

asymptotically valid confidence intervals can be derived [48].1780

(
−∞, UMu + tMu−1,α

σU√
Mu

]
1781

is an asymptotically valid, and for finiteMu approximate, (1−α)% confidence interval1782

for E[ṽ(ξ)]. Here, tMu−1,α denotes the (1−α)-level quantile of a student’s t distribution1783

with Mu − 1 degrees of freedom. Similarly,1784 [
LMl

− tMl−1,α
σl√
Ml

,∞
)

1785

is an asymptotically valid, and for finiteMl approximate, (1−α)% confidence interval1786

for ṽ∗. Using only one SAA problem, this confidence interval is only valid if SDDP1787

has converged and if q̃t is sufficiently large. Combining both intervals yields1788 [
0, [UMu − LMl

]+ + tMl−1,α
σl√
Ml

+ tMu−1,α
σU√
Mu

]
1789

as a one-sided approximate confidence interval for the optimality gap ∆ [48]. Here,1790

[x]+ := max {x, 0}.1791
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11.3. Variance Reduction Techniques. Instead of MC sampling, also im-1792

portance sampling [149] and variance reduction techniques (see Section 6.2) can be1793

applied to obtain SAA estimators with reduced bias and variance.1794

In [104], numerical tests comparing MC, LHS and RQMC indicate that RQMC1795

yields the most promising results when it comes to determining representative SAA1796

problems. In [48] also MC, LHS and RMC are compared for different branch sizes and1797

policy evaluation strategies. The results indicate that with both LHS and RQMC, a1798

reduction of bias and sampling error, a higher policy quality and tighter confidence1799

intervals can be achieved in comparison with MC sampling, especially for smaller1800

branch sizes q̃t. For smaller branch sizes LHS appears to be superior, while RQMC1801

yields better results for larger branch sizes. While showing higher variability for MC1802

sampling, if combined with RQMC and LHS sampling, the computationally preferable1803

lower bound estimator using only in-sample scenarios from the existing SAA yields1804

comparable results to the approach solving several SAA problems [48].1805

12. Risk-averse SDDP [relaxing Assumption 8]. In SDDP, as described in1806

Section 3, a risk-neutral optimal policy is determined for (MSLP) (see Assumption 8).1807

More precisely, (MSLP) minimizes the expectation of the total objective value over all1808

stages t ∈ [T ] over feasible policies (xt(ξ[t]))t∈[T ], which satisfy non-anticipativity and1809

all constraints. Hence, it can be formulated as the single problem (2.3) with objective1810

(12.1) min
x1,x2,...,xT

E

∑
t∈[T ]

(
ct(ξt)

)⊤
xt(ξ[t])

 .1811

As discussed in Section 2.4, this problem can be expressed equivalently using the1812

DPE (2.4)-(2.6). This equivalence is based on two important properties of expected1813

values, first the so-called tower property1814

(12.2) Eξt
[Zt(ξt)] = Eξ[t−1]

[
Eξt|ξ[t−1]

[Zt(ξt)]
]

1815

for some random variable Zt, and second its strict monotonicity (see property (R2’)1816

below for a formal definition) [198].1817

Recall that the objective value
∑

t∈[T ]

(
ct(ξt)

)⊤
xt(ξ[t]) is random, and its real-1818

izations depend on realizations of (ξt)t∈[T ]. For some specific realization, the SDDP1819

policy may produce an objective value which widely deviates from the expectation1820

in (12.1). In practice, decision makers are often anxious not only to find a policy yield-1821

ing low costs on average, but also to avoid the risk of extremely high cost situations.1822

This motivates to consider risk-averse approaches in stochastic programming.1823

For multistage stochastic programming, incorporating risk-aversion has been a1824

popular research topic in the last decade. This includes theoretical fundamentals1825

on dynamic risk measures [191] as well as algorithmic developments, such as rolling1826

horizon approaches with chance constraints or AVaR constraints, which take risk1827

aversion into account in the constraints of (MSLP) [95, 96]. For SDDP, most focus1828

has been on replacing expectations in the objective (12.1) with some multi-period risk1829

measure R[·]. This yields the risk-averse problem (PR):1830

(12.3)

min
x1,x2,...,xT

R

∑
t∈[T ]

(
ct(ξt)

)⊤
xt(ξ[t])


s.t. x1 ∈ X1

xt ∈ Xt(xt−1(ξ[t−1]), ξt) ∀ξt ∈ Ξt ∀t = 2, . . . , T.

1831
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We cover risk-averse SDDP in detail in the remainder of this section, but start1832

with the required foundations of risk measures, especially for multistage problems. As1833

our focus is on algorithmic aspects of SDDP, we refer to the comprehensive coverage1834

of this topic in [198, 200] for technical definitions and derivations.1835

12.1. Risk Measures. A static (or one-period) risk measure is a function ρ :1836

Z → R̄ from the space Z of random variables Z to R̄ := R ∪ {−∞,+∞}. Often,1837

Z is assumed to be L1(Ω,F ,P), i.e., the space of all F -measurable functions with1838

finite first moments, as this ensures well-definedness and finiteness of many common1839

risk measures. Importantly, since random variables are functions themselves, risk1840

measures are actually functionals. This is sometimes emphasized by calling them risk1841

functionals or risk mapping.1842

We summarize some well-known risk measures:1843

• The expected value E[·] is the most common risk measure. It is completely1844

risk-neutral.1845

• The value-at-risk VaRα[·] to level α ∈ (0, 1) is defined as the left-side (1−α)-1846

quantile of the cumulative distribution of some random variable Z:1847

(12.4) VaRα[Z] := inf {u ∈ R : P(Z ≤ u) ≥ 1− α} .1848

Note that this definition is not used consistently in the literature, and that1849

the RHS of (12.4) may also be defined as VaR1−α[Z].1850

• The average value-at-risk AVaRα[·] to level α ∈ (0, 1) for some random vari-1851

able Z is defined by [184]1852

(12.5) AVaRα[Z] := inf

{
u ∈ R : u+

1

α
E [[Z − u]+]

}
,1853

where [x]+ is defined as max {x, 0}. Note that the infimum is always attained1854

in our SDDP setting of finite randomness (Assumption 5) and finite value1855

functions Qt(·) (see Lemma 2.5).1856

Remark 12.1. AVaRα[·] is also called conditional value-at-risk, expected short-1857

fall or expected tail loss. In the literature on risk-averse stochastic program-1858

ming, the first alternative is most frequently used with notation CVaRα[·],1859

but to avoid confusion when we introduce conditional risk measures later, we1860

stick to average value-at-risk.1861

It can be shown that an equivalent formulation of AVaRα[Z] is given by [197]1862

(12.6) AVaRα[Z] = VaRα[Z] +
1

α
E
[[
Z −VaRα[Z]

]
+

]
,1863

i.e., u∗ = VaRα[Z] minimizes the RHS in (12.5).1864

AVaRα[·] has some beneficial properties compared to VaRα[·]. It does not1865

only consider the probability mass beyond VaRα[·], but also its distribution,1866

e.g., if it has fat or long tails. Moreover, it allows to retain convexity of1867

optimization problems, as we discuss later on. VaRα[·] and AVaRα[·] are1868

illustrated in Figure 10.1869

• In stochastic programming, often a convex combination of E[·] and AVaR[·]1870

is considered, that is1871

(12.7) ρ̂α,λ[Z] := (1− λ)E[Z] + λAVaRα[Z]1872

for some λ ∈ [0, 1]. The parameters λ and α control the risk-aversion. Choos-1873

ing λ = 0 yields the standard risk-neutral model.1874
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E[Z] VaRα[Z]

CVaRα[Z]

α

Z

fZ

Fig. 10: VaRα[Z] and AVaRα[Z] for a gamma distributed random variable Z.

• For some γ > 0, the entropic risk measure is defined by1875

(12.8) ENTγ [Z] :=
1

γ
log
(
E[eγZ ]

)
.1876

It generalizes E[·] (for γ → 0) and ess sup[·] (for γ → ∞), where ess sup[Z]1877

denotes the essential supremum of a random variable Z.1878

It is often required that risk measures satisfy some special properties, especially1879

in an optimization context. First, we assume that all considered risk measures are1880

proper. Another desired property is coherence, a concept introduced by Artzner et al.1881

[3]. We employ a slightly different definition from [200] and state it for the general1882

case of continuous random variables:1883

Definition 12.2. A risk measure ρ : Z → R̄ is called coherent, if it satisfies1884

(R1) Convexity: for any Z1,Z2 ∈ Z and all λ ∈ [0, 1] it holds1885

ρ(λZ1 + (1− λ)Z2) ≤ λρ(Z1) + (1− λ)ρ(Z2),1886

(R2) Monotonicity: If Z1 ≤ Z2 almost surely, then ρ(Z1) ≤ ρ(Z2),1887

(R3) Translation Equivariance: If a ∈ R and Z ∈ Z, then ρ(Z + a) = ρ(Z) + a,1888

(R4) Positive Homogeneity: If λ > 0 and Z ∈ Z, then ρ(λZ) = λρ(Z).1889

A risk measure satisfying only properties (R1), (R2) and (R3) is called convex. In1890

fact, a key feature of coherent risk measures is that they are convex, and thus convex1891

objective functions as they appear in (PR) and its DPE remain convex if ρ[·] is applied1892

to them. VaRα[·] is not a coherent risk measure, but AVaRα[·] is [156]. Therefore, in1893

optimization AVaRα[·] is usually preferred over VaRα[·].1894

We introduce some additional relevant properties.1895

Definition 12.3. Let ρ : Z → R̄ be some risk measure. Then, the following1896

properties can be defined.1897

(R2’) If the inequalities in (R2) in Definition 12.2 are strict, we call this property1898

strict monotonicity.1899
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Table 4: Properties of common risk measures.

(R1) (R2) (R3) (R4) (R2’)

E[·] ✓ ✓ ✓ ✓ ✓
VaRα[·] - ✓ ✓ ✓ -
AVaRα[·] ✓ ✓ ✓ ✓ -
ρ̂α,λ[·] ✓ ✓ ✓ ✓ ✓*
ENTγ [·] ✓ ✓ ✓ - ✓

* only for λ ∈ [0, 1).

(R5) Law Invariance: ρ is called law invariant with respect to P, if for all Z,Z ′ ∈ Z1900

with the same distribution also ρ(Z) = ρ(Z ′) holds.1901

Property (R5) implies that the risk measure ρ only depends on the distribution of the1902

considered random variable Z.1903

We summarize properties of the previously introduced risk measures in Table 4.1904

Remark 12.4. A classical approach in economics is to take risk aversion into ac-1905

count by means of non-decreasing and convex disutility (or concave utility) functions1906

g : R → R̄ that are applied to some random variable Z before taking expectations.1907

However, the obtained risk measure ρ[Z] = E[g(Z)] does not satisfy property (R3)1908

which is required to equivalently express (PR) using DPE.1909

12.2. Multi-period Risk Measures. In a multistage setting, single-period risk1910

measures have to be extended to several periods, more precisely, to a sequence of1911

random variables Z := Z1, . . . ,ZT , which in our case model the stagewise objectives1912

of (MSLP). We define such multi-period risk measures as functionals R : Z → R with1913

Z = Z1 ×Z2 × . . .×ZT .1914

Choosing multi-period risk measures in a reasonable way is a challenging task.1915

Firstly, it is not clear how risk should be measured in a multistage setting [105].1916

Several different options exist [60, 105, 200], such as1917

R[Z] = ρ[Z1 + · · ·+ZT ] (end-of-horizon risk)(12.9)1918

R[Z] = ρ
[
Z1 + ρ|Z1

[
Z2 + . . .+ ρ|ZT−1

[ZT ] · · ·
]]

(nested risk)(12.10)1919

R[Z] = ρ[Z1] + . . . ρ[ZT ] (stage-wise risk),(12.11)1920

where ρ is some one-period risk measure and ρ|Zt
is ρ conditioned on Ft (or ξ[t−1],1921

respectively), a so-called conditional risk measure. The idea of nested conditional risk1922

measures goes back to Ruszczyński and Shapiro [192]. If ρ is law-invariant (property1923

(R5) in Definition 12.3), then ρ|Zt
can be obtained by replacing the distribution with1924

the corresponding conditional distribution [200]. Note that coherence of conditional1925

risk measures can be defined completely analogously to unconditional ones.1926

Remark 12.5. Under stagewise independence (Assumption 2), as we assume it for1927

SDDP, the conditional risk measures in (12.10) become unconditional ones.1928

Secondly, in an optimization context, multi-period risk measures have to be care-1929

fully chosen, in such a way that the resulting problem (PR) possesses desirable prop-1930

erties. In addition to convexity, especially time-consistency is a crucial property.1931
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12.2.1. Time Consistency. In the literature, various different definitions of1932

time consistency exist, see among others [35, 105, 46, 157, 198] and references within.1933

The term is ambiguous in the sense that it is used for risk measures, policies and1934

optimization problems. We only state some of these concepts that are relevant for1935

SDDP, and for technical definitions and detailed discussions refer to [64, 105, 198, 200].1936

A common definition is that an optimal policy
(
x̄t(ξ[t])

)
t∈[T ]

for (PR) (see (12.3))1937

is called time consistent if for any τ ∈ [T ], the policy
(
x̄t(ξ[t])

)
t=τ,...,T

is optimal for1938

(PR) restricted to horizon t = τ, . . . , T conditional on Ft−1 and x̄t−1 [200]. This1939

means that the optimal policy remains optimal after some of the uncertain data has1940

been revealed. The problem (PR) is then called weakly time consistent, if at least one1941

of its optimal policies is time consistent, or time consistent, if every optimal policy is1942

time consistent [200] (note that there exist deviating definitions in the literature).1943

Policies obtained using DPE (such as (2.4)-(2.6)) naturally satisfy time consis-1944

tency. Therefore, the concept of time consistency is closely related to equivalently1945

reformulating (PR) (see (12.3)) into DPE [200]. For nested risk measures R[·],1946

see (12.10), this equivalence holds under strict monotonicity (property (R2’) in Defi-1947

nition 12.3) of ρ (or ρ|ξ[t] , respectively). More precisely, under (R2’), by interchanging1948

risk measures and minimization operators, (PR) with nested risk can be expressed in1949

the nested fashion [200]1950

(12.12)

min
x1∈X1

c⊤1 x1 + ρ2

[
min

x2∈X2(x1)
(c2(ξ2))

⊤x2 + ρ3|ξ[2]

[
. . .

. . .+ ρT |ξ[T−1]

[
min

xT∈XT (xT−1)
(cT (ξT ))

⊤xT

]
. . .

]]
,

1951

which naturally allows for a reformulation to DPE. Note that for stage 2 no conditional1952

expectation is used as the first-stage data is deterministic. If ρ (or ρ|ξ[t]) only satisfy1953

(R2) instead of (R2’), then only weak consistency of (PR) is guaranteed, as any1954

optimal policy for the DPE is also optimal for problem (PR) with nested risk, but1955

not necessarily vice versa.1956

As indicated by Table 4, AVaRα[·] is not strictly monotone. Therefore, even if1957

applied in a nested conditional way, time consistency is not assured. In contrast, it1958

can be ensured using risk measure ρ̂α,λ[·] defined in (12.7), given that λ ∈ [0, 1). A1959

drawback of nested risk is that it is less amenable to suitable interpretations, although1960

some economic interpretations are possible [189].1961

For single-period risk measures ρ[·] that are applied as an end-of-horizon risk1962

measure (12.9), it is well known that time consistency is often not satisfied. For in-1963

stance, some simple examples in [64, 105] show that using a single-period risk measure1964

ρ[·], such as VaRα[·] or AVaRα[·], in this setting leads to time-inconsistent decisions.1965

Moreover, in [189], an illustrative example is presented in which even under stagewise1966

independence (Assumption 2), the risk measure ρ̂α,λ[·] does not yield time-consistent1967

policies from an end-of-horizon perspective. To achieve time consistency, it is required1968

that problem (PR) (see (12.3)) with end-of-horizon risk measure ρ[·] can be converted1969

to an equivalent problem with nested risk using conditional risk measures ρ|ξ[t]. For1970

this reason, Dowson et al. [60] define time consistency (in their case referred to as1971

conditional consistency) of a single-period risk measure ρ[·] as an equivalence between1972

the associated end-of-horizon risk and nested risk.1973

In fact, the only law-invariant coherent single-period risk measures ρ[·] allowing1974

for such a reformulation are E[·] and ess sup[·] [200]. Hence, using AVaRα[·] as an1975
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end-of-horizon risk measure not even weak time consistency can be guaranteed for1976

(PR). It can be shown, though, that the non-coherent, but convex risk measure1977

ENTγ [·] from (12.8) is conditionally consistent, and thus is sufficient to ensure time1978

consistency of (PR). The equivalence of different formulations for problem (PR) is1979

illustrated in Figure 11.1980

End-of-horizon
formulation

Nested
formulation I

Nested
formulation II

Recursive
formulation

(PR) (12.3),
with R[·] as in (12.9)

(PR) (12.3),
with R[·] as in (12.10)

(12.12) DPE to (12.12)

Decompos-

ability
(R2’)

(R2)

Fig. 11: Different forms of (PR) and conditions for their equivalence.

Remark 12.6. In view of conditional consistency, note that nested risk measures1981

R[·] from (12.10) can always be expressed equivalently using an associated end-of-1982

horizon risk measure (12.9), the so-called composite risk measure. However, as the1983

previous discussion shows, the reverse direction is only true if ρ[·] allows for a decom-1984

position using its conditional analogues; similar to (12.2) [198, 200].1985

Additionally, some notion of time consistency can be satisfied using expected con-1986

ditional risk measures R[·], which measure the risk stage by stage (see (12.11)), if the1987

included (conditional) risk measures are coherent [105]. Applying such a risk measure1988

in (PR) (problem (12.3)), we obtain the problem1989

(12.13)

min
x1,x2,...,xT

c⊤1 x1 + ρ2
[(
c2(ξ2)

)⊤
x2(ξ[2])

]
+ Eξ[2]

[
ρ3|ξ[2]

[(
c3(ξ3)

)⊤
x3(ξ[3])

]]
+ · · ·+ Eξ[T−1]

[
ρT |ξ[T−1]

[(
cT (ξT )

)⊤
xT (ξ[T ])

]]
s.t. x1 ∈ X1

xt ∈ Xt(xt−1(ξ[t−1]), ξt) ∀ξt ∈ Ξt ∀t = 2, . . . , T.

1990

In the remainder of this section, we discuss the incorporation of risk-aversion1991

into SDDP from an algorithmic perspective. The first two methodological studies of1992

risk-averse SDDP are [93] for problems with end-of-horizon risk (12.9), in particular1993

using polyhedral risk measures, and [197] for problems with nested conditional risk1994

mappings (12.10). While some articles on this topic also cover SAA [113, 197, 202],1995

see Section 11, we restrict to finite random variables here.1996

12.3. SDDP with Polyhedral Risk Measures. Multiperiod polyhedral risk1997

measures are a special type of risk measure, which can be formulated as the opti-1998

mal value of certain T -stage linear stochastic programs [67]. The arguments of the1999

risk measure, e.g., in our case the objective function of (MSLP), enter these linear2000

programs on the RHS.2001

In [93], multiperiod extended polyhedral risk measures are introduced, for which2002

the corresponding linear program has a slightly more general form. This class com-2003

prises polyhedral risk measures, spectral risk measures and also AVaRα[·]. These risk2004

measures can be shown to be convex and coherent under certain assumptions [93].2005

The main strength of (extended) polyhedral risk measures is that they can natu-2006

rally be used in a multistage stochastic programming setting. The LP representation2007
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of R[·] and the original LP formulation of (MSLP) can be conflated to a single large-2008

scale risk-averse linear programming problem (PR), which allows for a reformulation2009

by means of DPE [93]. These DPE can then be approached by standard risk-neutral2010

SDDP to compute lower bounds and statistical upper bounds for the risk-averse op-2011

timal value v∗R. Guigues and Römisch derive the cut formulas and give a convergence2012

proof for some special cases of extended polyhedral risk measures [93] and the special2013

case of spectral risk measures [94].2014

While polyhedral risk measures allow for a straightforward formulation of linear2015

DPE, they have a significant drawback with respect to SDDP. The stage-t subproblems2016

have to be enhanced with additional state variables zt−1 and y1, . . . , yt−1, which are2017

required to store the history of previous decisions. In general, this is unfavorable,2018

see Section 4.2. The specific computational cost depends on the chosen extended2019

polyhedral risk measure. Even if for general extended polyhedral risk measures the2020

augmentation of the state space may yield prohibitive computational cost [160], the2021

approach has been successfully applied with AVaRα[·] in [84].2022

12.4. SDDP with Nested Risk Measures. As mentioned in Section 12.2.1, to2023

obtain a risk-averse problem (PR) with time-consistent solutions, it is often proposed2024

to use (conditional) coherent one-period risk measures ρ[·] (or ρt|ξ[t] [·]) for all t ∈ [T ]2025

in a nested fashion. This yields the nested problem (12.12). We denote its optimal2026

value by v∗R. As indicated before, we can derive an equivalent formulation using DPE2027

[200]. Using Remark 12.5 they become2028

(12.14) QR,t(xt−1, ξt) :=

{
min
xt

(
ct(ξt)

)⊤
xt +QR,t+1(xt)

s.t. xt ∈ Xt(xt−1, ξt)
2029

with some risk-adjusted value function2030

(12.15) QR,t+1(xt) := ρt+1 [QR,t+1(xt, ξt+1)]2031

and QR,T+1(·) ≡ 0. The corresponding first-stage problem is2032

(12.16) v∗R =

{
min
x1

c⊤1 x1 +QR,2(x1)

s.t. x1 ∈ X1.
2033

Fortunately, for coherent risk measures ρt[·], t ∈ [T ], also the nested risk measure2034

R[·] preserves convexity of QR,t+1(·). Therefore, a cutting-plane approximation as in2035

SDDP can be applied.2036

Nested conditional risk measures are by far the most frequently chosen approach2037

for risk-averse extensions of SDDP [64, 105, 113, 159, 160, 197, 202]. Most typically,2038

the risk measure ρ̂α,λ[·] (see (12.7)) is used, which is coherent according to Table 4.2039

12.4.1. Reformulating the DPE. The general DPE for (PR) with nested risk2040

measures are formulated in (12.14)-(12.16). To determine Qt(·), t ∈ [T ], for ρ̂α,λ[·]2041

specifically, the AVaR of Qt(·, ·) has to be evaluated. Using its definition as the2042

optimal value of an optimization problem with decision variable u ∈ R [184], see2043

(12.5), we are able to further reformulate the DPE.2044

Remark 12.7. For finite random variables Z (under Assumption 5 for SDDP),2045

AVaRα[·] may as well be defined as2046

AVaRα[Z] = E
[
Z|Z ≥ VaRα[Z]

]
.2047

However, to reformulate the DPE, representation (12.5) is preferrable.2048
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Additional State Variable Approach. Using (12.5), the risk-adjusted value2049

function (12.15) can be expressed as2050

(12.17)

QR,t+1(xt) = min
ut∈R

Eξt+1

[
(1− λt+1)QR,t+1(xt, ξt+1)

+ λt+1

(
ut +

1

αt+1

[
QR,t+1(xt, ξt+1)− ut

]
+

)]
.

2051

Recall that λt and αt, t = 2, . . . , T, are user-controlled parameters.2052

The minimization over ut can be incorporated into the stage-t subproblems [197],2053

which yields2054

(12.18) Q̃R,t(xt−1, ξt) =

{
min
xt,ut

(
ct(ξt)

)⊤
xt + λt+1ut + Q̃R,t+1(xt, ut)

s.t. xt ∈ Xt(xt−1, ξt)
2055

with some modified risk-adjusted value function2056

(12.19)

Q̃R,t+1(xt, ut) = Eξt+1

[
(1− λt+1)Q̃R,t+1(xt, ξt+1)

+
λt+1

αt+1

[
Q̃R,t+1(xt, ξt+1)− ut

]
+

]
,

2057

Q̃R,T+1(·, ·) ≡ 0 and λT+1 ≡ 0 [197]. The first stage changes to2058

(12.20) v∗R =

{
min
x1,u1

c⊤1 x1 + λ2u1 + Q̃R,2(x1, u1)

s.t. x1 ∈ X1.
2059

The risk-adjusted value functions Q̃R,t+1(·, ·) differ from the ones defined in2060

(12.17), but can be proven to be convex as well.2061

With equations (12.18)-(12.20), the risk measures ρt[·] are incorporated into the2062

subproblems, such that only expectations have to be evaluated in the DPE. However,2063

as pointed out in [113], in comparison with the DPE (2.4)-(2.6) of the risk-neutral2064

case, we still observe some fundamental differences: Firstly, an additional, albeit one-2065

dimensional, state variable ut ∈ R is introduced at each stage to estimate the VaR-2066

level, augmenting the state space by one. Secondly, the risk-adjusted value functions2067

QR,t+1(·, ·) do not only depend on xt, but also on ut and parameters λt, αt. Thirdly,2068

they contain the nonlinear, i.e., piecewise linear, function [·]+.2069

Philpott and de Matos provide an alternative reformulation of the DPE, elimi-2070

nating the nonlinear expression via an epigraph reformulation [159]. To this end, the2071

random term in the brackets in (12.19) is fully incorporated into the value functions.2072

For t = 2, . . . , T − 1, this yields2073

(12.21)

Q̂R,t(xt−1, ut−1, ξt)

=


min

xt,ut,wt

(1− λt)
((
ct(ξt)

)⊤
xt + λt+1ut + Q̂R,t+1(xt, ut)

)
+
λt
αt
wt

s.t. xt ∈ Xt(xt−1, ξt)

wt −
(
ct(ξt)

)⊤
xt − λt+1ut − Q̂R,t+1(xt, ut) ≥ −ut−1.

2074

Using this formulation, the risk value function is defined more naturally as2075

(12.22) Q̂R,t+1(xt, ut) = Eξt+1

[
Q̂R,t+1(xt, ut, ξt+1)

]
.2076
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Again, Q̂R,T+1(·, ·) ≡ 0 and λT+1 ≡ 0.2077

The first-stage problem reads then2078

(12.23) v∗R =

{
min

x1,u1,w1

c⊤1 x1 + λ2u1 + Q̂R,2(x1, u1)

s.t. x1 ∈ X1.
2079

In comparison to the formulation (12.18)-(12.20) by Shapiro [197], additional2080

variables and constraints have to be introduced. Both formulations allow applica-2081

tion of SDDP, but share the drawback of augmenting the state space. Since the2082

computational effort of SDDP grows exponentially in the state space dimension, see2083

Theorem 4.2, such increase should be avoided.2084

Modifying the Probability Measure. An alternative idea is to exploit that2085

u∗ = VaRα[Z] in the definition of AVaRα[Z] (see (12.5)) and that VaRα[Z] is the (1−2086

α)-quantile of a random variable Z. As we assume finite randomness (Assumption 5)2087

and solve the subproblems for all realizations ξtj , j = 1, . . . , qt, in the backward pass2088

of SDDP, this quantile can be manually determined for the value functions [202].2089

Without loss of generality, assume that for all t = 2, . . . , T and any fixed trial2090

solution x̄t−1 the values of QR,t(x̄t−1, ξtj) are ordered for all j = 1, . . . , qt. That2091

means, we have QR,t(x̄t−1, ξt1) ≤ · · · ≤ QR,t(x̄t−1, ξt,qt). Then, in (12.17) the variable2092

ut can be replaced by the (1−α)-quantile QR,t+1(x̄t, ξt+1,j∗) with j
∗ chosen such that2093 ∑j∗

j=1 pt+1,j ≥ 1− αt+1:2094

(12.24)

QR,t+1(xt) = Eξt+1

[
(1− λt+1)QR,t+1(xt, ξt+1) + λt+1

(
QR,t+1(x̄t, ξt+1,j∗)

+
1

αt

[
QR,t+1(xt, ξt+1)−QR,t+1(x̄t, ξt+1,j∗)

]
+

)]
.

2095

In SDDP, relation (12.24) cannot directly be applied, since QR,t+1(·, ξt+1,j) is not2096

known and also not evaluated for all j = 1, . . . , qt+1. However, the same principle can2097

also be applied to the approximate value functions QR,t+1
(·, ξt+1,j).2098

In [160], this idea is considered from a dual perspective and used to reformulate2099

the risk measure (12.7) even before formulating the DPE. The key concept is the2100

so-called dual representation of AVaRα[·], which is defined as2101

(12.25) AVaRα[Z] =



sup
ζ

q∑
j=1

pjζjZ(ξj)

s.t.

q∑
j=1

pjζj = 1

ζj ≥ 0, j = 1, . . . , q

ζj ≤
1

α
, j = 1, . . . , q.

2102

It shows that AVaRα[·] can be interpreted as some worst-case probability measure P̃2103

with p̃j := pjζj for all j = 1, . . . , q.2104

As shown in [160], using this definition and explicitly computing the supremum,2105

risk measure (12.7) can be written as2106

(12.26) ρ̂t,αt,λt [Z] =

qt∑
j=1

ptjζtjZ(ξtj)2107
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with2108

(12.27) ζtj =



(1− λt), j < j∗,

(1− λt) +
1

ptj∗

(
λt −

λt
αt

qt∑
n=j∗+1

ptn

)
, j = j∗,

(1− λt) +
λ

αt
, j > j∗.

2109

Again, note that the true value functions Qt(·) are not known explicitly in ad-2110

vance, and therefore the worst-case probability measure P̃ stemming from (12.25)2111

is not known either. However, it can be approximated in SDDP. In particular, the2112

DPE (12.14)-(12.16) and their approximations can be used with expectations as in2113

standard SDDP, but with a modified probability measure that is iteratively updated.2114

More precisely, as ζtj changes with x̄t−1, the modified probabilities have to be re-2115

computed for each stage t, iteration i and sample k in SDDP. This principle is also2116

extended to general coherent risk measures in [160].2117

Recently, this kind of change of the probability measure has also been discussed in2118

[125]. Instead of determining the ordering and j∗ based on Qi+1

t+1
(·) for one specific it-2119

eration i, also all previous iterations are taken into account there. More precisely, the2120

number of iterations in which an index j exceeds VaRα[QR,t+1
(x̄t, ξt)] are counted.2121

This is considered as a good proxy for the ordering of the actual value functions.2122

The ordering, and thus the probability measure P̃, can either be updated dynamically2123

within SDDP or be determined by running risk-averse SDDP once in advance to iden-2124

tify the outcomes contributing to AVaRα[·]. The latter approach has the advantage2125

that the changed probability measure P̃ can be fixed for the following run, which2126

yields a risk-neutral problem and allows for application of standard SDDP.2127

Additionally, as pointed out in [125], the approximation of P̃ may also be used2128

in the forward pass to sample scenarios with “bad” outcomes with higher probability.2129

This biased sampling can be considered similar to the importance sampling techniques2130

presented in Section 6.2131

For the third-stage of Example 3.3, the expected risk value function QR,3(·)2132

obtained by applying (12.26) and (12.27) to (12.15) is illustrated in Figure 12 for2133

α = 0.05 and different values of λ. It can be seen that with choosing larger values2134

for λ, representing a higher risk-aversion, the stage-3 cost increases compared to the2135

risk-neutral case (λ = 0).2136

As an overview, the different forms of DPE for (PR) using a nested (conditional)2137

risk measure based on ρ̂α,λ[·] are summarized in Table 5.2138

12.4.2. Forward and Backward Pass. All approaches in Table 5 to formu-2139

late the DPE allow for a solution of a risk-averse problem (PR) using SDDP. Some2140

approaches are more efficient, since the state space, the decision space or the number2141

of constraints are not augmented. Others are advantageous in the sense that QR,t(·)2142

is expressed by a neat formula, and thus cut formulas can be derived more easily.2143

With some epigraph reformulation, for all the approaches all subproblems can be2144

formulated as LPs.2145

The forward pass of SDDP basically remains the same as for risk-neutral SDDP2146

from Section 3. That is, k ∈ K scenarios are sampled and considered, with K ⊂ S and2147

|K| ≪ |S|. However, the subproblems and the associated approximate value functions2148

Qi

R,t
(xikt−1, ξ

k
t ) differ from the risk-neutral case. Instead of subproblems (2.10), one2149
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Fig. 12: QR,3(·) from Example 3.3 for α = 0.05 and different values of λ.

Description Source DPE

- general (12.14)-(12.16)
- augmented state,
sophisticated formula for QR,t(·) [197] (12.18)-(12.20)

- augmented state,
additional constraints and variables [159] (12.21)-(12.23)

- VaRαt
[Qt(·)] explicitly determined,

sophisticated formula for QR,t(·) [202] (12.18), (12.20), (12.24)
- modified probability measure [160] (12.14)-(12.16), (12.26)-(12.27)
- modified probability measure [125] (12.18), (12.20), (12.24)

Table 5: DPE formulations for (PR) using a nested (conditional) risk measure based
on ρ̂α,λ[·].

of the DPE from Table 5 are chosen and the occurring risk-adjusted value functions2150

QR,t+1(·) are replaced by cut approximations Qi
R,t+1(·).2151

In the backward pass, as in risk-neutral SDDP, at each stage t = T, . . . , 2, those2152

subproblems are solved for each trial solution xikt−1, k ∈ K, and possible stage-t real-2153

ization ξktj ≡ ξtj , j = 1, . . . , qt, using an updated cut approximation Qi+1
R,t+1(·). On2154

stage t, a new cut for QR,t(·) is derived and handed back to stage t − 1. The main2155

difference to risk-neutral SDDP is again the definition of QR,t(·). Therefore, the cut2156

formulas have to be adapted to the individual approach chosen. For the technical2157

derivation of subgradients in such cases, we refer to the references in Table 5.2158

12.4.3. Upper Bound Determination and Stopping. The main challenge2159

of applying SDDP is to determine upper bounds for v∗R, and allowing for a reasonable2160

stopping criterion. The reason is that most upper bound construction methods from2161

the risk-neutral case, see Sections 7 and 8, cannot be efficiently extended to the risk-2162

averse case.2163

Recall that in the risk-neutral case, a feasible policy (xt(ξ[t]))t∈[T ] is determined2164

in the backward pass and evaluated in the forward pass for different scenarios k ∈ K,2165

yielding a sequence of trial points (xikt )t∈[T ]. Then, a statistical upper bound vK for2166
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v∗ is determined as the sample average of the objective values of all these sample2167

paths ξk, see (3.9). Analogously, a true upper bound v can be obtained by taking the2168

expectation of such objective value for all scenarios ξs, s ∈ S.2169

However, this is possible only due to the tower property (12.2) of expected values,2170

which is required for the equivalence of the end-of-horizon formulation (12.1) and2171

the nested formulation (12.12), see the discussion in Section 12.2.1. While such an2172

equivalence can be established for nested risk measures R[·] based on conditional2173

one-period risk measures ρξ[t] [·], if their composite risk measure is considered as end-2174

of-horizon risk measure, see Remark 12.6, it usually does not hold for using ρ[·] itself2175

as an end-of-horizon risk measure. The composite risk measure, on the other hand,2176

is usually not known explicitly [200]. Therefore, an analogue to the sample average2177

cannot directly be applied to obtain a (statistical) upper bound.2178

As determining reasonable upper bounds is a crucial ingredient of SDDP, devel-2179

oping appropriate upper bound estimators has been an active research field in the last2180

decade. In the following, we discuss different approaches that have been proposed. In2181

reviewing them, we follow the presentation of Kozmı́k and Morton [113], who provide2182

a comprehensive study within their own work on upper bound estimators.2183

A Sample Average Estimator. In Section 12.4.1, we managed to formulate2184

each ρt[·] only by means of expectations in (12.19). Still, this does not assure the tower2185

property, since the risk-adjusted value functions QR,t(·) contain a nested nonlinearity2186

due to the [·]+-function. However, we can derive an estimator similar to (3.9) [113].2187

To this end, we remove the expectation in (12.19) to obtain2188

(12.28)

v̂t(ξ
k
t ) := (1− λt)

((
ct(ξ

k
t )
)⊤
xkt + v̂t+1(ξ

k
t )
)

+ λtu
k
t−1 +

λt
αt

[(
ct(ξ

k
t )
)⊤
xkt + v̂t+1(ξ

k
t )− ukt−1

]
+
,

2189

where we replace the value functions QR,t+1(·) by the estimator of the following stage.2190

For stage T it follows v̂T+1(ξ
k
T ) ≡ 0 and for the first stage2191

(12.29) v̂(ξk) := c⊤1 x1 + v̂2(ξ
k
1 ).2192

Equation (12.29) provides a recursive estimator for the cost associated with sam-2193

ple path ξk. This estimator has to be evaluated by backward recursion starting2194

with stage T . Importantly, formula (12.28) is only used for upper bound estimation,2195

whereas the forward and backward problems in SDDP are still based on the origi-2196

nal DPE (12.18)-(12.20). Determining estimator (12.29) for all scenarios ξk, k ∈ K,2197

sampled in the forward pass of SDDP, we can form an upper bound estimator2198

(12.30) Un :=
1

|K|
∑
k∈K

v̂(ξk),2199

which resembles the sample average estimator (3.9).2200

Estimator (12.30) is an unbiased and consistent estimator of vR, but has a large2201

variance. Kozmı́k and Morton point out several reasons for this behaviour [113]. Only2202

a small portion of the sampled scenarios contributes to estimating AVaRα[·], while2203

most solely contribute to the expectation. Therefore, a very large number of scenarios2204

would be required for an appropriate estimate. Additionally, since expectations are2205

not taken conditionally on each stage as in (12.19), and due to to division by αt ∈2206

(0, 1), small or large values are very likely to propagate from late to earlier stages in2207

the recursion to determine v̂(ξk).2208
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Conditional Sampling Estimator. For the above reasons, estimator Un in2209

(12.30) is rarely considered in the literature on risk-averse SDDP. Instead, Shapiro2210

discusses a conditional sampling estimator [197]. Here, the idea is to estimate the2211

expectations (12.19) in the nested structure conditionally by sampling on each stage.2212

Since in principle, the upper bound estimator can be determined independently of the2213

scenarios sampled in the forward pass, we denote the set of samples byM instead of2214

K. Mt denotes the corresponding scenario set for stage t.2215

For each stage, t = 2, . . . , T , this yields [113]2216

v̂ct (ξ
k
t ) :=

1

|Mt|
∑

mt∈Mt

[
(1− λt)

((
ct(ξ

mt
t )
)⊤
xmt
t + v̂ct+1(ξ

mt
t )
)

+ λtu
mt
t−1 +

λt
αt

[(
ct(ξ

mt
t )
)⊤
xmt
t + v̂ct+1(ξ

mt
t )− umt

t−1

]
+

]
,

2217

and for the first stage the estimator2218

U c := c⊤1 x1 + v̂c2(ξ1).2219

As Shapiro himself points out, this estimator has two significant drawbacks. It2220

requires
∏T

t=2 |Mt| + 1 subproblems to be solved, which is exponentially growing in2221

the number of stages. Moreover, the obtained upper bounds are typically not very2222

tight. Therefore, estimator U c should not be useful for large-scale problems [113].2223

Importance Sampling Estimators. Applying conditional sampling appears2224

computationally intractable, but the drawbacks of estimator Un may also be addressed2225

by importance sampling [112, 113], see Section 6 for an introduction. By sampling2226

scenarios associated with AVaRα[·] with higher importance, it is possible to better2227

represent it. Based on this idea, Kozmı́k and Morton put forward different importance2228

sampling upper bound estimators [113], which are further enhanced in [112].2229

Using importance sampling with respect to AVaRα[·], yields a considerable chal-2230

lenge, though. In order to determine the importance sampling distribution for some2231

stage t, it has to be identified which scenarios are associated with AVaRα[·] on2232

that stage, i.e., which of them provide a value QR,t(x
k
t−1, ξ

k
tj) beyond the (1 − α)-2233

quantile. If we estimate this by solving subproblems for several ξktj and determining2234

QR,t(x
k
t−1, ξ

k
tj), we face a similar computational burden as for conditional sampling.2235

Kozmı́k and Morton propose the following approach: They use an approximation2236

function dt(xt−1, ξt), which estimates the recourse value of the decisions xt−1 after2237

ξt has been observed [113]. Instead of solving the subproblems for several ξktj , they2238

simply evaluate dt(x
k
t−1, ξ

k
tj) and sort these values. Based on the obtained order,2239

it can be decided then which scenarios are used to estimate AVaRα[·], i.e., ud :=2240

VaRαt
[dt(xt−1, ξt)] is determined.2241

This allows defining an importance sampling distribution depending on xt−1 [113].2242

For simplicity, we assume that all scenarios are equally likely in the original distribu-2243

tion, that is, ft(ξtj) =
1
qt

for all j = 1, . . . , qt. Then, it follows:2244

gt(ξt|xt−1) :=


1

2⌊αtqt⌋
, dt(xt−1, ξt) ≥ ut,

1

2(qt − ⌊αtqt⌋)
, dt(xt−1, ξt) < ut.

2245

This distribution ensures that it is equally likely to draw sample observations above2246
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and below ut. Note that the formula presented in [113] looks a bit different, since it2247

is presented in the context of SAA.2248

Defining weights2249

Λt(ξt|xt−1) :=
ft(ξt)

gt(ξt|xt−1)
2250

and multiplying them along the sample paths2251

Λ(ξk) :=

T∏
t=2

Λt(ξ
k
t |xt−1)2252

we can derive the estimator2253

(12.31) U i :=
1∑

k∈K Λ(ξk)

∑
k∈K

Λ(ξk)v̂(ξk).2254

This estimator is similar to (12.30), as the same recursive term v̂(ξk) is used, but2255

combined with importance instead of standard MC sampling.2256

With the assumptions of relatively complete recourse (based on Assumption 9)2257

and stagewise independence (Assumption 2), estimator (12.31) is asymptotically valid,2258

i.e., for |K| → ∞, U i converges to Ef [v̂(ξ)] with probability 1 and Ef [v̂(ξ)] ≥ v∗R.2259

Moreover, for sufficiently good choice of dt(·), it can be expected that the variance is2260

lower than for Un [113].2261

Based on this idea, even better estimators can be developed [112, 113], for example2262

by sampling with higher importance scenarios associated with AVaRα[·] as before, but2263

also using only such scenarios to estimate AVaR, which contribute to the [·]+-term2264

[113]:2265

v̂dt (ξ
k
t ) := (1− λt)

((
ct(ξ

k
t )
)⊤
xkt + v̂dt+1(ξ

k
t )
)

+ λtu
k
t−1 + I[dt(xt−1, ξt) ≥ ud]

λt
αt−1

[(
ct(ξ

k
t )
)⊤
xkt + v̂dt+1(ξ

k
t )− ukt−1

]
+
.

2266

Here I[·] denotes an indicator function. For the first stage it follows2267

v̂d(ξk) := c⊤1 x1 + v̂d2(ξ
k
1 ).2268

Combining this with (11.6), we obtain2269

Ud :=
1∑

k∈K Λ(ξk)

∑
k∈K

Λ(ξk)v̂d(ξk).2270

The practical applicability of this estimator relies heavily on satisfaction of the2271

following goodness assumption with respect to dt(·):2272

QR,t(xt−1, ξt) ≥ VaRαt [QR,t(xt−1, ξt)] ⇔ dt(xt−1, ξt) ≥ VaRαt [dt(xt−1, ξt)],2273

which means that dt(·) correctly classifies whether a realization is in the upper α-tail2274

of the recourse value distribution.2275

It is proven that this estimator is asymptotically valid as well, but also provides2276

tighter upper bounds than U i in expectation, as long as the above goodness assump-2277

tion is satisfied. Moreover, a smaller variance should be expected [113]. Numerical2278
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results in [113] illustrate that even for a medium number of stages, estimator Ud pro-2279

vides significantly better upper bounds than Un, U c and U i and that also the variance2280

of the estimators is reduced significantly.2281

Apart from the above sampling estimators, some completely different strategies2282

may be used to obtain upper bounds for v∗R,t or to define some stopping criteria for2283

SDDP in the risk-averse case.2284

Using Deterministic Upper Bounds. As already discussed in Section 8,2285

we may circumvent the determination of sampling-based upper bound estimators2286

completely if we resort to deterministic upper bounding procedures.2287

To this end, Philpott et al. [160] extend their inner approximation based upper2288

bounding procedure from Section 8 to the risk-averse case with nested (conditional)2289

coherent risk measures. The main downside of this procedure, to require prohibitively2290

large computational effort for a large number of state variables and an increasing2291

number of cuts, also holds in this case, though.2292

The alternative deterministic upper bounding procedure based on dual SDDP2293

[97, 118] has been extended to a risk-averse setting as well [40].2294

Determining Bad Outcomes in Advance. As discussed in Section 12.4.1,2295

following the approach of a change of probability measure, see (12.14)-(12.16) and2296

(12.26), it is also possible to run (risk-averse) SDDP once in advance to approximate2297

the probability measure P̃, and then a second time, this time fixing the probability2298

measure to the approximation of P̃. This is referred to as solving the change-of-2299

measure risk-neutral problem in [125]. Whereas this approach has a lot of computa-2300

tional overhead, the advantage is that a risk-neutral problem can be solved by SDDP2301

and therefore, also the standard stopping, upper bounding and policy assessment tech-2302

niques can be applied. Clearly, solving the change-of-measure risk-neutral problem2303

is not guaranteed to yield optimal policies for (PR), however Liu and Shapiro report2304

that the quality of the policies is similar to those obtained by risk-averse SDDP [125].2305

Fixing the Number of Iterations. This approach is proposed by Philpott2306

and de Matos [159]. They run a risk-neutral variant of SDDP first and then fix the2307

number of iterations required until termination. The same number of iterations is2308

then used in the risk-averse case, avoiding the challenge of upper bound evaluation.2309

In some practical applications, in which it is computationally intractable to deter-2310

mine a sophisticated upper bound estimator, this approach may be useful. Promising2311

results are reported in [159]. However, there is no theoretical guarantee to find a2312

sufficiently good solution for a risk-averse version of (PR) in the same number of2313

iterations as for a risk-neutral version. Additionally, for large problems it may al-2314

ready take considerably long to run SDDP one time. Running it a second time for2315

risk-averse problem (PR) may partially annihilate the computational advantage of2316

avoiding upper bound estimation.2317

Lower Bound Stabilization. As for risk-neutral SDDP, instead of using upper2318

bounds at all, the algorithm can be terminated, once the lower bounds viR stabilize.2319

This provides no convergence guarantee but may be worthwhile in large-scale practical2320

applications where other approaches become computationally prohibitive.2321

Using Benefit Factors. Instead of the lower bounds viR, it is also possible2322

to condition termination of SDDP on the improvements of the cut approximations2323

Qi
R,t(·), t = 2, . . . , T . For that purpose, Brandi et al. define a benefit factor2324

Bit,k = min

{
1,
δ(xikt−1)

δit,max

}
,2325
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which determines how much a new cut improves the current cut approximationQi
R,t(·)2326

at xikt−1 [30]. δ(xikt−1) is the absolute increase, while δ
i
t,max is a proxy for the maximum2327

improvement possible. For each sample path k ∈ K, a total benefit factor can be2328

determined by2329

Bik = max
{
Bi2,k,Bi3,k, . . . ,BiT,k

}
.2330

The risk-averse SDDP method is then stopped if the values Bik for all k ∈ K are below2331

a predefined tolerance, either for one iteration or, alternatively and more robustly, for2332

a predefined larger number of iterations.2333

12.5. SDDP with Entropic Risk Measure. As discussed before, nested risk2334

measures come with some drawbacks. Computation-wise, upper bound determination2335

is very challenging. Additionally, applying a standard single-period risk measure ρ[·],2336

e.g., AVaRα[·], as an end-of-horizon risk measure (12.9) and (possibly conditionally)2337

in a nested risk measure (12.10) does not yield equivalent policies [60] (this is only the2338

case if we take the composite risk measure associated with the nested risk measure2339

as end-of-horizon risk; however, this risk measure is usually not known explicitly,2340

see Remark 12.6). This makes nested risk measures difficult to interpret from an2341

end-of-horizon perspective.2342

For this reason, Dowson et al. [60] propose to apply single-period conditionally2343

consistent risk measures in the context of SDDP [60], see also [11, 157]. It can be2344

proven that under some technical assumptions, the class of entropic risk measures2345

ENTγ [·] (see (12.8)) is the only class of risk measures that is conditionally consistent.2346

As ENTγ [·] can be applied in a nested fashion, the DPE (12.14)-(12.16) are valid2347

in this case. Moreover, since ENTγ [·] is a convex risk measure, the (risk-adjusted)2348

value functions are convex. Therefore, SDDP can be applied to derive polyhedral2349

outer approximations.2350

As for standard SDDP, first, for each scenario k ∈ K and all possible stage-2351

t realizations ξktj ≡ ξtj , j = 1, . . . , qt, approximate versions of subproblems (12.14)2352

are solved to obtain Qi

R,t
(xkt−1, ξtj). Then, based on the dual form of ENTγ [·], the2353

following auxiliary problem can be solved to evaluate the risk-adjusted value function:2354

(12.32)

ENTγ

[
Qi

R,t
(xkt−1, ξt)

]

=



max
p̃t

qt∑
j=1

p̃tjQ
i

R,t
(xkt−1, ξtj)−

1

γt

qt∑
j=1

p̃tj · log
(
p̃tj
ptj

)
s.t.

qt∑
j=1

p̃tj = 1

p̃tj ≥ 0, j = 1, . . . , qt.

2355

Here, parameter ptj denotes the nominal probabilities of realizations ξtj , which2356

usually equal 1
qt
, and the decision variable p̃tj denotes an alternative probability based2357

on the entropic risk measure. In this way, problem (12.32) can be regarded as building2358

the expectation based on some modified probability measure and with some additional2359

penalty term. Problem (12.32) can be solved algorithmically, but as stated in [60],2360

also a closed form for p̃∗tj can be derived. Using p̃∗tj and ENTγ

[
Qi

R,t
(xkt−1, ξt)

]
, cuts2361

can then be constructed and handed back to the previous stage.2362

The entropic risk measure does not only ensure conditional consistency of the ob-2363

tained policies, but it also allows for upper bound computation as in standard SDDP,2364

because the tower property can be employed for ENT[·]. However, these advantages2365
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come at the cost of an aggravated interpretation of the risk measure compared to2366

AVaR-based ones. In this context, it is particularly difficult to make a reasonable2367

choice for the parameter γt > 0 [60].2368

12.6. SDDP with Expected Conditional CVaR. Another class of multi-2369

period risk measures that can be used as an alternative to nested risk measures2370

are expected conditional risk measures, which we briefly introduced in Section 12.2.12371

[64, 105]. Here, conditional expectations are used to avoid the risk measure nest-2372

ing, which proves beneficial in determining upper bounds in SDDP, as it avoids the2373

aforementioned computational difficulties, while still time consistency is ensured.2374

Recall the risk-averse problem (PR) using expected conditional risk measures2375

stated in (12.13). Using ρt[·] = CVaRαt
[·] yields the so called E − CVaR or multi-2376

period average value-at-risk [105], which goes back to Pflug and Ruszczyński [158].2377

As stated in [105], by some lengthy reformulations, the objective function of2378

problem (12.13) can be expressed in a nested way. Therefore, equivalent DPE can be2379

derived and time consistency is assured. Moreover, the [·]+-function can be reformu-2380

lated by an epigraph approach. Then, for t = 2, . . . , T , the DPE read2381

(12.33) Q̌R,t(xt−1, ut, ξt) =


min

xt,ut+1,wt

1

αt
wt + ut+1 + Q̌R,t+1(xt, ut+1)

s.t. xt ∈ Xt(xt−1, ξt)

wt −
(
ct(ξt)

)⊤
xt ≥ −ut

wt ≥ 0

2382

with2383

(12.34) Q̌R,t+1(xt, ut+1) = Eξt+1

[
Q̌R,t(xt−1, ut, ξt)

]
,2384

Q̌R,T+1(·, ·) ≡ 0 and first stage2385

(12.35) v∗R =

{
min
x1,u2

c⊤1 x1 + u2 + Q̌R,2(x1, u2, ξt)

s.t. x1 ∈ X1.
2386

In contrast to using nested conditional risk measures, the DPE here only depend2387

on nested sums of (conditional) expectations, i.e., have the same structure as in the2388

risk-neutral case. Hence, standard SDDP can be applied. This has the advantage to2389

allow on to use upper bounding techniques developed for risk-neutral SDDP.2390

12.7. Bi-objective SDDP. An alternative to risk-averse formulations that al-2391

lows one to achieve a trade-off between obtaining the best policy in expectation (e.g.,2392

the policy with the lowest expected costs) and avoiding bad extreme outcomes (e.g.,2393

power outages or load shedding in an electricity network) is to formulate a multistage2394

problem (MSLP) with multiple competing objectives that are optimized simultane-2395

ously. Recently, a variant of SDDP for bi-objective problems has been put forward2396

by Dowson et al. [58].2397

Let c̃t(ξt) and ĉt(ξt) denote the objective coefficients for stage t ∈ [T ] and the two2398

competing objectives. For all but trivial cases, there exists no policy which yields the2399

best objective value with respect to both objectives2400

ṽ∗ := min
x1,x2,...,xT

E

[ ∑
t∈[T ]

(
c̃t(ξt)

)⊤
xt(ξ[t])

]
︸ ︷︷ ︸

=:ṽ(x)

2401
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and2402

v̂∗ := min
x1,x2,...,xT

E

[ ∑
t∈[T ]

(
ĉt(ξt)

)⊤
xt(ξ[t])

]
︸ ︷︷ ︸

=:v̂(x)

2403

meaning that the two objectives are truly conflicting.2404

For this reason, if there is no clear preference for one of the objectives, usually the2405

aim is to compute Pareto-optimal policies. A policy
(
x̄t(ξ[t])

)
t∈[T ]

is Pareto-optimal2406

if it cannot be improved in one objective without getting worse in the other one, i.e.,2407

if there exists no other policy
(
xt(ξ[t])

)
t∈[T ]

such that ṽ(x) ≥ ṽ(x̄) and v̂(x) > v̂(x̄)2408

(or non-strict or strict inequality switched). Pareto-optimal solutions are also called2409

non-dominated, and the set of non-dominated objective vectors is called the Pareto2410

front [58].2411

A standard approach to compute Pareto-optimal solutions in optimization is to2412

use some scalarization approach in which both conflicting objectives are combined to2413

a weighted sum, which is then optimized in a deterministic single-objective problem.2414

In our case, the DPE (2.4)-(2.6) can be adapted to2415

(12.36) Qt(xt−1, ξt, λ) :=

{
min
xt

(
λc̃t(ξt) + (1− λ)ĉt(ξt)

)⊤
xt +Qt+1(xt)

s.t. xt ∈ Xt(xt−1, ξt)
2416

where2417

(12.37) Qt+1(xt, λ) := Eξt+1
[Qt+1(xt, ξt+1, λ)]2418

and QT+1(xT ) ≡ 0. For the first stage, we obtain2419

(12.38) v∗(λ) =

{
min
x1

(
λc̃1 + (1− λ)ĉ1

)⊤
x1 +Q2(x1)

s.t. x1 ∈ X1.
2420

SDDP can then be applied to these DPE. In the proposed variant, λ is adapted2421

dynamically. To this end, in each iteration i, after the backward pass, one stage t ∈ [T ]2422

is randomly and independently sampled and the corresponding subproblem is solved2423

again for xkt−1, ξ
k
t and λi. Then, λi is updated to λi+1, where the latter is determined2424

as the closest λ to λi such that the optimal basis of the constraint equation system2425

changes.2426

It is proven that this variant of SDDP converges almost surely to a set of Pareto-2427

optimal policies corresponding to the Pareto front of bi-objective (MSLP) in finitely2428

many iterations [58].2429

13. SDDP with Unknown Distribution [relaxing Assumption 3]. In Sec-2430

tion 3 we introduced SDDP assuming that the probability distribution Fξ of the data2431

process (ξt)t∈[T ] governing the uncertainty in problem (MSLP) is known, see Assump-2432

tion 3. This allowed us to sample from this specific distribution in the forward pass2433

of SDDP or, in case of continuous random vectors, to obtain a finite sample average2434

approximation, as described in Section 11.2435

In practical applications, usually, the true distribution Fξ is not known, though.2436

Often, only historical data is available, i.e., some realization of an unknown true dis-2437

tribution. This data is then used to determine a reasonable estimate for the true2438

distribution, from which the required samples are taken. However, using such an esti-2439

mation imposes the risk of overfitting the SDDP policies to this specific distribution,2440
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and thus the available data [161]. Philpott et al. identify this problem as particularly2441

noteworthy if the number of possible outcomes qt per stage is small. For this reason,2442

it may be reasonable to take a more robust approach and factor in the distributional2443

uncertainty. Considering this type of uncertainty in SDDP is a young research area.2444

13.1. Distributionally Robust SDDP. One way to consider distributional2445

uncertainty in SDDP is by integrating ideas from robust optimization [16, 20] into2446

(multistage) stochastic programming. More precisely, a set of potential distributions is2447

considered, which is called distributional uncertainty set or ambiguity set and denoted2448

by P. The expected cost is then minimized over the worst-case probability distribution2449

from this set. This is called Distributionally Robust Optimization (DRO).2450

Usually, the outcomes of the random variables ξt are fixed to a finite number2451

of realizations observed in the historical data. The ambiguity set Pt then models a2452

variety of potential probability measures Pt ∈ Pt supported on this finite set Ξt.2453

In the following, we restrict to DRO specifically in the SDDP context. For a2454

general introduction to DRO, we refer to the review [175] and the tutorial [198]. We2455

assume all assumptions from Section 3 to hold, except for Assumption 3. Furthermore,2456

we only consider uncertainty in the RHS.2457

Then, the distributionally robust version of (MSLP) can be written as2458

(13.1)

min
x1,x2,...,xT

max
P∈P

E

∑
t∈[T ]

(
ct(ξt)

)⊤
xt(ξ[t])


s.t. x1 ∈ X1

xt ∈ Xt(xt−1(ξ[t−1]), ξt) ∀ξt ∈ Ξt ∀t = 2, . . . , T.

2459

Remark 13.1. Distributionally robust stochastic programming is closely related2460

to risk-averse stochastic programming. In particular, the operator maxP∈P E[·] can be2461

interpreted as a multi-period risk measure R[·]. This risk measure is coherent [198].2462

For SDDP it is required to reformulate problem (13.1) by means of DPE. This2463

requires that each distribution P in the ambiguity set P can be expressed as the cross2464

product of the respective marginal distributions of random vectors ξt [198]. Formally,2465

P :=
{
P = P1 × . . .× PT : Pt ∈ Pt, t ∈ [T ]

}
.2466

The ambiguity sets Pt are assumed to be independent of each other. This property is2467

called rectangularity of P and is reminiscent of the stagewise independence assumption2468

for vectors ξt. Note that P1 is a singleton containing one distribution with one possible2469

realization.2470

With the ambiguity sets Pt, then the DPE can be written as2471

(13.2) QDR,t(xt−1, ξt) :=

{
min
xt

c⊤t xt +QDR,t+1(xt)

s.t. xt ∈ Xt(xt−1, ξt)
2472

with2473

(13.3) QDR,t+1(xt) := max
Pt+1∈Pt+1

EPt+1
[QDR,t+1(xt, ξt+1)] ,2474

and QDR,T+1(xT ) ≡ 0. Compared to Section 3, here, an inner maximization problem2475

is introduced when definingQDR,t+1(·) to obtain the expected cost over the worst-case2476
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probability measure in Pt+1. The first-stage problem reads2477

(13.4) v∗DR =

{
min
x1

c⊤1 x1 +QDR,2(x1)

s.t. x1 ∈ X1.
2478

How v∗DR and a corresponding optimal policy can be computed algorithmically,2479

heavily depends on the specific choice of the ambiguity sets Pt, t = 2, . . . , T . Various2480

ambiguity sets are proposed in the literature. Usually, these sets are defined in such a2481

way that they contain all distributions, which are in some sense within a given range2482

of some nominal distribution. This nominal distribution, denoted by P̄t, in turn, is2483

defined by probabilities p̄tj = 1
qt

for all j = 1, . . . , qt, where qt denotes the number2484

of historical data samples. Based on the measure employed to evaluate the distance2485

between two distributions or probability measures, respectively, different classes of2486

ambiguity sets can be defined.2487

For SDDP, the following three distance measures have been used so far. In [106],2488

the ℓ∞ metric is used to define the ambiguity set2489

(13.5) Pt =

{
Pt :

qt∑
i=1

pti = 1, pti ≥ 0, ∥pt − p̄t∥∞ ≤ r
}
.2490

A similar metric, but with the ℓ2-norm, is used in [161] to define the ambiguity set2491

(13.6) Pt =

{
Pt :

qt∑
i=1

pti = 1, pti ≥ 0, ∥pt − p̄t∥2 ≤ r
}
.2492

This is a special case of the class of ϕ-divergence distances, see [12]. Both these dis-2493

tance measures are only applicable to discrete distributions supported on the observed2494

historical data points.2495

On the contrary, the Wasserstein distance allows to compare general distributions2496

(see for instance [215]). In our case with finite distributions Pt and P̄t, the Wasserstein2497

distance can be defined by the minimization problem2498

dW (P̄t,Pt) :=min
z

qt∑
i=1

qt∑
j=1

∥ξit − ξjt ∥zij

s.t.

qt∑
j=1

zij = p̄ti ∀i = 1, . . . , qt

qt∑
i=1

zij = ptj ∀j = 1, . . . , qt

zij ≥ 0 ∀i, j = 1, . . . , qt,

2499

where for the norm different choices are possible. It can be interpreted as the amount2500

of probability mass that has to be moved between the distributions. This distance is2501

used in [65] to define the Wasserstein ambiguity set2502

(13.7) Pt =

{
Pt :

q∑
i=1

pti = 1, pti ≥ 0, dW (P̄t,Pt) ≤ r
}
.2503

In all three cases, very different strategies are chosen to apply SDDP to the nested2504

min-max structure defined by the DPE (13.2)-(13.4).2505
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13.1.1. Reformulation as a Risk-averse Problem. As shown in [106], using2506

the ambiguity set (13.5), the DPE (13.2)-(13.4) can be reformulated to those of a risk-2507

averse multistage problem with nested conditional AVaRα[·], that is equations (12.18)-2508

(12.20) with2509

λt+1 = 1− pℓt+1, αt+1 =
λt+1

put+1 − pℓt+1

,2510

where pℓt+1 and put+1 denote the probabilities associated with the probability measures2511

at the lower and upper bound of ambiguity set (13.5). Therefore, SDDP can be applied2512

as in this risk-averse setting.2513

13.1.2. Solving the Inner Maximization Problem Separately. Using am-2514

biguity set (13.6) in the DPE (13.2)-(13.4) yields value functions, which can be proven2515

to remain convex, and thus can be approximated by affine cuts [161].2516

To derive such cuts, Philpott et al. propose to solve the inner maximization2517

problem identifying the worst-case distribution separately. In the backward pass, for2518

some stage t, first the subproblems are solved for all j = 1, . . . , qt as usual. Then,2519

using the obtained values of Qi

t
(xikt−1, ξtj), the inner maximization problem is solved.2520

This can be done algorithmically and in some cases even analytically, as shown in2521

[161]. The obtained worst-case probability measure P∗ can then be used to compute2522

subgradients and cut coefficients. Even though these coefficients are determined based2523

on cut approximation Qi+1
t (·) and on P∗, which does not necessarily coincide with2524

the worst-case probability measure in the true DPE, valid cuts are constructed and2525

convergence is ensured [161].2526

13.1.3. Using a Dual Representation. If we use the Wasserstein ambiguity2527

set (13.7) in SDDP, we obtain the inner maximization problem.2528

min
zt,pt+1

qt∑
j=1

pt+1,jQt+1(xt, ξt+1,j)

s.t.

qt∑
i=1

qt∑
j=1

dt+1,ijztij ≤ 1

qt∑
j=1

ztij = p̄ti ∀i = 1, . . . , qt

qt∑
i=1

ztij = ptj ∀j = 1, . . . , qt

ztij ≥ 0 ∀i, j = 1, . . . , qt

2529

with dt+1,ij = ∥ξit+1 − ξjt+1∥. Duque and Morton [65] suggest to replace this problem2530

using its dual problem. This way, the value functions can be evaluated by solving the2531

single-level minimization problem2532

QDR,t(xt−1, ξt) :=
min

xt,γt,νt

c⊤t xt + rγt +

qt+1∑
i=1

qit+1ν
i
t

s.t. xt ∈ Xt(xt−1, ξt)
dt+1,ijγt + νti ≥ QDR,t+1(xt, ξt+1,j) ∀i, j = 1, . . . , qt+1

γt ≥ 0

2533
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with dual variables γt and νt.2534

As proven in [65], these value functions are piecewise linear and convex on Xt−1,2535

and therefore can be represented by finitely many linear cuts. Note, however, that this2536

approach requires to use multi-cut SDDP, see Section 21.2, since otherwise bilinear2537

terms occur.2538

With all these strategies, the forward pass remains basically the same as in stan-2539

dard SDDP. The sampling can be done from the nominal distribution associated with2540

P̄t, t = 2, . . . , T , or alternatively the current worst-case distribution associated with2541

P∗
t [65]. If independent sampling is conducted, convergence follows as for standard2542

SDDP. However, challenges to determine valid upper bounds are prevalent for distri-2543

butionally robust SDDP similarly to the risk-averse case.2544

Computational results indicate that taking the dual reformulation approach, bet-2545

ter approximations are achieved for multi-cut SDDP than solving the inner maximiza-2546

tion in a side computation [65]. Furthermore, out-of-sample tests by Philpott et al.2547

imply that distributionally robust SDDP yields policies which are better suited, e.g.,2548

induce lower costs, in periods with a substantial risk of high costs [161].2549

13.2. Partially Observable Distributions. A different approach to deal with2550

distributionally uncertainty is introduced by Dowson et al. in [59], and is referred to2551

as partially observable multistage stochastic programming. The idea is to consider a2552

finite number of potential distributions by combining problem (MSLP) with a hidden2553

Markov model. More precisely, in each stage t ∈ [T ], different nodes can be reached,2554

with each node representing one Markov state. Each node reflects a different can-2555

didate distribution, possibly with identical realizations ξj , j = 1, . . . , q, but different2556

associated probabilities.2557

To model the uncertainty with respect to the distributions, the nodes are par-2558

titioned by a partition A into ambiguity sets A ∈ A, with ⋃A∈A = N and N the2559

number of all nodes besides the root node. For example, the partition can be chosen2560

such that there is one ambiguity set A for each stage.2561

It is now assumed that at any point, only the current ambiguity set is known,2562

while the specific node within it cannot be observed. However, for each node i, a2563

probability bi of being in that node can be computed. In other words, for each candi-2564

date distribution there exists a probability with which this distribution is considered2565

to be the most accurate representation of the true underlying distribution. These2566

probabilities are stored in a so called belief state b.2567

Each time an ambiguity set A is entered and a particular realization ξ̃ of the2568

random data is observed, the belief state is updated componentwise by applying2569

Bayes’ theorem [59].2570

In contrast to (MSLP) with perfect distribution information (see Assumption 3),2571

the value functions Qt(·) have to incorporate this belief state. To this end, let piℓ2572

be the probability of observing ξiℓ conditional on being in node i with ℓ = 1, . . . , qi.2573

Let N̄ describe all nodes including the root node, ωjk the transition probability from2574

node j to k and Bk(b, ξ) the update rule for the belief state being in (unobservable)2575

node k. Furthermore, let x′ denote the current trial solution. Then, the expected2576

value function can be written as2577

(13.8) QB(x
′, b) :=

∑
j∈N̄

bj
∑
k∈N

ωjk

qk∑
ℓ=1

pkℓ Qk

(
x′, Bk(b, ξkℓ), ξkℓ

)
.2578

This means that the value functions Qk(·, ·) depend on a node and an updated belief2579
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state, and in (13.8) it is looped over all nodes, weighing the corresponding expected2580

value with the current belief and the transition probabilities between the nodes.2581

As proven in Theorem 1 in [59], the expected value functions QB(·) are saddle2582

functions, as they are convex in x for fixed b, but concave in b for fixed x. Therefore,2583

to apply SDDP, the cut generation has to be adapted to this property. This can be2584

achieved by using an outer approximation for x and an inner approximation for b [59].2585

The main difference for the cut computation is that apart from taking expectations2586

over the realizations of ξ, it is looped over all nodes in the current ambiguity set A2587

and the cut components are weighed with the current belief [59].2588

In the forward pass, for each stage t = 2, . . . , T , first, a new node is sampled2589

conditionally on the (unobserved) current node. Then, a realization of ξ is sampled2590

conditionally on the obtained node and the associated candidate distribution. For a2591

more detailed description, see [59].2592

A different method of combining SDDP with a hidden Markov model is given2593

in [66]. One general drawback of such hidden Markov approaches is that transition2594

probabilities between the nodes have to be properly defined a priori.2595

14. Stagewise Dependent Uncertainty [relaxing Assumption 2]. As ex-2596

plained in Sections 2 and 3, stagewise independence (Assumption 2) is a standard2597

assumption in dynamic programming, and thus also for SDDP. It is also crucial for2598

the computational tractability of SDDP compared to NBD because it ensures that2599

there exists only one expected value function Qt(·) per stage and that cuts can be2600

shared between scenarios, see Section 5.2. However, in many applications, the un-2601

certain data in (MSLP) (e.g., demand, fuel prices, electricity prices, inflows) shows2602

correlations over time and assuming stagewise independence is not appropriate.2603

If the uncertainty in problem (MSLP) is stagewise dependent, the expected value2604

functions Qt(·) for t = 2, . . . , T do not only depend on xt−1, but implicitly also depend2605

on the history ξ[t−1] of the process (ξt)t∈[T ]. In order to apply SDDP, this dependence2606

has to be taken into account, for instance by reformulating the model or adapting the2607

algorithmic steps in SDDP. In this section, we consider different cases of stagewise2608

dependent uncertainty and ways of how SDDP can be applied in these cases.2609

14.1. Expanding the State Space. As a first case of stagewise dependent2610

uncertainty, let us assume that the data process (ξt)t∈[T ] is a simple linear autoregres-2611

sive (AR) process with lag one, defined by appropriately chosen coefficient vectors γt,2612

matrices Φt and stagewise independent and i.i.d. error terms ηt:2613

(14.1) ξt = γt +Φtξt−1 + ηt.2614

Remark 14.1. If we still assume finite randomness (Assumption 5), now for ηt,2615

then ξt can be modeled by a classical scenario tree, see Section 5.2.2616

The most natural approach to deal with this case, is to reformulate (MSLP) in2617

such a way that it exhibits stagewise independent uncertainty [153]. This can be2618

achieved by including ξt−1 as an additional state variable. Then, as shown in [128],2619

Eξt|ξt−1
[Qt(xt−1, ξt)] = Eηt|ξt−1

[Qt(xt−1, γt +Φtξt−1 + ηt)]

= Eηt
[Qt(xt−1, γt +Φtξt−1 + ηt)] ,

2620

where the second equality holds because ηt and ξt−1 are statistically independent.2621

By introducing equation (14.1) as a constraint and defining a new value function2622

(14.2) Q̂t(xt−1, ξt−1, ηt) := Qt(xt−1, γt +Φtξt−1 + ηt),2623
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and the corresponding expected value function2624

(14.3) Q̂t(xt−1, ξt−1) := Eηt

[
Q̂t(xt−1, ξt−1,ηt)

]
2625

for all t = 2, . . . , T , it follows2626

Eξt|ξt−1
[Qt(xt−1, ξt)] = Q̂t(xt−1, ξt−1).2627

The state variables then consist of the resource state xt−1 and the information state2628

ξt−1, while the stagewise independent uncertainty is modeled by ηt. Importantly,2629

ξt is regarded as a decision variable in the reformulated problem, augmenting the2630

dimension of the decision space.2631

Remark 14.2. It is worth emphasizing that this approach is presented in various2632

different ways in the literature. In some cases, as outlined, equation (14.1) is explicitly2633

incorporated into the DPE as an additional constraint [173, 202]. In some cases, each2634

occurrence of ξt in the subproblems is simply replaced by the RHS of (14.1). And in2635

other cases, the dependence on ξt−1 is only expressed by writing Q̂t(·, ·, ·) and Q̂t(·, ·)2636

as functions of ξt−1, whereas the explicit relation (14.1) is only considered in the cut2637

generation process [84, 128, 178]. We revisit this observation in the next subsection.2638

By the presented procedure, stagewise independence (Assumption 2) is recovered2639

for (MSLP). However, in order to apply SDDP, it also has to be ensured that valid2640

cuts for Q̂t(·, ·) can be derived as functions in both types of state variables. This2641

requires that Q̂t(·, ·) is convex in both xt−1 and ξt−1. Similarly to Theorem 2.8, it2642

can be shown that under certain assumptions, this property is satisfied.2643

Theorem 14.3 ([178]). Let ξt be described by (14.1) and let ξt−1 be contained in2644

some convex set. Then, under Assumptions 1 and 3 to 9, the expected value function2645

Q̂t(·, ·) is piecewise linear and2646

a) convex in xt−1 on Xt−1 for fixed ξt−1,2647

b) convex in ξt−1 = (Tt−2, ht−1) for fixed xt−1,Wt−1, ct−1,2648

c) concave in ξt−1 = ct−1 for fixed xt−1,Wt−1, Tt−2, ht−1,2649

d) convex jointly in xt−1 and in ξt−1 = ht−1 for fixed Wt−1, Tt−2, ct−1.2650

Theorem 14.3 shows that convexity in both types of state variables is only guar-2651

anteed if the stagewise dependent part of the uncertainty only enters the RHS ht(ξt)2652

of problem (MSLP). Note that this still allows for additional stagewise independent2653

uncertainty in ct,Wt and Tt−1. The result also requires linearity of (MSLP) (Assump-2654

tion 6) and of the AR process (14.1) defining the random variable ξt.2655

Under certain assumptions, Theorem 14.3 can be generalized to convex problems2656

(MSLP) and stagewise dependence in the RHS defined by a convex function [84].2657

Moreover, the result is not limited to lag-one processes, but can be enhanced to AR2658

processes with higher lag order [84]. This is important for practical applications, as2659

often several lags are required to explain a time series appropriately. In contrast,2660

for general nonlinear stochastic processes or for uncertainty in Wt, ct or Tt−1, such a2661

generalization seems not possible. In order to cover such cases, different approaches2662

are required. We discuss those in later parts of this section.2663

For simplicity, assume that Xt = {xt ∈ Rnt : xt ≥ 0} for all t ∈ [T ] and recall2664
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the definition of the approximate subproblem (2.10):2665

(14.4) Q
t
(xt−1, ξt) =


min

xt,θt+1

(
ct(ξt)

)⊤
xt + θt+1

s.t. Wt(ξt)xt = ht(ξt)− Tt−1(ξt)xt−1

xt ≥ 0

− (βr
t+1)

⊤xt + θt+1 ≥ αr
t+1, ∀r ∈ Γt+1,

2666

where Γt+1 is the index set of previously generated cuts. Then, the result in Theo-2667

rem 14.3 can be illustrated by means of the feasible region of the LP dual to (14.4),2668

which can be written as2669

(14.5)

max
πt,ρt

(
ht(ξt)− Tt−1(ξt)xt−1

)⊤
πt + a⊤t+1ρt

s.t.
(
Wt(ξt)

)⊤
πt −B⊤

t+1ρt ≤ ct(ξt)
e⊤ρt = 1

ρt ≥ 0.

2670

Here, we collect all cut gradients βr
t+1 in a matrix Bt+1 and all cut intercepts αr

t+1 in2671

a vector at for compact representation. πt denotes the dual variable to the original2672

constraints, and ρt denotes the dual variable to the previously generated cuts.2673

In the case of linear AR processes in the RHS ht(ξt), the dual feasible region2674

is not affected by the new state variable ξt−1 (and also remains polyhedral). This2675

means that the extreme solutions obtained for one state ξ̄t−1 remain valid, although2676

not necessarily optimal, for all other states ξt−1 as well. In contrast, in other cases of2677

stagewise dependence, the dual feasible region and its extreme solutions may change2678

for different states, affecting the properties of Q̂t(·, ·) [178].2679

In sum, for affine and convex AR processes occurring in the RHS, expanding2680

the state recovers stagewise independence (Assumption 2), but at the same time2681

convexity of Q̂t(·, ·) in all state variables is preserved. Therefore, SDDP can be used2682

as introduced in Section 3. In this case, the obtained cuts are functions of both2683

state variables and can be formulated with a cut gradient for each of them (compare2684

to (3.5)), i.e.,2685

ϕt(xt−1, ξt−1) = αt +
(
βx
t

)⊤
xt−1 +

(
βξ
t

)⊤
ξt−1.2686

Unfortunately, depending on the dimension κt−1 of ξt−1, the state space dimen-2687

sion can increase significantly. This effect is amplified for higher lag orders. As the2688

computational complexity of SDDP grows exponentially in this dimension, see Sec-2689

tion 4.2, augmenting the state space is detrimental and should be avoided if possible.2690

14.2. Scenario-Adaptable Cut Formulas. The previously described adverse2691

effect can be alleviated to some degree by a special cut generation approach that was2692

first proposed by Infanger and Morton [108] and later enhanced by de Queiroz and2693

Morton [173] and Guigues [84]. In all these cases, the process model, such as (14.1),2694

is not explicitly incorporated into the subproblems, see Remark 14.2. Instead, it2695

is merely considered within the cut generation process. The main idea is to de-2696

rive scenario-adaptable closed-form cut formulas, given AR processes with a specific2697

structure, which allow one to adapt the cut generated for one specific history ξ̄[t−1] to2698

different histories ξ[t−1] of the stochastic process, and thus to different scenarios. This2699

way, the cuts can be shared between scenarios (see Section 5.2) without the need to2700

incorporate (14.1) into (MSLP) as a constraint. Importantly, these cut formulas lead2701

to the exact same cuts as the previously described approach.2702
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To illustrate this idea, consider a cut derived using dual problem (14.5) without2703

paying any particular attention to the stagewise dependence. For convenience, but2704

without loss of generality, we assume Tt−1 to be deterministic and the RHS uncertainty2705

to be defined by2706

(14.6) ht(ξt) = Φtht−1(ξt−1) + ηt2707

with stagewise independent error terms ηt, similarly to (14.1). We obtain2708

(14.7)
Q̂t(xt−1, ξt−1) ≥ Eξt|ξt−1

[
−π⊤

t Tt−1xt−1 + π⊤
t ht(ξt) + ρ⊤

t at+1

]
= Eξt|ξt−1

[
−π⊤

t Tt−1

]
xt−1 + Eξt|ξt−1

[
π⊤
t ht(ξt) + ρ⊤

t at+1

]2709

We can make the following observations:2710

(i) Since the probabilities in Eξt|ξt−1
[·] are assumed to not depend on ξt−1 (recall2711

that ηt is stagewise independent) and since all scenarios share the same dual2712

feasible region, the cut gradient2713

(14.8) βt = Eξt|ξt−1

[
−π⊤

t Tt−1

]
2714

derived for one specific scenario ξst−1, is valid for all other scenarios as well.2715

(ii) According to (14.6), the RHS ht(ξt) depends on ξt−1. Therefore, to evaluate2716

the cut for a specific scenario, this term has to be adapted to this scenario.2717

Otherwise, the cut may become invalid. By (14.6), this term can be split up2718

into a scenario-dependent part depending on ξt−1 and a scenario-independent2719

part depending on ηt only.2720

(iii) The last term at+1 in (14.7) is the cut intercept of the following stage. As2721

we face stagewise dependence, this intercept is not scenario-independent any-2722

more, but should denote at+1(ξt). Moreover, it is defined recursively: The2723

stage-t intercept includes the stage-(t+1) intercept, which includes the stage-2724

(t+2) intercept and so on. This implies that to evaluate at+1(ξt) for a specific2725

scenario, it is basically required to recursively traverse the whole scenario tree2726

starting form stage t. This is computationally intractable.2727

To address these observations, the main idea by Infanger and Morton [108] is to2728

express the cut intercept αt(ξt−1) as the sum of a stagewise independent term αind
t2729

and a stagewise dependent term αdep
t (ξt−1):2730

(14.9) αt(ξt−1) = αind
t + αdep

t (ξt−1).2731

Let π̄t = Eηt
[πt] and ρ̄tt = Eηt

[ρt] denote the expected value of the dual variables2732

obtained for realizations of ηt. As explained, these dual values are valid for any history2733

of the stochastic process due to the structure of the dual feasible set. Let P̄t define2734

the (|Γt| ×mt)-matrix containing the values of π̄t and R̄t the (|Γt| × |Γt−1|)-matrix2735

containing the values of ρ̄t for the previously determined cuts. Furthermore, let the2736

matrix Dt be defined recursively by2737

(14.10) Dt =
[
P̄t+1 + R̄t+1Dt+1

]
Φt, DT = 0.2738

Then, as shown in [108], the stagewise dependent cut intercept is given by2739

(14.11) αdep
t (ξt−1) = [π̄t + ρ̄tDt] Φtht−1(ξt−1).2740

This means that a cut can be constructed by using formula (14.8) for the gradient2741

and formulas (14.9), (14.10) and (14.11) for the intercept. The stagewise independent2742
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Autoregressive model for ξt
RHS ht(ξt) Model Type Lag Formula Source

const. AR L 1 ξt = Φtξt−1 + ηt [108]
L AR L 1 ξt = Φtξt−1 + ηt [173]

const. PAR L 1 ξt = φt(ξt−1 − µt−1) + µt + σtηt [209]

const. AR L ≥ 1 ξt =
∑t−1

k=1(Φ
t
kξk +Ψt

kηk) + ηt [108]
L/C* AR L ≥ 1 ξt = Φtξ[t−1] + ηt [84]
L/C* AR L ≥ 1 ξt = Φtξ[t−1] +Ψtηt +Θt [84]

const. SPAR L ≥ 1 ξti =
∑

i′
∑t−1

k=1 Φ
t
ii′kξti′ + ηti [126]

const. AR NL 1 ξt = Φt(ft(vt−1) + ξt−1) + ηt [108]

const. AR NL ≥ 1 ξt =
∑t−1

k=1(Φ
t
kξk + f tk(vk)) + ηt [108]

C AR C ≥ 1 ξt = ft(ξ[t−1], ηt) [84]

L = affine/linear function, C = convex function, NL = general nonlinear function
* only in case of inequality constraints

Table 6: RHS and uncertainty models considered in the literature on SDDP with
stagewise dependence to derive scenario-adaptable closed-form cut formulas.

term can be either determined by an additional formula or by subtracting (14.11) from2743

αt(ξt−1) [108]. In order for a cut to be shared with a different scenario at stage t− 1,2744

it is only required to adapt the stagewise dependent intercept (14.11) to this specific2745

scenario. In other words, a given cut can be corrected to be valid for a different history2746

of the stochastic process. In particular, it is not required to add (14.6) as a constraint2747

to the stage-t subproblem or to traverse the whole scenario tree (see Remark 14.1).2748

Instead, only the cut gradient, the stagewise independent part of the intercept and2749

the cumulative expected dual vector
[
P̄t+1 + R̄t+1Dt+1

]
Φt have to be stored [108].2750

Whereas we limited our explanations to a very simple AR process so far, similar2751

cut formulas can be derived for more complex processes [84, 108, 173, 178]. We give2752

an overview on different cases covered in the literature in Table 6. Some of the process2753

formulas in Table 6 are presented in a simplified form for reasons of clarity, e.g., by2754

omitting standardization and the incorporation of seasonal or periodical effects. For2755

example, this is true for the SPAR processes considered in [126] (also see Section 9),2756

where spatial dependencies between locations i and i′ are taken into account.2757

Importantly, all processes for which scenario-adaptable closed-form cut formulas2758

can be derived require a specific structure, such as linearity, convexity or separability.2759

As shown by Guigues [84], a generalization to convex AR processes and more complex2760

structures in the RHS is possible. For instance, the RHS ht does not have to be directly2761

described by the stochastic process (constant ht ≡ ξt), but may also be defined as2762

some function ht(·) of ξt. Moreover, for the affine case, alternative formulas to the ones2763

provided by Infanger and Morton are presented by Guigues [84]. The main difference2764

is that only a minimal subset of coefficients is used, due to defining the process (ξt)t∈[T ]2765

componentwise and not in vectorial form compared to (14.1) or (14.6). On the other2766

hand, no recursive formula as in (14.10) is provided to compute the cut coefficients.2767

Finally, Guigues shows that also for feasibility cuts (Section 17) scenario-adaptable2768

cut formulas can be derived.2769

It is important to emphasize that the presented approach only partially mitigates2770

the drawbacks of augmenting the state space. First of all, the history of the stochastic2771
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process has to be stored to compute ξt, even if such computation is possible outside2772

of the subproblems. Guigues provides a detailed discussion on how state vectors2773

of minimal size can be defined in order to keep the stored information as small as2774

possible [84]. Additionally, due to their dependence on ξt−1, or ξ[t−1] in general, the2775

expected value functions Q̂t(·, ·) live in a higher-dimensional space. Therefore, more2776

iterations and cuts may be required to achieve convergence compared to the stagewise2777

independent case, as discussed in Section 4.2.2778

14.3. Sensitivity of SDDP with AR Processes. Let the uncertainty in2779

(MSLP) be modeled by an AR process. Consider the approach of expanding the2780

state, leading to two types of state variables: xt and ξ[t]. Both contain information2781

on future resource availability (e.g., hydro storage volume and hydro inflow history2782

affecting future inflows), but they differ in several aspects [206]. First, whereas the2783

information provided by the state xt−1 is certain, the information provided by ξ[t−1]2784

enters an AR model predicting future realizations, which still involves uncertainty.2785

Second, the parameters of this AR model are estimated from data, and thus can be2786

subject to estimation errors. Third, in practice it can often be observed that the values2787

in (ξt)t∈[T ] show higher variability over short time than the values of (xt)t∈[T ]. This2788

uncertainty and variability raises the question on how much the solutions obtained in2789

SDDP react to changes in ξ[t−1]. This can be examined in a sensitivity analysis.2790

A general approach for sensitivity analysis in SDDP is presented in [97] and2791

applied to an inventory problem with AR demand. Also the sensitivity with respect2792

to AR model parameters Φt or γt is discussed.2793

For a hydrothermal problem, in [206], it is shown that the solutions obtained in2794

SDDP are more sensitive to changes in the initial information state ξ1 than to changes2795

in the initial resource state x0. Based on the previous observations this leads to the2796

unfavorable side effect of expanding the state space that solutions of SDDP exhibit2797

larger variability. This may have severe consequences in economic applications, such2798

as increasing risk, unpredictability of prices or distorted investment signals.2799

To address this issue, Soares et al. present different mitigation heuristics [206],2800

such as regularizing changes in xt over time, or using the accurate AR model in the2801

forward pass of SDDP, but predefined unconditional samples in the backward pass in2802

order to avoid the dependence of cuts on ξ[t−1]. While they report positive compu-2803

tational results, the authors provide no theoretical results on reasonable parameter2804

choice, cut validity and convergence for their heuristics.2805

14.4. Markov Chain SDDP. Assume the data process (ξt)t∈[T ] is Markovian,2806

i.e., as in (14.1), ξt only depends on ξt−1 for all t = 2, . . . , T instead of the whole2807

history ξ[t−1]. Then, instead of expanding the state space also an alternative approach2808

can be used to apply SDDP.2809

In this case, the data process can be represented, or at least approximated (if the2810

random variables ξt are continuous), by a discrete Markov chain. This approximation2811

can be obtained by lattice quantization techniques [29, 128]. As it contains only2812

finitely many states per stage t = 2, . . . , T , this Markov chain can be illustrated as2813

a recombining scenario tree or scenario lattice [128], just as in the case of stagewise2814

independence Assumption 2, see Section 2. The difference is that in the Markov chain2815

case the probabilities of transitions to stage-t nodes may differ between different stage-2816

(t − 1) nodes. This also includes the possibility that some stage-t nodes may not be2817

reached from certain stage-(t− 1) nodes.2818

Due to this difference, the (expected) value functions Qtℓ(·) depend on the states2819

ζℓ, ℓ = 1, . . . , L, of the Markov chain. In other words, for each such state (i.e., each2820
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node in the recombining tree), a different expected value function and a different set2821

of value functions exist. In SDDP, then cuts are derived for each of these functions2822

separately. This idea is called Markov chain SDDP (MC-SDDP) [128] or approximate2823

dual dynamic programming (ADDP) [129, 130], whereas for distinction the approach2824

of expanding the state space is referred to as time series SDDP (TS-SDDP).2825

For problems with moderate state space dimension, expanding the state may be2826

computationally favorable as only one expected value function has to be approximated2827

per stage. On the other hand, a computational advantage of MC-SDDP is that the2828

computational effort grows linearly with the number of Markov states only [200]. In2829

contrast, expanding the state leads to a state space dimension increase in which the2830

complexity of SDDP grows exponentially. Moreover, MC-SDDP requires no linearity2831

and is not limited to stagewise dependent uncertainty only appearing in the RHS of2832

(MSLP). As long as the Markov property is satisfied, it allows for stagewise dependent2833

uncertainty in all data ct, Tt−1,Wt and ht of (MSLP).2834

The main drawback of MC-SDDP lies in the relation to the true problem (P̃ ) in2835

case of a continuous data process (ξt)t∈[T ], see also Section 11. For SDDP with AR2836

processes and expanding the state space, many results exist that allow for inference of2837

the SAA solution with respect to the true problem, see Section 11. One key property2838

in this regard is that ξt−1 is treated as a possibly continuous state variable in SDDP,2839

such that the derived cuts are also valid at states which are not reached by the2840

scenarios ξs ∈ S that are considered in SDDP. Similar results are not available for2841

MC-SDDP. In particular, the obtained policy and lower bounds are not necessarily2842

valid for the true problem [128].2843

In spite of this theoretical downside, Löhndorf and Shapiro report tighter lower2844

bounds and better policies even for the true process based on computational exper-2845

iments [128]. They conjecture that this is due to a differing exploration of the state2846

space. Expanding the state space introduces additional state variables, which are not2847

under control of the optimal policy (their trajectory is not chosen based on solving2848

the approximate subproblems in the forward pass), but selected randomly in the for-2849

ward pass). This may lead to selection of states, which do not provide the highest2850

information gain. With MC-SDDP this is partially mitigated by choosing sufficiently2851

different states in advance when constructing the Markov chain.2852

14.5. SDDP with Integrated Markov Chain. By Theorem 14.3, a natural2853

extension of SDDP to stagewise dependent uncertainty using expanding the state2854

space is only possible for linear (or at least convex) AR processes appearing in the2855

RHS of problem (MSLP). In all other cases, expanding the state space destroys the2856

convexity of the expected value functions Q̂t(·, ·). Therefore, in such cases, different2857

approaches are required. One such approach is to integrate a discrete Markov chain2858

into the uncertainty modeling. This approach is quite established in the literature on2859

and in practical application of SDDP. Importantly, this approach does not necessarily2860

coincide with the previous case where the process (ξt)t∈[T ] is assumed to be Markovian2861

and approximated by a Markov chain.2862

Modeling. Consider a Markov chain with finitely many possible states ζℓ, ℓ =2863

1, . . . , L, with L ∈ N. At each stage t ∈ [T ], we denote the current state of the Markov2864

chain as ψt (again, we assume that ψ1 is deterministic). The transition probabilities2865

between state ψt−1 = ζℓ at stage t − 1 and ψt = ζℓ′ at stage t are then denoted by2866

ωℓℓ′ for ℓ, ℓ′ ∈ {1, . . . , L}. For simplicity, we assume the Markov chain to be time-2867

homogeneous, such that ωℓℓ′ does not depend on t, even though this is not required.2868

We now assume that the distribution of random variable ξt at stage t ∈ [T ] may2869
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depend on the state ψt of the Markov chain. In other words, for each possible state2870

ζℓ, ℓ = 1, . . . , L, the distribution of ξt may differ. We emphasize this by writing ξℓt .2871

The value functions Qt(·, ·) for (MSLP) then do not only depend on xt−1 and the2872

realization ξt of ξt, but also on the current Markov state ψt. As this state can only2873

take finitely many values, we denote this by Qtℓ(xt−1, ξt), where index ℓ indicates2874

conditioning on ψt = ζℓ. Based on this definition, the expected value functions can2875

be expressed as2876

(14.12) Qtℓ(xt−1) :=

L∑
ℓ′=1

ωℓℓ′Eξt|ℓ′
[
Qtℓ′(xt−1, ξ

ℓ′
t )
]
.2877

The index ℓ of the expected value function refers to the previous Markov state2878

ψt−1 = ζℓ. Compared to standard SDDP, the expectation is not only taken over2879

the realizations of ξℓ
′

t , but also the state transitions from ψt−1 to ψt are taken into2880

account. Using this definition, the DPE for stages t = 2, . . . , T can be written as2881

(14.13) Qtℓ(xt−1, ξ
ℓ
t ) :=

{
min
xt

ζ⊤ℓ xt +Qt+1,ℓ(xt)

s.t. xt ∈ Xt(ξ
ℓ
t ).

2882

Note that the dependence on ζℓ in (14.12) resembles the expanding-the-state ap-2883

proach from Section 14.1. However, there are important differences. ψt−1 does not2884

enter the subproblems and it can only take a finite number of different values, whereas2885

ξ[t−1], even if discrete, is treated like a continuous state variable when expanding the2886

state. Furthermore, as the transition probabilities ωℓℓ′ may differ for each ζℓ, the2887

cut components are weighted differently and cuts cannot be shared between different2888

Markov states. Consequently, it is required to store separate expected value functions2889

Qtℓ(·) for each ℓ = 1, . . . , L. In return, the non-convexity of these functions is circum-2890

vented, since each Qtℓ(·) remains convex and is approximated on its own, see also the2891

discussion in Section 14.4.2892

As an example, consider a problem with L = 2 Markov states and qℓ = 2 real-2893

izations for ξℓt for each of them, which is borrowed from [159]. The corresponding2894

scenario tree with underlying Markov chain is illustrated in Figure 13. For the tran-2895

sition probabilities let ω11 = q, ω12 = 1 − q, ω21 = 1 − p and ω22 = p. For all t and2896

ℓ ∈ {1, 2}, the distribution of ξℓt is given by ptj =
1
2 for j ∈ {1, 2}.2897

ξ1

ξ121

ξ131 ξ132 ξ231 ξ232

ξ122

ξ131 ξ132 ξ231 ξ232

ξ221

ξ131 ξ132 ξ231 ξ232

ξ222

ξ131 ξ132 ξ231 ξ232

1−p
2

q
2

q
2

1−q
2

1−q
2

1−p
2

q
2

q
2

1−q
2

1−q
2

p
2

1−p
2

1−p
2

p
2

p
2

p
2

1−p
2

1−p
2

p
2

p
2

Fig. 13: Scenario tree with underlying Markov chain (state 1 printed in black, state
2 printed in white). Replication from [159].

As an alternative to the scenario tree in Figure 13, the stochastic process with2898

underlying Markov chain can be represented by a Markovian policy graph with finitely2899

many nodes per stage [56]2900
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SDDP. Let us now address how SDDP works in this case. In the forward pass,2901

different approaches are used in the literature. The most natural one is for each stage2902

t and each sample path k ∈ K, to sample first from the Markov states and then2903

conditionally from ξℓt [160]. Sometimes it is also proposed to use historical values2904

here, e.g., true inflow spot-price combinations [79]. In such a case, it is possible that2905

a spot price is drawn which is not a valid state of the Markov chain. Then, a strategy2906

is to use the in some sense closest state from the Markov chain [79]. Another one is2907

to use a linear interpolation between the hyperplanes of neighbouring states [81, 227].2908

For stages t = 2, . . . , T , states ℓ = 1, . . . , L and samples k ∈ K, based on (14.13),2909

the approximate subproblems solved in the forward pass of SDDP have the form2910

(14.14) Qi

tℓ
(xikt−1, ξ

ℓk
t ) :=

{
min
xt

(
ct(ξ

ℓ
t )
)⊤
xt +Qi

t+1ℓ(xt)

s.t. xt ∈ Xt(x
ik
t−1, ξ

ℓ
t ).

2911

Importantly, each function Qtℓ(·), ℓ = 1, . . . , L, is approximated by an individual cut2912

approximation Qtℓ(·).2913

In the backward pass of some iteration i, the stages are traversed in backward2914

direction as usual to improve the cut approximations. At each stage t, the subprob-2915

lems (14.14) updated with Qi+1
tℓ (·) are solved for each trial state xikt−1, k ∈ K, each2916

stage-t Markov state ψt = ζℓ, ℓ = 1, . . . , L, and all realizations ξℓtj , j = 1, . . . , qℓt .2917

Then, for each xikt−1 and ψt−1 = ζℓ, ℓ = 1, . . . , L, a valid cut can be derived for2918

Qtℓ(·). Let βi
tℓkj denote a subgradient for Qi

tℓ
(·, ·) at xikt−1. In accordance with (3.4),2919

but also taking into account the Markov chain transition probabilities, we can then2920

define cut coefficients2921

βi
tℓk :=

L∑
ℓ′=1

ωℓℓ′

 qtℓ∑
j=1

ptℓj

(
Qi+1

tℓ
(xikt−1, ξ

ℓk
t )− (βi

tℓkj)
⊤xikt−1

) ,

αtℓ :=

L∑
ℓ′=1

ωℓℓ′

 qtℓ∑
j=1

ptℓjβ
i
tℓkj

 ,

2922

where qtℓ and ptℓj denote the number of realizations and probabilities of ξℓt .2923

A cut (3.5) for Qtℓ(·) is then given by function2924

ϕitℓk(xt−1) := αi
tℓk + (βi

tℓk)
⊤xt−12925

and can be used to update Qi
tℓ(·). Philpott et al. derive similar formulas for the2926

multi-cut and risk-averse case [160].2927

Use Cases. There exist different use cases for modeling the uncertainty in2928

(MSLP) with an integrated Markov chain.2929

• The data process (ξt)t∈[T ] can be modeled as a nonlinear AR process or a non-2930

linear transformation of a linear AR process (see Section 9), which, if handled2931

by expanding the state space, destroys the convexity of Q̂t(·, ·). Sometimes2932

such a nonlinear process can be approximated by assuming that the realiza-2933

tions ξt depend on an underlying system state which follows a Markov process2934

[160], thus not capturing the nonlinearity explicitly in a formula. As the value2935

functions are also not convex in this, possibly continuous, Markov state, the2936

Markov process is approximated using a discrete Markov chain.2937
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• Instead of a single AR process, sometimes the data process (ξt)t∈[T ] may2938

be best modeled by a finite set of different AR processes, which are valid2939

representations, and thus active, under different circumstances (e.g., macro-2940

economic, political or ecological situations). A discrete Markov chain can then2941

be used to model these overall system states, and AR models can be used to2942

describe realizations of the uncertain data conditioned on these states. Such2943

regime-switching models are very common in wind forecasting [231].2944

• Hybrid SDP/SDDP. Different parts of the data in (MSLP) exhibit stagewise2945

dependent uncertainty. While some of them, namely uncertainty in the RHS2946

ht, can be treated by expanding the state space, for others, e.g., stagewise2947

dependent uncertainty in the objective coefficients ct, it would destroy the2948

convexity of Q̂t(·, ·). Therefore, this part of the uncertainty may be modeled2949

by a discrete Markov chain instead. Since one part of the uncertainty is2950

treated as in standard SDDP (allows for cut-sharing between scenarios), while2951

another one is treated by enumerating separate expected value functions for2952

each ℓ = 1, . . . , L (cuts cannot be shared between Markov states), this is often2953

referred to as a hybrid SDP/SDDP method [79].2954

For instance, this setting often occurs in medium-term hydrothermal sched-2955

uling problems (see Section 9) when inflow uncertainty in the RHS as well2956

as spot-price uncertainty in the objective function are taken into account.2957

The idea to address this by using a Markov chain goes back to Gjelsvik et2958

al. who modeled this kind of scheduling problem for the Norwegian power2959

system [79, 81, 82]. Since then, this approach has been employed in several2960

applications, for example, hydrothermal scheduling including balancing mar-2961

ket bids [99, 100], risk management [107, 115, 141] and fuel contracts [37]. It2962

is also applied to model fuel price uncertainty [150].2963

In contrast to the presented general approach, in this case it is usually as-2964

sumed that the uncertainty in the RHS and in the objective are independent2965

of each other. Therefore, for each state ζℓ, ℓ = 1, . . . , L, the distribution of2966

ξt is the same, and marginal distributions can be used in the expectation2967

in (14.12). Moreover, note that in this specific case the Markov chain states2968

are not underlying the distribution of ξt, but instead entering the subprob-2969

lems explicitly, e.g., as objective coefficients. Still SDDP can be applied using2970

the same ideas as above.2971

The described approach allows for the incorporation of even nonlinear stagewise2972

dependent uncertainty into SDDP, but also gives rise to some challenges. Among2973

those is the assumption of the Markov property, which may not always be appropri-2974

ate. Moreover, it is required to define useful values ζℓ, ℓ = 1, . . . , L, and transition2975

probabilities ωℓℓ′ for the Markov states [81, 142]. Most importantly, cuts cannot be2976

shared between, but only within Markov states, so that separate expected value func-2977

tions have to be considered for each ℓ = 1, . . . , L. Therefore, the number of Markov2978

states should be rather small to preserve computational tractability.2979

14.6. Hybrid NBD/SDDP. In the previous section, we presented a hybrid2980

SDP/SDDP method as a tool to model different stagewise dependent uncertain data2981

in (MSLP) by different approaches. Instead of modeling the “complicating” part of2982

the uncertainty by a discrete Markov chain, also a scenario tree can be used. Instead2983

of a hybrid SDP/SDDP method, this yields a hybrid NBD/SDDP method [178], see2984

also Section 5.2.2985

Assume that the random vector ξt modeling the uncertainty in ct,Wt, Tt−1 and2986
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ht can be separated into two separate and independent parts, ξSt and ξTt . The first2987

vector ξSt can either be stagewise independent or exhibit some linear dependency if2988

it occurs in the RHS. In the latter case, it can be handled by expanding the state2989

space. Within SDDP, in each iteration samples of ξSt are considered. The second2990

vector ξTt , on the other hand, may lead to non-convexities in the value functions if it2991

is approached by expanding the state space. Therefore, it is modeled by a scenario2992

tree, which is treated exactly in SDDP. This means that for this particular part of the2993

uncertainty, no samples are drawn, but all scenarios are considered in each iteration2994

of SDDP, as in NBD, see Section 5.2. This approach is similar to hybrid SDP/SDDP2995

in the sense that the expected value functions Qt(·) depend on the scenarios from ξSt2996

and that cuts can only be shared within, but not between such scenarios.2997

By only treating the crucial part ξT of ξ as a scenario tree and the remainder ξS2998

still by sampling, complex uncertainty processes can be considered, while at the same2999

time the increase of computational complexity is kept as small as possible [178]. To3000

take advantage of this, the scenario tree associated with ξS should not be too large.3001

Compared to hybrid SDP/SDDP, in specific applications the one or the other3002

approach may be favorable. For instance, the Markov chain approaches allow for de-3003

pendencies between different uncertainty processes. Moreover, in the case that each3004

realization of ξt is assigned to one specific Markov state ζℓ, ℓ = 1, . . . , L, the number3005

of LPs to be solved per iteration can be kept equal to standard SDDP. The scenario3006

tree approach, by contrast, requires independence of ξS and ξT . By design, it con-3007

siders all combinations of scenarios of ξT and ξS , so no assignment of realizations3008

of ξS to scenarios of ξT is required. However, the number of LPs to be solved grow3009

exponentially in the number of stages [178]. On the other hand, a scenario tree may3010

be more appropriate to model very complex processes, e.g., referring to macroeco-3011

nomical, political or structural decisions [178], for which the Markov property is not3012

appropriate.3013

14.7. Saddle Cuts. We consider the special case of stagewise dependent objec-3014

tive coefficients ct(ξt) in (MSLP), as they appear for uncertain prices models by AR3015

processes. So far, we introduced SDDP with integrated Markov chain as a suitable3016

solution approach in this case. Now, we discuss as second one.3017

As discussed in Section 14.1, by expanding the state space, stagewise indepen-3018

dence (Assumption 2) can be recovered, but in return the expected value functions3019

Q̂t(·, ·) are no longer convex. In Theorem 14.3 it is shown that Q̂t(·, ·) is in fact convex3020

in xt−1, but concave in ct−1, which yields a saddle shape. Therefore, linear cuts are3021

not sufficient to approximate them. As a resort, exploiting the saddle shape, special3022

saddle cuts can be used.3023

To derive this formally, in the vein of [55], we assume the objective coefficients3024

to be described by
(
yt(ξt)

)⊤
Ct instead of ct(ξt). While the matrix Ct is considered3025

deterministic, yt(ξt) is defined by the following AR process3026

(14.15) yt(ξt) = Bt(ξt)yt−1(ξt−1) + bt(ξt)3027

for all stages t = 2, . . . , T . Here, the matrix Bt and the vector bt are uncertain and3028

depend on the realization of ξt. Thus, the sequence
(
yt(ξt)

)T
t=1

is scenario-dependent.3029

Inserting relation (14.15) into the objective function and considering yt−1 as an3030
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additional state variable, for t = 2, . . . , T , we obtain the subproblems3031

Q̂t(xt−1, yt−1, ξt)

=

{
min
xt

(
Bt(ξt)yt−1 + bt(ξt)

)⊤
Ctxt + Q̂t+1

(
xt, Bt(ξt)yt−1 + bt(ξt)

)
s.t. xt ∈ Xt(xt−1, ξt)

3032

where3033

Q̂t+1(xt, yt) = Eξt+1

[
Q̂t+1(xt, yt, ξt+1))

]
3034

and Q̂T+1(xT , yT ) ≡ 0. For the first stage, we obtain3035

v∗ =

{
min
x1

b1C1x1 + Q̂2(x1, y1)

s.t. x1 ∈ X1.
3036

The additional state yt−1 is referred to as an objective state. This state is not allowed3037

to appear in the constraints [55]. As stated before, Q̂t(·, ·) is piecewise linear and3038

convex in xt−1, but piecewise linear concave in yt−1 and as such, a piecewise bilinear3039

saddle function.3040

The concept of approximating saddle functions with saddle cuts goes back to3041

Baucke et al., who propose a deterministic algorithm to solve stochastic minimax dy-3042

namic programs [11]. A related approach is used in robust dual dynamic programming3043

(RDDP), which uses an SDDP-like framework to solve multistage robust programs3044

[76]. The main idea is to compute lower and upper bounding saddle functions, which3045

combine the ideas of an outer approximation by cutting-planes and an inner approx-3046

imation by convex combinations of function values, the latter of which we discuss3047

thoroughly in Section 8. For stagewise dependent objective coefficients, it is sufficient3048

to only use the lower bounding saddle functions, so-called saddle cuts, from [11] to3049

approximate the expected value functions in SDDP.3050

Let (3.4) define βt and αt as in standard SDDP. Then, the r-th saddle cut for3051

Q̂t+1(·, ·) is defined as the solution to the optimization problem3052

(14.16)

min
µt, θt+1

y⊤t µt + θt+1

s.t. (yrt )
⊤µt + θt+1 ≥ αr

t+1 + (βr
t+1)

⊤xt
∥µt∥∞ ≤ ν

3053

where yrt = yikt denotes the current objective state in iteration i and for scenario3054

k ∈ K. Importantly, this problem has xt and yt as parameters. Hence, a saddle cut3055

gives a valid lower approximation for Q̂t+1(·, ·) for all xt and yt and can be shared3056

between scenarios. Moreover, the saddle cuts are tight at the trial state given by xikt3057

and yikt , at which they are created.3058

A crucial part of applying this approach is to bound the decision variable µt3059

in (14.16) by an appropriate constant ν. To this end, the expected value functions3060

Q̂t(·, ·) are required to be Lipschitz continuous with respect to yt−1. As shown in3061

[11], to ensure validity of the saddle cuts, the parameter ν has to be chosen at least3062

as large as the Lipschitz constant of Q̂t(·, ·) with respect to yt−1 under the dual norm3063

∥·∥1 of ∥·∥∞. If it is chosen smaller, this may result in invalid cuts and suboptimal3064

solutions. If it is chosen too large, the cuts may become very weak [55].3065
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Incorporating the saddle cuts, for each stage t = 2, . . . , T , iteration i and scenario3066

k ∈ K, the SDDP subproblems can be formulated as3067

Q̂
i

t
(xikt−1, y

ik
t−1, ξtj)

=


min

xt,µt,θt+1

(yikt )⊤Ctxt + (yikt )⊤µt + θt+1

s.t. xt ∈ Xt(x
ik
t−1, ξtj)

(yrt )
⊤µt + θt+1 − (βr

t+1)
⊤xt ≥ αr

t+1, r ∈ Γt+1

∥µt∥∞ ≤ ν,

3068

where yikt = Bt(ξ
k
t )y

ik
t−1 + bt(ξ

k
t ).3069

It can be shown that only finitely many different saddle cuts can be constructed.3070

As a consequence, the convergence results are the same as for standard SDDP [55].3071

14.8. Applying Dual SDDP. A third alternative that is tailored to stagewise3072

dependent objective coefficients ct(ξt) in (MSLP) is to apply dual SDDP [97], as3073

presented in Section 8. Recall the value functions derived from the dual problem of3074

(MSLP):3075

(14.17) D̃t(πt−1) :=


max
πt

qt∑
j=1

ptj

(
− h⊤tjπtj + D̃t+1(πtj)

)
s.t.

qt∑
j=1

ptj

(
T⊤
t−1,jπtj

)
+W⊤

t−1πt−1 ≤ ct−1.

3076

These value functions are concave in πt−1. Crucially, here the objective coeffi-3077

cients ct−1 appear in the RHS. If (ct)t∈[T ] is described as a linear AR process, we can3078

expand the state space as for the primal subproblems in Section 14.1, and the new3079

state variable c[t−2] appears in the RHS. Therefore, the obtained value functions are3080

also concave in c[t−2] and can be approximated from above by linear cuts. This can3081

be done by applying dual SDDP [97], see Section 8.3082

14.9. Conditional Cuts. The previously discussed approaches all have in com-3083

mon that they require to expand the state space or to set up a scenario tree or a3084

discrete Markov chain from the true (continuous) data process (or from existing his-3085

torical data). van Ackooij and Warin propose an alternative approach that works3086

without these requirements [225]. The approach is based on established methods in3087

mathematical finance and optimal stopping theory. A crucial assumption is that the3088

data process (ξt)t∈[T ] is Markovian.3089

Assume that a finite set S of scenarios ξs, s ∈ S, is given, e.g., historical obser-3090

vations of the data. This set is chosen in advance and not changed within SDDP.3091

The first key ingredient of the proposed variant of SDDP is to partition the set of3092

possible values of ξt for each stage t ∈ [T ] into a finite number |Lt| of hypercubes3093

Dtℓ, ℓ = 1, . . . , |Lt|, also called meshes. This partitioning is done in such a way that3094

approximately a uniform distribution of the samples is achieved [225].3095

In the forward pass of SDDP, a subset Lt ⊆ St of scenarios are sampled for3096

each stage. This is done with the aim to obtain a trial solution xℓt for each mesh3097

in expectation for all t = 2, . . . , T . Each of these trial solutions is then used in the3098

backward pass to derive cuts.3099

In the backward pass, in principle, the whole set of scenarios S is considered3100

as candidates for cut derivation. For any sequence (xiℓt )t∈[T ] of trial solutions, let3101
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d(t)iℓ

)T
t=1

denote the sequence of corresponding meshes, i.e., xiℓt has been deter-3102

mined in the forward pass for ξℓt ∈ Dt,d(t)iℓ . At each stage t = T, . . . , 2, the SDDP3103

subproblems are now solved for all scenarios ξst for which ξst−1 ∈ Dt−1,d(t−1)iℓ . This3104

means that for each trial solution, all scenarios are considered which share the same3105

mesh with the scenario used to obtain the trial solution.3106

After solving these subproblems, the obtained solutions are used to construct cuts.3107

However, the cut derivation process differs from standard SDDP. The cut coefficients3108

are determined as estimates of the corresponding conditional expectations [225]:3109

αi
tℓ(ξt−1) = ÊS

|ξt−1

[
(πiℓs

t )⊤ht(ξt) +
∑

r∈Γt+1

ρiℓsr
t αr

t+1

]
3110

and3111

βi
tℓ(ξt−1) = −ÊS

|ξt−1

[
(πiℓs

t )⊤Tt−1

]
.3112

These estimates are computed by linearly regressing the terms for each considered3113

scenario ξst on a finite number of local base functions, e.g., monomials in Rpt , with3114

support on the considered mesh. This yields a cut3115

Qt(xt−1, ξt−1) ≥ ϕitℓ(xt−1, ξt−1) =
(
βi
tℓ(ξt−1)

)⊤
xt−1 + αi

tℓ(ξt−1),3116

which provides a local update of the cut approximation in the current meshDt−1,d(t−1)3117

and is zero otherwise. For this reason, the cut is associated with this specific mesh3118

and stored in a corresponding index set.3119

For each subproblem solved in the forward or backward pass, only the set of cuts3120

is taken into account which is associated with the currently explored mesh then [225].3121

Therefore, these cuts are called conditional cuts.3122

For problems with a low-dimensional vector ξt and Markovian dependency, the3123

policies obtained using conditional cuts are reported to be competitive with those3124

obtained by expanding the state space, but without an increase of the state dimension3125

and without the need to set up a scenario tree [225].3126

15. Extension to Convex Programs [relaxing Assumption 6]. A natural3127

extension of SDDP can be achieved by relaxing the assumption of linearity, i.e.,3128

Assumption 6, but assuming a multistage stochastic convex problem (MSCP). We3129

take the following assumptions [78, 85].3130

Assumption 10. Let ft(·) and gt(·, ·) (componentwise) be convex lower semicon-3131

tinuous proper and differentiable functions and Xt nonempty convex compact sets for3132

all t ∈ [T ].3133

Under stagewise independence (Assumption 2) and Assumption 10, (MSCP) can3134

be expressed using its DPE in the following form. For t = 2, . . . , T they read3135

(15.1) Qt,C(xt−1, ξt) :=


min
xt

ft(xt, ξt) +Qt+1,C(xt)

s.t. gt(xt−1, xt, ξt) ≤ 0
xt ∈ Xt,

3136

with expected value functions defined as usual by3137

(15.2) Qt+1,C(xt) := Eξt+1 [Qt+1,C(xt, ξt+1)]3138
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and QT+1,C(xT ) ≡ 0. For the first stage, this yields3139

(15.3) v∗C =


min
x1

f1(x1) +Q2,C(x1)

s.t. g1(x1) = 0
x1 ∈ X1.

3140

Applying SDDP to (MSCP) with convergence guarantees requires a more strict3141

recourse assumption compared to Assumption 9, which we present under finite ran-3142

domness (Assumption 5).3143

Assumption 11. (Extended relatively complete recourse [78]) Let aff(Xt) be the3144

affine hull of the reachable set Xt and Bt(δt) = {y ∈ aff(Xt) : ∥y∥ < δt} for some3145

δt > 0 and some norm ∥·∥.3146

For all t ∈ t = 2, . . . , T , all xt−1 ∈ Xt−1 + Bt(δt) and all ξtj , j = 1, . . . , qt, the3147

feasible set of subproblems (15.1) is non-empty.3148

Intuitively, Assumption 11 demands that feasibility of the subproblems is also3149

ensured for xt−1 slightly outside of Xt. This is required in order to guarantee Lipschitz3150

continuity of all value functions Qt,C(·, ·) and expected value functions Qt,C(·) [78].3151

Additionally, all value functions are convex, and thus can be approximated by linear3152

cuts. Such cuts can be generated using Lagrangian duality. More precisely, for all3153

t = 2, . . . , T and xt−1 ∈ Xt−1, we introduce the Lagrangian function3154

(15.4) Lt,C(πt;xt−1, xt, ξt) = ft(xt, ξt) + π⊤
t gt(xt−1, xt, ξt),3155

the corresponding dual function3156

(15.5) Lt,C(πt;xt−1, ξt) = min
xt∈Xt

Lt(πt;xt−1, xt, ξt)3157

and the corresponding Lagrangian dual problem3158

(15.6) max
πt≥0

Lt(πt;xt−1, ξt).3159

Further, we make the following assumption which ensures no duality gap between3160

the primal subproblems (15.1) and their dual problems (15.6) [85]. Here, ri(S) denotes3161

the relative interior of some set S.3162

Assumption 12. (Slater condition [85]) For all xt−1 ∈ Xt−1 and all ξtj , j =3163

1, . . . , qt, there exists xt ∈ ri(Xt) such that gt(xt−1, xt, ξtj) < 0.3164

Then, exploiting differentiability, a subgradient of Qt,C(·) at x̄t−1 is given by3165

β̄t = ∂Qt(x̄t−1) =

qt∑
j=1

ptj∇xt−1
Lt,C(π̄tj ; x̄t−1, x̄tj , ξtj),3166

where x̄tj is an optimal solution to the primal problem (15.1) and π̄tj is an optimal3167

solution to the dual problem (15.6) given ξtj . Moreover, ∇xh(·) denotes the gradient3168

of some function h(·) with respect to x. Using this subgradient, a cut for Qt(·) is3169

given by [85]3170

Qt(xt−1) ≥ Qt(x̄t−1) + β̄⊤
t (xt−1 − x̄t−1).3171

Under Assumption 11, the norm of the obtained subgradients can be shown to be3172

bounded [85].3173
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This cut derivation can be generalized to DPE including Qt(·) instead of Qt(·).3174

The results can also be generalized to cost functions ft(xt−1, xt, ξt) depending on the3175

state xt−1, see [85] for details.3176

Contrary to the linear case, however, the expected value functions Qt,C(·) are3177

no longer polyhedral. As a consequence, they cannot be represented exactly by a3178

finite number of cuts. However, it can be shown that given the above assumptions3179

and Assumptions 1 to 8 almost sure asymptotic convergence of SDDP is ensured. In3180

[78] this is proven for the case that xt−1 only enters the subproblems (15.1) in linear3181

constraints, that is, gt(·) being a linear function. In [85] the convergence proof is3182

extended to the more general setting presented above. For both convergence proofs3183

also the differentiability requirement can be dropped. As shown in [71], almost sure3184

finite convergence can be achieved for ε-optimal policies, for some predefined ε > 0.3185

In [92], Guigues and Monteiro propose a slightly different algorithmic approach,3186

called StoDCuP (Stochastic Dynamic Cutting Plane), in which not only Qt(·), t =3187

2, . . . , T , but also some or all nonlinear functions ft(·) and gt(·) are iteratively ap-3188

proximated by affine functions at the trial points visited in the forward pass.3189

Another variant of SDDP is DASC (decomposition algorithm for multistage sto-3190

chastic programs with strongly convex cost functions), which is introduced in [86]. It3191

can be applied when the (expected) value functions in (MSCP) are strongly convex.3192

For this type of problems, it is proposed to approximate them using functions Qt(·)3193

which are defined as the pointwise maximum of quadratic cuts instead of affine cuts.3194

In contrast to standard SDDP, this means that the subproblems to be solved in SDDP3195

become nonlinear, but in return good approximations of the expected value functions3196

are obtained much quicker, and thus less iterations are expected [86]3197

While most research on SDDP deals with problems (MSLP), some of the exten-3198

sions presented previously and in the following sections have also been enhanced to3199

the convex case, e.g., risk-aversion [85], inexact cuts [88], regularization [90] or exact3200

upper bounding procedures [10, 118]. [85] contains an extension of the convergence3201

proof from [78] to the risk-averse case. Furthermore, the idea to use inexact cuts is3202

generalized to convex non-differentiable problems [91], see Section 21.3203

16. Extensions to Mixed-integer and Non-convex Problems [relaxing3204

Assumption 6]. In many practical applications, multistage stochastic problems do3205

involve integer decision variables or nonlinear, but non-convex terms in the objective3206

function or constraints, see Section 9. In general, such programs can be formulated in3207

the same way as in the convex case, but with the functions ft(·) and gt(·) possibly being3208

non-convex. Moreover, in this case, Xt is the intersection of a convex compact set, e.g.,3209

representing box constraints, with possible integer constraints, i.e., Xt ⊂ Rnt1
t ×Znt2

+3210

with nt = nt1 + nt2. We denote the optimal value by v∗NC .3211

Under stagewise independence (Assumption 2), the DPE can be written as (15.1)-3212

(15.3), but for distinction we denote the value functions by Qt,NC(xt−1, ξt) and the3213

expected value functions by Qt,NC(xt−1) for all t = 2, . . . , T . Both, integer variables3214

and non-convex functions make this a non-convex multistage stochastic programming3215

problem (MSNCP). Importantly, Qt,NC(·, ·) and Qt,NC(·) are no longer ensured to be3216

convex, but become non-convex functions in xt−1. They are also not guaranteed to be3217

(Lipschitz) continuous. This poses significant challenges on approximation algorithms3218

such as SDDP, as linear cuts are not sufficient to approximate Qt,NC(·).3219

To approach (MSNCP) by SDDP, different strategies can be used. As nonlinear3220

or mixed-integer stochastic programming are large research areas on their own, we3221

give a brief overview here and for methodological details refer to the cited literature.3222
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16.1. Convexification. A standard approach in practice is to solve a static con-3223

vex relaxation (P̂NC) of (MSNCP), which is associated with convex expected value3224

functions Q̂t(·) for all t ∈ [T ]. Such relaxation can be achieved by relaxing the inte-3225

grality constraints and replacing non-convex functions with convex relaxations, such3226

as McCormick envelopes [139]. In this case, the Benders cuts determined by SDDP3227

can be very loose, though. Therefore, only some rough under-approximation v̂∗NC of3228

the optimal value v∗NC may be determined. However, sometimes this is considered3229

sufficient to obtain reasonable policies for practical implementation. Also note that3230

even if convex relaxations are considered when running SDDP to compute a policy, the3231

simulation of this policy afterwards can be executed including integrality constraints3232

and non-convex functions.3233

A second strategy is to keep the subproblems in SDDP non-convex, but to con-3234

vexify the expected value functions Qt,NC(·) in some sense. Often, in this case,3235

the nonlinearities in (MSNCP) are first relaxed by piecewise linear approximations,3236

such that all subproblems are MILPs [36, 217]. In the backward pass, given some3237

incumbent xikt−1, for all t = T, . . . , 2 and all ξtj , j = 1, . . . , qt, instead of solving an3238

LP relaxation of the subproblems (2.10) (or its LP dual), a Lagrangian relaxation is3239

solved where the coupling constraints gt(xt−1, xt, ξtj) ≤ 0 are relaxed. This relaxation3240

can be written as3241

Li+1
t (πt;x

ik
t−1, ξtj) := min

xt

ft(xt, ξtj) +Qt+1(xt) + π⊤
t gt(x

ik
t−1, xt, ξtj)

s.t. xt ∈ Xt.
3242

In the Lagrangian dual, this dual function is maximized over all multipliers πt:3243

(16.1) vi+1
t,LD(xikt−1, ξtj) := max

πt≥0
Li+1
t (πt;x

ik
t−1, ξtj).3244

It is known from the theory on Lagrangian relaxation that the optimal value3245

vi+1
t,LD(xikt−1, ξtj) coincides with the lower convex envelope of Qi+1

t,NC
(·, ξtj) at xikt−13246

[75]. Therefore, cuts obtained based on (16.1) are associated with a convexifica-3247

tion of the value function. In order to derive utilizable cut formulas from (16.1) some3248

specific conditions have to be satisfied by the constraints. Suppose the constraints3249

gt(xt−1, xt, ξt) ≤ 0 can be rewritten as3250

ĝt(xt−1)− ḡt(xt, ξt) ≤ 0, g̃t(xt, ξt) ≤ 0,3251

i.e., the nonlinear function being separable with respect to xt−1, and let πikj
t denote3252

optimal multipliers in (16.1). Then, in line with Sect. 3.3, Lagrangian cuts can be3253

derived as [211]3254

Qt,NC(xt−1) ≥ αi
tk + (βi

tk)
⊤ĝt(xt−1),3255

with3256

αi
tk =

qt∑
j=1

ptj

(
Lt(π

ikj
t ;xikt−1, ξtj)− (πikj

t )⊤ĝt(x
ik
t−1)

)
,

βi
tk =

qt∑
j=1

ptjπ
ikj
t .

3257

For linear functions ĝt(·) and ḡt(·, ·), a similar result is derived in [36].3258
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The obtained Lagrangian cuts provably dominate standard Benders cuts, which3259

can be obtained by solving LP relaxations [211]. However, convergence of SDDP is3260

not guaranteed, since there may still be some duality gap between vi+1
t,LD(xikt−1, ξtj)3261

and Qi+1

t,NC
(xikt−1, ξtj).3262

Moreover, generating Lagrangian cuts can be computationally costly. Various3263

methods have been proposed to solve the Lagrangian dual (16.1), such as cutting-plane3264

methods [110], subgradient methods [69, 166] or bundle methods [121], but all of them3265

may take considerable time compared to solving an LP relaxation. Advantageously,3266

even suboptimal Lagrangian multipliers πt yield valid cuts for Qt,NC(·).3267

Instead of a static convexification approach [36], Steeger and Rebennack [209,3268

211], also apply the above principle in a dynamic fashion by considering DPE for the3269

Lagrangian relaxations in the backward pass.3270

16.2. Exact Methods. Recently, there has been more research on directly ap-3271

plying the SDDP idea to problems (MSNCP) to avoid the requirement of convexifi-3272

cation and to close the optimality gap.3273

Step Functions. Given that the value functions Qt,NC(·) are monotonically3274

increasing or decreasing, they can be approximated by special step functions instead3275

of affine functions. This idea is incorporated into the SDDP framework in the so-called3276

mixed-integer dynamic approximation scheme (MIDAS) [162]. To determine the step3277

functions, mixed-integer linear subproblems have to be solved exactly at each stage3278

and in each iteration. In contrast to the previous approaches, convergence of MIDAS3279

to an approximately optimal policy for (MSNCP) is guaranteed.3280

SDDiP. For the mixed-integer linear case, the stochastic dual dynamic integer3281

programming (SDDiP) approach by Zou, Ahmed and Sun [232] allows for the com-3282

putation of optimal policies for (MSNCP) as long as all state variables xt are binary3283

(or bounded integer).3284

Consider the subproblems (2.10), but with binary state variables xt ∈ {0, 1}nt .3285

Similarly to the approaches in [36, 211, 217], Lagrangian dual problems are solved in3286

the backward pass to derive valid cuts. However, in SDDiP a new class of Lagrangian3287

cuts is proposed. The crucial idea is to introduce local copies zt of the state variables3288

xt−1 and to relax the corresponding copy constraints in the Lagrangian relaxation:3289

Li+1
t (πt;x

ik
t−1, ξtj) :=min

xt

(
ct(ξtj)

)⊤
xt +Qt+1(xt) + π⊤

t (x
ik
t−1 − zt)

s.t. xt ∈ Xt(zt, ξt)

zt ∈ [0, 1]da(n) .

3290

In the Lagrangian dual, this dual function is maximized over all multipliers πt:3291

ṽi+1
t,LD(xikt−1, ξtj) := max

πt

Li+1
t (πt;x

ik
t−1, ξtj).3292

Then, Lagrangian cuts can be determined as3293

(16.2) Qt,NC(xt−1) ≥ αi
tk + (βi

tk)
⊤xt−1,3294
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with3295

αi
tk =

qt∑
j=1

ptj

(
Lt(π

ikj
t ;xikt−1, ξtj)− (πikj

t )⊤xikt−1

)
,

βi
tk =

qt∑
j=1

ptjπ
ikj
t .

3296

These cuts can be proven to be valid and, in particular, tight, as defined in3297

Lemma 3.2. The key aspect behind this tightness property is that for xt−1 ∈ {0, 1}nt3298

the value functions Qt,NC(·) coincide with their lower convex envelopes at all xt−1.3299

Therefore, Lagrangian cuts recovering the latter are also tight for the former.3300

Moreover, if only dual basic solutions are considered, the cuts (16.2) are also finite3301

in the sense of Lemma 3.2. Therefore, almost sure finite convergence of SDDiP to an3302

optimal policy of (MSNCP) is guaranteed [232].3303

If the state variables xt are bounded and general integer or even continuous, they3304

can be componentwise approximated by a (weighted) sum of binary variables in order3305

to apply SDDiP [232]:3306

xtj ≈
Ktj∑
k=1

2k−1βtjλtkj ,3307

with discretization precision βti (for integer xt, βt = 1), binary variables λtkj , k =3308

1, . . . ,Ktj , and Ktj ∈ N for all j = 1, . . . , nt. Under some recourse assumptions, it3309

can be proven that for a sufficiently fine binary expansion, an approximately optimal3310

policy for (MSNCP) is computed. However, it may be challenging to choose an3311

appropriate precision in advance in practice.3312

SDDiP is applied in the case studies [102], [174] and [232]. In the latter, addi-3313

tional non-convex functions occur in (MSNCP), which are linearized using a Big-M3314

reformulation.3315

Non-convex Lipschitz cuts. As long as the value functions are assured to be3316

Lipschitz continuous (e.g. because the complete continuous recourse [232] property3317

is satisfied), the requirement of binary state variables can be dropped. This is ex-3318

ploited by the stochastic Lipschitz dynamic programming (SLDP) method proposed3319

by Ahmed et al. in [1], which enhances SDDiP to general MILPs. In contrast to the3320

Lagrangian cuts (16.2), here, two types of non-convex, but Lipschitz continuous cuts3321

are derived to approximate Qt,NC(·): Reverse-norm cuts, which are constructed by3322

using Lipschitz constants, and augmented Lagrangian cuts, which are based on (16.2),3323

but contain an additional penalization term −µ∥xt−1 − xit−1∥, where µ denotes some3324

user-controlled parameter and ∥·∥ some arbitrary norm.3325

This idea is further refined by Zhang and Sun in [229] who propose a new frame-3326

work to solve multistage non-convex stochastic MINLPs as part of their complexity3327

analysis of SDDP-like algorithms, see Sect. 4. The first key ingredient of their frame-3328

work is to consider Lipschitz regularizations of the value functions, see Sect. 17.2.3329

This ensures that the considered value functions are Lipschitz continuous without the3330

requirement of restricting recourse assumptions for (MSNCP). The second idea is to3331

construct nonlinear generalized conjugacy cuts by solving conjugate dual problems,3332

similar to the approach in SLDP. Whereas of theoretical interest, this method has3333

not been applied in computational experiments yet. In particular, it is not clear how3334

to solve the conjugate dual problems efficiently in general. Moreover, the framework3335

requires the costly solution of MINLP subproblems in each iteration.3336
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Based on concepts from SDDiP and [229], Füllner and Rebennack present a new3337

framework to solve multistage (stochastic) non-convex MINLPs [73]. Here, the origi-3338

nal MINLP is outer approximated by MILPs using piecewise linear relaxations, which3339

are iteratively improved in an outer loop. In an inner loop, those MILPs are solved by3340

an SDDP- and NBD-like decomposition scheme, which combines the Lipschitz reg-3341

ularization approach from [229] with binary approximation to generate non-convex3342

cuts. In contrast to SDDiP, the binary approximation is applied only temporarily3343

to derive linear cuts in the lifted binary space, which are then projected back to the3344

original state space. The pointwise maximum of this projection yields a Lipschitz3345

continuous non-convex cut for the value functions. The projection is computationally3346

important, as it allows to construct cuts which are guaranteed to be valid also for3347

the outer loop MINLPs. The binary approximation is dynamically refined within the3348

algorithm, instead of a static choice in advance. Another key difference compared to3349

the approach from [229] is that it is not required to solve MINLPs in each iteration3350

to derive cuts. The cut projection closure for a non-convex and discontinuous value3351

function is illustrated in Figure 14.3352

Similar to SLDP [1], however, it is required to introduce a potentially large num-3353

ber of auxiliary variables and constraints to express the non-convex approximations3354

by mixed-integer linear constraints. While the framework in [73] is presented for3355

deterministic problems, the inner loop decomposition method can be enhanced to3356

the stochastic case. Therefore, by appropriate modifications of the refinement and3357

stopping criteria, also the larger framework may be enhanced to stochastic problems.3358

0 0.5 1 1.5 2
0

0.5

1

1.5

2

xt−1

Q
t
(x

t−
1
)

Fig. 14: Non-convex and discontinuous value function with tight non-convex cut.

17. Infeasible Subproblems [relaxing Assumption 9]. Under relatively3359

complete recourse (see Assumption 9), it is guaranteed that any subproblem occurring3360

in the DPE (2.4)-(2.6) and their approximations (2.10) has a feasible solution. As3361

we also assume boundedness, for each of these subproblems there exists some optimal3362

point with finite optimal value. Moreover, all value functions are finite-valued.3363

In some practical applications, Assumption 9 may not be satisfied. For instance,3364

variable bounds may prevent equality constraints from being satisfied for all xt−1 and3365

all realizations of ξt, as is illustrated by a toy example in [84]. In such a case, the3366
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primal subproblems become infeasible and the corresponding dual problems become3367

unbounded. Different measures can be taken to cope with infeasibilities.3368

17.1. Feasibility Cuts. One approach is to approximate the effective domains3369

dom(Qt) of Qt(·) by cutting away states xikt−1 ∈ Xt leading to infeasible subproblems3370

on stage t. This can be achieved by generating so called feasibility cuts in addition to3371

the optimality cuts derived in Section 3. These cuts have the form (βf
t )

⊤xt−1 ≤ αf
t ,3372

with cut gradient βf
t , cut intercept αf

t and the superscript f signifying the cut as a3373

feasibility cut. They can be derived as follows [84].3374

Consider some stage-t subproblem3375

(17.1) Qi

t
(xikt−1, ξ

k
t ) =


min
xt

(
ct(ξ

k
t )
)⊤
xt +Qi

t+1(xt)

s.t. xt ∈ Xt(x
ik
t−1, ξ

k
t )

(βfr
t+1)

⊤xt ≤ αfr
t+1, r ∈ Γf

t+1

3376

in the forward pass of SDDP. This problem may already contain some feasibility cuts,3377

which are indexed by r ∈ Γf
t+1. To assess feasiblity of problem (17.1) and construct a3378

feasibility cut if required, we consider the auxiliary feasibility problem3379

vft (x
ik
t−1, ξ

k
t ) :=

min
xt,y

+
t ,y−

t ,zt

e⊤y+t + e⊤y−t + e⊤zt

s.t. Wt(ξ
k
t )xt + Iy+t − Iy−t = ht(ξ

k
t )− Tt−1(ξ

k
t )x

ik
t−1

(βfr
t+1)

⊤xt + Izt ≤ αfr
t+1, r ∈ Γf

t+1

xt ≥ 0
y+t , y

−
t , zt ≥ 0.

3380

Here, slack variables y+t , y
−
t and zt are introduced to (17.1) to ensure feasibility. The3381

symbol I denotes the identity matrix and e denotes a vector of ones. If we have3382

vft (x
ik
t−1, ξ

k
t ) = 0, the subproblem (17.1) is feasible, otherwise, it is infeasible.3383

By strong duality of linear programs, vft (x
ik
t−1, ξ

k
t ) can be expressed as3384

(17.2) vft (x
ik
t−1, ξ

k
t ) =

(
ht(ξ

k
t )− Tt−1(ξ

k
t )x

ik
t−1

)⊤
σt +

∑
r∈Rf

t+1

(αfr
t+1)

⊤ωr
t3385

with optimal dual vectors σik
t and ωikr

t , r ∈ Rf
t+1. Then, in case of infeasibility it3386

follows that the term in (17.2) is larger than 0.3387

To avoid the observed infeasibility on stage t in future iterations, the stage-(t−1)3388

trial point xikt−1 should removed from the feasible set on stage t − 1. This can be3389

achieved by adding the feasibility cut3390

(17.3) − (σik
t )⊤Tt−1(ξ

k
t )xt−1 + (σik

t )⊤ht(ξ
k
t ) +

∑
r∈Rf

t+1

(ωikr
t )⊤αfr

t+1 ≤ 03391

to stage t− 1. By defining3392

αf
t−1 := −(σik

t )⊤ht(ξ
k
t )−

∑
r∈Rf

t+1

(ωikr
t )⊤αfr

t+13393

and3394

βf
t−1 := −(σik

t )⊤Tt−1(ξ
k
t ),3395
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the cut (17.3) can be expressed in the previously stated form.3396

An important question when using feasibility cuts in SDDP is how to proceed,3397

once an infeasible subproblem has been detected and a new feasibility cut (17.3) has3398

been generated. For example, it is possible to stop the forward pass and traverse3399

the stages in backward direction until the root node of the scenario tree is reached.3400

Alternatively, the current subproblem can be resolved to obtain a new trial point xikt−13401

and the forward pass can be continued. For SDDP, no assessment and comparison of3402

these strategies has been conducted so far.3403

Another drawback is that feasibility cuts do not necessarily prevent infeasibilities3404

when the obtained policy is simulated outside of SDDP [84]. For this reason, most3405

commonly, the construction of feasibility cuts is circumvented in SDDP.3406

17.2. Penalization. Another common approach is to artificially enforce rela-3407

tively complete recourse for a problem at hand, even if it is not satisfied initially.3408

This can be achieved by using soft-constraints, that is, introducing slack variables to3409

relax certain constraints and then penalizing their violation in the objective function.3410

In some applications, this may even be practically justifiable, e.g., in load balance3411

equations in power optimization slack variables can be used to model load shedding3412

or curtailment. However, a reasonable choice of the penalty parameters is not trivial3413

and may distort the expected value functions [84].3414

Lipschitz Regularization. A specific penalization approach is to consider Lip-3415

schitz regularizations, also called Pasch-Hausdorff envelopes of the value functions.3416

More precisely, let ∥·∥ denote some norm, σt > 0 some constant and zt a local stage-t3417

copy of xt−1. Then, by allowing zt to deviate from the incumbent xikt−1 and penaliz-3418

ing such deviations in the objective, for all t = 2, . . . , T and the approximate value3419

functions (2.10) we obtain the approximate Lipschitz-regularized value functions3420

QR;i+1

t
(xikt−1, ξt; ∥·∥) := min

zt≥0

{
Qi+1

t
(xikt−1, ξt) + σt∥zt − xikt−1∥

}
.3421

These functions are proven to be Lipschitz continuous on Rda(n) with Lipschitz3422

constant σt. Moreover, for sufficiently large σt for all t ∈ [T ], it can be shown that by3423

considering the regularized problems still the original (MSLP) is solved to optimality3424

[68, 229]. However, choosing σt in a sufficient way is an open challenge in practice.3425

18. No Block-diagonal Structure [relaxing Assumption 7]. A key element3426

of dynamic programming methods is that in the multistage decision process only3427

subsequent stages are linked in the constraints, as it allows one to express (MSLP)3428

using the DPE (2.4)-(2.6). In the single-problem formulation (2.3) of (MSLP), this3429

coincides with a block-diagonal structure, see Assumption 7.3430

In some cases, it may be relevant to include constraints spanning multiple stages3431

instead. One example is the incorporation of emission quotas that are not allowed to3432

be exceeded for a given time horizon in energy optimization problems [14, 177, 179].3433

In order to apply SDDP, the considered (MSLP) has to be reformulated to a3434

problem satisfying Assumption 7. This can be achieved by aggregating stages [54],3435

even though this changes the structure, solution and interpretability of (MSLP). An3436

alternative approach is augmenting the state space. For emission quotas, for instance,3437

instead of summing emissions over several stages and comparing them with the upper3438

bound, at a given stage the remaining emission allowances can be considered as an3439

additional state variable [177], see Section 9.3440
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19. Infinite Horizon [relaxing Assumption 1]. So far, we considered prob-3441

lems (MSLP) with a finite time horizon T < ∞ (Assumption 1). In some practical3442

applications, however, repeated decisions have to be modeled without a clear bound3443

on the horizon. Considering such infinite-horizon problems is for instance common for3444

Markov decision processes [19]. In such a case, to ensure that v∗ is finite, a geometric3445

discount factor δ < 1 is introduced for the cost at each stage.3446

Since SDDP performs a forward and a backward pass through all stages in each3447

iteration, it is not directly applicable to such problems, as no iteration would ever be3448

completed. Therefore, often different solution methods are utilized in such a setting,3449

see for example [9]. Still, recently there has been some focus on enhancing the SDDP3450

idea to problems with infinite time horizon.3451

One approach, called Benders squared or B2, is based on limiting each iteration3452

of SDDP to a finite horizon of τ stages, but to dynamically increase τ per iteration,3453

e.g., by 1, until convergence is reached [144]. By presuming that the uncertainty3454

occurs in the RHS and is not only stagewise independent, but also i.i.d. for all stages3455

t ∈ [T ], almost sure convergence to an approximately optimal policy is assured. The3456

reason is that under this special assumption, Qt(·) are the same for all stages, so cuts3457

computed at stage t cannot only be incorporated at stage t−1, but at all stages [144].3458

A different option to adopt SDDP to infinite horizon problems exists if such3459

problems possess some kind of periodical behavior. This idea is put forward by Shapiro3460

and Ding [201]. Assume that for some period m ∈ N, the distributions of ξt as well3461

as the data ct,Wt, ht and Tt−1 are the same for t = τ and t = τ +m for all τ = 2, . . .3462

Then, under Assumption 9, the functions Qt(·) and Qt+m(·) are equivalent as well.3463

This means that it is sufficient to derive cuts for Qt+m(·) at stages t = 2, . . . ,m + 13464

in order to obtain valid cuts for all stages.3465

In the forward pass of SDDP, it is proposed to only consider a finite number of T3466

stages starting from stage 1, with T ≥ m+ 1 in order to determine at least one trial3467

point for each of the differing expected value functions. In case of T > m+1, multiple3468

candidate trial points exist, at which cuts can be constructed in the backward pass.3469

Before starting the backward pass, the used trial points can be chosen from such a3470

candidate set randomly or by some heuristic.3471

For both approaches, B2 and periodic SDDP, for discount factors δ close to 1,3472

the influence of late stages on v∗ may be substantial, and thus policy evaluation and3473

upper bound determination may become very challenging and computationally costly.3474

Still, Shapiro and Ding propose some proxies based on some finite, but sufficiently3475

large T [201]. However, they do not provide a convergence proof.3476

A big advantage of SDDP for periodical problems is that it can also be applied3477

to increase solution performance for problems with a finite, but very large number3478

of stages, given that they satisfy some notion of periodicity. The authors present an3479

example where instead of a 60-month horizon, exploiting the periodical structure of3480

the problem, only a 13-stage problem has to be solved [201]. This can make even large3481

problems amenable to SDDP and computationally tractable. It is also considered to3482

mitigate the so-called end-of-horizon effect, which we discuss in Section 9.3483

On a different note, the policy graph approach introduced by Dowson [56] to3484

model (MSLP) provides a natural extension to infinite-horizon problems, as it allows3485

for cyclic graphs. Solving such problems, similarly to [144], relies on a truncation3486

after a finite number of nodes in the graph. Then, approximate convergence can be3487

proven.3488
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20. Random Horizon [relaxing Assumption 1]. Another way to relax As-3489

sumption 1 is to assume that the horizon T is random. For simplicity, we discuss this3490

aspect for the linear case only, even though it is presented in [89] for the more general3491

convex case.3492

Consider (MSLP) from Sect. 2.3, satisfying Assumptions 2 to 8, but with T not3493

being fixed. Instead, we take the following assumption:3494

Assumption 13. The time horizon T is a discrete random variable taking values3495

in
{
2, . . . , T

}
with known T ∈ N.3496

Then, the horizon T induces the Bernoulli process (Dt)t∈[T ] with realizations3497

Dt =

{
0, if the optimization period ended at t or before

1, otherwise,
3498

and therefore T can be written as3499

T = min
{
t ∈ [1, T ] : Dt = 0

}
.3500

The decisions xt(·) are functions of ξt (given Assumption 2), Dt and Dt−1. In3501

other words, xt is F t-measurable with F t the sigma-algebra σ(ξt,Dj , j ≤ t) [89].3502

As shown in [89], for (MSLP) with this type of random horizon, the following3503

DPE equations can be derived. Importantly, the state space is augmented by Dt−1:3504

Qt(xt−1, Dt, Dt−1, ξt) = min
xt∈Xt(xt−1,ξt)

Dt−1

(
ct(ξt)

)⊤
xt +Qt+1(xt, Dt),3505

where3506

Qt+1(xt, Dt) = Eξt+1,Dt|Dt−1
[Qt+1(xt, ξt+1)]3507

and QT+1(xT , DT ) ≡ 0. For the first stage, we obtain3508

v∗ = min
x1∈X1(x0,ξ1)

c⊤1 x1 +Q2(x1, D1).3509

These DPE are the same as those that would be obtained for a problem with3510

a fixed number of stages T ∈ N, but an objective function including the stagewise3511

dependent stochastic process (Dt)t∈[T ]. As (Dt)t∈[T ] can be modeled by an inhomo-3512

geneous Markov chain with two states, SDDP for processes with Markov chains can3513

be applied [89], see Sect. Section 14.5.3514

21. Performance Improvements. Apart from extensions to different prob-3515

lem classes, a lot of research on SDDP has focused on improving its computational3516

performance, because standard SDDP may suffer from various performance issues.3517

As shown in Section 4.2, its worst-case iteration complexity is exponential in the3518

number of stages T and the dimension nt of the state space, the latter being a well-3519

known drawback of cutting-plane methods in general. Whereas SDDP is successfully3520

applied to various large-scale problems in practice, see Section 9, with the optimality3521

gap closed in reasonable time, especially for problems with a large state space it may3522

empirically fail to converge. For instance, Ávila et al. report instances for which the3523

lower bounds vi already start to stall at a gap of about 22% [6].3524

In addition to the high number of iterations required, also the computational3525

effort in each iteration can become substantial, even if the number of subproblems3526
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solved per iteration has linear complexity, see Section 4.2. The reason is that with3527

each iteration of SDDP, the subproblems (2.10) become larger, as additional cuts3528

are included. This can increase the computational effort per iteration significantly,3529

especially for problems (MSLP) which require many iterations to converge, and thus3530

many cuts to be generated.3531

In this section, we give an overview on modifications of SDDP to address these3532

issues and improve its performance. In general, those techniques attempt to either3533

speed up the SDDP iterations by reducing the computational effort, or to reduce the3534

required number of iterations by improving the progress achieved in single iterations.3535

21.1. Cut Elimination and Selection. As mentioned before, with each added3536

cut, the subproblems (2.10) become larger, and thus potentially harder to solve. How-3537

ever, computational results indicate that SDDP tends to generate a large number of3538

similar or redundant cutting planes, which do not contribute much to the approxi-3539

mation quality in later iterations [6, 203]. Therefore, the computational burden of3540

SDDP may be reduced if only a subset of all cuts is taken into account. However, this3541

requires careful elimination of cuts which are dominated and do not contribute to the3542

solution process, or careful selection of decisive cuts, as otherwise the performance of3543

SDDP may even become worse.3544

Cut Elimination. One way to reduce the number of cuts is to eliminate some3545

cuts permanently. This can be done by solving an auxiliary problem checking feasi-3546

bility of the system3547 
θt+1 ≤ αr̃

t+1 + (βr̃
t+1)

⊤xt

θt+1 ≥ αr
t+1 + (βr

t+1)
⊤xt, r ∈ Γt+1 \ {r̃}

xt ∈ Xt

3548

for each r̃ ∈ Γt+1, where Xt is assumed to be a compact set [203].3549

If this system is infeasible, then the cut θt+1 ≥ αr̃
t+1 + (βr̃

t+1)
⊤xt is redundant3550

and can be eliminated. The drawback of this method is that the auxiliary problem3551

has to be solved for all cuts in the system.3552

A different approach is to permanently store all cuts for each stage t, but only3553

select a subset of those cuts to be considered in the backward pass of the current3554

iteration i. Selection techniques based on this approach are introduced in [8, 49].3555

Selecting Last Cuts. In this naive strategy, only the Γ ∈ N most recently added3556

cuts are selected. Although on average, late cuts may provide a better approximation3557

of Qt(·) than early ones, this strategy does not guarantee that all important cuts are3558

considered.3559

Level of Dominance. This strategy is a heuristic in order to consider only3560

non-dominated cuts, but avoid the computational effort of the above cut elimination3561

approach. Using the most basic approach, only cuts are selected, which yield the3562

highest function value at one of the trial solutions considered so far within the algo-3563

rithm. This is called Level 1 Dominance [49]. A similar approach is proposed in [155],3564

but there cuts are permanently removed if they are dominated.3565

Let xℓt be the trial solution corresponding to the ℓ-th cut, ℓ ∈ Γt+1, and ϕ
r(xℓt) the3566

corresponding function value of cut r. Then, the values v(ℓ) := maxr∈Γt+1

{
ϕr(xℓt)

}
3567

and r(ℓ) := argmaxr∈Γt+1

{
ϕr(xℓt)

}
can be saved in a list and be updated every time a3568

new cut is constructed. Similarly, a Level Γ Dominance strategy can be used, selecting3569

the Γ ∈ N highest cuts for all trial solutions. Using this strategy, only previous trial3570

points are taken into consideration, though. Therefore, cuts may be excluded which3571
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provide a significant benefit at not yet visited feasible states.3572

Another challenge is that this strategy draws a lot of resources to store all the3573

required cut information – especially, since the number of visited trial points increases3574

significantly in the course of SDDP. Memory requirements can even be relevant for3575

Level 1, especially if the maximum function value at the trial solutions is attained by3576

several cuts. As a resort, in [87], the Limited Memory Level 1 strategy is introduced,3577

selecting only the oldest of such cuts. In [8] this technique is applied to SDDP and3578

almost sure convergence is proven.3579

Dynamic Cut Selection. A dynamic, but also computationally more expensive3580

strategy is to select cuts dynamically within the SDDP framework. In [49] it is3581

proposed to remove all cuts at the beginning of each iteration. Then, for each stage t,3582

each scenario k, and each function ϕr(·), r ∈ Γt+1, the forward pass subproblem (2.10)3583

is solved. If the current cut yields the highest value at the obtained trial solution, it3584

is added to the subproblem, and the next cut is considered.3585

This way, only cuts are selected that contribute to the optimal solution in the3586

current iteration. On the other hand, the additional loop may slow down the conver-3587

gence speed. The computational effort can be reduced by inheriting all added cuts3588

from the already considered scenarios.3589

A similar approach is considered in [31]. Here, cuts are iteratively added as long3590

as they induce a substantial change in the current optimal value and up to some3591

predefined maximum number of cuts. Instead of iterating over all cuts, in each step,3592

the cut with the highest value at the current incumbent is chosen as a candidate for3593

selection.3594

Numerical results for sampling about 5,000 scenarios and computing 10,000 cuts3595

in SDDP indicate that all cut selection techniques can significantly speed-up the3596

classical SDDP method [49]. For example, the Level 1 strategy is reported to be3597

ten times faster than SDDP without cut selection. For dynamic cut selection, the3598

reported speed-up is much smaller. It is also shown that the cut selection strategies3599

do not have a significant impact on the quality of the determined policies and bounds.3600

In [8], Limited Memory Level 1 is identified as more efficient than pure Level 1.3601

21.2. Multi-cut SDDP. In the backward pass of SDDP, for any t ∈ [T ] and any3602

xikt−1, k ∈ K, subproblems (2.10) are solved for all noise realizations ξtj , j = 1, . . . , qt.3603

By taking expected values, a cut (3.5) is derived. Such cuts are then incorporated3604

into the stage-(t− 1) subproblem using a single variable θt ∈ R by3605

ϕitk(xt−1) = (βi
tk)

⊤xt−1 + αi
tk ≤ θt,3606

see Section 3.3. This is referred to as a single-cut approach.3607

A different approach, that is well-studied for (nested) Benders decomposition3608

[27, 74, 143], is to not aggregate the dual information, but to generate a separate cut3609

for each noise realizations ξtj , j = 1, . . . , qt. This requires to introduce variables θt,ℓ3610

and cut approximations Qi+1
t+1,ℓ(·) for all ℓ = 1, . . . , qt in the stage-t subproblem. In3611

this case, we obtain cuts3612

ϕitkj(xt−1) := (βi
tkj)

⊤xt−1 + αi
tkj ≤ Qt(xt−1, ξtj), j = 1, . . . , qt,3613

where, analogously to the derivation in Section 3.3, βi
tkj denotes a subgradient of3614

Qi+1

t
(·, ξtj) at xikt−1 for k ∈ K, j = 1, . . . , qt, and α

i
tkj is defined by3615

αi
tkj := Qi+1

t
(xikt−1, ξt)− (βi

tkj)
⊤xikt−1.3616
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The expectation is then taken in the objective function instead of the cut formula:3617

Qi+1

t
(xikt−1, ξtj) = min

xt∈Xt(xt−1,ξt)

(
ct(ξtj)

)⊤
xt +

qt+1∑
ℓ=1

pt+1,ℓQ
i+1
t+1,ℓ(xt).3618

This way, more specific information about the value functions is incorporated3619

into the subproblems, hopefully leading to fewer iterations. On the downside, the3620

number of decision variables and cuts grows significantly compared to the single-3621

cut approach, especially if qt is large, which increases the computational effort for3622

each iteration. Therefore, so far multi-cut SDDP has rarely been considered in the3623

literature. It should be most promising when qt is only of moderate size. For the3624

two-stage case, a rule of thumb is that a single-cut approach should be preferred3625

if the number of realizations is considerably larger than the number of first-stage3626

constraints [26]. Note that in principle also a trade-off between single-cut and multi-3627

cut is possible by partially aggregating cuts [23, 28]. Another approach to reduce the3628

computational burden of multi-cut SDDP is to combine it with cut selection strategies,3629

see Section 21.1, as proposed in [8]. In this paper, also almost sure finite convergence3630

of multi-cut SDDP is proven.3631

We return to the illustrative problem from Example 3.3 to illustrate the multi-cut3632

approach.3633

Example 21.1. (Continuation of Example 3.3) Using multi-cut SDDP, at stage3634

3, instead of Q3(·), the functions Q3(·, ξ3) are separately approximated by cuts for ξ3 ∈3635

{1, 2, 4}. These value functions are displayed in Figure 15. Each of them consists of3636

only two linear pieces, so two cuts are required to represent them exactly. In contrast,3637

Q3(·) consists of four linear segments. Therefore, multi-cut SDDP should need less3638

iterations than single-cut SDDP to achieve convergence.3639

ξ3 = 1

ξ3 = 2ξ3 = 4

0 1 2 3 4 5 6
0

2

4

6

x2

Q
3
(x

2
,ξ

3
)

Fig. 15: Stage-3 value functions for Example 3.3.

21.3. Sampling Schemes. SDDP allows to use a variety of different sampling3640

schemes which affect its computational performance.3641

Number of Forward Samples per Iteration. In standard SDDP, see Sec-3642

tion 3, |K| out of all |S| scenarios defined by the finite data process (ξt)t∈[T ] are3643
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sampled in each iteration, with |K| ≪ |S| and K ⊂ S. Philpott and Guan even3644

propose a method with only |K| = 1 for all iterations [163]. This strategy may be3645

particularly efficient in earlier iterations in order to obtain a rough approximation of3646

Qt(·) fast without wasting too much effort in regions which are likely to be far from3647

optimal. On the other hand, this strategy faces some drawbacks. Firstly, if the cur-3648

rent policy is already reasonably good, but convergence is not achieved yet, it should3649

be beneficial to generate more than one new cut per stage and iteration, and thus3650

choose K > 1 [49]. Secondly, if |K| = 1, then it is not possible to apply a statistical3651

stopping criterion, see Section 7.3652

Using a scenario incrementation strategy in which |K| is gradually increased,3653

combines the advantages of both approaches – a small number of samples in early3654

iterations and a higher number of samples and a valid statistical stopping criterion in3655

later iterations. This is proposed in [202] and tested in [49].3656

Subsampling Trial Points. In the reduced sampling method (ReSa) [101] the3657

forward pass follows the same principle as in SDDP by sampling scenarios ξkt , k ∈ K,3658

for K ⊂ S. In the backward pass, however, to reduce the number of subproblems3659

to be solved, not all trial points xikt−1 are considered on each stage t = T, . . . , 2, but3660

only a subsample K̃ ⊂ K is drawn. This also means that less cuts are derived per3661

iteration than in SDDP (given the same set K). In other words, the number of sample3662

paths through the recombining tree considered in the forward and backward pass may3663

differ. In light of the Central Limit Theorem, this allows to get an accurate statistical3664

upper bound in the forward pass without increasing the computational effort in the3665

backward pass by too much.3666

Donohue and Birge use a very similar approach in their abridged nested decompo-3667

sition (AND) method [53], an advancement of Birge’s NBD method. They claim that3668

SDDP is not well-designed for bushier scenario trees with a high number qt of noise3669

terms for each stage t ∈ [T ]. Their reasoning is that, on the one hand, it is required3670

to choose |K| reasonably large to get reliable statistical upper bounds, but also to3671

incorporate information on sufficiently many scenarios in the trajectories (xikt )k∈K.3672

On the other hand, solving the subproblems for all ξtj , j = 1, . . . , qt, for all k ∈ K3673

with large K may quickly become computational prohibitive. Therefore, the authors3674

propose an alternative sampling scheme.3675

In the forward pass, on each stage a set Kt of realizations is sampled. However, the3676

method does not proceed forward from the solutions xikt for all k ∈ Kt on the next3677

stage, but only from a subset, so-called branching values. These branching values3678

xiκt can either be sampled from Kt or be a convex combination of all xikt , k ∈ Kt.3679

The latter idea allows to compute trial points which contain information on a large3680

set of scenarios, while not increasing the computational effort in the backward pass3681

tremendously. In the backward pass, the updated subproblems are only solved for all3682

noise terms ξtj , j = 1, . . . , qt, for all branching values xiκt on each stage t = T, . . . , 2.3683

The main drawback of AND is that the special structure of the forward pass3684

allows no direct estimate of an upper bound [101]. Therefore, an additional sampling3685

procedure has to be started every few iterations to test for stopping.3686

Sampling in the Cut Generation Process. The computational effort of3687

generating valid cuts for Qt(·), t = 2, . . . , T , can be reduced if the subproblems (2.10)3688

are not solved for all noise terms ξtj , j = 1, . . . , qt, in each iteration, but only for a3689

subsample. The remaining elements that are required to compute a cut for Qt(·) can3690

then be used from previous iterations where the corresponding noise ξtj was sampled.3691

Even more, if the uncertainty in (ξt)t∈[T ] is restricted to the RHS ht of (MSLP),3692

This manuscript is for review purposes only.



STOCHASTIC DUAL DYNAMIC PROGRAMMING 99

then the dual feasible set does not depend on ξtj . Therefore, optimal dual multipliers,3693

which correspond to extreme points of the dual feasible set, and by formula (3.7) also3694

subgradients βt, can be re-used between different realizations j = 1, . . . , qt.3695

This allows for the following procedure: Assume that in each iteration i, for each3696

stage t ∈ [T ] only one noise term ξ̂it is sampled and used to compute optimal dual3697

multipliers π̂i
t and (scenario-specific) cut intercepts α̂i

t as in (21.2). For each stage3698

t = 2, . . . , T , all dual multipliers and intercepts obtained up to iteration i are then3699

stored in the set Di
t together with ξ

i
t. In other words, in iteration i, this set is updated3700

by Di
t = Di−1

t ∪
{(
π̂i
t, α̂

i
t, ξ̂

i
t

)}
.3701

For any ξtj , j = 1, . . . , qt, and a given incumbent xit−1, the dual multipliers used3702

to compute a new cut can then be determined based on3703 (
π̂j
t , α̂

j
t , ξ̂

j
t

)
= argmax

(π̂t,α̂t,ξ̂t)∈Di
t

{
α̂t − π̂⊤

t Tt−1x
i
t−1 + π̂⊤

t

(
ht(ξtj)− ht(ξ̂t)

)}
.3704

Hence, not necessarily optimal dual multipliers of the subproblem corresponding to3705

ξtj are used, but the previously generated ones yielding the best approximation for3706

realization ξtj at xit−1.3707

Let πi
tj = π̂j

t and αi
tj = α̂j

t + (π̂j
t )

⊤(ht(ξtj)− ht(ξ̂jt )) for all j = 1, . . . , qt. Then, a3708

cut can be defined by using subgradient formula (3.7) and taking expectations as in3709

formula (3.4). Note that our description slightly differs from the presentation in the3710

literature, as we adapted it to our cut formulas in Section 3.3.3711

This idea for the cut generation process is used in two algorithms related to SDDP,3712

which mainly differ by when cuts are constructed.3713

The CUPPS (convergent cutting-plane and partial-sampling) method by Chen3714

and Powell [38] does not contain a backward pass, but only a forward pass through3715

the stages, in which both trial points are computed and cuts are generated. This3716

means that the sample ξk
′

t used for the cut generation is the same as drawn for the3717

forward simulation, i.e., ξk
′

t = ξkt .3718

While the computational effort to derive new cuts is reduced, CUPPS has the3719

drawback that the obtained cuts are not necessarily tight. Firstly, the dual multipliers3720

obtained from formula (21.3) are not necessarily optimal for all j = 1, . . . , qt. Secondly,3721

no backward pass is used, and thus new information in form of cuts for stage t + 13722

are not taken into account when deriving a new cut for stage t.3723

In the dynamic outer approximation sampling algorithm (DOASA) by Philpott3724

and Guan [163], as for SDDP, there exist a forward pass and a backward pass through3725

the stages t ∈ [T ]. In the forward pass, a trajectory of trial points (xikt )k∈K is3726

computed for all forward samples k ∈ K (note that in [163] |K| = 1 is chosen, but3727

this is not mandatory). In the backward pass, cuts are constructed using a backward3728

sample ξk
′

t and formula (21.3). Philpott and Guan prove that this generalization of3729

SDDP also exhibits almost sure finite convergence [163].3730

21.4. Batch Learning and Experience Replay. While SDDP is used in sto-3731

chastic programming, dynamic programming or optimal control, its methodology also3732

shares some characteristics with Q-learning algorithms, which are studied in rein-3733

forcement learning, see Remark 3.1. This can be exploited by translating established3734

performance enhancing techniques from reinforcement learning to SDDP [6].3735

As one such technique, Ávila et al. [6] propose to use a batch learning technique3736

called experience replay in SDDP. The motivation of this is the following: In SDDP,3737

the cut approximations Qt(·) of the expected value functions Qt(·) are generated3738
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100 C. FÜLLNER, S. REBENNACK

recursively in a backward pass through the stages t = T, . . . , 2. This means that3739

approximation errors at later stages are propagated to earlier stages by means of the3740

cut approximations Qt(·), which then leads to loose cuts at these earlier stages and3741

so on. However, this implies that errors are accumulated at early stages. The authors3742

identify this as a driver for the slow convergence of SDDP, as it favors over-exploring3743

of suboptimal regions and the generation of redundant cuts throughout the iterations.3744

Experience replay addresses this issue by revisiting previous trial points xit and3745

updating the cut approximations Qt(·) at these points. This seems counterintuitive at3746

first glance because cuts are generated at already visited points instead of improving3747

the approximation of Qt(·) at regions of Xt that have not been visited yet. However,3748

by taking into account all the information currently available to update Qt(·) at xit,3749

it avoids that on earlier stages τ < t unnecessarily poor approximations of Qt(·) at3750

xit are used for several more iterations.3751

More precisely, the proposed SDDP method works as follows. A predefined num-3752

ber of iterations of standard SDDP are executed and the corresponding trial points3753

xit are stored in a replay memory Mt for all t ∈ [T − 1]. When the sizes of the replay3754

memories reach a predefined cardinality Z, then the experience replay step is initi-3755

ated. This step performs a backward pass through the stages t = T − 1, . . . , 2. For3756

each stage t, first, a batch Bt ⊆ Mt of trial points is selected from the replay mem-3757

ory (also a full batch Bt = Mt is possible). For each trial point x̃ℓt from this batch,3758

with ℓ ∈ |Bt|, the previously generated cut is removed from Qi+1
t+1(·) and a new cut3759

is constructed by solving the associated subproblems (2.10) (including the experience3760

replay updates from following stages) for x̃ℓt. With these cuts, Qi
t+1(·) is updated and3761

then, the previous stage is explored.3762

It is shown that experience replay manages to improve the convergence behavior3763

of SDDP, and also the out-of-sample performance of the obtained policies, in compu-3764

tational tests [6]. However, experience replay comes at an increased computational3765

effort, as every Z iterations an additional backward pass solving qt|Bt| for each stage3766

t = T, . . . , 2 has to be performed. For full batches, this adds up to qt|K|Z LPs per3767

stage. For this reason, the authors suggest to parallelize both standard SDDP it-3768

erations as well as the experience replay. They report computational results which3769

indicate that batch learning is better exploiting parallelism than standard SDDP.3770

21.5. Regularization. As Kelley’s cutting-plane method [110, 145], SDDP ex-3771

hibits an iteration complexity which is exponential in the dimension nt of the state3772

variables, see Section 4.2. An unfavorable characteristic of cutting-plane methods,3773

and also of SDDP, in this regard is zig-zagging behavior. This means that trial points3774

xit and xi+1
t computed in subsequent iterations can be located far away from each3775

other in different regions of the state space, and that with each new cut the minimum3776

of the subproblems (2.10) is again attained in the respective other region. In particu-3777

lar, this implies that these regions of Xt experience very tight, but almost redundant3778

approximations Qt(·) of Qt(·), while other regions are not properly explored and thus3779

the approximation quality at the true optimum improves very slowly.3780

In convex and nonsmooth optimization, regularization techniques called bundle3781

methods are shown to entail faster convergence than classical cutting-plane methods3782

[121], as they mitigate zig-zagging by stabilizing subsequent trial points around a3783

stability center (also called incumbent). Hence, it looks promising to translate these3784

regularization techniques to SDDP.3785

A common regularization approach, which is predominantly used in two-stage3786

stochastic programming [190, 193], is convex quadratic regularization. Here, some3787
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quadratic deviation of xt from a stability center x̂t is penalized in the objective func-3788

tion for stabilization. An application of quadratic regularization to SDDP is not3789

straightforward, since using a separate stability center for each scenario s ∈ S is3790

computationally infeasible due to the exponential growth of |S| in T [5].3791

Therefore, Asamov and Powell [5] propose a regularization technique for linear3792

problems, in which stability centers are considered part of the state variable, and thus3793

are the same for all realizations of ξtj , j = 1, . . . , qt. Then, in the forward pass the3794

objective function is modified to3795

(21.1) c⊤t xt +Qi
t+1(xt) +

γi

2
(xt − x̂i−1

t )⊤Ht(xt − x̂i−1
t ),3796

with a positive semidefinite matrix Ht and some sequence (γi)i∈N satisfying γi ≥ 03797

for all i and limi→∞ γi = 0. The stability centers x̂i−1
t are chosen as the previous3798

forward pass solution, i.e., the solution is stabilized around a “known” region of the3799

domain of Qt(·). This idea is generalized to nonlinear problems and improved in [90]3800

by considering weighted averages of several previous forward pass solutions.3801

Using objective (21.1), a convex, continuous and linearly constrained quadratic3802

programming problem has to be solved in each forward pass step of SDDP, hopefully,3803

reducing the required number of iterations. Importantly, only the forward pass of3804

SDDP is changed, while the backward pass remains the same. In particular, only LPs3805

have to be solved in the backward pass. As the cuts are still finite (see Lemma 3.2),3806

almost sure finite convergence is assured. In computational tests, it is shown that this3807

method exhibits faster convergence than SDDP, in particular for a high dimension3808

nt of the state variable xt [5]. This speed-up is especially important for regularized3809

DDP, see the numerical experiments in [90]. DDP (Dual Dynamic Programming) is3810

the corresponding deterministic counterpart of SDDP (when ξt is deterministic for all3811

t ∈ [T ]).3812

While the above approach stabilizes the solution around a “known” region of the3813

domain of Qt(·), in a sampling setting, it is not clear whether this is always beneficial.3814

For the current sample ξkt a region may be identified and used for stabilization, which3815

is no appropriate indicator for all ξtj , j = 1, . . . , qt. Additionally, as pointed out in3816

[224], the condition limi→∞ γi = 0 may evoke that the regularization is diminished3817

and the proposed method in [5] reduces to standard SDDP before convergence is3818

obtained, although regularization may be particularly important close to the optimal3819

solution. Therefore, this is claimed to be detrimental to convergence speed [224].3820

Van Ackooij et al. [224] also address that convergence of proximal bundle methods3821

usually requires the stability centers to be feasible, which is not guaranteed for SDDP3822

subproblems where the feasible set changes with xit−1. Therefore, they propose to3823

combine SDDP with a level bundle method, which does not face this requirement.3824

For stage t and scenario ξkt , trial solutions x
ik
t are obtained by solving3825

(21.2)

{
min
xt

ψt(xt)

s.t. xt ∈ Xt(x
ik
t−1; ℓt)

3826

with ψt(xt) : Rnt → R a given convex function, e.g., ψt(xt) := x⊤t xt, and3827

(21.3) Xt(x
ik
t−1; ℓt) :=

argmin
xt≥0

max
{
c⊤t xt +Qi

t+1(xt), ℓt
}

s.t. Wtxt = ht − Tt−1x
ik
t−1.

3828
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If the maximum in (21.3) is attained by the first term, then xikt obtained by3829

solving (21.2) is an ordinary SDDP trial point, referred to as a normal iterate. Oth-3830

erwise, problem (21.2) reduces to a typical level bundle method subproblem, yielding3831

a regularized level iterate xikt .3832

The determination of a good level ℓt and of an efficient regularization for SDDP3833

are still open questions, and heuristics are proposed in [224] to choose ℓt.3834

An alternative stabilization approach is proposed in [15] based on the concept of3835

Chebyshev centers of polyhedrons. Here, in the forward pass of SDDP, the subprob-3836

lems (2.10) are modified such that the computed trial states are defined as Chebyshev3837

centers of the polyhedrons given by previously constructed cuts and an appropriate3838

upper bound. It can be shown that this approach is equivalent to modifying the cut3839

formula to3840

(21.4) − (βr
t+1)

⊤xt + θt+1 ≥ αr
t+1 + σ̄t∥(1, ct + βr

t+1)∥, r ∈ Γt+1.3841

The authors use the Euclidean norm ∥·∥2 in (21.4), however, different choices are3842

possible as well.3843

Geometrically, the additional term in (21.4) changes the cut intercept, thus lifting3844

the cut. For σ̄t = 0, the usual SDDP trial point xit is determined, whereas for σ̄t > 03845

an offset in the objective compared to the standard SDDP subproblem is considered,3846

yielding a different iterate. To actually improve the performance of SDDP, choosing σ̄t3847

appropriately is crucial, yet not trivial. Adversely, if σ̄t is chosen too large, basically3848

any feasible point can become the new trial solution. Moreover, to ensure convergence,3849

it has to be ensured that σ̄t converges to zero in the course of the algorithm. In3850

[15] heuristics are used to determine σ̄t, but it is not clear whether they guarantee3851

performance gains for SDDP.3852

21.6. Inexact SDDP. Recall Lemma 3.2 (b), stating that the cuts generated3853

in the backward pass of SDDP are tight for Qi+1
t (·) at the incumbent xikt−1. This3854

result is premised on using optimal dual multipliers in the cut formula, i.e., solving3855

the LP subproblem or its dual to global optimality (exact solution). Whereas such an3856

exact solution is the standard assumption in the literature on SDDP, computationally3857

it may be more efficient to solve subproblems only approximately, especially early in3858

the solution process when the cut approximations are suboptimal anyway [88].3859

We first introduce the notion of inexact cuts.3860

Definition 21.2 (ε-inexact cut). For any t = 2, . . . , T , ε > 0 and a trial point3861

xikt−1, let ϕt : Rda(n) → R be an affine function satisfying3862

Qt(xt−1) ≥ Qi+1
t (xt−1) ≥ ϕt(xt−1) (validity)3863

for all xt−1 ∈ Xt−1 and3864

Qi+1
t (xikt−1)− ϕt(xikt−1) ≤ ε (ε-tightness).3865

Then, ϕt(·) defines an ε-inexact cut at xikt−1 [88].3866

Importantly, inexact cuts still yield valid lower approximations of Qt(·) for all3867

t = 2, . . . , T . We now address how inexact cuts can be determined.3868

Linear Problems. For any iteration i in SDDP, any t = 2, . . . , T and any trial3869

point xikt−1, consider the linear subproblem (2.10). In particular, assume that we3870

have relatively complete recourse, i.e., Assumption 9 is satisfied. Also, for simplicity3871

assume that Xt = {xt ∈ Rnt : xt ≥ 0}.3872

This manuscript is for review purposes only.



STOCHASTIC DUAL DYNAMIC PROGRAMMING 103

For some ε > 0, let πi
tjk be an ε-optimal feasible solution for the dual problem3873

of (2.10) given ξtj and let θitjk be the corresponding dual objective value for j =3874

1, . . . , qt. Then, analogously to Section 3.3, an ε-inexact cut can be defined by [88]3875

Qt(xt−1) ≥ ϕitk(xt−1) := αi
tk + (βi

tk)
⊤xt−1,3876

with intercept and subgradient defined by3877

αi
tk =

qt∑
j=1

ptj
(
θitjk − (βi

tkj)
⊤xikt−1

)
,

βi
tk = −

qt∑
j=1

ptj(π
i
tkj)

⊤Tt−1,j .

3878

Nonlinear Differentiable Problems. Consider a multistage stochastic convex3879

program (MSCP) as introduced in Section 15, that is, satisfying Assumptions 103880

to 12. Moreover, recall the definitions of the Lagrangian function (15.4), the dual3881

function (15.5) and the Lagrangian dual problem (15.6).3882

Then, an ε-inexact cut can be derived using a pair of approximate primal-dual3883

solutions as follows [88]. Let x̄tj be an ε-optimal feasible primal solution for prob-3884

lem (15.1) given some noise realization ξtj , j = 1, . . . , qt, and some trial point x̄t−1, and3885

let π̄tj be an ε-optimal feasible solution for the corresponding Lagrangian dual (15.6).3886

We define3887

(21.5) η(ε) := ℓ(π̄tj ; x̄t−1, x̄tjξtj) := max
xt∈Xt

∇xt
Lt,C(π̄tj ; x̄t−1, x̄tj , ξtj)

⊤(x̄tj − xt).3888

Assume that ft(xt, ξtj) takes finite values for all xt ∈ Xt and that the term in (21.5)3889

is finite. Then, an ε-inexact cut can be defined by3890

Qt(xt−1) ≥ ϕitk(xt−1) := αi
tk + (βi

tk)
⊤xt−1,3891

with intercept and subgradient defined by3892

αi
tk =

qt∑
j=1

ptj
(
Lt,C(π̄tj ; x̄t−1, x̄tj , ξtj)− η(ε)− (βi

tkj)
⊤xikt−1

)
,

βi
tk =

qt∑
j=1

ptj∇xt−1Lt,C(π̄tj ; x̄t−1, x̄tj , ξtj).

3893

We refer to [88] for a convergence analysis of SDDP using inexact cuts, both for3894

the linear and the nonlinear convex case. In particular, it is shown that the obtained3895

dual solutions are almost surely bounded and that the error terms η(εit) vanish as i3896

approaches +∞.3897

Non-differentiable Problems. Using SDDP with inexact cuts is generalized3898

to non-differentiable problems in [91]. In this paper, inexact cuts are derived using3899

two different approaches. In the first approach, it is assumed that the objective and3900

constraint functions have saddle-point representations. The second approach is more3901

general, but requires the introduction of additional variables and constraints.3902

More precisely, consider a multistage stochastic convex program (MSCP) as in-3903

troduced in Section 15 and assume that it is satisfying Assumptions 10 and 11 except3904
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for the differentiability properties. Using a local copy zt of the state variable xt−1,3905

the approximate value functions can be reformulated as3906

(21.6) Qt,C(xt−1, ξt) :=


min
xt

ft(xt, ξt) +Qt+1,C(xt)

s.t. gt(zt, xt, ξt) ≤ 0
xt ∈ Xt

xt−1 = zt.

3907

Assume that this modified subproblem satisfies a slater condition analogous to As-3908

sumption 12. Additionally, consider the Lagrangian dual problem3909

(21.7) max
πt

Lt(πt;xt−1, ξt).3910

with dual function3911

Lt,C(πt;xt−1, ξt) =


min
xt∈Xt

ft(xt, ξt) +Qt+1,C(xt) + π⊤
t (xt−1 − zt)

s.t. gt(zt, xt, ξt) ≤ 0
xt ∈ Xt,

3912

which is obtained by relaxing the copy constraint.3913

Given a trial point x̄t−1 and a noise realization ξtj , j = 1, . . . , qt, let x̄tj denote an3914

εP -optimal feasible solution of problem (21.6) and let π̄tj be an εD-optimal feasible3915

solution of problem (21.7). Then, an (εP + εD)-inexact cut is defined by function3916

ϕitk(xt−1) :=

qt∑
j=1

ptj

(
ft(x̄tj , ξtj)− (εP + εD) + π̄⊤

tj(xt−1 − x̄t−1)
)
.3917

For more details and a convergence analysis we refer to [91].3918

21.7. Parallelization. The performance of SDDP cannot only be improved by3919

modifications of the algorithm itself, but also by its implementation and computa-3920

tional execution. Since several computational steps in SDDP are independent of each3921

other, a performance improvement can be achieved by parallelization.3922

Different parallelization strategies have been proposed for SDDP. They can be3923

classified with respect to how the workload is distributed among different processors3924

and how the processors are synchronized. Based on this observation, Ávila et al. [6]3925

present a taxonomy of parallelization strategies, which we follow in this section.3926

Parallelization by Scenario. This is the predominant parallelization strategy3927

for SDDP in the literature. Mostly, a synchronized version is proposed. In the forward3928

pass, for all t ∈ [T ], the subproblems (2.10) are solved for |K| different scenarios, which3929

are sampled independently. The uncertain data ξkt and the trial solutions xkt−1 in each3930

of those problems do only depend on scenario k. Therefore, the different scenarios3931

ξk, k ∈ K, can be assigned to different processors. Assuming P different processors,3932

each processor is assigned P
|K| scenarios and solves all corresponding subproblems.3933

A master process is then used to aggregate the objective values and compute the3934

upper bound estimate (3.9). This means that there is a synchronization point for all3935

processors at the end of the forward pass.3936

In the backward pass, a similar approach is followed. The subproblems are again3937

distributed among the processors by scenarios, in such way that for a specific stage3938

t = T, . . . , 2 and a scenario-based trial point xkt−1, the subproblems for all noise3939
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realizations ξtj , j = 1, . . . , qt, are solved by the same processor. Evenly distributing3940

the problems between processors, this way each processor solves P
|K|qt subproblems.3941

However, it is also possible to let the master process assign new scenarios to processes3942

once they become idle instead of using a fixed assignment scheme [165].3943

After solving all associated subproblems, each processor then generates a cut for3944

Qt(·) and sends it to the master process. When cut generation is finished for all k ∈ K,3945

the processors are synchronized so that all of them can proceed with the same set of3946

cuts on stage t− 1. As stated in [98], this synchronization can be partially relaxed to3947

avoid waiting for single slow processors. Instead, the master process can assign stage-3948

(t − 1) subproblems to available processors even if not all cuts have been generated3949

for stage t yet. Numerical results show that such partial relaxation can improve the3950

computational performance of SDDP. However, the number of cuts to wait for to3951

achieve an optimal trade-off between faster iterations and better approximation of3952

Qt(·) is problem-dependent.3953

Even more, an asynchronous approach can be used where processors immediately3954

get back to stage t− 1 after generating their cuts at stage t, using all cuts currently3955

available without waiting for other processes to finish [57].3956

A major shortcoming of parallelization by scenario is that using more processors3957

becomes more beneficial the more scenarios |K| are sampled in the forward pass.3958

However, as discussed in Section 21.3, it is often favorable to only consider one or a3959

few scenarios per iteration, especially in earlier iterations. Choosing large |K| may3960

lead to the accumulation of similar trial points and the generation of redundant cuts3961

[6]. Therefore, exploiting the potential performance gains of additional processors may3962

wrongly incentivize to sample more scenarios than reasonable, thus not accelerating3963

but slowing down the solution process. Additionally, Ávila et al. report computational3964

results indicating that (synchronized) parallelization by scenario scales poorly when3965

increasing the number of samples |K| due to the combination of long waiting times3966

between processors and low quality cuts [6].3967

Parallelization by Node. Using parallelization by node, the strategy is to3968

draw only one or a few samples in the forward pass, as this is often computationally3969

preferable. Then, the forward pass is not necessarily parallelized. In the backward3970

pass, the work is distributed among the processors by nodes of the recombining tree3971

(cf. Section 2.1). That means that even for the same k ∈ K and the associated trial3972

point xkt−1, the subproblems (2.10) for different realizations ξtj , j = 1, . . . , qt, may3973

be solved by different processors. The processors are synchronized at each stage to3974

generate aggregated cuts (given that a single-cut approach is used).3975

In [6], the authors report clear computational benefits using parallelization by3976

node compared to parallelization by scenario and better scaling properties. How-3977

ever, these results require that the processors can access a shared memory, otherwise3978

the computational overhead is too large. Another drawback is that distributing sub-3979

problems for different ξtj , but the same xikt−1 among different scenarios prevents the3980

exploitation of warm starting techniques.3981

Parallelization by node can also be used in an asynchronous way, as proposed3982

by Machado et al. [135] in their asynchronous SDDP method. In this method, the3983

subproblems of all stages t = 1, . . . , T are solved simultaneously. More precisely, in3984

each step, for all stages t = 1, . . . , T and scenarios k ∈ K, the subproblems for all3985

realizations ξtj , j = 1, . . . , qt, are solved. Once a processor is finished, it constructs3986

a new cut for Qt(·) using all available information. If a required processor has not3987

finished yet, multipliers πtkj from previous steps are re-used. The generated cut can3988
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then be incorporated in stage t − 1 in the next step. Additionally, each processor3989

generates a new trial point which can be used at stage t in the next step. In contrast3990

to SDDP iterations, this approach requires several steps to propagate information3991

through all stages. Therefore, an ordinary forward pass can only be observed implicitly3992

over several stages. This has to be considered in the computation of upper bounds.3993

Independent of the applied strategy, parallelizing SDDP in practice comes with3994

considerable challenges, such as communication overhead, problem-dependent perfor-3995

mance and lack of reproducibility of results. Therefore, its potential to speed up3996

SDDP in general naturally limited [6].3997

21.8. Aggregation Techniques. Aggregating information in (MSLP) is an-3998

other tool with potential to speed up the SDDP solution process.3999

One approach is to aggregate the variables and constraints of several time periods4000

in a single stage, thus solving a problem with a smaller horizon T . This is straight-4001

forward for NBD [54], where each node of the aggregated problem is a subtree of the4002

original scenario tree, even though only few time periods can be aggregated to keep4003

the subproblems tractable. However, it cannot be directly generalized to the sampling4004

and stagewise independent setting in SDDP. The main issue is that it is difficult to4005

model the uncertainty appropriately, without violating non-anticipativity [54].4006

An alternative approach is to aggregate realizations of ξt on each stage (or a4007

subset of stages) [205]. To this end, for some stage t, the support Ξt is partitioned4008

into clusters Cℓ
t , ℓ = 1, . . . , Lt, with Lt ∈ N. Instead of solving subproblems as-4009

sociated with Qi+1

t
(xikt−1, ξtj) for all j = 1, . . . , qt in the backward pass of SDDP,4010

subproblems associated with Qi+1

t
(xikt−1, ξ̄

ℓ
t ) are solved for clusters ℓ = 1, . . . , Lt, with4011

ξ̄ℓt :=
∑

j∈Cℓ
t

ptj

p̄ℓ
t
ξtj , and p̄

ℓ
t the probability of cluster Cℓ

t . This should be beneficial in4012

early iterations where policies are still far away from optimal and a fine information4013

structure unnecessarily slows down the solution process.4014

Using subgradients and intercepts associated with clusters Cℓ
t , ℓ = 1, . . . , Lt,4015

coarse cuts can be generated for Qt(·). Given that Wt and ct are deterministic,4016

these cuts are valid underestimators for Qt(·) by Jensen’s inequality [205]. They are4017

not guaranteed to be tight, though.4018

The authors in [205] discuss several different refinement strategies, such as refine-4019

ments within the SDDP backward pass (the partition at stage t is refined as soon4020

as a coarse cut does not improve the approximation of Qt(·) at the trial point xikt−1)4021

or refinements outside of SDDP. In the latter case, SDDP is performed on a coarse4022

recombining tree, which is iteratively refined once the algorithm has stopped. Com-4023

putational results show that this latter approach performs significantly better than4024

the first one due to less computational overhead. However, identifying when SDDP4025

should be best stopped to perform a refinement remains a challenging task.4026

22. Outlook. In this tutorial-type review, we give an overview on the motiva-4027

tion, theory, strengths and weaknesses, extensions and applications of SDDP.4028

While many proposals have been made in the last 30 years on how to extend SDDP4029

and on how to improve its performance, there still remain open research questions,4030

leaving room for future improvement. Among the most crucial topics are the following.4031

1. Stopping. To this date, in many applications SDDP is stopped heuristically,4032

e.g., based on a fixed number of iterations or stabilization of lower bounds,4033

which leaves the task to define a reasonable stopping criterion to the user.4034

Recently, there has been some pioneering work on developing deterministic4035

upper bounding techniques and stopping criterions, but these are still limited,4036
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as they require significant computational effort.4037

2. Upper bounds in risk-averse SDDP. Developing efficient upper bounding tech-4038

niques is especially relevant to risk-averse variants of SDDP, where the com-4039

monly used nested risk measures do not allow for employment of their pen-4040

dants from risk-neutral SDDP. Lately, different risk measures have been pro-4041

posed, which avoid this issue. However, such risk measures usually hamper4042

interpretability. Therefore, it can still be regarded an open question how risk4043

should be optimally measured in SDDP in order to obtain a computation-4044

ally tractable problem and at the same time to properly reflect the true risk4045

preferences of a decision-maker.4046

3. Distributionally robust SDDP. Recently, the consideration of distributional4047

uncertainty in SDDP has gained more interest. However, while distribution-4048

ally robust optimization is a flourishing research area, incorporating it into4049

SDDP is still in its early stages, with potential for further improvements.4050

4. Non-convex extensions. In many applications, nonlinear functions or inte-4051

ger variables are required to appropriately model the problem at hand. As4052

the (expected) value functions become non-convex in this case, traditional4053

cutting-plane techniques fail to approximate them correctly. Starting with4054

SDDiP, recently, there has been a trend to extend the NBD and SDDP4055

frameworks to non-convex problems. Lagrangian-type cuts, which are pos-4056

sibly non-convex, show theoretical potential in approximating non-convex4057

functions. However, their construction is computationally costly and subject4058

to rather strong technical assumptions, such that especially large-scale non-4059

convex problems remain computationally intractable. Consequently, in the4060

future, the trade-off between computationally efficient cut generation tech-4061

niques and best possible approximations of the value functions needs to be4062

further explored.4063

5. Regularization. As a descendant of Kelley’s cutting-plane method, SDDP has4064

a computational complexity which grows exponentially in the dimension of4065

the state variables. Therefore, it can become computationally intractable for4066

problems with high-dimensional state space. This is aggravated by common4067

reformulations, e.g. in case of stagewise dependent uncertainty, that artifi-4068

cially augment the state space. For Kelley’s method, regularization methods4069

have proven helpful in accelerating the solution process. Whereas some first4070

attempts have been made to regularize SDDP, an efficient regularization re-4071

mains an open challenge.4072

6. Reinforcement learning techniques. As the case of batch learning shows,4073

SDDP can benefit from acceleration techniques that are well-known and es-4074

tablished in reinforcement learning, but have not been translated to SDDP4075

setting yet. By exploiting its affinity to Q-learning, there should be a lot of4076

potential to improve the computational performance of SDDP in practice.4077

7. Decision-dependent uncertainty. The only standard assumption for SDDP4078

that has not been relaxed in the literature yet, is to allow for stagewise-4079

dependent stochastic processes modeling the uncertainty in (MSLP). This4080

topic has still to be studied.4081
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110 C. FÜLLNER, S. REBENNACK

[47] V. L. de Matos and E. C. Finardi. A computational study of a stochastic optimization model4203
for long term hydrothermal scheduling. International Journal of Electrical Power &4204
Energy Systems, 43(1):1443–1452, 2012.4205

[48] V. L. de Matos, D. P. Morton, and E. C. Finardi. Assessing policy quality in a multistage sto-4206
chastic program for long-term hydrothermal scheduling. Annals of Operations Research,4207
253:713–731, 2017.4208

[49] V. L. de Matos, A. B. Philpott, and E. C. Finardi. Improving the performance of Stochas-4209
tic Dual Dynamic Programming. Journal of Computational and Applied Mathematics,4210
290:196–208, 2015.4211

[50] L. Ding, S. Ahmed, and A. Shapiro. A Python package for multi-stage stochastic program-4212
ming. Preprint, available online at http://www.optimization-online.org/DB FILE/2019/4213
05/7199.pdf, 2019.4214

[51] T. Ding, X. Zhang, R. Lu, M. Qu, M. Shahidehpour, Y. He, and T. Chen. Multi-stage4215
distributionally robust stochastic dual dynamic programming to multi-period economic4216
dispatch with virtual energy storage. IEEE Transactions on Sustainable Energy, 13(1):1–4217
13, 2022.4218

[52] A. L. Diniz, M. E. P. Maceira, C. L. V. Vasconcellos, and D. D. J. Penna. A combined4219
SDDP/Benders decomposition approach with a risk-averse surface concept for reser-4220
voir operation in long term power generation planning. Annals of Operations Research,4221
292:649–681, 2020.4222

[53] C. J. Donohue and J. R. Birge. The abridged nested decomposition method for multistage4223
stochastic linear programs with relatively complete recourse. Algorithmic Operations4224
Research, 1(1):20–30, 2006.4225

[54] T. N. dos Santos and A. L. Diniz. A new multiperiod stage definition for the multistage4226
Benders decomposition approach applied to hydrothermal scheduling. IEEE Transactions4227
on Power Systems, 24(3):1383–1392, 2009.4228

[55] A. Downward, O. Dowson, and R. Baucke. Stochastic dual dynamic programming with4229
stagewise-dependent objective uncertainty. Operations Research Letters, 48:33–39, 2020.4230

[56] O. Dowson. The policy graph decomposition of multistage stochastic programming problems.4231
Networks, 76(1):3–23, 2020.4232

[57] O. Dowson and L. Kapelevich. SDDP.jl: a Julia package for stochastic dual dynamic pro-4233
gramming. INFORMS Journal on Computing, 33(1):27–3, 2021.4234

[58] O. Dowson, D. P. Morton, and A. Downward. Bi-objective multistage stochastic linear pro-4235
gramming. Mathematical Programming, 196:907–933, 2022.4236

[59] O. Dowson, D. P. Morton, and B. K. Pagnoncelli. Partially observable multistage stochastic4237
programming. Operations Research Letters, 48:505–512, 2020.4238

[60] O. Dowson, D. P. Morton, and B. K. Pagnoncelli. Incorporating convex risk measures into4239
multistage stochastic programming algorithms. Annals of Operations Research, 2022.4240

[61] O. Dowson, A. Philpott, A. Mason, and A. Downward. A multi-stage stochastic optimization4241
model of a pastoral dairy farm. European Journal of Operations Research, 274(3):1077–4242
1089, 2019.4243

[62] I. Dunning, J. Huchette, and M. Lubin. JuMP: a modeling language for mathematical opti-4244
mization. SIAM Review, 59(2):295–320, 2017.4245
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