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Abstract

We describe a finite-horizon partially observable Markov decision process (POMDP) approach to
optimize decisions about whether and when to perform biopsies for patients on active surveillance
for prostate cancer. The objective is to minimize a weighted combination of two criteria, the num-
ber of biopsies to conduct over a patient’s lifetime and the delay in detecting high-risk cancer that
warrants more aggressive treatment. Our study also considers the impact of parameter ambigu-
ity caused by variation across models fitted to different clinical studies and variation in the weights
attributed to the reward criteria according to patient preferences. We introduce two fast approxima-
tion algorithms for the proposed model and describe some properties of optimal policies, including
the existence of a control-limit type policy. The numerical results show that our approximations
perform well, and we use them to compare the model-based biopsy policies to published guidelines.
Although our focus is on prostate cancer active surveillance, there are lessons to be learned for
applications to other chronic diseases.

Keywords: Decision process, Medical decision making, OR in medicine, Partially observable
Markov decision process, Prostate cancer

1. Introduction

Prostate cancer is the most common cancer in men. The American Cancer Society estimates
that almost 250,000 new prostate cancer cases and more than 34,000 deaths will occur in the
United States in 2021. Over the last decade, it has become clear that men with low-risk variants of
prostate cancer can safely avoid major treatment like surgery and radiation therapy, which may have
significant side effects including incontinence and erectile dysfunction (Anandadas et al., 2011). For
this reason, active surveillance (AS) has recently become the recommended approach for patients
with low-risk prostate cancer. AS involves monitoring patients over time to test for evidence of
cancer progression to a high-risk variant of the disease. This allows low-risk cancer patients to
enjoy a higher quality of life and possibly avoid treatment altogether (Klotz, 2013).
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AS involves regular testing to monitor a patient’s health status. The prostate-specific antigen
(PSA) test is a simple blood test in AS that measures PSA amount in the blood serum. High PSA
is associated with the presence of prostate cancer. Because the PSA test is very simple with almost
no harm, it is commonly used; but high false-positive and negative rates make it unsuitable for
AS on its own. Prostate biopsy is the gold standard for AS, which involves sampling tissue with
hollow-core needles during an outpatient procedure. Biopsy results are reported using the Gleason
grading system, where a Gleason score is assigned by a pathologist to provide a measure of severity
of the prostate cancer. Biopsy is much more accurate than the PSA test, but it is still prone to
false-negative results if the extracted tissue samples miss the tumor. Biopsies are also very painful,
and have potential side effects. Thus, decisions about when to perform biopsies are among the most
important decisions for AS.

Unfortunately, there is a lack of consensus among urologists on the best biopsy policy. As one of
the first healthcare centers to investigate AS, Johns Hopkins (JH) recommended annual biopsies for
patients enrolled in AS (Tosoian et al., 2011). A more recent study conducted by the University of
California San Francisco (UCSF) medical center recommends biopsy every two years after diagnosis
(Dall’Era et al., 2008). A study at the University of Toronto (U of T) medical center and another
European study, the Prostate Cancer Research International Active Surveillance (PRIAS) project,
recommend biopsy every three years after diagnosis for patients enrolled in AS (Klotz et al., 2009;
Bul et al., 2013).

Deciding the optimal biopsy policy is challenging because: 1) the patient’s cancer state is not
directly observable due to the inaccuracy of diagnostic tests; 2) cancer progression is a stochastic
process; 3) patient preferences about how often to biopsy vary. To address these challenges, we for-
mulated a finite-horizon two-state partially observable Markov decision process (POMDP) model
to optimize the biopsy policy for AS using data from the four largest and most well known AS
studies referenced above. POMDPs are well suited to this type of optimization problem because the
decision-makers (physicians and patients) need to make decisions under conditions of uncertainty
about the underlying health state, which progresses stochastically over time, and can only be par-
tially observed from PSA test and biopsy results. Our model seeks to find the optimal biopsy policy
that trades off two competing criteria: expected delays in detecting high-risk prostate cancer and
the expected number of biopsies.

POMDP models are usually very hard to solve over long time horizons because of the curse of
history (Pineau et al., 2003). Moreover, the model must be solved multiple times, as we will show
in this study, to account for ambiguity in the reward function and the underlying stochastic system
associated with each of the cohorts mentioned above. For this reason, we present fast approximation
methods that can quickly compute near-optimal solutions. We compare our model-based policies,
solved via the approximation methods, to established biopsy guidelines from the literature. We
further use inverse optimization to estimate ranges of the implied decision-maker’s weights on the
two reward criteria. Finally, we combine the results for each of the cohorts to compute a risk-based
policy region that partitions the region into three parts: 1) biopsy always recommended; 2) biopsy

2



never recommended; 3) shared decision-making between the patient and physician is necessary to
decide if a biopsy should be performed.

The remainder of this article is organized as follows. In Section 2, we review the relevant
literature and describe our contributions to the literature. In Section 3, we formulate our active
surveillance POMDP (AS-POMDP) model to optimize the biopsy policy in prostate cancer AS. We
describe the exact solution method and two approximation methods for the AS-POMDP model in
Section 4, and prove some structural properties of the AS-POMDP model in Section 5. In Section
6, we present the results of optimal policies in our case study. Finally, we conclude in Section 7 and
discuss some potential directions for future research.

2. Literature Review

In this section, we briefly review the most relevant literature from the application and method-
ological perspectives. We then summarize our main contributions in light of the existing literature.

2.1. Applications

Much clinical research has been done in recent years to study prostate cancer AS. Several review
articles, including Bastian et al. (2009); Klotz (2010); Dall’Era et al. (2012) and Thomsen et al.
(2014), have discussed the clinical implication of prostate cancer AS with the focus on inclusion cri-
teria, biopsy guidelines, patient outcomes, and future research needed. The urology community has
largely converged on the appropriateness of AS for patients with low-risk cancer. However, different
centers have proposed different AS guidelines, which vary most significantly in the recommended
frequency of biopsies (Dall’Era et al., 2008; Klotz et al., 2009; Tosoian et al., 2011; Bul et al., 2013).

Epstein et al. (2012) presented results for predictive risk factors for outcomes of radical prosta-
tectomy, which were instrumental in laying the framework for selection criteria for AS enrollment.
More recently Coley et al. (2017) built a Bayesian hierarchical model to estimate the sensitivity
and specificity of biopsy, and predict the latent cancer states in the JH study, while assuming no
cancer progression. Barnett et al. (2018a) estimated a hidden Markov model to estimate the biopsy
accuracy and cancer progression rate implied by observed data in the JH study. They further com-
pared different biopsy guidelines using a simulation model based on the hidden Markov model. A
recent study by Li et al. (2020) used a hidden Markov model to estimate the cancer progression
rate, biopsy under-sampling error, and PSA distribution in the four largest AS cohorts, including
JH hospital, UCSF medical center, U of T medical center, and the PRIAS project. The descriptive
models given by this study provide the foundation for the prescriptive POMDP models we present
here.

POMDP models have been found to be successful in recent decades for optimizing medical deci-
sions when the health state is not directly observable. POMDP models applied to clinical decision-
making include the study of screening based on mammography for breast cancer (Simmons Ivy
et al., 2009; Ayer et al., 2012, 2016; Otten et al., 2020), colonoscopy screening for colorectal cancer
(Erenay et al., 2014), and liver transplantation decisions in the context of liver disease (Sandıkçı
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et al., 2013). The most related work to ours – and the only other work on POMDPs for prostate
cancer that we are aware of – is that of Zhang et al. (2012a) and Zhang et al. (2012b), which used a
POMDP model to optimize the one-time biopsy policy (i.e., the best timing for biopsy if only one
biopsy is allowed) in prostate cancer screening. Their work focused on screening of healthy patients
who are asymptomatic, the vast majority of whom receive at most one biopsy. Thus, their model
can be viewed as an optimal stopping time problem, as opposed to AS that involves a continuous
process of sequential follow-up biopsies.

2.2. Methodology Literature

POMDP models were first studied by Åström (1965); Drake (1962) and Smallwood & Sondik
(1973), and they have been applied in many contexts including machine maintenance (Ross, 1971),
robot navigation (Cassandra et al., 1996), healthcare (Ayer et al., 2012; Zhang et al., 2012a; Erenay
et al., 2014), and many others (see Cassandra (1998) for a survey). Smallwood & Sondik (1973)
introduced the first exact solution method, referred to as the one-pass algorithm, for finite-horizon
POMDP models. White (1991) and Littman et al. (1995) later proposed the more efficient witness
algorithm that achieves computational efficiency through a refined approach for identifying the
supporting hyperplanes that define the optimal value function. Zhang & Liu (1996) and Cassandra
et al. (1997) introduced the incremental pruning algorithm, which has been found to be one of
the most efficient exact algorithms for a number of problems. Despite its utility for real world
applications, solving POMDP models exactly has been shown to be NP-hard, and in PSPACE
(Vlassis et al., 2012), due to the so-called curse of dimensionality (Kaelbling et al., 1998) and curse
of history (Pineau et al., 2003).

Many approximation methods for the POMDP model have been studied in the past several
decades. An early survey by Lovejoy (1991) discussed exact solution methods for finite-horizon
POMDP models in theory, and their finite-memory and finite-grid approximations. Kaelbling et al.
(1998) explored function-approximation methods for approximating the value function of POMDP
models. Hauskrecht (2000) surveyed various value-function approximation methods for infinite-
horizon problems in the application of agent navigation, analyzed their properties and relations, and
also presented some novel approximation methods and refinements of existing methods. Unlike the
finite-horizon problem, the infinite-horizon POMDP assumes a stationary (i.e., time-independent)
value function, with the discounting factor for future rewards being strictly less than one. Pineau
et al. (2003) formally defined the point-based value iteration (PBVI) algorithm for infinite-horizon
POMDPs, and proved the estimation error is bounded. Spaan & Vlassis (2005) introduced the
Perseus algorithm, which is closely related to PBVI. A more recent survey of point-based POMDP
solvers for infinite-horizon problems was published by Shani et al. (2013). Although there were a
number of instances where the existing approximation methods were found to be efficient, the issues
of finding the best upper bound of the value function with a guaranteed error bound, especially in
finite-horizon problems, can easily become intractable and remains unsolved.

Another topic of interest in the literature has been establishing monotonicity of optimal policies,
since such policies can be easier to understand and implement, and maybe easier to solve. Ross
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(1971) first investigated the monotonicity of the optimal policy in a two-state production process
described by a POMDP model. Albright (1979) proved the sufficient conditions for the monotonicity
of the optimal policy in a two-state POMDP with the restriction that the actions are taken to
improve, rather than investigate the system. Other works include White (1979), Lovejoy (1987),
and Miehling & Teneketzis (2020), which generalized this property to models with more than two
states by defining the partial order of the belief.

References Topic How it differs from our work

Simmons Ivy et al. (2009)
Screening and treatment
for breast cancer

Built a simulation method to evaluate policies using the
POMDP model instead of solving for optimal policies.

Ayer et al. (2012)
Screening for
breast cancer

The proposed POMDP model was to improve patients’ QALYs.
The optimal value function was monotone in belief. Only considered
exact solution methods, which took more than 55 hours for a single model.

Zhang et al. (2012a) Screening for prostate cancer
The objective was to improve patients’ QALYs. Assumed one-time decision
because patients could have at most one biopsy.

Sandıkçı et al. (2013)
Liver transplantation for
liver disease

The objective was to improve patients’ QALYs. The model had monotone
optimal value function. Considered an approximate solution method that
incorporated solving an LP at each decision epoch, without a bound
on approximation error.

Erenay et al. (2014) Screening for colorectal cancer The proposed POMDP model was to improve patients’ QALYs

Ayer et al. (2016)
Screening for breast cancer
with imperfect adherence behavior

Similar model setting as in Ayer et al. (2012), but incorporates
adherence behavior to policies. Only considered exact solution method,
which took more than 153 hours for a single model.

Otten et al. (2020)
Post-treatment screening for
breast cancer

Similar model setting as in Ayer et al. (2012), but the state space
was continuous. Optimized the mammography decision within
10-year follow-up after treatment.

Table 1: Previous work on POMDP models for medical decision-making. All but Zhang et al. (2012a) are in different
disease contexts. All have different model structures in terms of states, actions, and optimality equations.

2.3. Contributions to the Literature

Our work makes a novel contribution to the literature in several ways. First, we propose the
first model to optimize individualized biopsy policies for prostate cancer AS patients. Our study
has a model structure that differs from many previously formulated POMDPs, including −− but
not limited to −− those arising in clinical contexts that are summarized in Table 1. We describe
the approach we used to formulate this complex clinical problem, which is naturally expressed
as a two-state POMDP, and then we evaluate the model using observational data from the four
most well-known studies of AS thus far. Second, we analyze the model to provide theoretical
insight into the structure of the optimal policy. We also discuss the relationship between model-
based dynamic policies that learn based on observed data acquired as patients age, such as our
POMDP model provides, and static pre-defined policies that have been recommended in the clinical
literature. Third, we provide a means to consider the impact of ambiguity caused by variation
across models fitted to different clinical studies as well as variation in the reward criteria. Finally,
our work collectively demonstrates the full spectrum of using clinical study data directly to estimate
and solve POMDP models for an important medical decision-making problem affecting many men
worldwide.
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3. POMDP Model Formulation

In this section, we describe the discrete-time finite-horizon POMDP model we use to optimize
the policy for prostate cancer AS. As noted in the introduction, the objectives are minimizing 1)
expected delay in detection of high-risk prostate cancer; 2) expected number of lifetime biopsies.
Clearly, it would be ideal to minimize both of these objectives, but that is not possible because they
are competing; therefore, we settle for minimizing a weighted combination of the two criteria. We
start by describing two main assumptions that form the basis for POMDP model formulation.

Assumption 1. Prostate cancer progression can be described using a finite-state (two-state) Markov
chain.

Assumption 1 simplifies the stochastic process of prostate cancer progression to that of a first-order
Markov chain. The finite state assumption naturally follows from the binary discrimination of health
states on the basis of risk as determined by clinical thresholds using pathology information. We
describe additional details about this when we discuss the model formulation.

Assumption 2. The probability distributions of PSA test and biopsy results are conditionally in-
dependent given the current cancer state of the patient.

Assumption 2 assumes conditional independence for different observations given the state of the
process. It is a common assumption in partially observable stochastic models that describes the
causal relations between the underlying state and the associated observations, and can be adapted
to the study of prostate cancer AS. Assumption 1-2 have been validated in a related study of hidden
Markov models for prostate cancer by Li et al. (2020).

With the main modeling assumptions established, we now define the elements of the proposed
discrete-time finite-horizon AS-POMDP model. We also describe lesser but still important assump-
tions as part of the model description.

Decision Epochs. We index t = 1, ..., T as the discrete-time periods (also referred to as decision
epochs) at which the decision-maker can choose to biopsy, and the state transitions happen. In the
AS-POMDP model, t is an annual epoch and the decision is made at the start of the epoch followed
by the state transition. Epochs occur annually because this is an upper bound on the frequency
of biopsies according to clinical guidelines, i.e., no guideline suggests biopsies more frequently than
annually. Epoch t = 1 denotes the time of diagnosis and enrollment in AS, and epoch t = T is the
recommended stopping time for AS among patients who survive until age T , which is typically age
75 according to clinical guidelines due to increases in competing causes of death.

States. The set of states, S, contains two states: 1) low-risk prostate cancer state (LR); 2) high-
risk prostate cancer state (HR). In reality, there are numerous health states defined by risk factors,
including PSA and pathology from biopsies; however, urologists differentiate these states into two
groups (LR and HR) to align clinical risk with treatment choices. Patients who are known to be in
the LR state should continue AS, while those in the HR state should be treated (e.g., surgery or
radiation therapy). We use st to denote the state of the system at time t for t = 1, ..., T .
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Actions. The set of available actions, A, contains two elements: 1) defer biopsy; 2) conduct
biopsy. As the PSA test is always done by default according to standard clinical practice, the
critical decision at each decision epoch is whether or not to conduct a biopsy. Note that in prostate
AS, the action of conducting biopsy is to investigate, rather than to improve, the patient’s cancer
state. In other words, conducting a biopsy does not affect the stochastic process of cancer progression
(unless the patient leaves AS for treatment because of a biopsy Gleason score upgrading defined
later).

Transition Probabilities. At each decision epoch, the system undergoes state transitions accord-
ing to transition probability P defined as follows:

P (i, j) := P(st+1 = j|st = i), ∀i, j ∈ S, ∀t = 1, ..., T − 1.

In our AS-POMDP model, the state can only progress from LR cancer to HR cancer, so that we
use p to denote this annual progression rate.

Observations. At each decision epoch, after an action is taken, the PSA test and biopsy result (if
conducted) will be observed. We denote O as the set of all possible observations, and ot ∈ O as the
observation at time t for t = 1, ..., T . By Assumption 2, at any decision epoch, given the state of the
system, the observations of PSA test and biopsy are mutually independent. So, O = OPSA×OBiopsy,
where OPSA is the observation space of the PSA test, and OBiopsy is the observation space of the
biopsy. We discretize the space of the measurement of PSA levels into three intervals, according to
the widely used PSA cutoffs in clinical studies (Hoffman, 2011), so that OPSA has three elements:
I1 = [0, 4], I2 = (4, 10], and I3 = (10,∞) (ng/mL). For biopsy, the elements in OBiopsy are Gleason
score upgrading (biopsy Gleason score greater or equal to 7), Gleason score not upgrading (biopsy
Gleason score less or equal to 6), and null observation (biopsy not conducted). Such definition is
based on the fact that the inclusion criteria for AS in all four study centers considered in this paper
require the biopsy Gleason score to be less or equal to 6 (Li et al., 2020). We now state the third
assumption of the AS-POMDP model formulation as follows.

Assumption 3. Patients leave AS immediately when a biopsy Gleason score upgrading is observed.

Assumption 3 is reasonable because Gleason score upgrading is a common criterion for dropping
from prostate cancer AS in practice, as well as in the studies used to parameterize and test our
model. In some cases, the decision is nuanced, requiring a shared decision-making approach between
the patient and physician because of considerations of age, comorbidities, and the patient’s personal
preferences. However, our AS-POMDP model assumes such patients leave the system and receive
care that is specialized to their personal situation with the guidance of a urologist.

Observation Probabilities. The observation probability is defined as the probability of observing
certain output given the state of the system and the action taken. In the AS-POMDP model, the
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observation probabilities P(o|s, a) for all a ∈ A and o = (x, y) ∈ O = OPSA ×OBiopsy are given by

P((x, y)|s, a) =



qLR(Ii), a = Defer Biopsy, s = LR, y = Null, x ∈ Ii, ∀i;

qHR(Ii), a = Defer Biopsy, s = HR, y = Null, x ∈ Ii, ∀i;

qLR(Ii), a = Conduct Biopsy, s = LR, y = Not Upgrading, x ∈ Ii, ∀i;

γqHR(Ii), a = Conduct Biopsy, s = HR, y = Not Upgrading, x ∈ Ii, ∀i;

(1− γ)qHR(Ii), a = Conduct Biopsy, s = HR, y = Upgrading, x ∈ Ii, ∀i;

0, otherwise,

where qLR and qHR are probability mass functions of PSA in the LR and HR cancer states, and γ
is the false-negative rate (1 - sensitivity) of biopsy defined as the probability of observing Gleason
score not upgrading while in HR cancer state.

Here we assume that biopsies have perfect specificity, i.e., the probability of observing a Gleason
score upgrading when in LR cancer state is zero. This is because biopsies involve sampling of
prostate tissue, and thus sometimes may miss the tumor; however when the tumor is sampled, the
probability that it is identified by a qualified pathologist in nearly 1.

Reward Function. We let r(s, a, o) denote the reward function when the system is in state s ∈ S,
action a ∈ A is taken, and output o = (x, y) ∈ O is observed at each decision epoch, which is given
by

r(s, a, (x, y)) =



0, a = Defer Biopsy, s = LR;

θ, a = Defer Biopsy, s = HR;

η, a = Conduct Biopsy, s = LR, y = Not Upgrading;

η, a = Conduct Biopsy, s = HR, y = Upgrading;

θ + η, a = Conduct Biopsy, s = HR, y = Not Upgrading;

Not Defined, otherwise,

where θ and η are non-positive scalars that denote the negative reward (cost) of one-year delayed
detection of high-risk cancer and the burden of a biopsy, respectively. In the AS-POMDP model,
we seek to minimize a weighted sum of the expected number of biopsies and years in late detection
to cancer progression, so these are negative "rewards." Note that θ and η are pre-determined scalars
that reveal the decision-maker’s consideration of the two events. We set θ+η = −1, so that varying
θ and η allows computing the optimal policy for different patient preferences for the two criteria.

Figure 1 illustrates the stochastic control process of the proposed AS-POMDP model. At the
beginning of each decision epoch, the decision-maker can choose the test action of whether to defer
and conduct biopsy. Then, the test outcome is observed, which provides partial information about
the underlying cancer state. Given the chosen action and test outcome, an immediate negative
reward is assigned to the patient, which comes from the burden of test action and/or the penalty of
failing to detect a cancer progression to the HR state, if there was one. If the biopsy result shows
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Figure 1: The stochastic control process of prostate cancer AS described by the proposed AS-POMDP model

Gleason score upgrading, then the patient will leave AS immediately. For the case that shows no
upgrading or null biopsy, if the patient is older than age 75, he will also leave AS.

Belief state. We use bt to denote the belief, i.e., the probability distribution, over the set of
states, S, at the beginning of decision epoch t. In the AS-POMDP model, since there are only two
states in S, the belief bt only has one degree-of-freedom and can be represented by the probability
of being in the HR cancer state, with 1−bt being the probability of being in the LR cancer state. In
particular, for the starting time t = 1, b1 is the probability that the patient who enters AS (because
of being diagnosed with LR cancer) is actually in HR cancer state, i.e., misclassification error at
diagnosis. The belief bt at epoch t is well-known to be a sufficient statistic for the past sequence of
actions and observations before time t. We use Λ to denote the Bayes updating formula from time
t to t+ 1, i.e.,

bt+1 = Λ(bt|a, o), 1 ≤ t ≤ T − 1, (1)

if action a is taken and output o is observed. The exact expression of Λ is given in the next section.
Notice that sometimes we may drop the subscript of bt when it is treated as the argument of the
value function defined later.

Policy. A policy π = (π1, ..., πT ) is defined as a set of functions from the belief space to the
action space, where πt specifies the actions to take for all possible belief states at decision epoch
t = 1, ..., T .

Value Function. Given a policy π, we define the expected cumulative reward starting from time
t0 until the end of the time horizon T as:

V π
t0 (b) := Eπ[

T∑
t=t0

r(st, at, ot)|b], ∀b,∀t0,

where the expectation is taken over all possible state, action, and observation trajectories following
the policy π. For a fixed π and t0, V π

t0 (b) is a function of the belief state b. Note that in the
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AS-POMDP model, if the patient leaves AS because of a Gleason score upgrading before time T ,
then the process will stop with no future reward.

As discussed in Smallwood & Sondik (1973), the POMDP model can be viewed as a continuous-
state Markov decision process model with the state space being the space of all possible belief states.
It follows immediately that there exists an optimal policy π∗ that is deterministic and Markovian
with respect to the belief, which maximizes the expected cumulative rewards at any time t:

Vt(b) := V π∗
t (b) = max

π
V π
t (b), ∀b,

which can be computed using the following optimality equations:

Vt(b) = max
a∈A
{
∑
s∈S

b(s)r(s, a) +
∑
o∈O

P(o|b, a)Vt+1(Λ(b|a, o))}, ∀b, ∀t,

with the boundary condition
VT (b) = max

a∈A

∑
s∈S

b(s)r(s, a), ∀b,

where r(s, a) =
∑

o∈O P(o|s, a)r(s, a, o) is the expected immediate reward when the system is in
state s and action a is taken, and P(o|b, a) =

∑
s∈S b(s)P(o|s, a) is the probability of observing o

when the belief is b and action a is taken. By Assumption 3, in our AS-POMDP model, since the
patient will leave AS upon receiving a biopsy that shows Gleason score upgrading, the optimality
equation for t < T should be modified as

Vt(b) = max
a∈A
{
∑
s∈S

b(s)r(s, a) +
∑
o∈O′

P(o|b, a)Vt+1(Λ(b|a, o))}, ∀b, ∀t, (2)

where O′ = OPSA×{Not Upgrading,Null} is a subset of O. Solving the optimality equations yields
the optimal policy π∗ = (π∗1, ..., π

∗
T ) as follows

π∗t (b) := arg max
a∈A
{
∑
s∈S

b(s)r(s, a) +
∑
o∈O′

P(o|bt, a)Vt+1(Λ(b|a, o))}, ∀b, ∀t < T,

and
π∗T (b) := arg max

a∈A

∑
s∈S

b(s)r(s, a), ∀b.

4. Solution Methods

In this section, we describe the approach we used to solve the AS-POMDP model formulated
in Section 3. We start by describing an exact solution method, the classical one-pass algorithm of
Smallwood & Sondik (1973), to set the foundation for describing our approach. Unfortunately, the
one-pass algorithm is impractical for the AS-POMDP model, as the number of non-dominated α-
vectors is growing exponentially in the size of the observation space at each time period. Because of
the long time horizon and the fact that we intend to solve a number of different AS-POMDP model
instances with different choices of model parameters, fast approximation methods are preferred over
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the exact method (which took more than 24 hours for a single set of model parameters using an Intel
Core i7 2.6 GHz processor with 16 GB RAM). Therefore, we study two approximation methods that
give lower and upper bounds on the optimal value function, with bounded worst-case approximation
errors. We further show in the numerical results that the gaps between the lower and upper bounds
are very small so that our approximate solutions are accurate enough to be trusted.

4.1. Exact Solution Method

As shown in Smallwood & Sondik (1973), the optimal value function Vt(b) is piece-wise linear
and convex in b, and can be written as

Vt(b) = max
α∈At

α · b, ∀b, ∀t,

where At is a set of linear functions, referred to as α-vectors, which be calculated by backward
induction. Further, each α-vector in At corresponds to a decision tree that specifies the choices
of action for all possible observations at each of the future decision epochs (see Kaelbling et al.
(1998) for more details). It is easy to see that this property is also true in the AS-POMDP model,
although equation (2) omits a part of value-to-go (which is linear in the belief) if the patient leaves
the system before the end of AS due to observing a Gleason score upgrading. With this property,
the AS-POMDP model can be solved by finding the set of α-vectors, At, at each decision epoch t.

In our AS-POMDP model, since there are only two states, the belief can be represented by
a scalar. We let b denote the belief in the high-risk cancer state, and thus the belief in the low-
risk cancer state is 1 − b. Further, in the AS-POMDP model, each α-vector is a line, and can be
determined by any two points on the line. For convenience, we use a vector, (l(0), l(1)), to represent
the linear function l(b), where l(0) and l(1) are the values of l at points b = 0 and b = 1, respectively.
For models with more than two states, it is easy to generalize our results by using the extreme points
of the belief simplex to represent α-vectors.

Starting with the boundary condition, the optimal value function at time T can be written as

VT (b) = max
a∈A
{(1− b)r(s1, a) + br(s2, a)},∀b,

where r(si, a) =
∑

y r(si, a, y) for i = 1, 2. So,

AT = {(r(s1, a1), r(s2, a1)), (r(s1, a2), r(s2, a2)}.

Now, given the set of α-vectors, At+1 at time t+ 1, to derive the set of α-vectors, At at time t by
way of backward induction, we can, for each α-vector in At, find its values of at b = 0 and b = 1.
In our AS-POMDP model, for each decision epoch, the belief update bt+1 = Λ(bt|a, o) is realized in
two steps as follows,

bt
obs.
==⇒ b̃t

trans.
====⇒ bt+1.

Specifically, suppose at time t, action a was taken and we observed o, then

b̃t =
P(o|s2, a)

P(o|bt, a)
bt,
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and
bt+1 = Λ(bt|a, o) = b̃t + p(1− b̃t) =

1

P(o|bt, a)
((1− p)P(o|s2, a)bt + pP(o|bt, a)).

Then, by the optimality equations (2), for a specific action a, each α-vector αt = (αt(0), αt(1)) at
time t can be be represented by

αt(0) = r(s1, a) +
∑
o∈O′

P(o|0, a)αt+1,o(Λ(0|a, o)) = r(s1, a) +
∑
o∈O′

P(o|0, a)αt+1,o(p)

and
αt(1) = r(s2, a) +

∑
o∈O′

P(o|1, a)αt+1,o(Λ(1|a, o)) = r(s2, a) +
∑
o∈O′

P(o|1, a)αt+1,o(1)

for a specific set of choices of αt+1,o ∈ At+1 for all o ∈ O′. Enumerating all such sets of choices of
α-vectors at time t + 1 and actions gives all α-vectors at time t, which we denote as Ãt; however,
some of the α-vectors in Ãt can be dominated by the others and thus can be pruned by solving
a linear program (Smallwood & Sondik (1973)). Littman et al. (1995) and Zhang & Liu (1996)
proposed the witness and incremental pruning algorithms that improve the pruning procedure and
generate the minimal set of non-dominated α-vectors At at time t.

We let H denote the operator for the backward induction and pruning steps of Vt from Vt+1 in
the one-pass algorithm described above, and write the optimality equations as

Vt = HVt+1, t = T − 1, ...., 1.

4.2. Point-based Approximation Method

The point-based approximation method is well-suited here, because instead of finding the set
of all dominated α-vectors at each decision epoch, it only evaluates the value function at a set of
sampled belief points to get an estimate of the value function. And by controlling the number
of the sampled belief points, it limits the number of α-vectors to keep at each decision epoch.
Different types of point-based value function approximation methods have been carefully studied in
the surveys of Hauskrecht (2000), Pineau et al. (2003), and Shani et al. (2013) for infinite-horizon
POMDPs, where the value function was assumed to be stationary (i.e., independent with time). We
generalize their approach to our finite horizon non-stationary AS-POMDP model. In this section,
we let Bt denote the sampled belief points at decision epoch t, and provide the methods for finding
the lower and upper bounds of the value functions based on Bt for all t = 1, ..., T .

4.2.1. Lower Bound

At each decision epoch t, since the optimal value function can be written as the maximum of
a set of linear functions in At, a natural way to find a lower bound of Vt is to use a subset of At.
Starting from the optimal value function at the next decision epoch Vt+1 and associated α-vectors,
At+1, we first derive the set of all (dominated and non-dominated) α-vectors Ãt following the steps
described in Section 4.1. Then, at each belief point, b ∈ Bt, we identify the supporting α-vectors
in Ãt, resulting in |Bt| α-vectors being selected from Ãt. We denote the set of selected α-vectors

12



as Ât. Thus, at each decision epoch t, V̂t defined as follows gives a lower bound of the true value
function Vt:

V̂t(b) := max
α∈Ât

α · b, ∀b.

The details of the lower bound approximation method is described in Algorithm 1.

Algorithm 1: Algorithm for approximate backward induction with operator LB.
Input : Vt+1, B
Output: V̂t
Initialize Ât as a empty set;
Let At+1 as the set of α-vectors defining Vt+1;
Find the set of all α-vectors at time t, Ãt using At+1 and backward induction;
for b ∈ B do

αb ← arg maxα∈Ãt
α · b;

add αb in Ât;
end
Define V̂t(b) := maxα∈Ât

α · b, ∀b.

We let operator LB denote approximate backward induction steps described in Algorithm 1.
Note that LB needs not to start from the exact optimal value function at the next decision epoch.
If we start from any subset of At+1, and the corresponding lower bound on Vt+1, then LB will also
provide a lower bound on Vt because the resulting Ât is always a subset of At. In particular, if we
start from the boundary condition VT , with the sample belief sets Bt for all t = 1, ..., T − 1, then

V̂t = LBtLBt+1 ...LBT−1(VT ), ∀t = 1, .., T − 1 (3)

is always a lower bound of Vt. The following theorem gives the error bound between V̂t and Vt

for each t, whose proof utilizes the triangle inequality and Holder’s inequality and is adapted from
Theorem 3.1 of Pineau et al. (2003). The proof of the Theorem 1 is in the Appendix.

Theorem 1. Given the grids of the belief space at each decision epoch Bt ⊂ [0, 1]|S| for all t, the
error between the optimal value function Vt and approximated value function V̂t given by (3) satisfies

||Vt − V̂t||∞ ≤
(T − t)(T − t+ 1)

2
||rmax − rmin||∞δ,

where

rmax(s) := max
a∈A

∑
o∈O

P(o|s, a)r(s, a, o), rmin(s) := min
a∈A

∑
o∈O

P(o|s, a)r(s, a, o), ∀s ∈ S,

and
δ := max

t
max

b∈[0,1]|S|
min
b′∈Bt

||b′ − b||1.

The bound in Theorem 1 tends to zero as δ → 0.
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4.2.2. Upper Bound

Approaches to upper bound the optimal value function often involve solving many linear pro-
grams (Hauskrecht, 2000). Fortunately, for a two-state POMDP model such as the AS-POMDP
model, the solution of the linear program can be given directly, which can further accelerate approx-
imate backwards induction for our two-stage AS-POMDP model. At each decision epoch t, given
the set of α-vectors At+1 that defines Vt+1 in the next decision epoch, to find the upper bound of
Vt, we use the linear interpolation of the sampled belief points and their values. Specifically, given
the sampled belief set Bt, for each b ∈ Bt, we first calculate ut(b) := Vt(b) using the optimality
equation. Then, as long as B contains the extreme points b = 0 and b = 1, for any belief point
b′ ∈ [0, 1], the solution of the following linear program will give the best linear interpolation for
Vt(b

′):
V̄t(b

′) := minλ
∑

b∈B λbut(b)

s.t.
∑

b∈B λb = 1,

λb ≥ 0, ∀b ∈ B∑
b∈B λbb = b′.

Further, V̄t is an upper bound of Vt.
For a two-state POMDP model such as ours, the following results show that the optimal solution

to the linear program is trivial, so that an upper bound of Vt can be obtained without resorting to
solving linear programs.

Proposition 1. In a two-state POMDP model, at time t, write the set of the sample belief point
Bt as

Bt = {b1, b2, ..., b|B|}

such that 0 = b1 < b2 < ... < b|B| = 1. Then, for every b′ ∈ [0, 1] such that bi ≤ b′ < bi+1, the
optimal solution of the above linear program has only two variables λbi and λbi+1 being non-zero,
and all others being zero.

Proof. Notice that the linear program has |B| decision variables λb for b ∈ B and |B|+2 constraints.
Then, the extreme point of the polyhedron defined by the constrains should satisfy |B|−2 equations
of λb = 0 for b ∈ B.

Now, for b′ ∈ [0, 1] such that bi ≤ b′ < bi+1, suppose the extreme value V̄t(b′) is achieved with
two λbj and λbk being non-zero, and all other decision variables being zero. Notice that to satisfy
the first and last constraints, we can assume bj ≤ bi and bk ≥ bi+1 without the loss of generality.
Then, since V is convex, at bt, the convex combination of bj and bk is greater than bj and bi+1, and
the convex combination of bj and bi+1 is greater than bi and bi+1. So, the optimal value V̄t(b′) is
achieved with only λbi and λbi+1 being non-zero, and all other decision variables being zero.

The above proposition shows that for belief points between bi and bi+1, V̄t is defined by the
line determined by two points (bi, ut(b

i)) and (bi+1, ut(b
i+1)), for all i = 1, ..., |B| − 1.The next

proposition gives an expression of V̄t.

14



Proposition 2. In a two-state POMDP model, at decision epoch t, denote βi as the linear function
determined by (bi, ut(b

i)) and (bi+1, ut(b
i+1)), for all i = 1, ..., |B| − 1, and let B be the set of all

such linear functions:
B := {β1, ..., β|B|−1}.

Then,
V̄t(bt) = max

β∈B
β · bt, ∀bt.

Proof. For each i = 1, ..., |B| − 1, since βi is a line determined by (bi, ut(b
i)) and (bi+1, ut(b

i+1)),
and Vt is convex, then for b ∈ (bi, bi+1), Vt(b) ≤ βi · b; for b = bi or b = bi+1, Vt(b) = βi · b; and for
b /∈ [bi, bi+1], Vt(b) ≥ βi · b. By Proposition 1, for b ∈ [bi, bi+1], V̄t(b) = βi · b = maxβ∈Bβ · bt.

Algorithm 2 describes the steps for deriving the upper bound of the value function at each
decision epoch by approximate backward induction. For convenience, we use operator UB to denote
Algorithm 2 for a given B. Note that the input of UB can also be any upper bound of Vt+1, and the
output V̄t is always an upper bound of Vt because ut(b) is always greater than Vt(b) for all b ∈ B.
In particular, if we start from the boundary condition VT , with the sample belief sets Bt for all
t = 1, ..., T − 1, then

V̄t = UBtUBt+1 ...UBT−1(VT ), ∀t = 1, .., T − 1. (4)

is always an upper bound of Vt. The next theorem gives the error bound between V̄t and Vt for each
t. The proof of the Theorem is in the Appendix.

Algorithm 2: Algorithm for approximated backward induction UB.
Input : Vt+1, B
Output: V̄t
Initialize B as a empty set;
Write B = {b1, ..., b|B|} such that 0 = b1 < ... < b|B|=1;
for b ∈ B do

Calculate ut(b) := maxa{b · ra +
∑

o P(o|b, a)Vt+1(U(b|a, o))};
end
for i = 1 to |B| − 1 do

Let βi be the line determined by two points (bi, ut(bi)) and (bi+1, ut(bi+1));
Add βi in B;

end
Define V̄t(b) = maxβ∈B β · b for all b ∈ [0, 1];

Theorem 2. Given the grids of the belief space Bt ⊂ [0, 1]|S| at each decision epoch t, the error
between the optimal value function Vt and approximated value function V̄t given by (4) satisfies

||Vt − V̄t||∞ ≤
(T − t)(T − t+ 1)

2
||rmax − rmin||∞δ, ∀t ≤ T

where rmax, rmin, and δ are defined the same as in Theorem 1.
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Remark 1. Later in Section 6, we show that the actual observed differences between the lower and
upper bounds of the value functions in AS-POMDP all models were much smaller than the error
bound given by Theorem 1 and 2. This is because in the AS-POMDP model, a patient will leave
AS for treatment immediately after observing a Gleason score upgrading, with no future cost. As
a result, the expected value-to-go for conducting biopsy, as shown in the optimality equation (2),
is shrunk by γ (biopsy false-negative rate). This further makes the error of the approximate value
function much smaller than the worst case described in the proof of Theorem 1 and 2. However,
since we do not know in advance what is the optimal action at each decision epoch, it is very difficult
to improve the error bound. In the extreme case (e.g., always defer biopsy), it is possible that the
error bound in Theorem 1 or 2 is achieved with equality. On the other hand, the results in Section
6 show that the proposed approximation methods work very well for the AS-POMDP model.

5. Structural Properties

In this section, we discuss some structural properties of the proposed AS-POMDP model to
provide some insight into the results we present in Section 6.

5.1. Control-limit Type Policy

In Section 6 we will see the solution to the AS-POMDP model is a control-limit type policy, i.e.,
there is a threshold on the element of the belief vector that represents the probability of being in the
high-risk state, below which it is optimal to defer biopsy, and above which it is optimal to conduct
biopsy. There are many prior works that have discussed the existence of a control-limit type policy
in a POMDP model. For example, White (1979) proved that the optimal replacement policy for
the machine maintenance problem is a control-limit type policy. However, one of the distinctions of
our model compared to the prior works is that our goal is to inspect and classify the system state
(low-risk or high-risk cancer) rather than sequential system improvement, so that the optimal value
function in our model is not monotone w.r.t. the belief anymore.

As in Section 4, we denote the set of non-dominated α-vectors at decision epoch t as At =

{α1, ..., αn}, and write the optimal value function at time t as

Vt(b) = max
αi∈A

αi(b), ∀b.

Then, it is easy to see that Vt has n−1 inflection points on (0, 1). The following lemma establishes a
useful relationship among the positions of these n−1 inflection points, and the relationship between
the slopes and endpoints of the non-dominated α-vectors.

Lemma 1. For At = {α1, ..., αn}, assume that slope(α1) < slope(α2) < ... < slope(αn). Let the
positions of the inflection points of Vt to be b1 < b2 < ... < bn−1. Then, (bi, Vt(bi)) must be the
intersection of αi and αi+1, i = 1, ..., n− 1. Further,

α1(0) > α2(0) > ... > αn(0),
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and
α1(1) < α2(1) < ... < αn(1).

Proof. We prove the first part by contradiction. Suppose (bj , Vt(bj)) is the first inflection point of
vt such that it is not the intersection of αj and αj+1. Then, it should the intersection of αj and
αk with k > j + 1. So, Vt(b) = αk(b) on b ∈ (bj , bj+1). Since αj+1 is not dominated, there must
exists some bl ≥ bj+1, such that Vt(b) = αj+1(b) on b ∈ (bl, bl+1). Then, the slope of Vt(b) is not
increasing, which contradicts the convexity of Vt.

Now, choose β = (β(1), β(2)) ∈ At such that β(2) = minαi∈At αi(2). Then, it must be true that
β(1) = maxαi∈At αi(1); otherwise, β must be dominated by some α-vectors in At. It is easy to see
that the slope of β is the smallest in At. So, β = α1. Remove α1 from At and repeat the same
steps until there is no element in At completes the proof.

We now leverage the above lemma to provide a sufficient and necessary condition for the existence
of a control-limit type policy in a two-dimension POMDP model.

Lemma 2. For any time t, denote the set of non-dominated α-vectors at time t as At = {α1, ..., αn}.
Further, let A1

t = {α1, ..., αm} be the α-vectors corresponding to action "defer biopsy", and A2
t =

{αm+1, ..., αn} be the α-vectors corresponding to action "conduct biopsy". We say A1
t and A2

t are
separable at some b ∈ [0, 1], if at b all values of the α-vectors in A1

t are greater or smaller than all
values of the α-vectors in A2

t . Then, the optimal policy at time t is a control-limit type policy if and
only if A1

t and A2
t are separable at b = 0, or equivalently, A1

t and A2
t are separable at b = 1.

Proof. The existence of a control-limit type policy is equivalent to the existence of an inflection
point b̄ of vt(b), such that for b ≤ b̄, Vt(b) is composed of the α-vectors in A1

t and for b > b̄, Vt(b)
is composed of the α-vectors in A2

t ; Further, if there exists an inflection point b̄ of Vt(b), such that
for b < b̄, then the inflection points of Vt(b) are the intersections between the α-vectors in A1

t ; and
for b > b̄, the inflection points of vt(b) are the intersections between the α-vectors in A2

t . According
to Lemma 1, the inflection points following the sequence of the slopes of the α-vectors, and the
order of the slopes of the α-vectors is equivalent to the order of the values of the α-vectors at either
endpoint.

Focusing on our AS-POMDP model specifically, we let γ denote the false-negative rate of the
biopsy, and note that the expected immediate reward for action "defer biopsy" at b = 1 is θ and
the expected immediate reward for action "conduct biopsy" at b = 1 is η+ γθ (= −1− θ+ γθ). We
only consider the case where η + γθ is greater than θ, i.e., "conduct biopsy" is preferred to "defer
biopsy" in HR cancer state. Using this notation, we now give a sufficient condition for which there
exists a control-limit policy in this context.

Corollary 1. Denote T as the end of time horizon. Suppose η + γθ > θ, if

(γn− 1)θ > (η + γθ)
γ − γn−1

1− γ
then there exists an optimal policy at time T−n that is a control-limit type policy for n = 1, ..., T−1.
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Proof. It is easy to calculate that at t = T − n, the smallest possible value at b = 1 of choosing
"conduct biopsy" is η+ γθ+ γnθ, where the biopsy result shows not upgrading and "defer biopsy"
will be chosen for all future times; the largest possible value at b = 1 of choosing "defer biopsy" is
θ+ η+ γθ+ 1−γn

1−γ , where "conduct biopsy" will be chosen for all future times with the observations
all being not upgrading. If

η + γθ + γnθ > θ + η + γθ +
1− γn

1− γ
,

i.e., (γn − 1)θ > (η + γθ)γ−γ
n−1

1−γ , then at b = 1, the two sets of α-vectors corresponding to two
actions are separable. By Lemma 2, we have the optimal policy for the two-state AS-POMDP model
is a control-limit type policy.

The existence of control-limit type policies in practical applications such as ours is a desirable feature
since such policies conform well with the intuition of decision-makers. The sufficient condition in
the above corollary holds for cases in which γ or θ approaches zero, for instance; however, we show
that the existence of a control-limit type policy can be extended more broadly to a special (but not
unrealistic) case of our model.

Proposition 3. For the two-state AS-POMDP model, if decisions are made independent of the
PSA test, the optimal policy is a control-limit type policy.

Proposition 3 aligns well with clinical evidence that the PSA test is associated with high false-
positive and false-negative errors and thus plays a limited role in making decisions about when to
conduct routine biopsies. The proof of Proposition 3 is shown in the Appendix.

5.2. Static vs. Dynamic Policy

Our computational results in the next section show that although the optimal (dynamic) biopsy
policies from the AS-POMDP model dominate the current (static) biopsy guidelines in the published
literature, the difference is relatively small. Therefore, we conclude this section with some analysis
to explain this by showing that eliminating the PSA test from the model makes it optimal to
make biopsy decisions a priori without the need for dynamic decision making. In other words, the
schedule of biopsies can be set at the time of diagnosis. Combining this with the fact that PSA is
associated with high false-positive and false-negative rates and thus provides limited information for
belief updating over time, suggests that the weakness of the PSA test limits the benefits of dynamic
changes to the sequential decision to biopsy over time.

Theorem 3. Consider a threshold-based biopsy policy for AS. If PSA test results are not used in
cancer progression belief updates, then the threshold-based policy is equivalent to a static policy, in
which the biopsy schedule is pre-determined at the time of diagnosis.

Theorem 3 provides motivation for why the difference between dynamic and static policies is
small, i.e., because the predictive value of the PSA test is weak. The proof of Theorem 3 is in
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Center
misclassification error

at diagnosis: b1

Annual Cancer Progression
rate: p

Biopsy Sensitivity:
(1− γ)

JH 0.0583 0.0691 0.7184
UCSF 0.0809 0.1217 0.7431
U of T 0.0774 0.1016 0.7949
PRIAS 0.0653 0.0841 0.7614

Table 2: AS-POMDP model parameters in four study centers. Abbreviations: JH, Johns-Hopkins; UCSF, University
of California-San Francisco; U of T, University of Toronto; PRIAS, Prostate Cancer Research International Active
Surveillance.

the Appendix. Note that tests with better predictive performance than the PSA test, such as new
molecular biomarker tests that are being developed (Barnett et al., 2018b), could lead to more
significant benefits of dynamic over static policies. We revisit this in Section 6 with numerical
experiments.

6. Results

In this section, we discuss the results of the AS-POMDP model for prostate cancer AS. We
start by describing the model parameters. Next, we present the results for the near-optimal value
function and risk thresholds for the optimal biopsy policy given by the proposed AS-POMDP model
using the algorithms in Section 4.2. These results also demonstrate the utility of the approximation
methods we proposed. We also illustrate how the AS-POMDP model-based policy changes with
respect to the reward parameters to understand how decisions might vary depending on patient
preferences. Finally, we compare the near-optimal approximate policies with published guidelines.

6.1. Model Parameters

Tables 2 and 3 provide the As-POMDP model parameters for different centers that are computed
using hidden Markov models obtained in a previous study by Li et al. (2020). The PSA distributions
were estimated by a mixture of two Gaussian distributions. In our AS-POMDP formulation, we
discretized these continuous distributions using commonly used clinical thresholds, as shown in
Table 3.

6.2. Optimal Biopsy policy Solved by AS-POMDP Model

The optimal policies of the AS-POMDP model vary across different centers, and reward param-
eters, which in turn depends on the decision-maker’s preference. In our initial experiments, we set
θ = η = −0.5, which weighs the two criteria, i.e., expected delay in detection of high-risk cancer
and expected number of biopsies, equally, and we evaluate the variation in policies across centers.

Figure 2 shows the approximate optimal value functions obtained by the method described in
Section 4.2.1, for all four study centers assuming a patient at age 50. Here Bt is chosen to be
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Center
Probability Mass Function of PSA (ng/mL): q

Cancer State I1 = [0, 4] I2 = (4, 10] I3 = (10,∞)

JH
LR Cancer 0.3552 0.4311 0.2137
HR Cancer 0.2868 0.4706 0.2426

UCSF
LR Cancer 0.0768 0.5680 0.3552
HR Cancer 0.0678 0.5736 0.3586

U of T
LR Cancer 0.4573 0.3422 0.2005
HR Cancer 0.3312 0.2368 0.4320

PRIAS
LR Cancer 0.1361 0.5357 0.3282
HR Cancer 0.1094 0.5501 0.3405

Table 3: The probability mass functions of PSA in four study centers. Abbreviations: JH, Johns-Hopkins; UCSF,
University of California-San Francisco; U of T, University of Toronto; PRIAS, Prostate Cancer Research International
Active Surveillance; LR, low-risk; HR, high-risk.

Figure 2: The (approximate) optimal value functions for a patient at age 50 in four different study centers when
θ = −0.5. All non-dominated hyperplanes, and their supremums are shown in the figure. The belief threshold for
conducting a biopsy is indicated in the legend in each plot.
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Figure 3: The (approximate) optimal belief thresholds for conducting biopsy in different AS studies when θ =

−0.5,−0.6,−0.7,−0.8

Bt = {0, 1
30 ,

2
30 , ...,

29
30 , 1} with |Bt| = 31 for every t ≤ T . As anticipated, the AS-POMDP model-

based policies are all control-limit type policies. The risk threshold for triggering biopsy was the
highest in the model generated from UCSF medical center data, and lowest in the model generated
from JH hospital data, which is consistent with the difference in the annual cancer progression rates
at those centers, and which in turn depends on the study admission criteria (JH study patients had
more strict criteria for entry compared to UCSF patients). We further use Figure 3 to illustrate how
AS-POMDP model-based policies differ across AS studies. For each risk-based policy, the range of
risk threshold is relatively small.

As discussed in Section 3, our AS-POMDP model trades off the two competing criteria (delay
in detection vs. harm from biopsies) based on the reward parameter θ. Therefore, Figure 3 also
shows how the optimal biopsy policies vary with respect to θ, which is the reward weights of the
two criteria depending on individual patient’s preference. Again, the closer the θ is to −1, the more
the decision-maker weighs on the cost of delay in detection. As we change the value of θ parameter
in the proposed AS-POMDP model, we observed that the optimal biopsy policy at each decision
epoch is always a control limit type policy as discussed in relation to Proposition 3. Figure 3 also
shows that the variation across models derived from the different AS studies decreases as theta
decreases, i.e., as the weight on number of biopsies decreases. Moreover, the threshold for biopsy is
consistently below 0.4 for all ages prior to 73.
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Centers
||(V̄ − V̂ )/V̄ ||∞ × 100% at age 50 for different θ

-0.5 -0.6 -0.7 -0.8 -0.9
JH 0.27% 0.21% 0.15% 0.55% 0.28%

UCSF 0.15% 0.09% 0.08% 0.10% < 0.01%

U of T 0.19% 0.25% 0.16% 0.10% < 0.01%

PRIAS 0.18% 0.17% 0.25% 0.09% 0.01%

Table 4: The relative difference between V̄ and V̂ at age 50 for different θ in four AS studies.

6.3. Accuracy of Approximate Policies

To demonstrate that the approximated policies are very close to optimal, Table 4 provides the
supremum norm of the difference between the lower and upper bounds of the optimal value function
solved by the approximation methods in Section 4.2 using the uniform grid Bt with |Bt| = 31 for
every t ≤ T . As we can see from Table 4, the maximum relative error across all experiments is less
than 0.55% of the value function, indicating the approximate policies are sufficiently accurate to be
trusted. In terms of the running time, each experiment in Table 4 is completed within 30 seconds
(compared with more than 24 hours for an exact solution) using an Intel Core i7 2.6 GHz processor
with 16 GB RAM. Thus, the approximations enable the potential real-time implementation of the
AS-POMDP model for shared patient/physician decision-making in clinical settings.

6.4. Implementation of Model-based Biopsy Policy in Practice

Before comparing different biopsy policies, we explain how the model-based policy can be used
in practice to support decision-making in prostate cancer AS. In each study center, for each patient
newly diagnosed with LR prostate cancer and admitted to AS, his initial belief of being in HR
cancer state is estimated by the misclassification error at diagnosis in Table 2. Subsequently, at
each annual time period, the patient first receives a PSA test and the belief is updated using
Equation 1. Next, the decision-maker decides whether to conduct or defer biopsy using an instance
of the model based on the choice of the reward parameter θ that aligns with the patient’s preferences,
and the corresponding optimal HR belief threshold for triggering a biopsy base on the AS-POMDP
model. If a biopsy is conducted, as shown in Figure 1, the patient will stay on AS if the result shows
no biopsy upgrading and his age is less than 75 (the clinically recommended stopping time). The
belief of HR cancer state is then updated again based on the annual cancer progression rate and
biopsy sensitivity given by Table 2 using Equation 1; otherwise if the biopsy is deferred, then the
HR cancer belief is updated only based on the annual cancer progression rate. Lastly, the patient
will continue to the next time period, and follow the same steps as in the last time period until a
biopsy upgrading is observed or age 75. We acknowledge that in practice, the decision of whether
to conduct biopsy or not is often more nuanced, and requires a shared decision-making approach
between the patient and physician. But our model-based biopsy policy can be used as a data-driven
decision support tool to guide these decisions.
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6.5. Comparison of Model-based Biopsy Policies vs. Current guidelines

Now, we compare the policies from solving the AS-POMDP model with published guidelines.
The published guidelines include annual biopsy (JH guideline), biopsy every two years after diag-
nosis (UCSF guideline), biopsy every three years after diagnosis (PRIAS guideline, which is also
implemented in the U of T study). We evaluate each policy for a simulated cohort of patients
diagnosed with LR cancer who initiated AS at age 50. We first sample the initial cancer state at
the starting time according to the misclassification error at diagnosis given in Table 2. Then, the
patients will follow the process described in Figure 1, where at each decision epoch, the test action
is given by the selected biopsy policy, the test results are sampled according to the observation
probabilities, and the state transition is sampled according to the state transition probability. If a
Gleason score upgrading is observed, the patient will leave AS immediately; otherwise, he continues
to the next decision epoch, until age 75 when AS stops.

The number of hypothetical patients for the simulation is 10,000 for each study center and
each biopsy policy. With the simulated true cancer states and biopsy results for all patients at all
decision epochs, the expected number of biopsies performed while on AS is calculated as the average
number of biopsies performed from initiating AS (age 50) to leaving AS (age 75 or a Gleason score
upgrading), while the expected delay in time to detection of non-favorable risk cancer is calculated
as the average difference between the time of the first sampled HR cancer state and the time of a
Gleason score upgrading is observed for all patients.

Figure 4 illustrates the simulation results for different biopsy policies in four study centers. As
we can see from Figure 4, in each center, for the optimal biopsy policies given by the AS-POMDP
model, as the value of |θ| gets larger, the biopsy policy will result in a greater number of expected
biopsies and fewer years to the detection of cancer progression. Also, the optimal biopsy policies
given by the AS-POMDP model are Pareto optimal compared with the static biopsy guidelines, i.e.,
they reduce the number of biopsies performed without increasing years in late detection to cancer
progression.

6.6. Using MRI for Active Surveillance

Since the PSA test has high false positive and negative rates, as previously noted, we do not
observe a huge improvement in the policy given by the AS-POMDP model over current biopsy
guidelines for each patient in Figure 4. Nevertheless, it is possible that more accurate bio-markers
could lead to more significant improvement of the AS-POMDP model-based policies over current
biopsy guidelines. One such approach to improving predictive performance that is receiving signif-
icant attention is MRI. Barnett et al. (2018b) showed the cost-effectiveness of magnetic resonance
imaging (MRI) for early detection of prostate cancer. Motivated by their study, we conducted
experiments using MRI as an alternative to the PSA test in the AS-POMDP model to show the
potential benefit of the model-based policy. For MRI model parameters, we used the result from
Grey et al. (2015), which estimated the sensitivity and specificity of MRI (using the prostate imag-
ing reporting and data system score threshold of ≥ 4) to be 78.9% and 78.9%. Figure 5 shows
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Figure 4: The comparison between policies given by the AS-POMDP model and current biopsy guidelines in different
AS studies.

Figure 5: The comparison between policies given by two AS-POMDP (PSA and MRI) models and current biopsy
guidelines in the JH center.
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the comparison among the policy given by the AS-POMDP model with either PSA test or MRI,
and current biopsy guidelines for patients in the JH center. As we can see in Figure 5, as MRI is
much more accurate than the PSA test, the benefit of the policies given by the AS-POMDP(MRI)
model is more significant than it given by the AS-POMDP(PSA) model. Unfortunately, the study
of Grey et al. (2015) was conducted on a different group of patients in the U.K., with a limited size
of study population (n = 201), so that the result in Figure 5 is from a hypothetical experiment. We
are looking forward to implement the MRI in the AS-POMDP when more MRI data and studies
become available.

6.7. Evaluating Implied Weights for Late Detection of Cancer Progression and Biopsy Burden

To understand how alternative policies trade-off between late detection to cancer progression
and biopsy burden, we apply a simple inverse optimization (Ng et al., 2000) to estimate the reward
function implied by each published biopsy guideline. Specifically, for a given biopsy guideline,
denote π = (π1, ..., πT ) as the biopsy policy specified by the guideline. Since π is a static policy,
then πt is a constant action w.r.t. the belief state (either to defer biopsy or conduct biopsy) for all
t = 1, ..., T . Now, denote π̄t = (π̄t1, ..., π̄

t
T ) as another static biopsy policy where

πt 6= π̄tt, and πk = π̄tk, ∀k 6= t.

Further, define Rt as the set of reward functions such that π̄t is dominated by π:

Rt := {r : V π
1 (b1) ≥ V π̄t

1 (b1)}, ∀t = 1, ..., T,

where b1 is the initial belief state. Notice that the reward function r is a function of θ, and the
range of θ where the biopsy guideline π is the optimal static biopsy policy is given by

θ ∈ R1 ∩ ... ∩RT .

Table 5 shows the estimated range of θ implied by each guideline if applied to each center. As we can
see from Table 5, all four study centers imply that avoiding delays in detecting high-risk prostate
cancer is more important than avoiding biopsies; however, the relative weights vary significantly
among the guidelines, which depend on the cancer progression rate and biopsy sensitivity in different
study centers. Nevertheless, as some patients are highly averse to biopsies (Klotz, 2013), our study
provides a solution to deciding the frequency of biopsy and a reference for the trade-off against the
late detection to a cancer progression.

7. Conclusions

In this paper, we proposed a finite-horizon two-state POMDP (AS-POMDP) model to optimize
the biopsy policy in prostate cancer AS, where the objective is to minimize the number of biopsies
and the delay in detection of high-risk cancer. Our study considered two kinds of parameter am-
biguity: 1) heterogeneous transition and observation probabilities in different patient cohorts, and
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Center
Range of θ implied by the biopsy guideline

JH guideline UCSF guideline PRIAS guideline
JH [−1,−0.93] [−0.84,−0.83] [−0.72,−0.71]

UCSF [−1,−0.89] [−0.75,−0.74] [−0.68,−0.67]

U of T [−1,−0.91] [−0.83,−0.82] [−0.78,−0.77]

PRIAS [−1,−0.92] [−0.83,−0.82] [−0.71,−0.70]

Table 5: Estimates of the range of θ implied by each published biopsy guideline in different AS study centers.

2) variation in decision-maker’s preferences as represented by reward functions. To evaluate alter-
native policies resulting from different parameters, it was necessary to solve many instances of the
AS-POMDP model. To enable this, we introduced two fast approximation methods that are able to
find the lower and upper bounds of the optimal value function of the AS-POMDP model. We com-
pared the gap between the lower and upper bounds to show that our results were accurate enough
for decision-making. Further, We discussed some structural properties of the AS-POMDP model
that provide insight into the AS-POMDP model-based policies. We also discussed an explanation
for why the dynamic biopsy policies given by the AS-POMDP model are similar to static policies
recommended in the current biopsy guidelines, and we used inverse optimization to approximate
how each guideline weighs biopsy burden versus late detection of cancer progression.

In the computational result, we first presented the value functions and biopsy policies given
by the AS-POMDP model in four different prostate cancer AS studies, if weighted equally on the
burden of one biopsy and the penalty of one-year late detection to cancer progression. We observed
that the optimal value function is not always monotone in the belief state. This is because the
objective of the AS-POMDP model is to investigate rather than improve patients’ cancer state,
and patients may leave the system without any future cost if detected as high-risk cancer. Such
models can be more straightforward for studies of medical testing, and more accurate, especially
when other metrics such as QALYs are hard to estimate and too obscure for decision-making.
Although the optimal value function is not monotone, we observe that the biopsy policies given by
the optimal value function were monotone in the belief in high-risk cancer state, i.e., it would trigger
a biopsy as long as the belief in the high-risk cancer state reached a threshold. The threshold of
the optimal biopsy policy is dependent on the model parameters, which include cancer progression
rate and biopsy sensitivity. In general, models with a higher cancer progression rate or lower biopsy
sensitivity will give a lower belief threshold for conducting biopsy.

We then changed the reward weights in the reward function to see how does the model-based
biopsy policy depends on the decision-maker’s preference on biopsy burden and late detection time
in each study center. We found that the more heavily the decision-maker weighs the late detection
of cancer progression (the larger θ), the lower the belief threshold for triggering a biopsy in the
optimal biopsy policy.

Finally, we compared the performance of the optimal biopsy policies given by the AS-POMDP
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model and current biopsy guidelines in four AS study centers by a simulation study. The model-
based biopsy policies were all Pareto optimal. The policies based on published guidelines were close
to the efficient frontier. We also ran a hypothetical experiment using MRI in the AS-POMDP
model, which showed the potential value of the AS-POMDP model with more accurate bio-markers
than PSA. Lastly, we used an inverse optimization approach to estimate the reward weights implied
by the current biopsy guidelines.

Besides the novelty of the application, our work also contributes to the POMDP literature. First,
we introduced two fast approximation methods to quickly find the lower and upper bounds of the
optimal value function of a finite-horizon POMDP model at each decision epoch. In particular, we
showed that the best upper bound of the optimal value function at any belief point could be solved
easily in a two-state model, without solving a large linear program as discussed in previous studies.
We also provided the worst-case error bounds of the proposed approximation methods. Second,
we showed that in extreme cases, the optimal biopsy policy given by the AS-POMDP model is a
control-limit type policy, even if the optimal value function is not monotone in the belief state, which
differs from all previous studies of the control-limit type policy. We discussed some intermediate
results for the sufficient and necessary condition for the existence of a control-limit type policy in
the POMDP model. We leave the statement for general cases as a conjecture in future research.
Third, we showed that in the proposed AS-POMDP model, if the PSA test is not involved, then the
optimal dynamic policy given by the model is equivalent to a static policy, in which the timing of
conducting biopsy can be pre-determined. Further, we applied inverse optimization to approximate
the value function implied by the current biopsy guidelines, which helped us understand how does
each biopsy guideline weigh on late detection of cancer progression and biopsy burden.

There are also some limitations of our work, which could lead to opportunities for future research.
First, we used a two-state POMDP model to approximate the stochastic system of prostate cancer
AS, and only considered the information from PSA test and biopsy. There might be other covariates
in prostate cancer AS such as prostate volume, PSA doubling time, and the results of MRI scans that
could be used to understand the underlying cancer state, but were not considered in this study. We
look forward to improving our model by including these factors when more data becomes available.
Second, the model parameters of the transition and observation probabilities are assumed to be
stationary, i.e., independent of time, which may not be accurate in reality. However, incorporating
time-dependent factors would require the estimates of the model parameters in pre-studies, and more
computational effort to solve the model. Third, our results of the fast approximation method for
finding the upper bound of the optimal value function, and the sufficient and necessary condition
for the existence of a control-limit type policy only work in a two-state POMDP model. The
generalization of these results to general POMDP models may not be trivial and is left for future
studies. Although the focus of this article is on prostate cancer AS, our model formulation is flexible
and could be applied to other medical decision-making problems in chronic disease management.

27



Acknowledgements

This material is based upon work supported in part by the National Science Foundation through
Grant Number CMMI 0844511. Any opinion, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation. This work was also supported by the Movember Foundation. The
funders did not play any role in the study design, collection, analysis or interpretation of data, or
in the drafting of this paper.

28



References

Albright, S. C. (1979). Structural results for partially observable markov decision processes. Oper-
ations Research, 27 , 1041–1053.

Anandadas, C. N., Clarke, N. W., Davidson, S. E., O’Reilly, P. H., Logue, J. P., Gilmore, L.,
Swindell, R., Brough, R. J., Wemyss-Holden, G. D., Lau, M. W. et al. (2011). Early prostate
cancer–which treatment do men prefer and why? BJU international , 107 , 1762–1768.

Åström, K. J. (1965). Optimal control of markov processes with incomplete state information.
Journal of Mathematical Analysis and Applications, 10 , 174–205.

Ayer, T., Alagoz, O., & Stout, N. K. (2012). Or forum—a pomdp approach to personalize mam-
mography screening decisions. Operations Research, 60 , 1019–1034.

Ayer, T., Alagoz, O., Stout, N. K., & Burnside, E. S. (2016). Heterogeneity in women’s adherence
and its role in optimal breast cancer screening policies. Management Science, 62 , 1339–1362.

Barnett, C. L., Auffenberg, G. B., Cheng, Z., Yang, F., Wang, J., Wei, J. T., Miller, D. C., Montie,
J. E., Mamawala, M., & Denton, B. T. (2018a). Optimizing active surveillance strategies to
balance the competing goals of early detection of grade progression and minimizing harm from
biopsies. Cancer , 124 , 698–705.

Barnett, C. L., Davenport, M. S., Montgomery, J. S., Wei, J. T., Montie, J. E., & Denton, B. T.
(2018b). Cost-effectiveness of magnetic resonance imaging and targeted fusion biopsy for early
detection of prostate cancer. BJU international , 122 , 50–58.

Bastian, P. J., Carter, B. H., Bjartell, A., Seitz, M., Stanislaus, P., Montorsi, F., Stief, C. G.,
& Schröder, F. (2009). Insignificant prostate cancer and active surveillance: from definition to
clinical implications. European urology , 55 , 1321–1332.

Bul, M., Zhu, X., Valdagni, R., Pickles, T., Kakehi, Y., Rannikko, A., Bjartell, A., Van Der Schoot,
D. K., Cornel, E. B., Conti, G. N. et al. (2013). Active surveillance for low-risk prostate cancer
worldwide: the prias study. European urology , 63 , 597–603.

Cassandra, A., Littman, M. L., & Zhang, N. L. (1997). Incremental pruning: A simple, fast, exact
method for partially observable markov decision processes. In In Proceedings of the Thirteenth
Conference on Uncertainty in Artificial Intelligence (pp. 54–61). Morgan Kaufmann Publishers.

Cassandra, A. R. (1998). A survey of pomdp applications. In Working notes of AAAI 1998 fall
symposium on planning with partially observable Markov decision processes. volume 1724.

Cassandra, A. R., Kaelbling, L. P., & Kurien, J. A. (1996). Acting under uncertainty: Discrete
bayesian models for mobile-robot navigation. In Proceedings of IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. IROS’96 (pp. 963–972). IEEE volume 2.

29



Coley, R. Y., Fisher, A. J., Mamawala, M., Carter, H. B., Pienta, K. J., & Zeger, S. L. (2017). A
bayesian hierarchical model for prediction of latent health states from multiple data sources with
application to active surveillance of prostate cancer. Biometrics, 73 , 625–634.

Dall’Era, M. A., Cooperberg, M. R., Chan, J. M., Davies, B. J., Albertsen, P. C., Klotz, L. H.,
Warlick, C. A., Holmberg, L., Bailey Jr, D. E., Wallace, M. E. et al. (2008). Active surveil-
lance for early-stage prostate cancer: review of the current literature. Cancer: Interdisciplinary
International Journal of the American Cancer Society , 112 , 1650–1659.

Dall’Era, M. A., Albertsen, P. C., Bangma, C., Carroll, P. R., Carter, H. B., Cooperberg, M. R.,
Freedland, S. J., Klotz, L. H., Parker, C., & Soloway, M. S. (2012). Active surveillance for prostate
cancer: a systematic review of the literature. European urology , 62 , 976–983.

Drake, A. W. (1962). Observation of a Markov process through a noisy channel . Ph.D. thesis
Massachusetts Institute of Technology.

Epstein, J. I., Feng, Z., Trock, B. J., & Pierorazio, P. M. (2012). Upgrading and downgrading
of prostate cancer from biopsy to radical prostatectomy: incidence and predictive factors using
the modified gleason grading system and factoring in tertiary grades. European urology , 61 ,
1019–1024.

Erenay, F. S., Alagoz, O., & Said, A. (2014). Optimizing colonoscopy screening for colorectal cancer
prevention and surveillance. Manufacturing & Service Operations Management , 16 , 381–400.

Grey, A. D., Chana, M. S., Popert, R., Wolfe, K., Liyanage, S. H., & Acher, P. L. (2015). Diagnostic
accuracy of magnetic resonance imaging (mri) prostate imaging reporting and data system (pi-
rads) scoring in a transperineal prostate biopsy setting. BJU international , 115 , 728–735.

Hauskrecht, M. (2000). Value-function approximations for partially observable markov decision
processes. Journal of artificial intelligence research, 13 , 33–94.

Hoffman, R. M. (2011). Screening for prostate cancer. New England Journal of Medicine, 365 ,
2013–2019.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially
observable stochastic domains. Artificial intelligence, 101 , 99–134.

Klotz, L. (2010). Active surveillance for prostate cancer: a review. Current urology reports, 11 ,
165–171.

Klotz, L. (2013). Prostate cancer overdiagnosis and overtreatment. Current Opinion in Endocrinol-
ogy, Diabetes and Obesity , 20 , 204–209.

Klotz, L., Zhang, L., Lam, A., Nam, R., Mamedov, A., & Loblaw, A. (2009). Clinical results of
long-term follow-up of a large, active surveillance cohort with localized prostate cancer. Journal
of Clinical Oncology , 28 , 126–131.

30



Li, W., Denton, B. T., Nieboer, D., Carroll, P. R., Roobol, M. J., Morgan, T. M., & consortium, M.
F. G. A. P. P. C. A. S. G. (2020). Comparison of biopsy under-sampling and annual progression
using hidden markov models to learn from prostate cancer active surveillance studies. Cancer
Medicine, .

Littman, M. L., Cassandra, A. R., & Kaelbling, L. P. (1995). Efficient dynamic-programming updates
in partially observable Markov decision processes. Technical Report Brown University.

Lovejoy, W. S. (1987). Some monotonicity results for partially observed markov decision processes.
Operations Research, 35 , 736–743.

Lovejoy, W. S. (1991). A survey of algorithmic methods for partially observed markov decision
processes. Annals of Operations Research, 28 , 47–65.

Miehling, E., & Teneketzis, D. (2020). Monotonicity properties for two-action partially observable
markov decision processes on partially ordered spaces. European Journal of Operational Research,
282 , 936–944.

Ng, A. Y., Russell, S. J. et al. (2000). Algorithms for inverse reinforcement learning. In Icml (p. 2).
volume 1.

Otten, M., Timmer, J., &Witteveen, A. (2020). Stratified breast cancer follow-up using a continuous
state partially observable markov decision process. European journal of operational research, 281 ,
464–474.

Pineau, J., Gordon, G., Thrun, S. et al. (2003). Point-based value iteration: An anytime algorithm
for pomdps. In IJCAI (pp. 1025–1032). volume 3.

Ross, S. M. (1971). Quality control under markovian deterioration. Management Science, 17 ,
587–596.

Sandıkçı, B., Maillart, L. M., Schaefer, A. J., & Roberts, M. S. (2013). Alleviating the patient’s
price of privacy through a partially observable waiting list. Management Science, 59 , 1836–1854.

Shani, G., Pineau, J., & Kaplow, R. (2013). A survey of point-based pomdp solvers. Autonomous
Agents and Multi-Agent Systems, 27 , 1–51.

Simmons Ivy, J., Black Nembhard, H., & Baran, K. (2009). Quantifying the impact of variability and
noise on patient outcomes in breast cancer decision making. Quality Engineering , 21 , 319–334.

Smallwood, R. D., & Sondik, E. J. (1973). The optimal control of partially observable markov
processes over a finite horizon. Operations research, 21 , 1071–1088.

Spaan, M. T., & Vlassis, N. (2005). Perseus: Randomized point-based value iteration for pomdps.
Journal of artificial intelligence research, 24 , 195–220.

31



Thomsen, F. B., Brasso, K., Klotz, L. H., Røder, M. A., Berg, K. D., & Iversen, P. (2014). Active
surveillance for clinically localized prostate cancer—-a systematic review. Journal of surgical
oncology , 109 , 830–835.

Tosoian, J. J., Trock, B. J., Landis, P., Feng, Z., Epstein, J. I., Partin, A. W., Walsh, P. C., &
Carter, H. B. (2011). Active surveillance program for prostate cancer: an update of the johns
hopkins experience. J Clin Oncol , 29 , 2185–2190.

Vlassis, N., Littman, M. L., & Barber, D. (2012). On the computational complexity of stochastic
controller optimization in pomdps. ACM Transactions on Computation Theory (TOCT), 4 , 1–8.

White, C. C. (1979). Optimal control-limit strategies for a partially observed replacement problem.
International Journal of Systems Science, 10 , 321–332.

White, C. C. (1991). A survey of solution techniques for the partially observed markov decision
process. Annals of Operations Research, 32 , 215–230.

Zhang, J., Denton, B. T., Balasubramanian, H., Shah, N. D., & Inman, B. A. (2012a). Optimization
of prostate biopsy referral decisions. Manufacturing & Service Operations Management , 14 , 529–
547.

Zhang, J., Denton, B. T., Balasubramanian, H., Shah, N. D., & Inman, B. A. (2012b). Optimization
of psa screening policies: a comparison of the patient and societal perspectives. Medical Decision
Making , 32 , 337–349.

Zhang, N. L., & Liu, W. (1996). Planning in stochastic domains: Problem characteristics and
approximation. Technical Report Technical Report HKUST-CS96-31, Hong Kong University of
Science and Technology.

32



Appendix

Proof of Theorem 1

Proof. First,
||Vt − V̂t||∞ = ||HVt+1 − LBV̂t+1||∞

= ||HVt+1 −HV̂t+1 +HV̂t+1 − LBV̂t+1||∞
≤ ||HVt+1 −HV̂t+1||∞ + ||HV̂t+1 − LBV̂t+1||∞

For the first term, ||HVt+1 −HV̂t+1||∞ ≤ ||Vt+1 − V̂t+1||∞. For the second term, let b ∈ B be the
belief point where the point-based value approximation has the biggest error, and b̃ ∈ B be the
closest sampled belief point to b. Also, let α be the vector that would be the maximal at b, and α̃
be the vector that is maximal at b̃, then α̃ · b̃ ≥ α · b̃, and

||HV B
t+1 − LBV B

t+1||∞ ≤ α · b− α̃ · b

= α · b− α̃ · b+ (α · b̃− α · b̃)

≤ α · b− α̃ · b+ (α̃ · b̃− α · b̃)

= (α− α̃) · (b− b̃)

≤ ||α− α̃||∞||b− b̃||1

where the last step is by the Holder’s inequality. Now, since each α-vector represents the cumulative
reward from the current time until the end of time horizon followed by a policy specifying the choices
of future actions for all possible observation sequences, then

||α− α̃||∞ ≤ (T − t)(rmax − rmin),

and
||HV B

t+1 − LBV B
t+1||∞ ≤ (T − t)(rmax − rmin)δ.

Repeat the steps above, we have

||Vt − V̂t||∞ ≤ ||Vt+1 − V̂t+1||∞ + (T − t)(rmax − rmin)δ

≤ |Vt+2 − V̂t+21||∞ + [(T − t) + (T − (t+ 1))](rmax − rmin)δ

≤ ...

≤ (T − t)(T − t+ 1)

2
||rmax − rmin||∞δ.

Proof of Theorem 2

Proof. The proof is similar to the proof of Theorem 1. First,

||Vt − V̄t||∞ = ||HVt+1 − UBV̄t+1||∞
= ||HVt+1 −HV̄t+1 +HV̄t+1 − UBV̄t+1||∞
≤ ||HVt+1 −HV̄t+1||∞ + ||HV̄t+1 − UBV̄t+1||∞
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For the first term, ||HVt+1 −HV̄t+1||∞ ≤ ||Vt+1 − V̄t+1||∞. For the second term, let b ∈ B be the
belief point where the point-based value approximation has the biggest error, and b̃ ∈ B be the
closest sampled belief point to b. Also, let α be the vector that would be the maximal at b, and α̃
be the vector that is maximal at b̃, then α̃ · b̃ ≥ α · b̃, and

||HV B
t+1 − UBV B

t+1||∞ ≤ α · b− α̃ · b

The rest of the proof is exactly the same as the one for Theorem 1.

Proof of Proposition 3

Proof. First, it is easy to see that at each decision epoch, the α-vectors of the policy that always
chooses "defer biopsy" is a non-dominated α-vector, which achieves a maximum value at b = 0

that can be denoted as xt,0. Next, we prove by induction that at each decision epoch, all non-
dominated α-vectors corresponding to action "defer biopsy" at current time must have their value
at b = 0 being greater than xt,0 + η. If this statement is true, then the non-dominated α-vectors
corresponding to action "defer biopsy" and the non-dominated α-vectors corresponding to action
"conduct biopsy" are separable at b = 0. By Lemma 2, we have the optimal policy for the two-state
AS-POMDP model is a control-limit type policy.

Now, at time T , the α-vectors corresponding to action "defer biopsy" is (0, θ), and the α-vectors
corresponding to action "conduct biopsy" is (η, η + γθ).

Assume that at time t+ 1, all non-dominated α-vectors corresponding to action "defer biopsy"
have their value at b = 0 being greater that xt+1,0+η, where xt+1,0 is the value at b = 0 corresponding
to the policy "no biopsy at all". At time t, denote the α-vectors corresponding to policy "no biopsy
at all" as (xt,0, yt,0 + θ). Suppose there exists a non-dominated α-vectors corresponding to action
"defer biopsy", denoted as (xt,1, yt,1 + θ), such that xt,1 < xt,0 + η. We are going to prove that
(xt,1, yt,1+θ) is dominated by others. Consider the α-vectors corresponding to policy "biopsy at time
t and no biopsy afterwards", which is (xt,0 + η, γyt,0 + η+ γθ). If (xt,1, yt,1 + θ) is not dominated by
the maximum of (xt,0, yt,0 + θ) and (xt,0 + η, γyt,0 + η+ γθ), then it must be true that the intersect
of (xt,0, yt,0 + θ) and (xt,0 + η, γyt,0 + η + γθ), denoted as b1 is smaller than the intersection of
(xt,0 + η, γyt,0 + η + γθ) and (xt,1, yt,1 + θ), denoted as b2. It is easy to calculate that

b1 =
η

(1− γ)(yt,0 + θ)
, b2 =

η + xt,0 − xt,1
xt,0 − xt,1 + (yt,1 + θ)− (γθ + γyt,0)

.

By backward induction,

xt,0 = (1− p)xt+1,0 + pyt+1,0, xt,1 = (1− p)xt+1,1 + pyt+1,1

if xt,1 < xt,0 + η, since yt+1,0 < yt+1,1, then xt+1,1 < xt+1,0 + η. By assumption, the action at time
t + 1 corresponding to (xt+1,1, yt+1,1) is "conduct biopsy". So, for the α-vector (xt,1, yt,1 + θ), its
action at time t and time t + 1 are "defer biopsy" and "conduct biopsy". Now, we consider an
α-vector at time t, denoted as (xt,2, yt,2) whose action at time t and time t+1 are "conduct biopsy"
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and "defer biopsy", and actions after time t+ 1 are all same as the ones of (xt,1, yt,1 + θ). We can
calculate that

xt,2 = xt,1 + p(1− γ)(θ + yt+1,2), yt,2 = yt,1 + (γ − 1)θ.

Now, we are going to show that (xt,1, yt,1 + θ) is dominated by the maximum of (xt,2, yt,2) and
(xt,0 + η, γyt,0 + η + γθ). Denote the intersection between (xt,2, yt,2) and (xt,0 + η, γyt,0 + η + γθ)

as b3, then
b3 =

xt,0 + η − xt,2
xt,0 − xt,2 + yt,2 − γyt,0 − γθ

.

Given b1 ≤ b2, it is easy to verify that b3 ≤ b2, which indicated that (xt,1, yt,1 + θ) is dominated
by the maximum of (xt,2, yt,2) and (xt,0 + η, γyt,0 + η + γθ). In other words, if there exists an
α-vector whose optimal action at time t and t + 1 are "defer biopsy" and "conduct biopsy", then
the α-vector should be dominated by another α-vector whose optimal action at time t and t+ 1 are
"conduct biopsy" and "defer biopsy". This gives a conflict with the assumption that (xt,1, yt,1 +θ) is
non-dominated. As a result, we proved at time t, there is no non-dominated α-vector corresponding
to action "defer biopsy" such that its value at b = 0 is smaller than xt,0 + η.

To sum up, we have proved that at each decision epoch, the non-dominated α-vectors corre-
sponding to action "defer biopsy" and the non-dominated α-vectors corresponding to action "con-
duct biopsy" are separable at b = 0. By Lemma 2, we have the optimal policy for the two-state
AS-POMDP model is a control-limit type policy.

Proof of Theorem 3

Proof. We use a straightforward induction argument to show that at each decision epoch, the belief
the patient is in the high-risk cancer state can always be pre-calculated whether the biopsy is
conducted or deferred at each decision epoch. In the beginning, the patient enters AS with a fixed
initial belief of high-risk cancer state b0. Now, suppose at time t, the patient stays in AS with
a fixed belief of high-risk cancer state bt, then the patient chooses to either choose to do biopsy
according to the threshold-based biopsy policy or do nothing. If he chooses to do the biopsy, then
he will stay in the AS until the next decision epoch only if the biopsy result is not Gleason score
upgrading. So his belief in the high-risk cancer state at time t + 1 can be calculated by the belief
updating formula, which is a fixed value. Otherwise, if he does not perform the biopsy, then his
belief of being in the high-risk cancer state at time t+ 1 can be calculated by the state progression
formula, which is also fixed. Thus, at each decision epoch t, if the patient does biopsy according
to the threshold-based biopsy policy, then his belief in high-risk cancer state is always fixed so that
the timing of biopsy is pre-determined.
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