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Abstract
In the present work, we consider Zuckerberg’s method for geometric convex-hull proofs

introduced in [Geometric proofs for convex hull defining formulations, Operations Re-
search Letters 44(5), 625–629 (2016)]. It has only been scarcely adopted in the literature
so far, despite the great flexibility in designing algorithmic proofs for the completeness of
polyhedral descriptions that it offers. We suspect that this is partly due to the rather heavy
algebraic framework its original statement entails. This is why we present a much more
lightweight and accessible approach to Zuckerberg’s proof technique, building on ideas
from [Extended formulations for convex hulls of some bilinear functions, Discrete Optim-
ization 36, 100569 (2020)]. We introduce the concept of set characterizations to replace
the set-theoretic expressions needed in the original version and to facilitate the construc-
tion of algorithmic proof schemes. Along with this, we develop several different strategies
to conduct Zuckerberg-type convex-hull proofs. Very importantly, we also show that our
concept allows for a significant extension of Zuckerberg’s proof technique. While the ori-
ginal methodwas only applicable to 0/1-polytopes, our extended framework allows to treat
arbitrary polyhedra and even general convex sets. We demonstrate this increase in express-
ive power by characterizing the convex hull of Boolean and bilinear functions over polytopal
domains. All results are illustrated with indicative examples to underline the practical use-
fulness and wide applicability of our framework.

Keywords: Convex-Hull Proofs, Zuckerberg’s Method, Proof-by-PictureMethod, Set Char-
acterizations, Integer Polytopes

Mathematics Subject Classification: 90C57 - 52B05 - 90C10 - 90C27 - 90C25

1 Introduction

Studying polyhedral structures lies at the heart of mixed-integer programming. It is well-
known to anyone in the field that a good understanding of the facial structure of a given in-
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teger linear optimization problem both informs theory and practical algorithm development in
a very beneficial way. This include tight problem relaxations, extended formulations, cutting
plane algorithms, only to name a few. A more or less complete understanding of a polyhedral
feasible set can be claimed if one accomplishes a so-called convex-hull proof, i.e. a proof that a
given inequality description is sufficient to describe all of its facets. The book [PW06] includes
a popular list of possible approaches to obtain such a proof. They include total unimodularity,
TDI-ness, projection or a direct proof that all vertices are integral, among a couple of others.
For all of these approaches, there are numerous examples where they have been used success-
fully, and typically each of thesemethodsworks especiallywell for particular types of problems
(such as total unimodularity for network-type problems or TDI-ness for balanced matrices)

A relatively new technique for convex-hull proofs has been given in [Zuc16] by Zuckerberg,
with precursors in [BZ04, Zuc04, LS91]. It is a geometric approach based on subset algebra. The
core of Zuckerberg’s method is a novel type of criterion for showing that any given point within
a given polytope (inH-description) lieswithin the polytope forwhich a convex-hull description
is to be proved. It works by constructing an implicit (rather than an explicit), set-theoretic
representation of this point as a convex combination of the vertices of the latter. The actual
proof takes the form of an algorithm which constructs such a set-theoretic representation. In
a second step, it is even possible to obtain the convex combination in explicit form, in contrast
to most other known proof techniques for convex-hull results. Zuckerberg himself refers to
his method either as geometric convex-hull proofs or as the proof-by-picture method, because this
algorithm and its result can be visualized in a diagram incorporating all necessary information.
For the sake of simplicity, we will use the name Zuckerberg’s method throughout to refer to this
technique as well as our extensions of it.

Although the examples outlined in [Zuc16] already convey the impression of a very power-
ful proof technique, it has only been scarcely adopted in the literature so far. We assume that
this is due to the rather heavy algebraic framework that has been used to derive and state the
method. Zuckerberg has stated his method in terms of abstract measure spaces over which
set-theoretic expressions have to be derived. In the recent work [GKRW20], the authors give a
significantly simplified version of his approach by passing over to a concrete measure space: a
real interval equippedwith the Lebesguemeasure. Their actual aim in this article are proofs on
the facial structure of the graphs of bilinear functions. However, they also give a short introduc-
tion to his proof technique and find a way to state it mostly without using set-algebraic terms.
They proceed by showing it to be a very suitable means of proving their convex-hull results.
In [HK20], the authors continue the work of [GKRW20] and give further convex-hull results
on special graph classes. The authors of [BMS20a] have adopted their simplified approach of
Zuckerberg’s method in order to give convex-hull proofs for special cases of the Boolean quad-
ric polytope (see [Pad89]) with multiple-choice constraints.

Contribution In the present article, we aim to show the power and flexibility of Zuckerberg’s
approach to conduct convex-hull proofs. To this end, we give an even more concise and access-
ible derivation of the technique and relate it to themethod in its original form. Our novel way to
introduce themethod is based on so-called set characterizations, which provide a structuredway
of devising the algorithmic parts of the convex-hull proofs. It directly relates the set-theoretic
representations to be found to the constraints determining the integer points within the poly-
hedron to be analysed. Most notably, we use this concept to significantly increase the scope of
Zuckerberg’s method. While the original method is only applicable to 0/1-polytopes, we ex-
tend it from binary polytopes to arbitrary, especially integer polyhedra and even much more
general convex sets.

We demonstrate the wide applicability of our set characterization framework by reprov-
ing several known convex-hull results for both binary and integral polyhedra. To facilitate the
design of Zuckerberg convex-hull proofs, we connect these examples with the introduction of
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three basic proof strategies, namely greedy placement, feasibility subproblems and transform-
ation. Altogether, this allows us to give simple constructions to represent a fractional point in
a given polyhedron as a convex combination of its vertices where this was not straightforward
before. Moreover, we give further extensions of the method to enable convex-hull proofs for
function graphs over polytopes. On the one hand, these extensions allow to prove convex-hull
descriptions for graphs of Boolean functions over 0/1-polytopes. On the other hand, they can be
applied to bilinear functions over arbitrary polytopes, generalizing the result from [GKRW20]
for bilinear functions over unit-boxes. In summary, we show that Zuckerberg’s method is a
valuable tool for conducting convex-hull proofs. At the same time, our extensions of the frame-
work even allow to use it in much more general cases.

Structure This article is structured as follows. We start by giving a detailed introduction
to Zuckerberg’s proof technique for 0/1-polytopes in Section 2. We also establish our frame-
work of set characterizations for geometric convex-hull proofs. Section 3 features three indic-
ative examples of its application. Each example highlights a novel algorithmic strategy to con-
duct Zuckerberg-type convex-hull proofs. In Section 4, we generalize Zuckerberg’s method
to arbitrary convex sets by passing from one-dimensional set-theoretic representations to two-
dimensional ones. In particular, we will derive new techniques for convex-hull proofs for the
case of integer polyhedra. Analogously to the binary case, Section 5 gives examples for the
use of our extended technique in the context of mixed-binary optimization problems. Among
others, we show how to use the scheme to prove total unimodularity of the constraint matrices
of combinatorial problems. In Section 6, we derive further extensions of our approach which
allow to give convex-hull proofs for the graphs of Boolean and bilinear functions over polyto-
pal domains and introduce a generalized framework of set characterizations for this purpose.
Our conclusions can be found in Section 7. Finally, in the online supplement [BS20] to this art-
icle, we provide several further examples for the application of our framework in the context
of stable-set problems, mixed-integer models for piecewise linear functions as well as interval
matrices and give some proofs omitted in Section 6.

Notation To facilitate notation, we denote the power set of a set A by P(A). Further, we write
[n] for the set {1, . . . , n} for any n ∈ N. Especially [0] B ∅.

2 Geometric convex-hull proofs for 0/1-polytopes

In this section, we revisit Zuckerberg’s method for convex-hull proofs for combinatorial de-
cision or optimization problems (see [Zuc16, BZ04]). We start by briefly summarizing it, based
on the condensed version of the method that was derived in [GKRW20]. Then we introduce
the concept of set characterizations to significantly simplify the derivation of the set construc-
tion algorithms which form the core of Zuckerberg-type convex-hull proofs. Furthermore, we
give set characterizations for many types of constraints which typically occur in combinatorial
optimization and give some first indicative examples for their practical use. Finally, we put our
new approach into context with the original framework by Zuckerberg to highlight how much
simpler convex-hull proofs can now be conducted.

Consider a 0/1-polytope P B conv(F ) with vertex set F ⊆ {0, 1}n together with a second
polytope H ⊆ Rn which is given via an inequality description. If we want to prove P = H, we
can proceed by verifying both F ⊆ H and H ⊆ P. The first inclusion is typically easy to show;
for the latter we can use Zuckerberg’s method, as outlined in the following.

Define U B [0, 1), let L be the set of all unions of finitely many half-open subintervals of U,
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and let µ be the Lebesgue measure restricted to L, that is

L B
{

k⋃
i=1

[ai, bi)

∣∣∣∣∣ k ∈ N∧ 0 ≤ a1 < b1 < a2 < b2 < . . . < ak < bk ≤ 1

}
,

µ(S) B
k

∑
i=1

(bi − ai) for any S = [a1, b1) ∪ . . . ∪ [ak, bk) ∈ L.

Consider now the indicator function φ : U ×L → {0, 1},

φ(t, S) B

{
1 if t ∈ S,
0 otherwise,

and let ϕ : U × Ln → {0, 1}n, ϕ(t, S1, . . . , Sn) = v, where vi B φ(t, Si) for i ∈ [n]. In other
words, ϕ maps the sets which are active at a certain t ∈ U onto the corresponding incidence
vector in {0, 1}n.

The following result uses the above formalism to give a concise criterion for H being a com-
plete polyhedral description of conv(F ).

Theorem 2.1 ([GKRW20, Theorem 4], Zuckerberg’s convex-hull characterization). Let F ⊆
{0, 1}n and h ∈ [0, 1]n. Then we have h ∈ conv(F ) iff there are sets S1, . . . , Sn ∈ L such that both
µ(Si) = hi for all i ∈ [n] and ϕ(t, S1, . . . , Sn) ∈ F for all t ∈ U.

Theorem 2.1 provides a certificate for a point h ∈ H to be in conv(F ). Thus, if we can find
sets S1, . . . , Sn as required by Theorem 2.1 for each point h ∈ H, we have shown H ⊆ P as well.
Using the above framework even allows us to write a point h ∈ H as a convex combination of
points in F , as the following corollary tells us. This allows the spanning vertices to be used in
heuristics, for example. To this end, we define

Lξ(S1, . . . , Sn) B { t ∈ U | ϕ(t, S1, . . . , Sn) = ξ } .

to denote the support of a each vertex ξ ∈ F in U.

Corollary 2.2 (Convex combinations). Under the same assumptions as in Theorem 2.1, let λξ B
µ(Lξ(S1, . . . , Sn)) for each ξ ∈ F . Then we have h = ∑ξ∈F λξξ, ∑ξ∈F λξ = 1 and λξ ≥ 0 for all
ξ ∈ F .

The above corollary was not stated explicitly in [GKRW20], but it is one direction of the
proof of Theorem 4 therein. We already remark here that both Theorem 2.1 and Theorem 2.2
are special cases of the results we will prove in Section 4 for general convex sets (and integer
polyhedra in particular).

In combinatorial optimization, the vertex setF is typically implicitly defined via an inequal-
ity description of the feasible incidence vectors of the underlying problem. We will now show
that based on such a description, we can make the expression ϕ(t, S1, . . . , Sn) ∈ F in The-
orem 2.1 more concrete. For this purpose, we translate each constraint defining F into a logic
statement of the following form.

Definition 2.3 (Set characterization of a constraint). Let f : {0, 1}n → R, let b ∈ R, and let
S1, . . . , Sn ∈ L. The set characterization of some constraint f (x) ≤ b is the following logic statement:

f (φ(t, S1), . . . , φ(t, Sn)) ≤ b holds for all t ∈ U.

Note that this definition allows for arbitrary constraints on the incidence vectors, not only
linear ones. We now observe that if F is given by such an implicit outer description, we need
to satisfy all set characterizations of the corresponding constraints to fulfil the requirements of
Theorem 2.1 and Theorem 2.2.
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Lemma 2.4. Let F B {x ∈ {0, 1}n | f j(x) ≤ bj ∀j ∈ [m]} for some m ∈ N. Further, let P B
conv(F ), and let H ⊆ [0, 1]n be some polytope. We have H = P iff both F ⊆ H holds and for each
h ∈ H there are sets S1, . . . , Sn ∈ L with µ(Si) = hi for all i ∈ [n] which satisfy the set characterization
for each constraint f j(x) ≤ bj, j ∈ [m].

If some concrete function f is given, along with some b ∈ R, then the set characterization
for the constraint f (x) ≤ b given in Theorem 2.3 can be simplified in many cases. To give a
first example, take the constraint x1 ≤ x2 for some binary variables x1, x2 ∈ {0, 1}. Its set
characterization reads

φ(t, S1) ≤ φ(t, S2) ∀t ∈ U.

Recalling the definition of φ, this says that if for some t ∈ U the condition t ∈ S1 holds, then
t ∈ S2 follows. So we can equivalently state the set characterization as S1 ⊆ S2.

Formany common combinatorial constraints, we have derived corresponding simplified set
characterizations, which are displayed in Table 1. The set characterizations of the constraints

Table 1: Simplified set characterizations for combinatorial constraints with coefficients from
{−1, 0, 1}.

Constraint Set characterization

xi ≤ yj Si ⊆ Sj
xi ≥ yj Si ⊇ Sj
xi = yj Si = Sj

∑i∈I xi ≤ 1 Si ∩ Sj = ∅ ∀i, j ∈ I, i 6= j
∑i∈I xi ≥ 1 ∪i∈ISi = U
∑i∈I xi = 1 ∪i∈ISi = U, Si ∩ Sj = ∅ ∀i, j ∈ I, i 6= j

∑i∈I xi ≤ k |{i ∈ I | t ∈ Si}| ≤ k ∀t ∈ U
∑i∈I xi ≥ k |{i ∈ I | t ∈ Si}| ≥ k ∀t ∈ U
∑i∈I xi = k |{i ∈ I | t ∈ Si}| = k ∀t ∈ U

∑i∈I xi ≤ ∑j∈J yj |{i ∈ I | t ∈ Si}| ≤ |{j ∈ J | t ∈ Sj}| ∀t ∈ U
∑i∈I xi ≥ ∑j∈J yj |{i ∈ I | t ∈ Si}| ≥ |{j ∈ J | t ∈ Sj}| ∀t ∈ U
∑i∈I xi = ∑j∈J yj |{i ∈ I | t ∈ Si}| = |{j ∈ J | t ∈ Sj}| ∀t ∈ U

xiyj = zij Si ∩ Sj = Sij

defining P as in Theorem 2.4 provide hints on how to effectively design the sets S1, . . . , Sn as
we will see in the following indicative examples.

2.1 Connection between set characterization and algorithmic set construction

We consider the McCormick-linearization of a bilinear term as a first example to illustrate the
use of set characterizations within convex-hull proofs. The example also illustrates that the set
characterizations typically depend on the inequality description of F . Let

H B {(x, y, z) ∈ [0, 1]3 | z ≥ 0, z ≤ x, z ≤ y, x + y− z ≤ 1}.

We will compare the following two possible representations of the integral points in H:

F1 B {(x, y, z) ∈ {0, 1}3 | z ≤ x, z ≤ y, x + y− z ≤ 1}, (1)
F2 B {(x, y, z) ∈ {0, 1}3 | xy = z}. (2)
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In (2), one single non-linear constraint replaces the three linear constraints in (1). For each
constraint in the two representations, we need to derive a set characterization. We can directly
take them from Table 1:

Sz ⊆ Sx, Sz ⊆ Sy, Sx ∩ Sy ⊆ Sz

for F1 and
Sx ∩ Sy = Sz (3)

for F2. One directly sees that both set characterizations are equivalent. However, the second
one is more compact. In both cases, the sets need to have Lebesgue measures equalling the co-
ordinates of the arbitrary point h ∈ H to represent and need to satisfy the set characterizations
of the constraints defining the vertex set. Throughout this article, we will give the convex-
hull proofs via Zuckerberg’s method mainly in the form of algorithmic schemes to define sets
fulfilling these two conditions of Theorem 2.4. As we will see, all these algorithms can be illus-
trated via diagrams depicting the constructed sets in a coordinate system.

The construction rule for the sets in theMcCormick-example is given via the routineDefine-
McCormick-Subsets in Figure 1. Based on representation (3), it places Sz such that it exhausts

1: function Define-McCormick-Subsets
2: Sx B [0, hx)
3: Sy B [hx − hz, hx − hz + hy)
4: Sz B [hx − hz, hx)
5: end function 0 1

Sx

Sy

Sz

Figure 1: Routine Define-McCormick-Subsets (top), exemplary construction for the point h
with (hx, hy, hz) = (0.5, 0.7, 0.2). The solution can be written as a convex combination of h =
0.3(1, 0, 0) + 0.2(1, 1, 1) + 0.5(0, 1, 0). Those parts of the sets that belong to the same vertices are
marked with the same colour.

the total overlap of Sx and Sy. By construction, µ(Sx) = hx, µ(Sy) = hy and µ(Sz) = hz hold for
all h ∈ H. The inequalities in the definition of H further ensure that the so-defined sets are all
subsets of U This finishes the proof of H = conv{(x, y, z) ∈ {0, 1}3 | xy = z}.

Once the sets for the given point h are constructed, Theorem 2.2 tells us how to derive the
coefficients to express h as a convex combination of the vertices of H. The latter are given by
ξ1 B (0, 0, 0), ξ2 B (1, 0, 0), ξ3 B (0, 1, 0) and ξ4 B (1, 1, 1) in our example. Each point t ∈ U is
now mapped to some vertex ξt of H via the mapping ϕ. By measuring the union of all points
that map to a certain vertex, we can derive the coefficient for this vertex. For the routineDefine-
McCormick-Subsets, we obtain

µ(Lξ1(S1, . . . , Sn)) = µ([hx − hz + hy, 1)) = 1− hy − hx + hz,
µ(Lξ2(S1, . . . , Sn)) = µ([0, hx − hz)) = hx − hz,
µ(Lξ3(S1, . . . , Sn)) = µ([hx, hx − hz + hy)) = hy − hz,
µ(Lξ4(S1, . . . , Sn)) = µ([hx − hz, hx)) = hz.

Thus, we know h = (1− hx − hy + hz)ξ1 + (hx − hz)ξ2 + (hy − hz)ξ3 + hzξ4, cf. the example
given in Figure 1.

2.2 Non-uniqueness of set representations

In a second example, we illustrate that the choice of the set construction used for Theorem 2.4
determines which vertices are used to write a point h ∈ H as a convex combination of vertices
in F . In particular, this choice is not unique.

Consider the two-dimensional unit-box H B [0, 1]2 and take F B {0, 1}2. As there are
no constraints on the binary points in F , no set characterization needs to hold. We thus only
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have to fulfil the measure criteria. In Figure 2, we give two different construction rules for the

1: function Define-Box-Subsets-A
2: Sx B [0, hx)
3: Sy B [0, hy)
4: end function 0 1

Sx

Sy

1: function Define-Box-Subsets-B
2: Sx B [0, hx)
3: Sy B [1− hy, 1)
4: end function 0 1

Sx

Sy

Figure 2: The two routines Define-Box-Subsets-A (left top) and Define-Box-Subsets-B (left
bottom) together with exemplary constructions for the point h with (hx, hy) = (0.5, 0.5) for
Define-Box-Subsets-A (right top) and Define-Box-Subsets-B (right bottom). Routine Define-
Box-Subsets-A results in the representation h = 0.5(1, 1) + 0.5(0, 0), while Define-Box-Subsets-
B yields h = 0.5(1, 0) + 0.5(0, 1). Those parts of each set which belong to the same vertices in
the convex combination representing h are marked with the same colour.

sets Sx and Sy via the routines Define-Box-Subsets-A and Define-Box-Subsets-B. Note that the
definition of H ensures that the sets Sx and Sy are always subsets of U. Both routines define
valid choices for the two sets for each point h ∈ H. However, the resulting convex combinations
of h via vertices in F obtained via Theorem 2.2 are different from each other.

2.3 Connection to the original method

Zuckerberg’s method for proving convex-hull characterizations was first published in concise
form in [Zuc16], although an antecedent had already appeared in his PhD thesis (see [Zuc04]).
The main result is stated there in a very general form: instead of choosing subsets of a real line
segment as described above, the sets could be chosen from an arbitrary measure space. This
requires more complex definitions and notation. We will shortly review Zuckerberg’s original
theorem here to put our approaches into context before we continue with and build upon the
condensed version.

Using the same notation as above, we are given a 0/1-polytope P = conv(F )with vertex set
F ⊆ {0, 1}n together with a second polytope H, and the task is to prove H ⊆ P. According to
Zuckerberg’s original approach, we first need to represent F as a finite set-theoretic expression
consisting of unions, intersections and complements of the sets

Ai B { a ∈ {0, 1}n | ai = 1 } , i = 1, . . . , n.

Let F({Ai}) be such a representation ofF . Note that this is possible for anyF as we can always
choose F = F1(A1, . . . , An) B ∪v∈F ((∩i∈[n]: vi=1Ai) ∩ (∩i∈[n]: vi=0Āi)), where Āi denotes the
complement of Ai (in {0, 1}n). Zuckerberg’s original result can now be stated as follows.

Theorem 2.5 ([Zuc16, Theorem 7]). Let F ⊆ {0, 1}n, and let F({Ai}) be a set-theoretic expres-
sion of finitely many unions, intersections and complementations of sets from {A1, . . . , An} such that
F(A1, . . . , An) = F . Further, let Q = (Û, L̂) be any algebra with a basic set Û and a family L̂ of
subsets of Û, and let Ξ be any probability measure on Q. Then x ∈ [0, 1]n belongs to conv(F ) if there
are sets Si ∈ L̄, i = 1, . . . , n with xi = Ξ(Si) for all i and Ξ(F({Si})) = 1.

In order to use Theorem 2.5, we first need to find a set-theoretic expression to represent
F . While the representation F1 is always possible, it is not helpful, since it does not allow to
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easily derive criteria for how to find suitable sets Si. For instance, for the McCormick-example
in Section 2.1, the vertex set can be written as F = Ax ∩ Ay ⇔ Az. One can easily verify that
if the sets Sx, Sy and Sz satisfy condition (3), namely Sx ∩ Sy = Sz, then Ξ(F({Si})) = 1 holds.
Conversely though, there is no straightforward way to the derive set characterizations from
the set-theoretic expression F. The possibility to directly derive set characterizations from the
constraints definingF , however, significantly reduces the effort to conduct Zuckerberg convex-
hull proofs and is only given in the simplified version. To introduce this concept is therefore
one of the main contributions of this article.

The simplified version of Zuckerberg’s results we build on was introduced in [GKRW20]
by choosing Û = U, L̂ = L and Ξ = µ. The condition Ξ(F({Si})) = 1 can then be replaced
by F({Si}) = U. The authors also show that this allows to drop the set-theoretic expression F
entirely and further allows to replace F({Si}) = U with ϕ(t, S1, . . . , Sn) ∈ F for all t ∈ U. Their
main result is then Theorem 2.1 from above.

The real line is probably the simplest possible choice for the measure space in Theorem 2.5,
and via Theorem 2.1 it has the same expressive power as any other measure space. Thus, on the
one hand, the choice of more complex measure spaces might allow for easier-to-state convex-
hull proofs in certain cases (which Zuckerberg himself states as an avenue for future research).
On the other hand, however, the real line is sufficient to prove a vast variety of results, as the ex-
amples in the following section as well as those provided in [Zuc16, GKRW20, HK20, BMS20a]
show. Furthermore, it allows for a much more lightweight notation and enables us to use the
concept of set characterizations we have introduced above. Finally, this concise form will en-
able us to derive several significant extensions of Zuckerberg’s approach, in particular a proof
technique applicable to general convex sets and criteria for convex-hull proofs for graphs of
certain functions over polytopal domains.

3 Set characterizations and proof strategies for binary problems

In the following, we will show how to use our concept of set characterizations to give Zuck-
erberg convex-hull proofs for more complex 0/1-polytopes. We do this by reproving several
known, popular results to demonstrate how set characterizations help define the sets Si for
Theorem 2.4. The order in which to define these sets is highly problem specific. We will see
that very often a certain “natural” ordering can be used to successfully conduct convex-hull
proofs. In an example involving the shortest-path problem, we will use a topological ordering
of the nodes of the underlying graph. The second example for a certain set-packing problem
shows how to exploit a depth-first-search on a tree. It will also turn out here that we can use
Zuckerberg’s method to compute the vertices spanning a point inside the polytope, which was
not straightforward to do beforehand. And in the last example, wherewe consider the odd-hole
inequality for the stable-set problem, we follow neighbourly nodes along the underlying cycle.
These examples are representative for three promising general strategies to define the sets Si.
The first one is a greedy strategy which places the sets according to local criteria. The second
strategy extracts the placement of a group of sets from the solution of an auxiliary optimization
problem. Finally, the third strategy transforms the point h ∈ H to an auxiliary point h̄ ∈ H for
which the placement of the sets is easier, and afterwards retransforms the sets in order to the
express the original point.

The core of a Zuckerberg convex-hull proof is an algorithmic scheme to define the sets re-
quired in Theorem 2.4. To this end, we first define the subroutine Match in Figure 3. It is
useful in problems where the feasible set of binary points is constrained by multiple-choice
constraints. Its inputs are a set S ∈ L together with a list of diameters (w1, . . . , wk) ∈ Rn

+ for
some k ≥ 1. The output is then a list of subsets (S1, . . . , Sk) of S with µ(Si) = wi for all i ∈ [k].
If w1 + . . . + wk ≤ µ(S) holds, these subsets are pairwise disjoint (cf. the set characterization
for a multiple-choice constraint stated in Table 1).
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Input: S ∈ L, (w1, . . . , wk), wi ∈ [0, 1), i ∈ [k]
Output: (S1, . . . , Sk) with Si ⊆ S for i ∈ [k]. If w1 +

. . . + wk ≤ µ(S) then Si ∩ Sj = ∅ for i, j ∈ [k] with
i 6= j

1: function Match(S, (w1, . . . , wk))
2: t0 ← 0
3: for r = 1, . . . , k do
4: tr ← min{t ∈ S | µ(S ∩ [tr−1, t]) = wr}
5: if tr < +∞ then
6: Sr B S ∩ [tr−1, tr)
7: else
8: tr ← min{t ∈ S | µ(S ∩ [0, t])
9: = µ(S ∩ [tr−1, 1])}
10: Sr B S ∩ ([tr−1, 1) ∪ [0, tr))
11: end if
12: end for
13: return (S1, . . . , Sk)
14: end function 0 1

S
S1

S2

S3

Figure 3: Subroutine Match (left) and exemplary output for defining three subsets of some
set S (right)

3.1 The greedy strategy

In the greedyproof strategy, weplace the current set to be defined to the first spotwhich satisfies
all set characterizations, without considering the subsequent sets to be placed. When conduct-
ing Zuckerberg proofs, this is generally the first strategy one should try. This is because of its
simplicity, and if this strategy works, it typically leads to very short proofs. We showcase the
use of this technique for the shortest-path polytope on an acyclic graph.

Let G = (V, A) be a connected, directed and acyclic graph (DAG). The node set V contains
two special nodes s and d, and the goal is to find a path from s to d. For ease of exposition, the
node s shall only have outgoing arcs, while d only has incoming arcs. The set of feasible paths
can be represented by introducing a binary variable xa ∈ {0, 1} for each a ∈ A to model the
choice of arcs together with the following system of linear constraints:

∑
a∈δ−(s)

xa = 1 (4)

∑
a∈δ−(v)

xa − ∑
a∈δ+(v)

xa = 0 ∀v ∈ V \ {s, d} (5)

∑
a∈δ+(d)

xa = 1 (6)

0 ≤ xa ≤ 1. (7)

We now give a Zuckerberg-type proof for the well-known result stating the integrality of the
above system.

Theorem 3.1. Let P B conv{x ∈ {0, 1}|A| | (4)to (7)} be the shortest-path polytope and H B {x ∈
[0, 1]|A| | (4)to (7)} its linear relaxation. Then we have P = H.

Proof. It is obvious that P ⊆ H. In order to prove H ⊆ P, we need to transform the constraints

9



1: function Define-Shortest-Path-Subsets
2: for v ∈ TopologicalSort(V) do
3: if v = s then
4: R← [0, 1)
5: else
6: R← ∪a∈δ+(v)Sa
7: end if
8: Let (a1, . . . , ap) be any ordering of the arcs in δ−(v), where p B |δ−(v)|
9: (Sa1 , . . . , Sap) BMatch(R, (ha1 , . . . , hap))
10: end for
11: end function

s d
a1 a2 a3

a4

a5

a6

a7

a8

0 1

Sa1

Sa2

Sa3

Sa4

Sa5

Sa6

Sa7

Sa8

Figure 4: Routine Define-Shortest-Path-Subsets (top), exemplary graph with 6 nodes (bot-
tom left) and possible output of the routine for the point h = (0.8, 0.1, 0.1, 0.6, 0.3, 0.4, 0.3, 0.2)
(bottom right). There are four paths in the graph, namely (a1, a2, a3), (a8, a4), (a1, a7, a5) and
(a1, a6, a4). Those parts of the sets corresponding to a certain path are marked in the same
colour.

(4) to (6) into set characterizations. Referring to Table 1, we can directly state them as follows:

|{i ∈ δ−(s) | t ∈ Si}| = 1 ∀t ∈ U, (8)
|{i ∈ δ−(v) | t ∈ Si}| = |{j ∈ δ+(v) | t ∈ Sj}| ∀v ∈ V \ {s, d}, ∀t ∈ U, (9)

|{i ∈ δ+(d) | t ∈ Si}| = 1 ∀t ∈ U. (10)

Note that inequalities (7) do not have a set characterization of their own above as they are
already implied by the fact that all sets need to be subsets ofU = [0, 1). Further, inequality (6) is
redundant and only stated for better readability. Therefore, set characterization (10) is already
implied by (8) and (9).

For each point h ∈ H, we now need to find sets Sa for all a ∈ A such that µ(Sa) = ha as
well as set characterizations (8) to (10) hold. The sets Sa are defined via the routine Define-
Shortest-Path-Subsets presented in Figure 4. The algorithmprocesses the nodes in the graph in
topological order, where TopologicalSort is any routine producing such an order. In each iter-
ation, it places the sets for all outgoing arcs of the current node via a call to the routineMatch.
This ensures that conditions (8) to (10) are satisfied. By starting at node s and processing the
nodes in topological order, we are sure that once a node is reached all sets for the incoming
arcs have been defined. Finally, the make-up of subroutine Match guarantees µ(Sa) = ha for
all a ∈ A. Thus, we have proved H ⊆ P.
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The greedy proof technique is most promising if the problem at hand only features local
constraints (like flow conservation or variable bounds) as they allow to place the sets in con-
secutive fashion. Constraints inducing global couplings between the variables make it harder
to use. In the online supplement [BS20], we give further examples for the use of this technique
in the context of clique and stable-set problems.

3.2 Zuckerberg proofs via feasibility subproblems

A further strategy for Zuckerberg proofs is to place groups of related sets simultaneously. If
the correct placement of these sets is too difficult to be stated explicitly, it can be worthwhile
to define an auxiliary optimization problem from whose solution a feasible placement of the
sets can be extracted. It is then necessary to prove that this subproblem is feasible for each
point h ∈ H to be tested. In case the optimization problem is a linear program, one can try
to use the Farkas lemma for the feasibility proof. We highlight this technique at the hand of a
polynomial-time solvable special case of the clique problem with multiple-choice constraints.

Let G = (V, E) be an m-partite graph for some m ≥ 1, and let V = {V1, . . . , Vm} be the
corresponding partition of the node set V. The clique problem with multiple-choice constraints
(CMPC) asks to find a clique of cardinality m in G. While it is NP-complete in general to decide
if such a clique exists (see [BGM20]), there are several relevant special cases where this is pos-
sible in polynomial time. These include CPMC under staircase compatibility ([BGMS18]) and
CPMC under a cycle-free dependency graph ([BGM20]). The referenced works give complete
convex-hull descriptions for these two cases.

The CPMC polytope is the convex hull of all incidence vectors of m-cliques in G. In the
online supplement [BS20], we will reprove the result from [BGMS18] that staircase compat-
ibility allows for totally unimodular formulations of polynomial size for the CPMC polytope.
Here we consider the case where there are no cyclic dependencies between the subsets Vi. The
authors of [BGM20] give a complete convex-hull description for this case whose correctness
they prove via the alternating colouration theorem (see [Hoà87]). Alternatively, they hint a
proof via the strong perfect-graph theorem (see [CRST06]). In the following, we will give a
much more elementary convex-hull proof based on Zuckerberg’s method which does neither
use alternating colourations nor perfectness. In addition, we will be able to state the vertices
spanning any given point in the CPMCpolytope, for which there is no obvious derivation using
the approaches presented in [BGM20].

Let G B (V , E) with

E B
{
{Vi, Vj} ⊆ V | (∃u ∈ Vi)(∃v ∈ Vj) {u, v} /∈ E

}
denote the dependency graph of G. Note that {Vi, Vj} ∈ E is equivalent to the subgraph Gij
induced by Vi ∪Vj not being a complete bipartite graph. For ease of notation, we further define
the neighbourhood Nj(U) ⊆ Vj of a subset U ⊆ V in Vj as

Nj(U) B {v ∈ Vj | (∃u ∈ U) {u, v} ∈ E}.

It represents those nodes in Vj for which there is a compatible node in U.
We will now show that the CPMC polytope is completely described via the stable-set con-

straints and the trivial constraints if the dependency graph is a forest.

Theorem 3.2. ([BGM20, Theorem 3.1]) Let

P(G,V) B conv

 x ∈ {0, 1}|E|
∣∣∣∣∣∣

∑
v∈Vi

xv = 1 ∀Vi ∈ V

xi + xj ≤ 1 ∀{i, j} /∈ E
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be the CPMC polytope and

H(G,V) B conv

 x ∈ [0, 1]|E|

∣∣∣∣∣∣∣
∑

v∈Vi

xv = 1 ∀Vi ∈ V

∑
v∈C

xv ≤ 1 ∀ stable sets C ⊆ V


its stable-set relaxation. If G has no cycles, we have P(G,V) = H(G,V).

Proof. The inclusion P(G,V) ⊆ H(G,V) holds trivially. We now show the reverse inclusion.
The procedure to define the sets Si for i ∈ V is given via the two routines Define-CMPCF-
Subsets and Traverse-Tree in Figure 5. The former routine iterates over all individual trees in

1: function Define-CMPCF-Subsets
2: for each tree in G do
3: Pick some Vi as the root node w.l.o.g.
4: Let (i1, . . . , ip) be any ordering of the elements in Vi, where p B |Vi|
5: (Si1 , . . . , Sip) BMatch([0, 1), (hi1 , . . . , hip))
6: for Vj ∈ N(Vi) do
7: Traverse-Tree(Vi, Vj)
8: end for
9: end for
10: end function
11: function Traverse-Tree(Vi, Vj)
12: x̄ ← Solve (13) with Vi and Vj and h as input
13: Let (j1, . . . , jp) be any ordering of the elements in Vj, where p B |Vj|
14: for j ∈ Vj do
15: Sj B ∅
16: end for
17: for i ∈ Vi do
18: (Ŝj1 , . . . , Ŝjp)← Match(Si, (x̄ij1 , . . . , x̄ijp))
19: for j ∈ Vj do
20: Sj B Sj ∪ Ŝj
21: end for
22: end for
23: for Vk ∈ N(Vj) do
24: Traverse-Tree(Vj, Vk)
25: end for
26: end function

Figure 5: Routine Define-CMPCF-Sets

the dependency graph G. In Line 3, it selects an arbitrary node (subset in the partition) Vi as
the root node of the current tree. Then it fixes an arbitrary ordering of the elements v ∈ Vi
and places the corresponding sets next to each other via a call to subroutine Match in Line 5.
Finally, it traverses the tree recursively in Lines 6–8 by calling the routine Traverse-Tree, whose
input is a subset Vi for which all sets have already been defined, together with a set Vj, which
is a neighbour of Vi. The routine then places all sets for Vj. To do so, it solves a linear feasibility
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problem in Line 12 which is defined as follows: the variables xij ∈ R+ encode the measure of
the overlap between the sets Si and Sj. These overlaps need to fulfil the set characterizations

|{v ∈ Vi | t ∈ Sv}| = 1 ∀Vi ∈ V , ∀t ∈ U, (11)
|{v ∈ C | t ∈ Sv}| ≤ 1 ∀ stable sets C ⊆ V, ∀t ∈ U, (12)

which leads to the following linear programming system:

∑
j∈Vj

xij = hi ∀i ∈ Vi, (13a)

∑
i∈Vi

xij = hj ∀j ∈ Vj, (13b)

xij ≥ 0 ∀(i, j) ∈ Vi ×Vj. (13c)

In Lines 13–22, the routine chooses the sets for all elements in Vj accordingly. It then proceeds
recursively in Lines 23–25.

It remains to show that problem (13) is feasible for all h ∈ H. To prove this, we analyse its
dual Farkas system, which is given by

∑
i∈Vi

hiyi + ∑
j∈Vj

hjyj < 0, (14a)

yi + yj ≥ 0 ∀(i, j) ∈ Vi ×Vj. (14b)

We will prove by contradiction that (14) has no solution in order to show the feasibility of (13).
To this end, consider some point h ∈ H and let ȳ be a corresponding solution of (14). We
first argue that we can assume ȳ ∈ {−1, 0, 1}m w.l.o.g. Via rescaling, we can assume that the
lowest entry of ȳ is −1. Now let W B {k ∈ Vi × Vj | ȳk < 0}. We can assume ȳk = 0 for all
elements in (Vi ×Vj) \ (W ∪ N(W)), since this is always feasible if ȳk > 0 was feasible. Further,
let P B (p1, . . . , pq) be a sorted list of the elements in {ȳk ∈ R | k ∈W} in decreasing orderwith
q B |P|. For p ∈ P, let Qp B {k ∈ W | yk = p}, and let R B N(Qp1) \ N(Qp2) ∪ . . . ∪ N(Qpq).
Then check if ∑v∈R hvȳv + ∑v∈Qp1

hvȳv ≥ 0 holds. If yes, set ȳk = 0 for k ∈ Qp1 ∪ R. If no, set
ȳk = p2 for k ∈ Qp1 and ȳk = −p2 for k ∈ R. Now update W and let P B (p1, . . . , pq−1) again
be a sorted list of the elements in {ȳk ∈ R | k ∈ W} in decreasing order. This procedure lets P
now contain precisely one element less than before. Repeat this until there is only one element
in P left, which has to be −1, so we can set ȳk = 1 for all k ∈ N(W). This way, we have found
an integral solution to (14). We then have

∑
k∈N(W)

hkȳk + ∑
k∈W

hkȳk < 0,

∑
k∈N(W)

hk − ∑
k∈W

hk < 0,

1− ∑
k∈(Vi×Vj)\N(W)

hk − ∑
k∈W

hk < 0,

∑
k∈(Vi×Vj)\N(W)

hk + ∑
k∈W

hk > 1.

However, this is impossible, since the nodes ((Vi × Vj) \ N(W)) ∪W form a stable set, which
leads to a contradiction.

Via Theorem 2.2, this directly allows us to represent a point h ∈ H as a convex combination
of the vertices of the CMPC polytope, which extends the results from [BGM20].

This technique could be generalized by passing from linear tomore complex auxiliary prob-
lems to determine the placement of the sets. The core of this proof technique consists in analys-
ing the auxiliary problem to verify its feasibility for any inputs arising within the algorithmic
scheme.
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3.3 The transformation strategy

The third proof strategywe presentmakes use of the fact that it can be easier to place the sets for
some points within a given polytope than for others. Thus, it is sometimes helpful to transform
the arbitrary point to be tested for membership in Theorem 2.4 to another, auxiliary point first.
Then, after placing the sets for this auxiliary point, they are retransformed to represent the
original point. Such a transformation must respect the set characterizations of the vertex set.
We present this technique exemplarily for the convex hull of all incidence vectors of stable sets
in a single odd cycle.

The stable-set polytope of a graph G = (V, E) is defined as the convex hull of all vectors
x ∈ {0, 1}|V| that satisfy

xi + xj ≤ 1 ∀(i, j) ∈ E. (15)

If G is a cycle, the odd-cycle inequality

∑
i∈V

xi ≤
|V| − 1

2
(16)

is valid for the corresponding stable-set polytope. For an odd-cycle, it is sufficient to describe
the complete convex hull, together with inequalities (15) and the trivial inequalities.

Theorem 3.3. Let G = (V, E) be an odd hole, let P(G) B {x ∈ {0, 1}|V| | (15)and (16)} be the
stable-set polytope on G, and let H(G) B {x ∈ [0, 1]|V| | (15)and (16)} be its linear relaxation. Then
we have P = H.

Proof. It is obvious that P(G) ⊆ H(G). For the converse, consider the set characterizations of
(15) and (16), which are given by:

Si ∩ Sj = ∅ ∀(i, j) ∈ E, (17)

|{i ∈ B | t ∈ Si}| ≤
|V| − 1

2
∀t ∈ U (18)

(cf. Table 1). For a given point h ∈ H(G), we then need to find sets Sv for each v ∈ V such
that µ(Sv) = hv and the above conditions hold. We define these sets in routine Define-Odd-
Cycle-Stable-Sets-Subsets, given in Figure 6. First, in Line 2/3, we fix an ordering of the nodes
which respects the order of the cycle. In Lines 4–8, the point h is then shifted to a point h̄
on the boundary of H(G) by increasing h componentwise until in each iteration at least one
of the inequalities (15) and (16) becomes active. By induction, for the resulting point h̄ the
inequality h̄ ≥ h holds component-wise and we have ∑|V|i=1 h̄i = (|V| − 1)/2. Now, auxiliary
sets S̄v, v ∈ V, are placed in consecutive order along the cycle in Line 9, based on the diameters
stored in h̄. Observe that, in particular, the first set is defined as S̄v1 = [0, h̄v1) and the last one as
S̄v|V| = [1− h̄v|V| , 1), thus they satisfy set characterizations (17) and (18). Finally, in Lines 10–12,
the diameters of the auxiliary sets are reduced such that they correspond to the components
of h to obtain the final sets Sv, v ∈ V. It is obvious that these sets satisfy µ(Sv) = hv for all v ∈ V,
and the reduction does not invalidate any of the set characterizations (17) or (18). Therefore,
we have proved H(G) ⊆ P(G).

In the above proof, an auxiliary point h̄ ∈ H is constructed by greedily increasing the co-
ordinates of the point h to be tested. The sets for h̄ are then placed next to each other, modulo
1 (the diameter of U). The backward transformation then simply shrinks the sets to fit the size
of the original coordinates of h while maintaining the validity of all set characterizations. As
shown in Figure 6, the final sets after backward transformation are not always placed next to
each other due to the gaps arising from the shrinking step. A direct placement of these sets
for the original point seems to more involved, since it is not obvious how to calculate the gaps
between adjacent sets a priori.

14



1: function Define-odd-cycle-Stable-Set-Subsets
2: Let (v1, . . . , v|V|) be any ordering of the elements in V
3: with {vi, vi+1} ∈ E for all i ∈ [|V| − 1]
4: h̄← h
5: for each v ∈ (v1, . . . v|V|) do . Blow-up phase
6: r ← |V|−1

2 −∑|V|i=1 h̄i
7: h̄v ← min(1− h̄v−1, 1− h̄v+1, h̄v + r) . Make (15) or (16) active
8: end for
9: (S̄v1 , . . . , S̄v|V|)← Match([0, 1), (h̄v1 , . . . , h̄v|V|) . Set auxiliary sets with buffers
10: for each v ∈ (v1, . . . v|V|) do . Reduction phase
11: (Sv) BMatch(S̄v, (hv))
12: end for
13: end function

u1

u2

u3

u5

u4

0 1

Su1

Su2

Su3

Su4

Su5

Figure 6: RoutineDefine-odd-cycle-Stable-Set-Subsets (top), exemplary graphwith five nodes
(bottom left) and possible output of the routine for the point given by h = (0.5, 0.2, 0.3, 0.1, 0.1).
It is blownup to h̄ = (0.8, 0.2, 0.8, 0.1, 0.1). The point h can bewritten as a convex combination of
incidence vectors belonging to five stable sets, namely {u1, u3}, {u1}, ∅, {u2, u4} and {u2, u5},
each non-empty one marked with same colour (bottom right).
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4 Extensions of Zuckerberg’s method for general convex sets

Both the original proof technique byZuckerberg from [Zuc16] and its simplification in [GKRW20]
are applicable to 0/1-polytopes only. In the following, wewill derive extensions of Zuckerberg’s
methodwhich enable us to conduct geometric convex-hull proofs for arbitrary convex sets. This
includes, in particular, general integer polyhedra. The underlying idea is to pass from intervals
in U = [0, 1) to rectangles inR2 when constructing the sets to represent a given point h in some
convex set H. Recall that the original method interprets each of these dimension-many sets
as either a 0- or a 1-coordinate of a vertex in a 0/1-polytope; a coordinate of the vertex which
belongs to some t ∈ U is 1 if the corresponding set includes t, and 0 otherwise. The vertices
associated with the sets representing a point h in the polytope define a convex combination
spanning h. Our extension of Zuckerberg’s method gives the intervals making up these sets a
height to encode the coordinates of arbitrary points in H instead of only 0/1-points. This idea
will lead to generalized versions of the theorems in Section 2 which can be used to prove the
completeness of convex-hull representations for general convex sets. Furthermore, they also
allow to compute convex combinations spanning a certain h ∈ H using any points in H, not
necessarily extreme points.

To formalize the new approach, we first define the set

RQ B { ([a, b), c) ∈ P(Q)×R | a < b, c 6= 0 } ,

where Q is chosen as either U = [0, 1) or as R+. The set Q specifies the range of coefficients
which are allowed in a linear combination representing some h ∈ H. We use Q = U to construct
convex combinations and Q = R+ for conic combinations. We interpret RQ as the set of all
non-degenerate, axis-parallel rectangles R in R2, which are uniquely defined by stating the
two diagonally opposite vertices (a, 0) and (b, c). The sign of c indicates if a rectangle points
into the upper half-space (c > 0) or the lower half-space (c < 0). Let q(R) B (b − a)c and
z(R) B c denote the signed area and the signed height of the rectangle R respectively. Further,
let y : Q×RQ → {0, 1} be an indicator function defined as follows. For some t ∈ Q and R ∈ RQ

it is y(t, R) = 1 if a ≤ t ≤ b, and y(t, R) = 0 otherwise. In other words, y indicates whether t
belongs to the support of R, in which case we call R active at t. We call two rectangles R1 and R2
non-overlapping if there exists no t ∈ Q such that both y(t, R1) = 1 and y(t, R2) = 1 hold.

In a similar fashion as in Section 2, we then define L̄Q as the set of all unions of finitely
many non-degenerate, non-overlapping rectangles from RQ and µ̄Q as the Lebesgue measure
restricted to L̄Q, that is

L̄Q B

{
{R1, . . . , Rk}

∣∣∣∣∣ k ∈ N∧ R1, . . . , Rk ∈ RQ∧
Ri and Rj are non-overlapping ∀i, j ∈ [k], i 6= j

}

µ̄Q(S) B
k

∑
i=1

q(Ri) for any S = {R1, . . . , Rk} ∈ L̄Q.

Moreover, we define the indicator function φ̄Q : Q× L̄Q → R,

φ̄Q(t, S) B

{
z(R) if y(t, R) = 1 for any R ∈ {R1, . . . , Rk},
0 otherwise,

where S is uniquely represented as S = {R1, . . . , Rk} for some k ∈ N in Ri ∈ RQ, i ∈ [k].
It returns the height of the rectangle which is active at t ∈ Q if there is one. Note that the
active rectangle is unique in this case as the Ri forming S are non-overlapping. Finally, let
ϕ̄Q : Q× (L̄Q)n → R

n, ϕ̄Q(t, S1, . . . , Sn) = v, where vi B φ̄Q(t, Si) for i ∈ [n]. Here we interpret
the heights of the rectangles which are active at t as the coordinates of a vector inRn.
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With the above definitions, we are equipped to state our extensions of Zuckerberg’smethod.
As a useful shorthand notation used in the proofs, we define the union S1 ∪ S2 of two sets
S1, S2 ∈ L̄Q as the unique S ∈ L̄Q such that for all t ∈ Q we have φ̄Q(t, S) = φ̄Q(t, S1) +
φ̄Q(t, S2). Informally speaking, thismeanswe add the heights of the rectangleswhich are active
at a certain t to form the union S.

We start with an extension which enables us to conduct geometric convex-hull proofs for
general convex sets.

Theorem 4.1 (Zuckerberg’s method for general convex sets). Let F ⊆ Rn and h ∈ Rn. Then
we have h ∈ conv(F ) iff there are sets S1, . . . , Sn ∈ L̄U such that µ̄U(Si) = hi for all i ∈ [n] and
ϕ̄U(t, S1, . . . , Sn) ∈ conv(F ) for every t ∈ U.

Proof. If h ∈ conv(F ), then there exist ξ1, . . . , ξr ∈ conv(F ), for some r ∈ N+, such that h can
bewritten as h = λ1ξ1 + . . .+ λrξr with λ1 + . . .+ λr = 1 and λk ≥ 0 for all k ∈ [r]. We can then
define apartitionU = I1∪ . . .∪ Ir by setting I1 B [0, λ1) and Ik B [λ1 + . . . + λk−1, λ1 + . . . + λk)
for k ∈ {2, . . . , r}. This allows us to set

Si B
⋃

k∈[r]: ξk
i 6=0

(Ik, ξk
i ) ∈ L̄U , i ∈ [n],

with rectangles (Ik, ξk
i ) ∈ RU . For all i ∈ [n], we can conclude

µ̄U(Si) = ∑
k∈[r]: ξk

i 6=0

µ̄U((Ik, ξk
i )) = ∑

k∈[r]: ξk
i 6=0

λkξk
i = ∑

k∈[r]
λkξk

i = hi.

Furthermore, for every t ∈ U there is a unique index k with t ∈ Ik, and thus we have

ϕ̄U(t, S1, . . . , Sn) = ξk ∈ conv(F ).

Conversely, if the Si are sets with the described properties, let ξ1, . . . , ξr be an ordering of
the elements in {

ξ ∈ conv(F )
∣∣∣ ϕ̄U(t, S1, . . . , Sn) = ξ for some t ∈ U

}
.

The above set is finite, since each Si is a finite union of rectangles. We can set, by slight abuse
of notation,

λk B µ̄U
({

(t, 1) ∈ U × {1}
∣∣∣ ϕ̄U(t, S1, . . . , Sn) = ξk

})
for k ∈ [r] to obtain the required convex representation h = λ1ξ1 + . . . + λrξr. To see this, we
can easily verify

Si =
⋃

k∈[r]: ξk
i 6=0

{
(t, ξk

i ) ∈ U ×R
∣∣∣ ϕ̄U(t, S1, . . . , Sn) = ξk

}
for all i ∈ [n]. We then conclude for all i ∈ [n]:

∑
k∈[r]

λkξk
i = ∑

k∈[r]
µ̄U
({

(t, 1) ∈ U × {1}
∣∣∣ ϕ̄U(t, S1, . . . , Sn) = ξk

})
ξk

i

= ∑
k∈[r]: ξk

i 6=0

µ̄U
({

(t, ξk
i ) ∈ U ×R

∣∣∣ ϕ̄U(t, S1, . . . , Sn) = ξk
})

= µ̄U

 ⋃
k∈[r]: ξk

i 6=0

{
(t, ξk

i ) ∈ U ×R
∣∣∣ ϕ̄U(t, S1, . . . , Sn) = ξk

}
= µ̄U(Si) = hi.
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Theorem 4.1 generalizes Theorem 2.1 in two ways. The method now works for arbitrary
convex sets, instead of only 0/1-polytopes. Note that Zuckerberg’s original method can be
recovered by discarding the height of the rectangles and only checking whether a given set
is active at some t ∈ U. We also remark that in Theorem 4.1 we can now write the point h as a
linear combination of points in conv(F ), not only points inF . This allows an additional degree
of freedom for convex-hull proofs which Theorem 2.1 does not offer.

Using our extended framework, we can also determine a representation of any given point
h ∈ H as a convex combination of points in F if we find corresponding sets S1, . . . , Sn fulfilling
the requirements of Theorem 4.1. To state this result, we define the two sets

F̄ (S1, . . . , Sn) B
{

ξ ∈ conv(F )
∣∣∣ ϕ̄U(t, S1, . . . , Sn) = ξ for some t ∈ U

}
and, for each ξ ∈ Rn,

L̄U
ξ (S1, . . . , Sn) B

{
t ∈ U

∣∣∣ ϕ̄U(t, S1, . . . , Sn) = ξ
}

.

The following corollary then directly follows from the proof of Theorem 4.1.

Corollary 4.2 (Convex combinations for general convex sets). Under the same assumptions as
in Theorem 4.1, let λξ B µ̄U(L̄U

ξ (S1, . . . , Sn)) for each ξ ∈ F̄ (S1, . . . , Sn). Then we have h =

∑ξ∈F̄ (S1,...,Sn) λξξ, ∑ξ∈F̄ λξ = 1 and λξ ≥ 0 for all ξ ∈ F̄ (S1, . . . , Sn).

The definition of a set characterization (Theorem 2.3) can now be restated in amore general
form as well.

Definition 4.3 (Set characterization of a constraint). Let f : F → R, let b ∈ R, and let S1, . . . Sn ∈
L̄U . The set characterization of some constraint f (x) ≤ b is the following logic statement:

f (φ̄U(t, S1), . . . , φ̄U(t, Sn)) ≤ b holds for all t ∈ U.

Similar to before, we can use this concept to facilitate finding sets Si which characterize a
point h ∈ H according to Theorem 4.1.

Lemma 4.4. Let F B {x ∈ Zn | f j(x) ≤ bj ∀j ∈ [m]} for some m ∈ N. Further, let P B conv(F ),
and let H ⊆ Rn be some convex set. We have H = P iff both F ⊆ H holds and for each h ∈ H there
are sets S1, . . . , Sn ∈ L̄U with µ̄U(Si) = hi for all i ∈ [n] which satisfy the set characterization for each
constraint f j(x) ≤ bj, j ∈ [m].

Polyhedra, which are special convex sets, can be written as a convex combination of a fi-
nite sets of points plus a conic combination of a finite set of rays In the following, we give an
alternative version of Theorem 4.1 for polyhedra making use of this fact.

Theorem 4.5 (Zuckerberg’s method for polyhedra). Let F ⊆ Rn and E ⊆ Rn be a finite, non-
empty set of points, h ∈ Rn. Then we have h ∈ conv(F ) + cone(E) iff there are sets S1, . . . , Sn ∈ L̄U

and sets S′1, . . . , S′n ∈ L̄R+ such that µ̄U(Si) + µ̄R+(S′i) = hi for all i ∈ [n], ϕ̄U(t, S1, . . . , Sn) ∈
conv(F ) for all t ∈ U and ϕ̄R+(t′, S′1, . . . , S′n) ∈ cone(E) for all t′ ∈ R+.

Proof. If h ∈ conv(F ) + cone(E), then there exist ξ1, . . . , ξr ∈ conv(F ) for some r ∈ N+ and
ζ1, . . . , ζq ∈ cone(E) for some q ∈ N+ such that h can be written as h = λ1ξ1 + . . . + λrξr +
η1ζ1 + . . . + ηqζq with λ1 + . . . + λr = 1, λk ≥ 0 for all k ∈ [r] and ηk ≥ 0 for all k ∈ [q]. Define
now the partitionU = I1∪ . . .∪ Ir by setting I1 B [0, λ1) and Ik B [λ1 + . . . + λk−1, λ1 + . . . + λk)
for k ∈ {2, . . . , r}. In addition, we define Ī1 B [0, η1) and Īk B [η1 + . . . + ηk−1, η1 + . . . + ηk)
for k ∈ {2, . . . , q}. With

Si B
⋃

k∈[r]: ξk
i 6=0

(Ik, ξk
i ), S′i B

⋃
k∈[q]: ζk

i 6=0

( Īk, ζk
i )

18



for i ∈ [n], we find

µ̄U(Si) + µ̄R+(S′i) = ∑
k∈[r]: ξk

i 6=0

µ̄U((Ik, ξk
i )) + ∑

k∈[q]: ξk
i 6=0

µ̄R+(( Īk, ζk
i ))

= ∑
k∈[r]: ξk

i 6=0

λkξk
i + ∑

k∈[q]: ζk
i 6=0

ηkζk
i = ∑

k∈[r]
λkξk

i + ∑
k∈[q]

ηkζk
i

= hi.

Moreover, for each t ∈ U, there is a unique index k with t ∈ Ik, and thus

ϕ̄U(t, S1, . . . , Sn) = ξk ∈ conv(F ).

Similarly, for each t ∈ R+, there is either a unique index k with t ∈ Īk, or there is no such index.
Thus, we conclude

ϕ̄R+(t, S′1, . . . , S′n) = ζ ∈ cone(E).

Especially, if there is no index k as outline above, we have ζ = 0.
Conversely, if Si and S′i are sets with the stated properties, let ξ1, . . . ξr be an ordering of the

elements in {
ξ ∈ conv(F )

∣∣∣ ϕ̄U(t, S1, . . . , Sn) = ξ for some t ∈ U
}

,

and let ζ1, . . . ζq be an ordering of the elements in{
ζ ∈ cone(E)

∣∣ ϕ̄R+(t, S′1, . . . , S′n) = ζ for some t ∈ R+

}
.

Both sets are finite, since all Si and S′i are finite unions of rectangles. For k ∈ [r] and p ∈ [q], we
can set

λk B µ̄U
({

(t, 1) ∈ U × {1}
∣∣∣ ϕ̄U(t, S1, . . . , Sn) = ξk

})
,

ηp B µ̄R+
({

(t, 1) ∈ R+ × {1}
∣∣ ϕ̄R+(t, S′1, . . . , S′n) = ζ p })

to obtain the required convex representation h = λ1ξ1 + . . . + λrξr + η1ζ1 + . . . + ηqζq. To this
end, observe that for all i ∈ [n] we have

Si =
⋃

k∈[r]: ξk
i 6=0

{
(t, ξk

i ) ∈ U ×R
∣∣∣ ϕ̄U(t, S1, . . . , Sn) = ξk

}
,

S′i =
⋃

k∈[q]: ζk
i 6=0

{
(t, ξk

i ) ∈ R+ ×R
∣∣∣ ϕ̄R+(t, S′1, . . . , S′n) = ζk

}
.

For all i ∈ [n], this leads to

∑
k∈[r]

λkξk
i = ∑

k∈[r]
µ̄U
({

(t, 1) ∈ U × {1}
∣∣∣ ϕ̄U(t, S1, . . . , Sn) = ξk

})
ξk

i

= ∑
k∈[r]: ξk

i 6=0

µ̄U
({

(t, ξk
i ) ∈ U ×R

∣∣∣ ϕ̄U(t, S1, . . . , Sn) = ξk
})

= µ̄U

 ⋃
k∈[r]: ξk

i 6=0

{
(t, ξk

i ) ∈ U ×R
∣∣∣ ϕ̄U(t, S1, . . . , Sn) = ξk

}
= µ̄U(Si)
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and

∑
k∈[q]

ηkζk
i = ∑

k∈[q]
µ̄R+

({
(t, 1) ∈ R+ × {1}

∣∣∣ ϕ̄R+(t, S′1, . . . , S′n) = ζk
})

ζk
i

= ∑
k∈[q]: ζk

i 6=0

µ̄R+

({
(t, ζk

i ) ∈ R+ ×R
∣∣∣ ϕ̄R+(t, S′1, . . . , S′n) = ζk

})

= µ̄R+

 ⋃
k∈[p]: ζk

i 6=0

{
(t, ζk

i ) ∈ R+ ×R
∣∣∣ ϕ̄R+(t, S′1, . . . , S′n) = ζk

}
= µ̄R+(S′i).

This yields
r

∑
k=1

λkξk
i +

q

∑
k=1

ηkζk
i = µ̄U(Si) + µ̄R+(S′i) = hi.

Whenwe conduct a convex-hull proof via Theorem 4.1, we implicitly write the given point h
as a convex combination of other points in H (most often extreme points). In contrast, The-
orem 4.5 allows us to express h as both a convex and conic combination of points spanning H.
This is especially interesting for polyhedra, which can be split into a convex and a conic part.
Both versions are valuable tools and allow for different proof strategies as the example in Sec-
tion 4.2 shows.

If we succeed in giving a convex-hull proof hull via Theorem 4.5, we can again deduce
convex and conic combinations afterwards.
Corollary 4.6 (Convex combinations for polyhedra). Under the same assumptions as in Theorem 4.5,
let λξ B µ̄U(L̄U

ξ (S1, . . . , Sn)) for all ξ ∈ F and ηζ B µ̄R+(L̄R+

ζ (S′1, . . . , S′n)) for all ζ ∈ E . Then we
have h = ∑ξ∈F λξξ + ∑ζ∈E ηζζ, ∑ξ∈F λξ = 1 with λξ ≥ 0 for all ξ ∈ F and ηζ ≥ 0 for all ζ ∈ E .

It is straightforward to adjust the definition of set characterizations from Theorem 4.3 to
include the conic part as well. We will, however, skip this for reasons of space.

To define the sets in a convex-hull proof according to Theorem 4.1 or Theorem 4.5, it will be
helpful to introduce the auxiliary function o : Q×U → L×U,

o(t, a) B

{
([t, t + a), t + a) if t + a ≤ 1,
([t, 1) ∪ [0, t + a− 1), t + a− 1) otherwise.

This function determines an interval starting at t ∈ Q and of diameter a ∈ U, modulo 1. It
returns an ordered pair consisting of the interval and its end point, which will be useful when
placing rectangles adjacent to each other.

We will now give some indicative first examples to illustrate how the results derived in this
section can be used to give convex-hull proofs.

4.1 Convex-hull proofs using interior points

We start with the example of a simplex to show that the point h ∈ H does not necessarily have
to be written as a convex combination of vertices, but that it is also possible to characterize it
via sets corresponding to other points in the interior. Let F B {x ∈ Zn | ∑n

i=1 xi ≤ b, x ≥ 0}
and H B {x ∈ Rn | ∑n

i=1 xi ≤ b, x ≥ 0} with some b ∈ N. The set characterizations for the
simplex constraint and the non-negativity constraint can be stated as

n

∑
i=1

φ̄U(t, Si) ≤ b ∀t ∈ U, (19)

φ̄U(t, Si) ≥ 0 ∀i ∈ [n], ∀t ∈ U (20)
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respectively. A possible construction of the sets Si for Theorem 4.5 is given in routine Define-
Simplex-Subsets-A, and a different variant is given in routine Define-Simplex-Subsets-B, both
stated in Figure 7. Via the first variant, the point h ∈ H is always written as a convex combina-

1: function Define-Simplex-Subsets-A
2: r ← 0
3: for i ∈ [n] do
4: Si B ([r, r + hi/b), b)
5: r ← r + hi/b
6: end for
7: end function

0 1

4
4

4

S1

S2

S3

1: function Define-Simplex-Subsets-B
2: r ← 0
3: for i ∈ [n] do
4: (I, r)← o(r, hi − bhic)
5: Si B ([0, 1), bhic) ∪ (I, 1))
6: end for
7: end function

0 1

1
2
1

1
2

1
1
1

S1

S2

S3

Figure 7: Routines Define-Simplex-Subsets-A (top left) and Define-Simplex-Subsets-B (bottom
left), exemplary constructions for the 3-dimensional simplex H with right-hand side b =
4 for the point h with (h1, h2, h3) = (1, 1.5, 0.8) for Define-Box-Subsets-A (top right) and
Define-Box-Subsets-B (bottom right). Via Define-Box-Subsets-A, we obtain h = 0.25(4, 0, 0) +
0.375(0, 4, 0) + 0.2(0, 0, 4) + 0.175(0, 0, 0) while Define-Box-Subsets-B yields h = 0.3(1, 2, 1) +
0.2(1, 2, 0) + 0.5(1, 1, 1). Those parts of the sets which belong to the same vertex are marked
with the same colour; the numbers represent the height of each rectangle, i.e. the coordinates
of the vertices.

tion of vertices of H, while in the second one the point may also be represented using integral
points inside the polytope. By construction, both routines return sets Si with µ̄U(Si) = hi for
all i ∈ [n]. The inequalities defining H ensure that the combined width of the rectangles fits
into U, and thus the requirements of Theorem 4.5 are fulfilled in both cases. This yields two
different proofs for H = conv(F ) and shows the additional flexibility Theorem 4.5 offers.

4.2 Convex-hull proofs for unbounded polyhedra

We continue with a modification of the previous simplex example, where we demonstrate the
difference it makes to apply either Theorem 4.1 or Theorem 4.5 when showing integrality of an
unbounded polyhedron. Let F B {x ∈ Zn | ∑n

i=1 xi ≥ b, x ≥ 0} and H B {x ∈ Rn | ∑n
i=1 xi ≥

b, x ≥ 0}with some b ∈ N. The set characterizations for the two constraints defining F and H
can be stated as

n

∑
i=1

φ̄U(t, Si) ≥ b ∀t ∈ U, (21)

φ̄U(t, Si) ≥ 0 ∀i ∈ [n], ∀t ∈ U. (22)

We can reuse routine Define-Simplex-Subsets-B from Figure 7 to construct adequate sets Si for
Theorem 4.1, which proves the equivalence of conv(F ) and H. An alternative representation
of F is given by F = b conv(e1, . . . , en) + cone(e1, . . . , en). Using the construction provided
by routine Define-Conv-Cone-Subsets in Figure 8, we can invoke Theorem 4.5 and thus prove
H = conv(F ) in an alternative fashion. We can use both methods in order to prove the same
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1: function Define-Conv-Cone-Subsets
2: g← h/‖h‖1
3: (S1, . . . , Sn) B Define-Simplex-Subsets-B applied to g
4: v← h− g
5: for i ∈ [n] do
6: S′i B ([∑i−1

j=1 vj, ∑i
j=1 vj), 1)

7: end for
8: end function

0 1

1
1

1

S1

S2

S3

0 3

1
1

1

S′1

S′2

S′3

Figure 8: Routine Define-Simplex+Cone-Subsets (top), exemplary construction for the 3-
dimensional polyhedron H with right-hand side b = 1 for the point h with (h1, h2, h3) =
(1, 1.5, 0.8) for Define-Conv-Cone-Subsets (bottom). The latter decomposes h into h = g +
v, where g ≈ 0.3(1, 0, 0) + 0.45(0, 1, 0) + 0.24(0, 0, 1) and v ≈ 0.7(1, 0, 0) + 1.05(0, 1, 0) +
0.56(0, 0, 1). The vector g is represented by a convex combination of the vertices of the poly-
topal part of H, and v as a conic combination of its rays. Those parts of the sets which belong to
the same vertex or ray are marked with the same colour; the numbers represent their coordin-
ates.

statement. However, we obtain different linear combinations representing a given point h. The-
orem 4.1 gives us a convex combination of arbitrary points in H. In contrast, Theorem 4.5 re-
turns two sets of points, vertices and rays, such that a convex combination of the vertices plus
a conic combination of the rays yields h. Depending on the problem at hand, both strategies
might be the one which is best suited for a convex-hull proof.

4.3 Convex-hull proofs for non-linear convex sets

Finally, we show that our new criteria for convex-hull proofs can also be usedwith non-polyhedral
convex sets. To do so, we use the example of the unit-ball in R2. Let F B {x ∈ R

2 |
(x1 − 1)2 + (x2 − 1)2 = 1} and H B {x ∈ R2 | (x1 − 1)2 + (x2 − 1)2 ≤ 1}. The set char-
acterization for the quadratic constraint defining F is given by

(φ̄U(t, S1)− 1)2 + (φ̄U(t, S2)− 1)2 = 1 ∀t ∈ U. (23)

Note that, unlike what Zuckerberg’s original method allows, the set F is not only infinite, as in
the previous example, but even uncountable.

A set construction fulfilling the prerequisites of Theorem 4.1 is given by routine Define-
Ball-Subsets in Figure 9. It computes two points on the boundary of the unit-ball which have
the same y-coordinate and then calculates the corresponding coefficients to represent h as a
convex combination of the two.

5 Set characterizations for integer problems

In this section, we give two indicative convex-hull proofs to illustrate the potential of our exten-
ded Zuckerberg framework. We show that it can be applied to mixed-integer problems, which
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1: function Define-Ball-Subsets
2: V ← {v ∈ R | (v− 1)2 + (h2− 1)2 = 1}
3: if V = {v1} then
4: S1 B ([0, 1), v1])
5: S2 B ([0, 1), h2])
6: end if
7: if V = {v1, v2}, v1 6= v2 then
8: {λ} ← {λ | λv1 + (1− λ)v2 = 1}
9: S1 B ([0, λ), v1]) ∪ ([λ, 1), v2])
10: S2 B ([0, 1), h2])
11: end if
12: end function

0 1

0.56
1.9

1.44
1.9

S1

S2

Figure 9: Routine Define-Ball-Subsets (left), exemplary construction for the point h with
(h1, h2) = (1.1, 1.9) (right). The routine returns the representation h ≈ 0.39(0.56, 1.9) +
0.61(1.44, 1.9).

the original method does not allow. Furthermore, we show that it is well-suited to be usedwith
a non-fixed right-hand side, which leads to a new approach to prove the total unimodularity of
a matrix.

5.1 Convex-hull proofs for mixed-integer problems

To give a prominent example for the use of our extended Zuckerberg framework in the mixed-
integer case, we give a convex-hull proof for the (single-item) uncapacitated lot-sizing problem
(LS-U for short). This problem asks for a cost-optimal production plan for a given product over
n time periods to fulfil the customer demand dj ∈ R+ in each period j ∈ [n] (see [PW06] for
an extensive introduction.)

The authors of [KB77] introduce the following extended formulation for the feasible set of
LS-U (extended with respect to a straightforward formulation with linearly-many variables, cf.
[PW06]): let the variable wuj ∈ R+ denote how much of the product is produced in period
u ∈ [n] for sale in the same or later period j ∈ [n] \ [u− 1]. Furthermore, variable yu ∈ {0, 1}
models the decision to perform any production in period u ∈ [n] or not. Then we can represent
the set of feasible production plans as

j

∑
u=1

wuj = dj ∀j ∈ [n], (24)

wuj ≤ djyu ∀u ∈ [n], ∀j ∈ [n] \ [u− 1], (25)
wuj ∈ R+ ∀u ∈ [n], ∀j ∈ [n] \ [u− 1], (26)
yu ∈ {0, 1} ∀u ∈ [n]. (27)

Indeed, it is shown in [KB77] that the above model is integral, i.e. the set of solutions does not
change when relaxing y ∈ {0, 1}n to y ∈ [0, 1]n. We will give an alternative proof based on
Theorem 4.1.

Theorem 5.1 ([KB77]). Let P B conv{(y, w) ∈ {0, 1}n × Rn2−n
+ | (24)and (25)} and H B

{(y, w) ∈ [0, 1]n ×Rn2−n
+ | (24)and (25)} its linear relaxation. Then we have H = P.

Proof. The relation H ⊆ P can easily be seen. In order to prove the reverse, we transform the
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1: function Define-Lot-Sizing-Subsets
2: for u ∈ [n] do
3: if hyu 6= 0 then
4: Syu B ([0, hyu), 1)
5: else
6: Syu B ∅
7: end if
8: end for
9: for u ∈ [n] do
10: for j ∈ [n] \ [u− 1] do
11: if hyu 6= 0 then
12: Swuj B ([0, hyu), hwuj /hyu)
13: else
14: Swuj B ∅
15: end if
16: end for
17: end for
18: end function

Figure 10: Routine Define-Lot-Sizing-Sets

constraints defining P into set characterizations:

j

∑
u=1

φ̄U(Swuj , t) = dj ∀j ∈ [n], ∀t ∈ U, (28)

φ̄U(Swuj , t) ≤ dtφ̄
U(Syu , t) ∀ 1 ≤ u ≤ j ≤ n, ∀t ∈ U, (29)

φ̄U(Swuj , t) ∈ R+ ∀ 1 ≤ u ≤ j ≤ n, ∀t ∈ U, (30)
φ̄U(Syu , t) ∈ {0, 1} ∀u ∈ [n], ∀t ∈ U. (31)

For a given point h = (hw, hy) ∈ H, a corresponding set construction is given in routineDefine-
Lot-Sizing-Sets in Figure 10. In Lines 2–8, the routine places the sets for the y-variables such
that (31) is satisfied. Then the w-variables are placed in Lines 9–17. The variables wuj get a
non-empty set only if hyu 6= 0. The corresponding sets Swuj are defined such that they have the
same support as Syu . The construction satisfies (28) to (30). Additionally, the defined sets fulfil
µ̄U(Swuj) = hwuj for all 1 ≤ u ≤ j ≤ n and µ̄U(Syu) = hyu for all 1 ≤ u ≤ n, which finishes the
proof.

Our Zuckerberg proof for the lot-sizing problem is an example of the greedy proof strategy
from Section 3.1, now applied to the mixed-integer case. In the online supplement [BS20], we
give further such examples in the context of mixed-integer models for piecewise linear func-
tions.

5.2 Showing total unimodularity via Zuckerberg’s method

Via our extension of Zuckerberg’s method, it is also possible to show the total unimodularity
of a matrix by using the following famous characterization of totally unimodular matrices.

Theorem 5.2 (Hoffmann and Kruskal, [HK56]). Let A ∈ {0, 1,−1}m×n. Then A is totally unim-
odular iff {x ∈ R | Ax ≤ b, x ≥ 0} has only integral vertices for all b ∈ Zn.

We will demonstrate the principle by reproving the well-known result that the incidence
matrix of a bipartite graph is totally unimodular using Zuckerberg’s method.
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1: function Define-Incidence-Matrix-Subsets
2: for each y ∈ Y do
3: Sy B ([0, 1),

⌊
hy
⌋
) ∪ ([0, hy −

⌊
hy
⌋
), 1)

4: end for
5: for each w ∈W do
6: Sw B ([0, 1), bhwc) ∪ ([1− hw + bhwc , 1), 1)
7: end for
8: end function

Figure 11: Routine Define-Incidence-Matrix-Subsets

Let G = (V, E) be an undirected graph, and let b ∈ Z|E| be an arbitrary integral vector.
Further, let P be the polytope defined as the convex hull of all vectors x ∈ N|E| that satisfy

xi + xj ≤ bij ∀{i, j} ∈ E. (32)

The constraintmatrix A corresponding to system (32) is the transpose of a node-edge incidence
matrix. Its total unimodularity is stated in the following theorem, for which we give a very
simple proof based on Theorem 4.1.

Theorem 5.3. Let P B conv{x ∈ N|E| | (32)} and H B {x ∈ R|E|+ | (32)} its linear relaxation.
Then we have P = H.

Proof. The relation P ⊆ H is obvious. In order to prove H ⊆ P, we transform constraint (32)
into the set characterization

φ̄U(Si, t) + φ̄U(Sj, t) ≤ bij ∀{i, j} ∈ E, ∀t ∈ U. (33)

W.l.o.g., we can assume bij ≥ 0 for all {i, j} ∈ E, since otherwise the polytope H is empty. For
each point h ∈ H, we then need to find sets Sa for all a ∈ A such that they fulfil µ̄U(Sa) = ha
and the above conditions hold. Let W, Y ⊆ V be the two bipartite node sets of G. The sets
Sa are defined in routine Define-Incidence-Matrix-Subsets given in Figure 11. From the above
construction it is apparent that for each h ∈ H the corresponding sets satisfy (33). Thus, we
have proved H ⊆ P.

The desired result then follows from Theorems 5.2 and 5.3 by exploiting that total unimod-
ularity is preserved under transposition.

Corollary 5.4. Let A be the node-edge incidence matrix of a bipartite graph. Then A is totally unimod-
ular.

We think that the possibility to consider arbitrary right-hand sides in an algorithmic fashion
makes the Zuckerberg approach a valuable tool for proving total unimodularity. A further
example for this concept is given in the online supplement [BS20].

6 Extensions of Zuckerberg’s method for graphs of functions

In [GKRW20], Zuckerberg’s method was adapted to characterize the convex hull of the graphs
of certain bilinear functions defined over the unit cube. Using our extended framework for
convex-hull proofs from Section 4, we will generalize these results in a twofold manner. Firstly,
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we extended the machinery introduced there for bilinear functions to general boolean func-
tions. This allows us to treat common functions like the max-function. In addition, we gen-
eralize the applicability of Zuckerberg’s method to non-box domains, such that it works with
functions defined over any 0/1-polytope. Secondly, we will derive a criterion to prove convex-
hull results for the convex hull of graphs of bilinear functions over general polytopal domains.

6.1 Extension for boolean functions over 0/1-polytopes

Let F ⊆ Rn be a finite set of points, and let T B conv(F ) be their convex hull. We will now
consider functions f : F → R of the form

f (x) =
k

∑
i=1

aiΨi(x1, . . . xn),

with Ψi : F → R and ai ∈ R for i ∈ [k]. The convex hull of the graph of f is the set

X( f ) B conv { (x, z) ∈ T ×R | z = f (x) } .

Further, let the two functions vex[ f ] : T → R and cav[ f ] : T → R, denoting the convex and the
concave envelope of f over T, respectively, be defined as

vex[ f ](x) B min { z ∈ R | (x, z) ∈ X( f ) } ,
cav[ f ](x) B max { z ∈ R | (x, z) ∈ X( f ) } ,

so that we have

X( f ) = { (x, z) ∈ T ×R | vex[ f ](x) ≤ z ≤ cav[ f ](x) } .

Introducing variables yi to represent the products Ψi(x1, . . . xn), we are interested in describ-
ing X( f ) in terms of the x- and y-variables. To bemore precise, we define a function π[ f ] : Rn×
R

k → R
n+1 via

π[ f ](x, y) =

(
x,

k

∑
i=1

aiyi

)
and extend it to the power set ofRn ×Rk in a canonical fashion:

π[ f ](P) = {π[ f ](x, y) | (x, y) ∈ P }

for every P ⊆ Rn ×Rk. For a polytope P, let the functions LBP[ f ] : T → R and UBP[ f ] : T → R

be defined as

LBP[ f ](x) = min

{
k

∑
i=1

aiyi

∣∣∣∣∣ (x, y) ∈ P

}
=min { z ∈ R | (x, z) ∈ π[ f ](P) } ,

UBP[ f ](x) = max

{
k

∑
i=1

aiyi

∣∣∣∣∣ (x, y) ∈ P

}
=max { z ∈ R | (x, z) ∈ π[ f ](P) } ,

respectively, so that

π[ f ](P) = { (x, z) ∈ T ×R | LBP[ f ](x) ≤ z ≤ UBP[ f ](x) } .

The goal is to give a criterion which allows to prove X( f ) = π[ f ](P) for some given function f
and polytope P, which is equivalent to vex[ f ](x) = LBP[ f ](x) and cav[ f ](x) = UBP[ f ](x) for
all x ∈ T. To this end, we define the set

Z(x) B

{
(S1, . . . , Sn) ∈ Ln

∣∣∣∣∣ µ(Si) = xi ∀i ∈ [n],
ϕ(t, S1, . . . , Sn) ∈ F ∀t ∈ U

}
.
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It contains all tuples of admissible sets S1, . . . , Sn which express some point x ∈ [0, 1]n via the
vertices of F using Zuckerberg’s certificate. Finally, let the function Ω : Ln ×RF → U,

Ω(S1, . . . , Sn, Ψ) B µ({ t ∈ U | Ψ(ϕ(t, S1, . . . , Sn)) = 1 })

measure the size of the support of Ψ ◦ ϕ for some Φ : F → R and some fixed (S1, . . . Sn) ∈ Ln.
The proof of π[ f ](P) = X( f ) can be split up into π[ f ](P) ⊆ X( f ) and X( f ) ⊆ π[ f ](P). The
first inclusion is often comparably easy to prove, and for the validity of the second inclusion
we give the following criterion.

Theorem 6.1. If F ⊆ {0, 1}n and f = ∑k
i=1 aiΨi, with Ψi : {0, 1}n → {0, 1} and ai ∈ R for i ∈ [k],

we have

vex[ f ](x) = min

{
∑

i∈[k]
aiΩ(S1, . . . , Sn, Ψi)

∣∣∣∣∣ (S1, . . . , Sn) ∈ Z(x)

}
,

cav[ f ](x) = max

{
∑

i∈[k]
aiΩ(S1, . . . , Sn, Ψi)

∣∣∣∣∣ (S1, . . . , Sn) ∈ Z(x)

}

for all x ∈ T. In particular, for a polytope P ⊆ Rn+k with π[ f ](P) ⊆ X( f ) we have π[ f ](P) = X( f )
iff for every x ∈ T there are sets (S1, . . . , Sn) ∈ Z(x) and (S′1, . . . , S′n) ∈ Z(x) with

∑
i∈[k]

aiΩ(S1, . . . , Sn, Ψi) = LBP[ f ](x),

∑
i∈[k]

aiΩ(S′1, . . . , S′n, Ψi) = UBP[ f ](x).

Theorem 6.1 gives us a Zuckerberg-type characterization of vex[ f ] and cav[ f ]. To apply it,
we need to design for a general point x ∈ T the sets S1, . . . , Sn ∈ Z(x) such that we minimize
∑i∈[k] aiΩ(S1, . . . , Sn, Ψi) and S′1, . . . , S′n ∈ Z(x) such thatwemaximize∑i∈[k] aiΩ(S′1, . . . , S′n, Ψi).
The proof of Theorem 6.1 is given in the online supplement [BS20].

The expression Ω(S1, . . . , Sn, Ψ) can be made more tractable when some specific functions
Ψ is given. Consider, for instance, Ψ(x1, x2) = x1x2. Then we can simplify:

Ω(S1, S2, Ψ) = µ({ t ∈ U | φ(t, S1)φ(t, S2) = 1 }) = µ(S1 ∩ S2).

We exemplarily give similar representations for Ω(S1, . . . , Sn, Ψ) for some further Boolean func-
tions in Table 2. A specialization of Theorem 6.1 for the case f (x) = ∑1≤i<j≤n aijxixj and
F = {0, 1}n was proved in [GKRW20] using the above simplification. In the following, we
will demonstrate how to use Theorem 6.1 to give convex-hull proofs for more general domains
and functions.

Table 2: Simplifications of Ω(S1, . . . , Sn, Ψ) for specific boolean Ψ functions

Ψ Corresp. Boolean operator Simplified Ω

min(xi, xj) AND µ(Si ∩ Sj)
max(xi, xj) OR µ(Si ∪ Sj)

xi XOR xj XOR µ((Si ∩ S̄j) ∪ (S̄i ∩ Sj))

min(x1, . . . , xn) AND µ(S1 ∩ . . . ∩ Sn)
max(x1, . . . , xn) OR µ(S1 ∪ . . . ∪ Sn)
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6.1.1 Convex-hull proofs for polytopal domain

Generalizing an example given in [GKRW20] for unit-box domains, we show here how to char-
acterize theMcCormick-relaxation of the product of two binary variables over a non-box binary
polytope. Let F B {x ∈ {0, 1}2 | x1 + x2 ≥ 1} and f : F → {0, 1}, f (x1, x2) = x1x2, and let

P B
{
(x1, x2, z) ∈ [0, 1]3

∣∣ z ≤ x1, z ≤ x2, z ≥ x1 + x2 − 1, x1 + x2 ≥ 1
}

.

The direction π[ f ](P) ⊆ X( f ) can easily be verified by checking if the extreme points of X( f ),
namely (0, 1, 0), (1, 0, 0) and (1, 1, 1), are feasible for P. For the reverse direction, we plug in the
simplification of Ω for f given in Table 2 into Theorem 6.1. We deduce that we need to find two
sets S1 and S2 which fulfil

µ(S1 ∩ S2) ≤ min{x1, x2}.

It follows cav[ f ](x) ≤ min{x1, x2}, andwith S1 B [0, x1) and Si B [0, x2)we see that this bound
is attained for all x ∈ conv(F ). Therefore, the concave envelope of f is given by the inequalities
z ≤ x1 and z ≤ x2. Similarly,

µ(S1 ∩ S2) ≥ x1 + x2 − 1

leads to the bound vex[ f ](x) ≥ x1 + x2 − 1, and with S1 B [0, x1) and S2 B [1− x2, 1) it is
attained for all x ∈ conv(F ). Thus, the convex envelope of f is given by z ≥ x1 + x2 − 1.
Finally, the constraint x1 + x2 ≥ 1 is needed for the initial restriction of the domain.

6.1.2 Convex-hull proofs for general functions

Now we present an example for the max-function, which shows that our framework is applic-
able to more general functions than the bilinear functions studied in [GKRW20]. We consider
the case f : {0, 1}n → {0, 1}, f (x) = max(x1, . . . , xn) and

P B
{
(x1, . . . , xn, z) ∈ [0, 1]n+1

∣∣∣ z ≤ x1 + . . . + xn, z ≤ 1, z ≥ xi ∀i ∈ [n]
}

.

As in the previous example, it is straightforward to verify π[ f ](P) ⊆ X( f ). For the converse,
we use the simplification for f given in Table 2 to see that the sets S1, . . . , Sn need to fulfil

µ(S1 ∪ . . . ∪ Sn) ≤ min {x1 + . . . + xn, 1}

in order to satisfy Theorem 6.1. Consequently, we have cav[ f ](x) ≤ min{x1 + . . .+ xn, 1}. With
S1 B [0, x1) and Si B [xi−1, xi−1 + xi) mod 1 for i ∈ {2, . . . , n}, this bound is attained for all
x ∈ [0, 1]n. Therefore, the concave envelope of f is given by z ≤ x1 + . . . + xn and z ≤ 1.
Furthermore, from

µ(S1 ∪ . . . ∪ Sn) ≥ max{x1, . . . , xn}

we obtain the bound vex[ f ](x) ≥ max{x1, . . . , xn}, and setting Si B [0, xi) for i ∈ {1, . . . , n}
makes it tight for all x ∈ [0, 1]n. Thus, the convex envelope of f is given by z ≥ xi for i ∈
{1, . . . , n}.

6.2 Extension for bilinear functions over general polytopes

Finally, we derive a generalization of the results from [GKRW20] which allows us to compute
the convex hull of the graph of a bilinear function over a general polytopal domain T. We start
by defining the set

Z̄(x) B

{
(S1, . . . , Sn) ∈ (L̄U)n

∣∣∣∣∣ µ̄U(Si) = xi for all i ∈ [n],

ϕ̄U(t, S1, . . . , Sn) ∈ F ∀t ∈ U

}
,
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which contains all admissible sets S1, . . . , Sn for Theorem6.1. Furthermore, let the two functions
ψ̄−, ψ̄+ : P→ Rwith

ψ̄−(x) = min

{
∑

ξ∈F
µ̄U(L̄U

ξ (S1, . . . , Sn)) f (ξ)

∣∣∣∣∣ (S1, . . . , Sn) ∈ Z̄(x)

}
,

ψ̄+(x) = max

{
∑

ξ∈F
µ̄U(L̄U

ξ (S1, . . . , Sn)) f (ξ)

∣∣∣∣∣ (S1, . . . , Sn) ∈ Z̄(x)

}
encode the convex and concave envelope, respectively, in a Zuckerberg fashion. We now derive
an auxiliary representation of X( f ) in terms of these two functions.

Lemma 6.2. For every function f : F → R, we have

X( f ) = { (x, z) ∈ T ×R | ψ̄−(x) ≤ z ≤ ψ̄+(x) } .

Proof. First, assume (x, z) ∈ X( f ). This means

(x, z) =
|F |

∑
k=1

λk(ξ
k, f (ξk))

for some λk ≥ 0 for k = 1, . . . , |F | with ∑|F |k=1 λk = 1 and a fixed ordering ξ1, . . . , ξ |F | of F .
The sets Si ∈ L̄U with µ̄U(Si) = xi are defined exactly as in the proof of Theorem 4.1: for
the partition U = I1 ∪ . . . ∪ I|F | with I1 = [0, λ1) and Ik = [λ1 + . . . + λk−1, λ1 + . . . + λk) for
k ∈ {2, . . . , |F |}, we set

Si =
⋃

k: ξk
i 6=0

(Ik, ξk
i ).

For every k = 1, . . . , |F |, we have L̄U
ξk(S1, . . . , Sn) = Ik, and consequently µ̄U(L̄U

ξk(S1, . . . , Sn)) =

λk. With

z =
|F |

∑
k=1

λkψ(ξk) =
|F |

∑
k=1

µ̄U(L̄U
ξk(S1, . . . , Sn))ψ(ξ

k),

it follows that ψ̄−(x) ≤ z ≤ ψ̄+(x).
For the converse, assume ψ̄−(x) ≤ z ≤ ψ̄+(x) and let (S1, . . . , Sn) and (S′1, . . . , S′n) be op-

timizers for the minima and maxima defining ψ̄−(x) and ψ̄+(x) respectively. We write z =
tψ̄−(x) + (1− t)ψ̄+(x) for some t ∈ [0, 1] and set

λ(ξ) B tµ̄U(L̄U
ξ (S1, . . . , Sn)) + (1− t)µ̄U(L̄U

ξ (S
′
1, . . . , S′n))

for all ξ ∈ F . This yields a representation of (x, z) as the convex combination

(x, z) = ∑
ξ∈F

λ(ξ)(ξ, ψ(ξ)).

With Theorem 6.2, we can express the convex hull of the graph of a function via functions
defined over Zuckerberg sets. We will now make these abstract expressions more concrete for
the case of bilinear functions. For this purpose, we consider an arbitrary bilinear function

f : F → R, f (x) =
k

∑
ij∈E

aijxixj (34)

with coefficients aij ∈ R and a subset E ⊆ {(i, j) ∈ N2 | 1 ≤ i < j ≤ n}. Furthermore, we
define the function M : (L̄U)2 → R in Figure 12, which measures a kind of generalized overlap
between two sets S1, S2 ∈ L̄U . For the particular case of a bilinear function f , Theorem 6.2
yields the following characterizations of cav[ f ](x) and vex[ f ](x).
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1: function M(S1, S2)
2: r ← 0
3: Let (R1

1, . . . R1
l ) be any ordering of the rectangles defining S1

4: Let (R2
1, . . . , R2

p) be any ordering of the rectangles defining S2

5: for R1 ∈ (R1
1, . . . , R1

l ) do
6: for R2 ∈ (R2

1, . . . , R2
p) do

7: g←
{
(t, 1) ∈ U × {1}

∣∣ y(t, R1) = 1, y(t, R2) = 1
}

8: r ← r + z(R1)z(R2)µ̄U(g)
9: end for
10: end for
11: return r
12: end function

Figure 12: The function M : (L̄U)2 → R

Theorem 6.3. For the bilinear function f of the form (34), we have

vex[ f ](x) = min

{
∑

ij∈E
aij M(Si, Sj)

∣∣∣∣∣ (S1, . . . , Sn) ∈ Z̄(x)

}
,

cav[ f ](x) = max

{
∑

ij∈E
aij M(Si, Sj)

∣∣∣∣∣ (S1, . . . , Sn) ∈ Z̄(x)

}

for all x ∈ T. In particular, for a polytope P ⊆ Rn(n+1)/2 with π[ f ](P) ⊆ X( f ), we have π[ f ](P) =
X( f ) if and only if for every x ∈ T there are sets (S1, . . . , Sn) ∈ Z̄(x) and (S′1, . . . , S′n) ∈ Z̄(x) with

∑
ij∈E

aij M(Si, Sj) = LBP[ f ](x),

∑
ij∈E

aij M(S′i , S′j) = UBP[ f ](x).

Proof. We observe that

∑
ξ∈F

µ̄U(L̄U
ξ (S1, . . . , Sn)) f (ξ) = ∑

ξ∈F
µ̄U(L̄U

ξ (S1, . . . , Sn)) ∑
ij∈E

aijξiξ j

= ∑
ij∈E

aij ∑
ξ∈F

µ̄U(L̄U
ξ (S1, . . . , Sn))ξiξ j

= ∑
ij∈E

aij M(Si, Sj).

Theorem 6.3 allows us to give compact representations for vex[ f ] and cav[ f ] over polytopal
domains. To do so, we need to design suitable sets S1, . . . , Sn ∈ Z̄ such that ∑ij∈E aij M(Si, Sj) is
minimized and S′1, . . . , S′n ∈ Z̄ such that ∑ij∈E aij M(S′i , S′j) is maximized, both for an arbitrary
point x ∈ Rn.

6.2.1 Convex-hull proofs for non-0/1 domain

Wecanuse Theorem6.3 to prove again that X( f ) for f (x1, x2) = x1x2 is given by theMcCormick-
inequalities. However, we will now do this over the bounds 0 ≤ x1 ≤ u1 and 0 ≤ x2 ≤ u2 for
u1, u2 ≥ 0 instead of the unit bounds as in Section 2.1. Let

P B
{
(x1, x2, z) ∈ R3 ∣∣ z ≤ u2x1, z ≤ u1x2, z ≥ 0, z ≥ u2x1 + u1x2 − u1u2

}
.
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The direction π[ f ](P) ⊆ X( f ) can easily be verified.
For the reverse direction, we conclude from

M(S1, S2) ≤ u1u2 min
{

1
u1

x1,
1
u2

x2

}
(35)

that cav[ f ](x) ≤ {(1/u1)x1, (1/u2)x2}, and with S1 = ([0, x1/u1), u1), S2 = ([0, x2/u2), u2)
this bound is attained for all x1 ∈ [0, u1], x2 ∈ [0, u2]. Therefore, the concave envelope is given
by z ≤ u2x1 and z ≤ u1x2. In a similar fashion, it follows from

M(S1, S2) ≥ u1u2 max
{

0,
1
u1

x1 +
1
u2

x2 − 1
}

(36)

that vex[ f ](x) ≥ max{0, (1/u1)x1 + (1/u2)x2 − 1}. By choosing the sets S1 = ([0, x1/u1), u1),
S2 = ([1− x2/u2, 1), u2)we can show that this bound is attained for all x1 ∈ [0, u1], x2 ∈ [0, u2].
Thus, the convex envelope is given by z ≥ 0 and z ≥ u2x1 + u1x2 − u1u2.

7 Conclusion

We have presented a vastly simplified framework for Zuckerberg’s geometric proof technique
for convex-hull results. By restating the method in terms of our notion of set characterizations,
we were able to accomplish several benefits. Firstly, we have identified three major strategies
one can pursue in Zuckerberg-type convex-hull proofs. This underlines the high flexibility
in devising algorithmic schemes the method offers. Secondly, we have significantly extended
the expressive power of Zuckerberg’s technique by basing it on a different underlying subset
algebra. It can now be used to characterize the convex hulls of general convex sets, including,
but not limited to integer polyhedra. Using this extension, we give characterizations of the
convex hull of Boolean and bilinear functions over polytopal domains. Finally, we have given
a variety of indicative examples for the use of our framework with the intention to convey the
ideas as hands-on as possible.

Wefind it a very interesting avenue for future research to develop further algorithmic strateg-
ies for Zuckerberg proofs and to extend the scope of those we have introduced. For example,
one could not only consider linear programs but pass to (mixed-)integer ones when following
the technique using feasibility subproblems. This might entail the consideration of minimally
infeasible subsystems to verify the set characterizations.

Altogether, we make a strong case for the canonization of Zuckerberg’s proof technique in
standard text books on integer programming and polyhedral combinatorics. We are certain it
will enable many more interesting convex-hull results in the future.

Acknowledgements

We thank Alexander Martin and Thomas Kalinowski for our fruitful discussions on the topic.
Futhermore, we acknowledge financial support by the Bavarian Ministry of Economic Affairs,
Regional Development and Energy through the Center for Analytics – Data – Applications
(ADA-Center) within the framework of “BAYERN DIGITAL II”.

References

[BGM20] Andreas Bärmann, Patrick Gemander, and Maximilian Merkert. The clique prob-
lemwithmultiple-choice constraints under a cycle-free dependency graph.Discrete
Applied Mathematics, 283:59–77, 2020.

31



[BGMM20] Andreas Bärmann, Patrick Gemander, Alexander Martin, and Max-
imilian Merkert. On recognizing staircase compatibility. http://www.
optimization-online.org/DB_FILE/2020/12/8138.pdf, 2020.

[BGMS18] Andreas Bärmann, Thorsten Gellermann, Maximilian Merkert, and Oskar
Schneider. Staircase compatibility and its applications in scheduling and piece-
wise linearization. Discrete Optimization, 29:111–132, 2018.

[BMS20a] Andreas Bärmann, Alexander Martin, and Oskar Schneider. The bipartite
boolean quadric polytope with multiple-choice constraints. http://www.
optimization-online.org/DB_FILE/2020/09/8033.pdf, 2020.

[BMS20b] Andreas Bärmann, Alexander Martin, and Oskar Schneider. Efficient formula-
tions and decomposition approaches for power peak reduction in railway traffic
via timetabling. Transportation Science, 2020. To appear.

[BS20] Andreas Bärmann and Oskar Schneider. Supplementary materials: Set character-
izations and convex extensions for geometric convex-hull proofs, 2020.

[BZ04] Daniel Bienstock andMark Zuckerberg. Subset algebra lift operators for 0-1 integer
programming. SIAM Journal on Optimization, 15(1):63–95, 2004.

[CRST06] Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong
perfect graph theorem. Annals of Mathematics, 164(1):51–229, 2006.

[GKRW20] AkshayGupte, ThomasKalinowski, Fabian Rigterink, andHamishWaterer. Exten-
ded formulations for convex hulls of some bilinear functions. Discrete Optimization,
36:100569, 2020.

[HK56] A. J. Hoffman and J. B. Kruskal. Linear Inequalities and Related Systems, chapter In-
tegral Boundary Points of Convex Polyhedra, pages 223–246. Princeton University
Press, 1956.

[HK20] Mitchell Harris and Thomas Kalinowski. Convex hulls for graphs of quadratic
functions with unit coefficients: Even wheels and complete split graphs. arXiv
preprint arXiv:2007.05656, 2020.

[Hoà87] Chính T Hoàng. Alternating orientation and alternating colouration of perfect
graphs. Journal of Combinatorial Theory, Series B, 42(3):264–273, 1987.

[KB77] Jakob Krarup and Ole Bilde. Numerische Methoden bei Optimierungsaufgaben: Opti-
mierung bei graphentheoretischen und ganzzahligen Problemen, volume 3, chapter Plant
Location, Set Covering and Economic Lot Size: An O(mn)-Algorithm for Struc-
tured Problems, pages 155–180. Birkhäuser Basel, 1977.

[LM16] Frauke Liers and Maximilian Merkert. Structural investigation of piecewise lin-
earized network flow problems. SIAM Journal on Optimization, 26(4):2863–2886,
2016.

[LS91] László Lovász and Alexander Schrijver. Cones of matrices and set-functions and
0–1 optimization. SIAM Journal on Optimization, 1(2):166–190, 1991.

[Pad89] Manfred Padberg. The boolean quadric polytope: some characteristics, facets and
relatives. Mathematical programming, 45(1-3):139–172, 1989.

[PW06] Yves Pochet and Laurence A.Wolsey. Production Planning byMixed Integer Program-
ming. Springer, 2006.

32

http://www.optimization-online.org/DB_FILE/2020/12/8138.pdf
http://www.optimization-online.org/DB_FILE/2020/12/8138.pdf
http://www.optimization-online.org/DB_FILE/2020/09/8033.pdf
http://www.optimization-online.org/DB_FILE/2020/09/8033.pdf


[SLL13] Srikrishna Sridhar, Jeff Linderoth, and James Luedtke. Locally ideal formulations
for piecewise linear functions with indicator variables. Operations Research Letters,
41(6):627–632, 2013.

[SZ15] Christoph Schwindt and JürgenZimmermann, editors.Handbook on Project Schedul-
ing (Vol. 1 + Vol. 2). Springer, 2015.

[Zuc04] Mark Zuckerberg. A Set Theoretic Approach to Lifting Procedures for 0, 1 Integer Pro-
gramming. PhD thesis, Columbia University, 2004.

[Zuc16] Mark Zuckerberg. Geometric proofs for convex hull defining formulations. Oper-
ations Research Letters, 44(5):625–629, 2016.

8 Online supplement

In this online supplement, we give several further convex-hull proofs as examples for our
concept of set characterizations and our convex extension of Zuckerberg’s proof scheme in prac-
tice.

We start by giving further examples of convex-hull proofs using the greedy proof strategy
from Section 3.1. In Section 8.1, we consider CPMC under staircase compatibility, which is
a second polynomial-time solvable subcase of CPMC. Then we treat the stable-set problem
on bipartite graphs in Section 8.2. This is followed by two further examples for the use of
our extended Zuckerberg proof scheme in mixed-integer problems. These are mixed-integer
models for piecewise linear functions in Section 8.3 and the total unimodularity of interval
matrices in Section 8.4. Finally, in Section 8.5, we give the proof for Theorem6.1 fromSection 6.1.

8.1 CPMC under staircase compatibility

Staircase compatibility is a special case of CPMC which arises especially in scheduling applic-
ations with precedence constraints (see e.g. [SZ15, BMS20b]), but also when considering flow
problemswith piecewise linear costs, for example ([LM16]). Here, each subset of nodes Vi ∈ V
is equipped with a total order <i, which we assume to be the case in the following.

Definition 8.1. (Subgraphs Gij, staircase ordering, staircase partition) For any two subsets Vi, Vj ∈ V
with i 6= j, we write

Gij B (Vi ∪Vj, Eij)

for the subgraph of G induced by Vi ∪ Vj, where Eij is the corresponding edge set. Note that all sub-
graphs Gij are bipartite.

For simplicity, we refer to the set {<1, . . . ,<m} of total orders as an ordering on G if V is clear from
the context. An ordering on G is staircase if for all subgraphs Gij of G the two conditions

u ∈ Vi ∧ v1 <j v2 <j v3 ∈ Vj ∧ {u, v1}, {u, v3} ∈ Eij

⇒ {u, v2} ∈ Eij,
(SC1)

u1 <i u2 ∈ Vi ∧ v1 <j v2 ∈ Vj ∧ {u1, v2}, {u2, v1} ∈ Eij

⇒ {u1, v1}, {u2, v2} ∈ Eij
(SC2)

hold. We call V staircase if there exists a staircase ordering on V .

Condition (SC1) ensures that the neighbourhoods of all vertices are continuous with re-
spect to the total order, whereas (SC2) yields a kind of monotonicity on the edge set Eij. The
two conditions are illustrated in Figure 13. The name staircase compatibility ismotivated by the
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Figure 13: Illustration of the two staircase conditions (SC1) (left) and (SC2) (right). If the solid
edges are contained in the graph, the dashed ones must be contained as well.

fact that the node adjacency matrices corresponding to the bipartite graphs Gij feature a com-
pletely dense staircase form if the rows and columns are arranged according to the orders <i
and <j. The term completely dense refers to the ones in each row forming a consecutive block
not interrupted by any zeroes. It is easy to see that (SC1) is implied by (SC2) if Gij does not
contain vertices with degree zero. The problem of recognizing the partition V to be staircase is
addressed in [BGMM20].

As the authors of [BGMS18] have shown, the CPMC polytope can be represented via a
totally unimodular system of polynomial size if the considered instance of CPMC has the stair-
case property. In the following, we will give an alternative, shorter proof for their convex-hull
result by using Zuckerberg’s method. To facilitate notation, let min(v, Vj) B min{w ∈ Vj |
{v, w} ∈ E} denote the smallest element in Vj which is compatible to a given v ∈ V \Vj.

Theorem 8.2. ([BGMS18, Proposition 3.2 + Theorem 3.4]) Let P(G,V) be the CPMC polytope as
introduced in Theorem 3.2. If the partition V is staircase, then P(G,V) is completely described by the
constraints

∑
v∈Vi

xv = 1 ∀Vi ∈ V , (37)

∑
u∈Vi :
u≥iv

xu ≤ ∑
w∈Vj :

w≥jmin(v,Vj)

xw ∀Vi ∈ V , ∀v ∈ Vi, ∀Vj ∈ V , j 6= i, (38)

x ≥ 0. (39)

Moreover, the constraint matrix of system (37) to (39) is totally unimodular.

Proof. First, observe that any x ∈ P(G,V) fulfils constraints (37) and (39) by definition. It also
fulfils constraint (38) as the left-hand side it produces is never bigger than 1 and choosing some
node in a set Vi ∈ V requires the choice of a compatible element in all other Vj ∈ V .

To prove the convex-hull property, let h ∈ R
|V| be a point fulfilling (37) to (39). We

define a subset Sv ⊆ U for each node v ∈ V as described in routine Define-CPMCS-Subsets
in Figure 14. Observe that the subroutine Match precisely sets these subsets such that Sv =
[∑u∈Vi :u<iv xu, ∑u∈Vi :u≤iv xu] holds for all v ∈ Vi, Vi ∈ V . Now consider an arbitrary sub-
graph Gij of G. Constraint (37) then ensures

⋃
v∈Vi

Sv =
⋃

w∈Vj
Sw = 1. Further, (38) implies⋃

u∈Vi : u≥iv Su ⊆
⋃

w∈Vj : w≥jmin(v,Vj) Sw for all v ∈ Vi.
Finally, the total unimodularity is shown in [BGMS18, Theorem 3.4].

8.2 The stable-set problem on a bipartite graph

We briefly recapitulate an example from [Zuc16], namely a proof that the stable-set problem
on a bipartite graph G = (V, E) is completely described by the stable-set inequalities. Our
framework of set characterizations allowsus to present it in amore concise form thanpreviously
possible.
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1: function Define-CPMCS-Subsets
2: for Vi ∈ V do
3: Let (i1, . . . , ip) be the ordering of the elements in Vi according to <i
4: (Si1 , . . . , Sip) BMatch([0, 1), (hi1 , . . . , hip))
5: end for
6: end function

Figure 14: Routine Define-CPMCS-Sets

Theorem 8.3. Let P(G) B {x ∈ {0, 1}|E| | (15)} be the stable-set polytope, and let H(G) B {x ∈
[0, 1]|E| | (15)} be its stable-set relaxation. Then we have P = H.

Proof. It is obvious that P ⊆ H. For the converse, we consider the set characterization of (15)
given by

Si ∩ Sj = ∅ ∀(i, j) ∈ E. (40)

Further, let U and W be the two bipartite subsets of V. For each point h ∈ H, we then need to
find sets Se for all e ∈ E for each point h ∈ H such that µ(Se) = he and the above condition
holds. These sets are defined in routineDefine-Bipartite-Stable-Sets-Subsets given in Figure 15.
It is apparent that the so-defined sets satisfy µ(Se) = he for all e ∈ E. Due to (15), they do not
overlap for any edge e ∈ E and thus satisfy (40). Altogether, we have proved H ⊆ P.

8.3 Piecewise linear functions

Wewill now use our convex extension of Zuckerberg’s method to reprove the integrality of two
polytopes modelling the convex hull a graph of a one-dimensional piecewise linear function.
This is another example which shows that the method is well suited to prove results for the
convex-hull of a mixed-integer set in many cases. In our overview over the two models, we
follow [SLL13].

We consider a continuous, piecewise linear function

f : [B0, Bn]→ R, f (x) = mix + bi, if x ∈ [Bi−1, Bi] ∀i ∈ {1, . . . , n},

where we assume B0 = 0, Bn > 0, f (0) = 0 and B0 < . . . < Bn for the breakpoints of f .
Let Fi B f (Bi) for all i ∈ {0, . . . , n}. We are now interested in describing the polytope P B
conv{(Bi, Fi) | i ∈ {0, . . . , n}}. In the literature, there are many well-known mixed-integer-
programming (MIP) formulations for P (see [SLL13] for an overview). An MIP formulation
is called locally ideal if the vertices of the linear programming (LP) relaxation satisfies all integ-
rality requirements and SOS2 properties. For the multiple-choice method and the incremental
method, we prove via Zuckerberg’s method that they are locally ideal.

8.3.1 Multiple-choice method

The multiple-choice method (MCM) (also called lambda or SOS2 method) introduces variables
x ∈ R and y ∈ R for the x- and y-coordinates of the graph of f respectively. Further, we
need an auxiliary variable z ∈ {0, 1} and a set of variables λ ∈ Rn+1

+ which satisfies the SOS2
property. This means that at most two of the λ-variables can be positive, and if two of them are
positive, the two must be adjacent in the order of the vector. The model then introduces the
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1: function Define-Bipartite-Stable-Set-Subsets
2: for each u ∈ U do
3: Su B [0, hu)
4: end for
5: for each w ∈W do
6: Sw B [1− hw, 1)
7: end for
8: end function

u1

u2

u3

w1

w2

w3

0 1

Su1

Su2

Su3

Sw1

Sw2

Sw3

Figure 15: Routine Define-Bipartite-Stable-Set-Subsets (top), exemplary graph with 6 nodes
(bottom left) and possible output of the routine for the point given by hu = (0.6, 0.3, 0.2) and
hw = (0.4, 0.2, 0.6). The point h can bewritten as a convex combination of six stable sets, namely
{u1, u2, u3}, {u1, u2}, {u1}, {u1, w3}, {w1, w3} and {w1, w2, w3}, each one marked with same
colour (bottom right).

following constraints:

x =
n

∑
i=1

Biλi, (41)

y =
n

∑
i=1

Fiλi, (42)

z =
n

∑
i=1

λi. (43)

The MCM polytope is then given by

P B conv

{
(x, y, z, λ) ∈ R×R× {0, 1} ×Rn+1

+

∣∣∣∣∣ (41) to (43),
λ is SOS2.

}
.

Its linear relaxation is

H B

{
(x, y, z, λ) ∈ R×R× [0, 1]×Rn+1

+

∣∣∣∣∣ (41) to (43),
λi ≥ 0 ∀i ∈ [n]

}
.

We now show that the two coincide.

Theorem 8.4. We have H = P. Further, H is integral, which means that MCM is locally ideal.
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Proof. We first translate the constraints defining P into the set characterizations

φ̄U(Sx, t) =
n

∑
i=1

Biφ̄
U(Sλi , t) ∀t ∈ U, (44)

φ̄U(Sy, t) =
n

∑
i=1

Fiφ̄
U(Sλi , t) ∀t ∈ U, (45)

φ̄U(Sz, t) =
n

∑
i=1

φ̄U(Sλi , t) ∀t ∈ U, (46)

φ̄U(Sz, t) ≤ 1 ∀t ∈ U, (47)
φ̄U(Sλi , t) ≥ 0, ∀i ∈ [n], ∀t ∈ U. (48)

For a given point h = (hx, hy, hz, hλ) ∈ H, the set construction is given in routineDefine-MCM-
Subsets in Figure 16. The routine first initializes Shx and Shy as empty sets. It then iterates over

1: function Define-SOS2-Subsets
2: Sx ← ∅
3: Sy ← ∅
4: for i ∈ [n] do
5: I ← [∑i−1

j=1 hλj , ∑i
j=1 hλj)

6: Sλi ← (I, 1)
7: Sx ← Sx ∪ (I, Bi)
8: Sy ← Sy ∪ (I, Fi)
9: end for
10: Sz ← ([0, hz), 1)
11: return Sx, Sy, Sz
12: end function

Figure 16: Routine Define-SOS2-Sets

all segments i ∈ [n]. Lines 5 and 6 place the sets for the λ-variables next to each other. Together
with Line 10 this ensures that (46) to (48) are fulfilled. In Lines 7 and 8, we iteratively construct
the sets for hx by adding rectangles of width I and height Bi. Similarly, we define the sets for hy
by adding rectangles ofwidth I and height Fi. This ensures that (44) and (45) hold. It can easily
be checked that the sets have the required measures, i.e. we have µ̄U(Sx) = hx, µ̄U(Sy) = hy,
µ̄U(Sz) = hz and µ̄U(Sλi) = hλi for all i ∈ [n]. As conv(P) ⊆ H is obvious, we can invoke
Theorem 4.1 and thus conclude H = P.

For each t ∈ U, there exists at most one i ∈ [n] such that y(Sλi , t) = 1 holds. This shows that
the vertex associated with t via the mapping ϕ has at most one λ-coordinate set to 1 and the
others to 0 or all coordinates set to 0 and the z-coordinate is at either 0 or 1. We can conclude
that all vertices of H satisfy the integrality and SOS2 requirements in the definition of P.

8.3.2 Incremental method

The incremental method (IM) (or delta method) also has variables x ∈ R and y ∈ R for the x-
and y-coordinates of the graph of f . Further, it introduces an auxiliary variable z ∈ {0, 1} and
two ordered sets of variables δ ∈ Rn and b ∈ {0, 1}n−1. They are coupled via the following
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1: function Define-Incremental-Subsets
2: Sx ← ∅
3: Sy ← ∅
4: for i ∈ [n] do
5: Sδi ← ([0, hδi), 1)
6: Sx ← Sx ∪ ([hδi+1 , hδi), ∑i

j=1(Bj − Bj−1)hδj)

7: Sy ← Sy ∪ ([hδi+1 , hδi), ∑i
j=1(Fj − Fj−1)hδj)

8: end for
9: Sz ← ([0, hz), 1)
10: for i ∈ [n− 1] do
11: Sbi ← ([0, hbi), 1)
12: end for
13: return Sx, Sy, Sz, Sb1 , . . . , Sbn−1

14: end function

Figure 17: Routine Define-Incremental-Subsets

constraints:

x =
n

∑
i=1

(Bi − Bi−1)δi (49)

y =
n

∑
i=1

(Fi − Fi−1)δi (50)

δ1 ≤ z (51)
0 ≤ δn (52)

δi+1 ≤ bi ≤ δi ∀i ∈ [n− 1]. (53)

The IM polytope is then given given by

P B conv
{
(x, y, z, δ, b) ∈ R×R× {0, 1} ×Rn × {0, 1}n+1

∣∣∣ (49)to (53)
}

,

and its linear relaxation is

H B
{
(x, y, z, δ, b) ∈ R×R× [0, 1]×Rn × [0, 1]n+1

∣∣∣ (49)to (53)
}

.

Theorem 8.5. We have H = P. Further, H is integral, which means that IM is locally ideal.

Proof. The set characterizations corresponding to the constraints of P read

φ̄U(Sx, t) =
n

∑
i=1

(Bi − Bi−1)φ̄
U(Sδi , t) ∀t ∈ U, (54)

φ̄U(Sy, t) =
n

∑
i=1

(Fi − Fi−1)φ̄
U(Sδi , t) ∀t ∈ U, (55)

φ̄U(Sδ1 , t) ≤ φ̄U(Sz, t) ∀t ∈ U, (56)
0 ≤ φ̄U(Sδn , t) ∀t ∈ U, (57)

φ̄U(Sδi+1 , t) ≤ φ̄U(Sbi , t) ≤ φ̄U(Sδi , t) ∀i ∈ [n− 1], t ∈ U. (58)

For a given point h = (hx, hy, hz, hλ) ∈ H and hδn+1 B 0, the set construction is given in routine
Define-Incremental-Sets in Figure 17. We first initialize Sx and Sy as empty sets. Then we
iterate over all segments i ∈ [n] and place for each of them the rectangle [0, hδi) with a height
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of 1 in Line 5. This ensures (57). From (53) it follows that hδi+1 ≤ hδi holds for all i ∈ [n− 1].
Together with the steps in Lines 10–12 we ensure that (58) is satisfied and the width of the
rectangle defined in Lines 6–7 is non-negative. Its height is chosen such that (54) and (55) are
satisfied. In Line 9, Sz is set in such a way that (56) holds.

It can easily be verified that the sets have the requiredmeasures, i.e. µ̄U(Sx) = hx, µ̄U(Sy) =
hy, µ̄U(Sz) = hz, µ̄U(Sδi) = hδi for all i ∈ [n] and µ̄U(Sbi) = hbi for all i ∈ [n − 1]. Further,
P ⊆ HINC is obvious. Thus, we can use Theorem 4.1 to conclude P = H.

For each t ∈ U, there exists at most one i ∈ [n] such that y(Sλi , t) = 1. Therefore, the vertex
associated with t via the mapping ϕ̄U has all b-coordinates equal to either 0 or 1, and the same
holds for the z-coordinate. This means that all vertices satisfy the integrality requirements in
the definition of P.

8.4 Total unimodularity of interval matrices

A matrix A ⊆ {0, 1}n×m is called an interval matrix if the 1-entries in each row are consecutive.
Let A be such a matrix, and let b ∈ Zn. For each i ∈ [n], we introduce a variable xi ∈ R+. We
then consider the system Ax ≤ b, which we write constraint-wise:

∑
i∈[n]: Aij=1

xi ≤ bj ∀j ∈ [m]. (59)

In this setting, we can reprove the total unimodularity of A via Hoffman’s and Kruskal’s the-
orem.
Theorem 8.6. Let P B conv{x ∈ N|E| | (59)}, and let H B {x ∈ R|E|+ | (59)}. Then we have
H = P.
Proof. Clearly, we have P ⊆ H. In order to prove the converse, we transform constraint (59)
into a set characterization, namely

∑
i∈[n]: Aij=1

φ̄U(Si, t) ≤ bj ∀j ∈ [m], ∀t ∈ U. (60)

We assume bj ≥ 0 for all j ∈ [m], since otherwise the polytope is empty. For each point h ∈ H,
we next need to find sets Si for all i ∈ [n] such that µ̄U(Si) = hi and the above conditions
hold. The sets are defined in routineDefine-interval-matrices-Subsets given in Figure 18. From

1: function Define-interval-matrices-Subsets
2: t← 0
3: for i = 1, . . . , n do . Process elements in the order of the columns
4: (I, t)← o(t, hi − bhic)
5: Si B ([0, 1), bhic) ∪ (I, 1)
6: end for
7: end function

Figure 18: Routine Define-interval-matrices-Subsets

the above construction, it is apparent that for each h ∈ H the corresponding sets satisfy (60),
because they are placed in consecutive order. Thus, we have proved H ⊆ P.

The desired result is now a consequence of Theorems 5.2 and 8.6.
Corollary 8.7. Let A be an interval matrix. Then A is totally unimodular.
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8.5 Proof of Theorem 6.1

In order to prove Theorem 6.1, we first need to characterize the convex hull of the graph of f .
To this end, we define the two functions ψ−, ψ+ : T → R via

ψ−(x) = min

{
∑

ξ∈F
µ(Lξ(S1, . . . , Sn)) f (ξ)

∣∣∣∣∣ (S1, . . . , Sn) ∈ Z(x)

}
,

ψ+(x) = max

{
∑

ξ∈F
µ(Lξ(S1, . . . , Sn)) f (ξ)

∣∣∣∣∣ (S1, . . . , Sn) ∈ Z(x)

}
.

Recall that we assume F ⊆ {0, 1}n in this case.
Lemma 8.8. For every function f : F → R with F ⊆ {0, 1}n, we have

X( f ) = { (x, z) ∈ T ×R | ψ−(x) ≤ z ≤ ψ+(x) } .

Proof. First, assume (x, z) ∈ X( f ), which implies

(x, z) =
|F |

∑
k=1

λk(ξ
k, f (ξk))

for some λk ≥ 0 for k = 1, . . . , |F| with ∑|F|k=1 λk = 1 and ξ1, . . . , ξk is a fixed ordering of F . For
the partition U = I1 ∪ . . . ∪ I|F | with I1 = [0, λ1) and Ik = [λ1 + . . . + λk−1, λ1 + . . . + λk) for
k ∈ {2, . . . , |F |}, we set

Si =
⋃

k: ξk
i 6=0

Ik.

For k = 1, . . . , |F |, we have LU
ξk(S1, . . . , Sn) = Ik, and, as a consequence, µU(LU

ξk(S1, . . . , Sn)) =

λk. With

z =
|F |

∑
k=1

λkψ(ξk) =
|F |

∑
k=1

µU(LU
ξk(S1, . . . , Sn))ψ(ξ

k),

it follows that ψ−(x) ≤ z ≤ ψ+(x).
For the converse, assume ψ−(x) ≤ z ≤ ψ+(x) and let (S1, . . . , Sn) as well as (S′1, . . . , S′n) be

optimizers for the problems defining ψ−(x) and ψ+(x) respectively. We write z = tψ−(x) +
(1− t)ψ+(x) for some t ∈ [0, 1] and set

λ(ξ) = tµU(LU
ξ (S1, . . . , Sn)) + (1− t)µU(LU

ξ (S
′
1, . . . , S′n))

for all ξ ∈ F . This way we obtain the required representation of (x, z) as the convex combina-
tion

(x, z) = ∑
ξ∈F

λ(ξ)(ξ, ψ(ξ)).

We can then state the proof as follows.

of Theorem 6.1. We observe

∑
ξ∈F

µ(Lξ(S1, . . . , Sn)) f (ξ) = ∑
ξ∈F

µ(Lξ(S1, . . . , Sn))
k

∑
i=1

aiΨi(ξ1, . . . , ξn)

=
k

∑
i=1

ai( ∑
ξ∈F

µ(Lξ(S1, . . . , Sn)Ψi(ξ1, . . . , ξn))

= ∑
i∈[k]

aiΩ(S1, . . . , Sn, Ψi).

40


	1 Introduction
	2 Geometric convex-hull proofs for 0/1-polytopes
	2.1 Connection between set characterization and algorithmic set construction
	2.2 Non-uniqueness of set representations
	2.3 Connection to the original method

	3 Set characterizations and proof strategies for binary problems
	3.1 The greedy strategy
	3.2 Zuckerberg proofs via feasibility subproblems
	3.3 The transformation strategy

	4 Extensions of Zuckerberg's method for general convex sets
	4.1 Convex-hull proofs using interior points
	4.2 Convex-hull proofs for unbounded polyhedra
	4.3 Convex-hull proofs for non-linear convex sets

	5 Set characterizations for integer problems
	5.1 Convex-hull proofs for mixed-integer problems
	5.2 Showing total unimodularity via Zuckerberg's method

	6 Extensions of Zuckerberg's method for graphs of functions
	6.1 Extension for boolean functions over 0/1-polytopes
	6.1.1 Convex-hull proofs for polytopal domain
	6.1.2 Convex-hull proofs for general functions

	6.2 Extension for bilinear functions over general polytopes
	6.2.1 Convex-hull proofs for non-0/1 domain


	7 Conclusion
	8 Online supplement
	8.1 CPMC under staircase compatibility
	8.2 The stable-set problem on a bipartite graph
	8.3 Piecewise linear functions
	8.3.1 Multiple-choice method
	8.3.2 Incremental method

	8.4 Total unimodularity of interval matrices
	8.5 Proof of cor:setinterpretation3


