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Abstract
We investigate a challenging task in ambulatory care, the minimizing of delays of patient

transports. In practice, a limited number of vehicles is available for non-rescue transports.
Furthermore, the dispatcher rarely has access to complete information when establishing a
transport plan for dispatching the vehicles. If additional transport is requested on demand
then schedules need to be updated, which can lead to long delays. We model the scheduling
of patient transports as a vehicle routing problem with general time windows and solve it as
a mixed-integer linear problem that is modified whenever additional transport information
becomes available. We propose a modeling approach that is designed to determine fair and
stable plans. Furthermore, we show that the model can easily be modified when transports
need to satisfy additional requirements, e.g., during pandemics, exemplarily the Covid-19
pandemic. To show the applicability and efficiency of our modeling approach, we conduct a
numerical study using historical data from the region of Middle Franconia. The results reveal
and show that, by applying mathematical optimization - or, to be more precise by solving
mixed-integer linear problem formulations - one can significantly decrease delays and have
considerable potential for optimized patient transports.
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1 Introduction
In a healthcare system, patient transport needs to be well planned to ensure a functioning
system. Because such a system consists of many components, e.g., health promotion, primary care,
specialized services, and hospitals, transporting patients without delays is by no means trivial,
especially when the respective transports are not emergencies and can be postponed. This could
be the case when a patient needs to be transported home from a hospital or when patients receive
certain treatments at a specific destination. While in principle those transports could be carried
out by the vehicles that carry out rescue transports, a different fleet is typically used for other
patient transports in Germany. In contrast to rescue transports, patient transports allow delays,
though they are not desirable. Scheduling them is a challenge due to different reasons. While the
number of vehicles in the transport fleet is limited, the drivers’ work shifts need to be respected.
Moreover, a vehicle can transport only one patient at once. Finally, not all transport requests are
known at the time when the plans are established: Many transports are requested during the day
when a transport schedule is already in operation. The last point in particular can lead to long
delays for patients waiting for their transport, as it is often impossible to handle all transports at
once.
A natural scheduling approach is a greedy approach: whenever a transport is requested, the vehicle
that can reach the patient most quickly is dispatched. This approach is performed in Middle
Franconia, according to the local dispatcher, the Integrierte Leitstelle Nürnberg (ILS). For the
resulting transport plans, optimization potential is usually disregarded and sometimes transports
even have to be rescheduled to the following day. As a motivation, we provide some statistics
about the transport data in the following.
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(a) Absolute number of transports, distinguished on the basis
whether the patient is known to be infected (black bars) or not
(gray bars).

20
20

-0
1

20
20

-0
3

20
20

-0
5

20
20

-0
7

20
20

-0
9

20
20

-1
1

20
21

-0
1

20
21

-0
3

20
21

-0
5

20
21

-0
7

0

100

200

300

400

500

600

700

800
Nu

m
be

r o
f C

ov
id

-1
9 

ca
se

s i
n 

th
e 

re
sp

ec
tiv

e 
ar

ea

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f C
ov

id
-1

9 
tra

ns
po

rts

(b) Percentage of known Covid-19 trans-
ports and total number of Covid-19 cases
in the catchment area of the ILS.

Figure 1: Statistics on the numbers of transports and the percentage of known Covid-19 transports
for the available data.

Statistics about the patient transports. We consider the number of transports from January
2020 to July 2021. In Figure 1a, we plot the number of patient transports. The number of weekly
transports on weekends, especially on Sundays, is decreasing, while the total number of transports
shows a similar order of magnitude. Over the turn of the year, due to Christmas and other holidays,
fewer transports are requested. In 2020, there is another small decrease starting in April. There is
no such decline before 2020, so this is likely due to the onset of the Covid-19 pandemic. Further,
we plot the percentage of transports that involved an patient either infected, or, at least, suspected
to be infected, with Covid-19. These are represented by the black portion of the bars in Figure 1a.
For better visibility, the percentage of Covid-19 transports is also given in Figure 1b. In the peak
phase, up to 60% of all transports have been classified as infected cases. This is – as there are a
lot of suspected cases – not the actual number of infections. However, the trend given in Figure 1b
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Figure 2: Number of plannable and ad hoc transports, differentiated by the target time.

is quite similar to the number of actual Covid-19 cases in Middle Franconia, cf. [46]. This trend is
shown in the red part of the plot.
Furthermore, we consider the number of transports during the course of a day in Figure 2:
Transports are distinguished depending on the time when they are requested and the number of
requested transports per hour is plotted for the same time window as before. The majority of the
transports are requested at 6 am or later. The peak is in the late morning, thereafter the number
slowly decreases. After about 7 pm, the number of transports is again relatively low compared to
the previous hours.
The number of plannable transports1 is shown in the gray bars, while the black bars represent
the number of ad hoc transports.2 In the early morning hours, i.e., between 6 and 8 am a lot
of transports are ad hoc ones. After that, until noon, most transports are plannable. Then, the
percentage of ad hoc transports increases over the course of the day. After 3 pm, more than 80%
of all transports are ad hoc transports.

Our contribution. In this paper, we model the problem of finding fair schedules for patient
transports. In our case, ‘fair’ means that the maximum delay over all patient transports is
minimized as the first priority, before, secondly, the total delay over all transports is minimized.
Besides the aim of distributing the minimal delay among the patients roughly uniformly we need
to respect the drivers’ shifts whenever possible.
We present two approaches to handle transports that are requested during the course of the day:
On the one hand, if the dispatcher has knowledge of the requested transport in advance, but does
not yet know the time it is supposed to happen (for example a patient needs to be taken home
after a treatment), so-called dummy transports are introduced to block vehicle capacities. These
transports can be expected due to, for example, requests that typically come in at specific times of
the day or as follow-up transports. On the other hand, whenever an ad hoc transport becomes
known to the dispatcher, we reoptimize the part of the schedule that has not yet begun and
establish a new schedule that incorporates the ad hoc transport. The model is based on the vehicle
routing problem with general time windows (VRPGTW) that was introduced in [28]. We solve
the optimization problems using state-of-the-art solvers for mixed-integer linear problems (MIPs)
that we enhance with heuristics in order to improve their running time. We demonstrate that
one can modify our proposed model whenever necessary by introducing a general and adaptable
way to add new inequalities, equations and penalty variables. As an application, we discuss the

1Transports that are known when establishing a schedule.
2Transports that become known during the day.
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issues that need to be taken into account during the Covid-19 pandemic to minimize the risk of
infection and how to model them. In our numerical study, we show that our optimized procedure
for scheduling transports is effective and efficient in practice. Regarding infectious illnesses, we
show that transporting patients that are (at least suspected to be) infected using separate vehicles
is desirable.
In several key points, our approach differs from previous work. Firstly, rather than treating fairness
as a separate model parameter, we incorporate it directly into our objective function. Secondly, our
methodology ensures robustness without the use of random variables. Thirdly, rather than focusing
on optimizing required time or returned distance, we prioritize minimizing delays for patients even
if this causes detours of vehicles. Our research is based on a dynamic and deterministic vehicle
routing problem (VRP) and employs a wait-first strategy. Finally, because rescue and non-rescue
transports in Germany use separate vehicle fleets, we also use a separate fleet dedicated solely to
patient transports, distinct from the fleet designated for rescue vehicles. We discuss these points in
more detail in our literature review in Section 2.

Structure of the paper. In Section 2, we present related work concerning vehicle routing
problems and other problems arising in the healthcare sector. Furthermore, we show our chosen
way of modeling the VRPGTW. Thereupon, in Section 3, the patient transport problem is
described on an abstract level. We first define different transports and discuss the amount of
information available at the time of planning. We also introduce techniques for modifying models
on an abstract level. In Section 4, we discuss how the patient transport problem can be modeled
as a MIP. Subsequently, the model is modified to incorporate the required updates when a
previously unknown transport is requested. We then describe how to incorporate Covid-19-related
requirements, including disinfection time and the goal of separating known Covid-19 transports
from other requests as far as possible.
In Section 5, we elaborate on algorithmic methods to improve the running time for our models’
solving process and evaluate the methods by using the available historical data. In particular, we
compare our methods to an implementation simulating the current scheduling practice at the ILS.
Finally, in Section 6, we discuss our results and provide some ideas for future research.

2 Literature review
Since the VRP generalizes the traveling salesperson problem (TSP), it is naturally NP-hard.
Before we present our chosen approach to model the VRP in Subsection 2.1, we present an
overview of research about VRPs in the literature. Further, we present and discuss some literature
concerning transport problems in healthcare that have been discussed in the context of mathematical
optimization. Finally, we classify our problem depending on these findings.

Vehicle routing problems. The VRP presented in [15] is a generalization of the well-known
TSP: Given an (un-)directed graph, and given a fixed nonnegative integer m and a fixed node,
the question is whether the given graph can be partitioned into at most m Hamiltonian cycles
that share only the given fixed node. The interpretation given in [15] is that the given number
m is the number of available vehicles to carry out (petrol) deliveries such that each customer
is served exactly once by exactly one vehicle and that each vehicle starts and ends its tour at
a depot (which corresponds to the given fixed node). For a general overview of vehicle routing
problems, we refer to [56]. In this work, an overview of different methods for modeling and
solving variations of vehicle routing problems and its modifications are presented and evaluated,
including branch-and-bound-algorithms, branch-and-cut-algorithms, set-covering-based algorithms
and heuristic methods, among others. It is also possible to model VRPs as MIPs. This is also our
solution approach since we use state-of-the-art software in our numerical study. In Subsection 2.1
we justify this choice in more detail.
The works of [13, 14] present an overview of different problem classes of vehicle routing problems.
Two generalizations are the vehicle routing problems with time windows and the vehicle routing
problem with pick-up and delivery. The latter one usually contains time windows, so one mostly
omits the pick-up and delivery part. In our work, we use the VRPGTW which was introduced in
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[28]. Contrary to the vehicle routing problem with time windows, the bounds on target times can
be soft, i.e., their violation is penalized, or hard, i.e., the corresponding constraints need to be
satisfied. [55] discusses many current VRP extensions, such as service quality, equity, and working
hours, among others. Another generalization discussed in [28] is the dial-a-ride problem. This
problem aims to model transports of passengers. Thus, human factors like their satisfaction must
also be included. For an overview we simply refer to [26].
VRPs are either static or dynamic and either deterministic or stochastic. In a static VRP, all
transports are known beforehand, while in a dynamic one they can change over time. Further, new
transports can be requested over time. The distinction between deterministic and stochastic VRP
depends on whether some data is uncertain.

Dynamic VRPs. Dynamic VRPs require more sophisticated solution techniques, while static
VRPs are, in comparison, usually easy to solve by applying state-of-the art MIP approaches.
[5, 43, 4] present overviews of dynamic VRPs. The first consists of a collection of problems while
the latter focuses on the distinction between periodic and continuous solving methods. A periodic
solving method re-optimizes the problem after a certain (fixed) time period or as soon as new data
is available while a continuous solving method is performed throughout the whole day. Another
overview from [44] further introduces a new classification scheme for dynamic VRPs that consists
of eleven criteria, for example the type of the objective function (i.e., whether one minimizes costs,
distances, travel times, etc.), the fleet size, the type of time constraints and the solution method.
Another solution method for dynamic VRPs is given in [18]. There, the authors introduce dummies
to precautionarily schedule ad hoc transports to areas where new requests are likely to occur.
Further, there are different possibilities, how currently waiting vehicles can behave to handle
incoming transport requests better. The work of [38] describes different waiting strategies, namely
the drive-first strategy where a vehicle leaves its current location as soon as possible. In contrast to
the drive-first strategy, for the wait-first strategy, the vehicle waits as long as possible. Further, two
mixtures of both are introduced. Due to the stochastic probability distribution for new customers’
location, heuristics focusing on the waiting location are considered.

Stochastic VRPs. In addition to dynamic VRPs, uncertainties add another layer of complexity.
Stochastic VRPs can consist of different types of uncertainties. The work of [50] summarizes
where those may occur: The main source of uncertainty is demand, which refers to the number of
requests, as well as where, if, and when they will occur. Furthermore, the environment may be
uncertain, such as fluctuating travel times due to traffic. Finally, one may have uncertain resources,
which means that the availability of, for example, vehicles and drivers is not guaranteed. Further
overviews over stochastic VRPs can, for example, be found in [6, 40]. The work of [39] focuses on
solution methods for these problems. [8] is one of the first works discussing dynamic and stochastic
VRPs. There, the authors propose heuristics to solve these more difficult problems. Also, [20]
distinguishes stochastic, dynamic and dynamic/stochastic VRPs. They further mention that it is
helpful to gather patient data to determine a probability distribution. Similarly, the more current
survey [45] investigate these three types of VRPs.
Stochastic VRPs are frequently solved with Markov Decision Processes (MDPs). A general MDP
has four components: states, actions, transitions, and rewards. For VRPs, each state contains the
vehicle(s)’ current location, arrival time at the current node, and the status of all customers. An
action assigns times to customers, and transitions are used for changing from one state to the
next after an action is chosen. The reward is determined by how the problem is defined and what
specific goals are set, e.g. minimizing travel times, maximizing the number of visited customers or
balancing the workload between drivers.
Unlike general MDPs, route-based MDPs explicitly model route plans as sequences of possible
future actions, thereby redefining the feasible action space. This enables real-time decisions that
directly adjust and optimize future routes. This also implies that states in route-based MDPs
now include routes. [52] shows that MDP and route-based MDP formulations are equivalent when
using a slightly restricted formulation of the Bellman equation.
[31] and [30] apply MDPs to solve stochastic VRPs with uncertain travel times. The first uses
heuristics and real-time data, while the latter deals with nonstationary stochastic travel times and
attempts to determine a probability distribution. Furthermore, [31] optimizes driver attendance
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times and vehicle coverage, which are fixed in our case. In both cases, the customers and their
demands are known in advance. Further, [64, 57] and [48] solve stochastic versions of a dial-a-ride
problem with uncertain travel times.
In [49], the authors assume that they have complete information about all customers, with the
exception of stochastic demands. As a result, due to limited capacity, vehicles may be required to
return to the depot during replanning. MDPs and heuristics are used to solve the problem for a
single vehicle with known probability distributions.
There is also some work to be done to address the uncertainty concerning whether multiple requests
will occur at all. In [53], possible customer locations are known beforehand. Additionally, the
number of requests is available. [60] discusses vacant taxi routing, which involves deciding where
taxis that are not currently transporting passengers should drive or wait. In this case, customer
requests may appear from any position. This is handled by clustering positions into zones, resulting
in a discrete action space. Both works use MDPs to solve stochastic VRPs. [51] also solves a
dynamic and stochastic VRP with unknown requests. The author pays special attention on the
question where vehicles should wait.
Other solution methods feature combinations of MDPs with rolling horizon approaches [36] and
genetic ant colony algorithms [25].
Many applications can be modeled as order picking and delivery problems. In [63, 62], the authors
consider delivery for business-to-costumer and online-to-offline supermarkets, respectively. A more
general work can be found in [11] where a VRP for minimizing the driven road distance is modeled
and evaluated on benchmark instances. In contrast to their approach, we minimize delays and
not a road distance. In [22], the main question is to decide whether ad hoc transports should be
accepted or rejected what is not possible in healthcare. During the whole time period, the problem
is optimized continuously. [32] introduce a new model, namely a VRP with time-dependent travel
times. Varying travel times, such as those caused by traffic jams, are taken into account in this
specific model. The travel time is determined by the origin and destination, as well as the requested
departure time. By incorporating this information, the authors intend to enhance the reliability
of planned routes. In [7], the authors apply the solution of snapshots to handle another dynamic
VRP, namely scheduling ad hoc transports for online taxi routing. In our work, we consider a
dynamic and deterministic VRP.

Transport problems in healthcare. There is also a lot of work that model passenger trans-
porting problems that occur in healthcare as vehicle routing problems. The work of [27] is a
taxonomy of healthcare decisions and thus, a good overview. In [3] and [29], the patient transport
problem within a hospital is considered. In the former one, they assume that the hospital is one
building, while in the latter one, the buildings of the hospital are spread over the whole city — in
this specific example, in Tours (France). A static version of the VRP for the patient transport
problem is discussed in [37], an example for a work about rescue transports is [23]. Important
work in the field of patient transport in the European area is described in [54], where the focus is
on the situation in the Netherlands. There, rescue vehicles can also be used for patient transports.
This, however, reduces the number of vehicles available for rescue missions. Although in principle
this is possible in Germany as well, this option is usually avoided by the dispatcher due to the
separated fleets, and we do not consider this option in our work. In [16], the authors consider the
situation in Austria where they describe the stationing of rescue vehicles or the periodic delivery
of blood reserves. Another work that uses data from the US is [61]. They consider the patient
transport problem, but model it stochastically. In their work, service duration and travel time
can be stochastic. They also model random cancellations and apply a k-means clustering-based
algorithm to solve the dynamic part of the problem. In [35], the authors consider a real-world
example from Copenhagen, Denmark. There, elderly and disabled people need to be transported,
where each transport has either a pick-up or a delivery time window. Further, the dispatcher needs
to be made aware of different equipment that might be needed, for example when a patient requires
a wheelchair. The objective of the problem represents waiting times, driving times, the number of
vehicles or a combination of those. Another real-world example is examined in [42]. In addition to
the necessary equipment for wheelchair transports, they consider the possibility of accompanying
persons wishing to be transported, or the need for a second staff member. Furthermore, time
windows for the staff are considered for the start and end of the shift, as well as for a break during
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the shift. A variable neighborhood search and column generation is used to solve the problem.
[19] develop a scheduling algorithm for routing tasks in Austrian hospitals, mostly for the delivery
of goods. A different application in healthcare is presented in [47]. They consider the issue of
(mostly rural) areas lacking hospitals. To keep the travel distance of residents as short as possible,
doctors visit these areas on a regular basis, depending on the area’s size. Recently, the authors
have considered the need for Covid-19 testing centers there. Their data is from Turkey, and they
model the problem as a periodic location routing problem.
Concerning additional requirements due to the Covid-19 pandemic, [41] describe an application of
the vehicle routing problem in practice, which is solved heuristically. The authors used tabu search
to heuristically plan the distribution of face masks in Spain. [2] tested the feasibility of schedules
for transporting dialysis patients under worst case assumptions for the spreading of the virus using
Monte Carlo simulations. Contactless delivery of food to settlements during the pandemic was
considered in [10] and solved by applying a genetic algorithm. [21] consider vaccine distribution
across different regions. They pose the question when vaccines should be available and which
amount is required. The problem has multiple objectives and is solved using an optimal control
approach combined with dynamic programming.

2.1 The vehicle routing problem with general time windows
To model our transport problem as a MIP, we choose a VRPGTW model. This formulation is
defined on a directed graph G :� pV,Aq with vertex set V :� t0, . . . , nu, n P N0 :� NY t0u, arc set
A � V � V and a set of homogeneous vehicles K :� t1, . . . ,mu, m P N. For all i P V , the set of
outgoing arcs is denoted by δ�piq and the set of incoming arcs is denoted by δ�piq. Each node
i P t1, . . . , nu �: N corresponds to one customer, while node 0 is the depot where all vehicles start
and end their trip. The duration τi,j ¥ 0 denotes the time that is required to serve node i and to
travel to node j afterwards.
For all pi, jq P A and k P K, the binary variable xi,j,k P t0, 1u indicates whether vehicle k travels
on the arc pi, jq. For all i P V , yi P R� :� tx P R | x ¥ 0u denotes the time when the transport for
customer i starts at its origin. Finally, for each i P V , pi : R� Ñ R� is a piecewise linear penalty
function which yields a penalty dependent on the delay necessary to serve customer i. The goal
is serving each customer exactly once, with as little penalty – w.r.t. a given goal – as possible.
This can be modeled as a mixed-integer nonlinear optimization problem (MINLP) that is easy to
linearize, see Model (1). Our objective is to minimize the penalty terms. Constraints (1b) – (1e)
ensure that there is a tour where each vehicle starts and ends at the depot and each customer is
served exactly once, see [56]. Together with Constraint (1f), valid tours are defined. It ensures
that a vehicle which serves customer j directly after customer i finishes the service of customer i
and travels from customer i to j before the vehicle starts serving customer j:

min
¸

iPN

pipyiq (1a)

s.t.
¸

kPK

¸

jPδ�piq

xi,j,k � 1 @i P N, (1b)

¸

jPδ�p0q
x0,j,k � 1 @k P K, (1c)

¸

jPδ�piq

xi,j,k �
¸

jPδ�piq

xi,j,k � 0 @k P K, i P N, (1d)

¸

iPδ�p0q
xi,0,k � 1 @k P K, (1e)

xi,j,kpyi � τi,j � yjq ¤ 0 @k P K, pi, jq P A, (1f)
xi,j,k P t0, 1u @k P K, pi, jq P A, (1g)

yi ¥ 0 @i P N. (1h)

Linearizing piecewise linear functions and Constraint (1f) are standard techniques. In particular,
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Constraint (1f) is equivalent to

yi � τi,j � yj ¤Mi,jp1� xi,j,kq

for a sufficiently large real number Mi,j ¡ 0. Thus, the resulting model is a MIP that is NP-hard
in theory.

Remark 2.1. In [28], the vehicles also have a capacity for transporting goods, and other costs are
also incurred. However, for our purposes, the given parameters are sufficient since our vehicles
can only transport exactly one patient a time and we are only interested in minimizing delays of
transports.

Classification of our problem and solution approach. Our model faces uncertainty about
incoming requests, i.e., we are unaware of when, or how many requests will come in and where
their pick-up and drop-off locations are. Further, we assume that the environment and resources
are known. To handle this uncertainty, we avoided stochastic methods because of a lack of reliable
distribution information, with the exception of backward transports. Still, in this case, we use
an approach with no random variables but incorporate dummy transports into our model. While
traditional Markov Decision Processes as explained previously require knowledge of potential
customer locations, in our scenario, customers can be located anywhere. Although clustering
methods like those in [60] are conceivable, the issue of unknown distribution persists, complicating
the adoption of standard probabilistic models. Interestingly, experiments where we assumed to
have a full knowledge about all transports failed to yield significant improvements in solution
quality. Thus, we use a periodic dynamic VRP formulation that re-optimizes our schedule as soon
as a new request becomes known. Further, we use the wait-first strategy in our model.
Rather than modeling human satisfaction directly like in dial-a-ride problems, we built our objective
function to ensure a fair distribution of delay: We want to achieve fair schedules by minimizing
the maximum delay across all transportation modes per day and respect drivers’ shift times due to
employment law reasons.
Modeling our dynamic VRP as a MIP provides two significant benefits that align well with
the complexities and uncertainties of our operational setup. First, we can use off-the-shelf
optimization software to find global optimal solutions. Second, using a MIP formulation allows
us to swiftly modify our model as our operations change, without having to reconstruct our
software or algorithms. This allows us to easily adapt to new challenges and try out new ideas, as
demonstrated in Subsection 4.1. Furthermore, the MIP formulation allows us to easily include
various requirements and goals, such as ensuring that our schedules are fair and compliant with
rules and regulations. So, by using this formulation, we not only improve our scheduling, but
we also ensure that we can handle unexpected changes while still providing good transportation
services in a fair and legal manner.

3 Mathematical description of the problem
In this chapter, we present the concepts and definitions required to formalize the patient trans-
portation problem from Subsection 2.1. We begin with definitions of transports and schedules and
then extend them by incorporating incomplete information.
The following elements are required to define a patient transport: A person has to be transported
from one place to another. Each patient transport has an origin and a destination, and a vehicle
may only transport one patient at a time. It also has a target time and a specified duration (the
time required for travel and other tasks). In practice, some of this information can be incomplete.

Complete information. First, we formalize the definition of a transport where the information
is complete.

Definition 3.1 (Plannable transport). A plannable transport T is a tuple pOT , DT , dT , tT q that
consists of

i) its origin OT , i.e., the place where a patient is picked up,
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ii) its destination DT , i.e., the place where a patient is dropped off,

iii) its duration dT , i.e., the total duration of the transport from reaching OT until leaving DT ,
and,

iv) its target time tT , i.e., the time when T is supposed to be started at OT .

The set of plannable transports is denoted as Tplan. The dispatcher has complete information about
the set Tplan when scheduling the vehicles.

A daily schedule is a collection of all vehicle tours throughout the day. Each vehicle begins its
daily tour at its depot and returns there once all assigned transports have been completed. This
behavior is independent of the current schedule. A vehicle waits at DT after finishing its transport.
To formalize whether or not a schedule can be carried out, we define the following:

Definition 3.2 (Feasible schedule). Let Tplan be a set of plannable patient transports, K the set
of available vehicles, and let, for all T P Tplan, yT P R�.3 The set P with pT, k, yT q P P if and only
if k P K is scheduled to carry out T P Tplan at yT is called the schedule. The schedule is called
feasible if

i) yT ¥ tT , i.e., a transport is supposed to be carried out earliest at its specified target time,

ii) for two subsequent transports Ti, Tj P Tplan carried out by the same vehicle k P K, inequality
yTj

¥ yTi
� dTi

holds, and,

iii) each vehicle k P K starts and ends its trip within predefined shift times.

The set of feasible schedules is henceforth denoted as X .

Property piiiq specifies shift times that need to be followed. These shift times are taken from
reality, as vehicle drivers work in shifts. As a result, a vehicle’s tour should begin and end during
its shift. This typically turns out to be a bottleneck as we will see in our numerical study.
To be able to distinguish between schedules that respect and do not respect the shift times, we
introduce weakly feasible schedules:

Definition 3.3 (Weakly feasible schedule). If a schedule P satisfies Properties (i) and (ii) of
Definition 3.2 then P is called weakly feasible. The set of weakly feasible schedules is denoted by
Xweak.

The delay of vehicles is not taken into account in these definitions of schedules, as the target time
of a transport is not considered for feasibility. However, our goal is establishing schedules that
minimizes patients’ delays while simultaneously respecting the shift times as much as possible.
Thus, having the two competing goals of maintaining shift times while minimizing delays in a
fair manner raises the question of what makes up a ‘good’ feasible schedule. To address multiple
objectives, we propose the following:

Definition 3.4 (Measure of quality). Let Xweak be a set of weakly feasible schedules and assume
that we are given l P N real-valued functions g1pxq, . . . , glpxq, defined on Xweak. Let γ1, . . . , γl ¥ 0
be a set of weights. We call the function f : Xweak Ñ R with fpxq :�

°l
i�1 γigipxq the measure of

quality with respect to the weights γ1, . . . , γl ¥ 0.

Naturally, this definition also works for feasible schedules X instead of weakly feasible schedules
Xweak. Possible criteria include the maximum delay of all transports and the sum of the delays of
all transports or the violation of shifts.

Remark 3.5. The method of weighting objectives to obtain exactly one objective value is referred
to as scalarization and is applied in multi-objective optimization. Since we use single-objective
optimization methods, we simply refer to [17].

3Naturally, here, and in the following, all defined times are in R�.
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We now formulate the optimization problem on an abstract level: For a given set of transports and
given quality criteria with weights, the task is to solve

min
xPX

fpxq or, if necessary, min
xPXweak

hpxq. (2)

If we optimize over Xweak then we assume that the violation of vehicles’ shift times is one of the
measures of quality of the schedule in the sense of Definition 3.4, i.e., hpxq :� fpxq�

°
kPK γkgkpxq

for some γk ¥ 0 and real-valued function gk defined on Xweak, for all k P K.

Incomplete information. Incomplete information can manifest in two ways: Firstly, a transport
has been requested but its target time is not known. This can occur, for example, if a patient
needs to be returned home following a treatment but the dispatcher is unsure when it will be
completed. Secondly, a transport is requested that was not known when the schedule for Tplan was
established. This includes patients who have recently been discharged from the hospital. In both
cases, the transport requests needs to be incorporated into the already planned schedule.
We formalize the different levels of information:

Definition 3.6 (Semiplannable transport). A semiplannable transport T is a tuple pOT , DT , dT q
that consists of

i) its origin OT , i.e., the place where a patient is picked up,

ii) its destination DT , i.e., the place where a patient is dropped off, and,

iii) its duration dT , i.e., the total duration of the transport from reaching OT until leaving DT .

For a semiplannable transport, no target time is known. The set of semiplannable transports is
denoted as Tsemi.

Definition 3.7 (Ad hoc transport). Let P be a (weakly) feasible schedule for Tplan. An ad hoc
transport T is a transport that has to be planned after vehicles have already started carrying out P.
The set of ad hoc transports is denoted as Tadhoc.

The distinction between plannable, semi-plannable and ad hoc transports and the different level of
information leads to a natural division of the scheduling process into two parts.
In the planning phase, the transports of Tplan are scheduled. After the planning phase, when the
schedule is carried out, the operational phase begins. While the transports of Tplan are carried
out, transports of Tadhoc need to be incorporated and the schedule usually has to be updated. For
transports T P Tsemi, no target time is yet defined. When one treats them as ad hoc transports,
the dispatcher ignores them until their target time becomes known.
Alternatively, the estimated target time test

T could guide scheduling, treating the transport as a
plannable transport in Tplan. If the actual target time differs, the dispatcher adjusts accordingly.
If earlier, it is treated ad hoc; if later, the vehicle waits. However, since estimated times may vary
significantly, a maximum waiting time is introduced. If a vehicle exceeds this waiting time, it is
reassigned, treating the transport as ad hoc and deleting the dummy transport. This is formalized
as follows:

Definition 3.8 (Dummy transport). A transport T is called a dummy transport, if

i) T P Tsemi, i.e., it is semiplannable,

ii) its target time is estimated with test
T ¥ 0, and,

iii) it has a waiting time wT ¥ 0 after which T will be treated as an ad hoc transport.

The set of dummy transports is denoted as Tdummy.

To estimate the target time, historical data or medical expertise can be used. An example for a
scenario where dummy transports are applicable in practice in our real-world example are return
trips from dialysis. We come back to this in Subsubsection 4.2.1.
This concludes the discussion of the patient transport problem. In the following section, we model
the specific optimization problems and describe how they can be solved, also when incorporating
semiplannable and ad hoc transports.
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4 Mathematical optimization
The patient transport problem described in the previous section is now modeled as a VRPGTW.
This type of modeling has proved to be the most appropriate for our application’s practical
requirements and standards as discussed in Subsection 2.1. We begin by modeling the plannable
patient transport problem in Subsection 4.1. Then, we extend this formulation for semiplannable
and ad hoc transports in Subsubsection 4.2.1 before we elaborate on the modeling of requirements
of the Covid-19 pandemic in Subsubsection 4.2.2.

4.1 Modeling the patient transport problem as a VRPGTW
To model our problem, we use the VRPGTW formulation from Subsection 2.1. Assume we have n
plannable transports (Definition 3.1) from Tplan that have to be scheduled with m vehicles. We
begin by explaining how the plannable model is created.
The parameters of the VRPGTW are defined as follows:

• N :� t1, . . . , nu is the set of plannable transports. Each node i corresponds to transport Ti.
The depot is denoted as node 0 and has a copy n� 1. The vehicles start at 0 and end their
trip at n� 1. This avoids modeling issues and does not have other implications.

• K :� t1, . . . ,mu is the set of available vehicles.

• AN :� tpi, jq P N �N : i � ju is the set of arcs ‘between two transports’. An arc pi, jq P AN
is used if and only if a vehicle carries out Tj directly after transport Ti.

• AK :� tp0, jq : j P Nu Y tpi, n� 1q : i P Nu Y tp0, n� 1qu is the set of arcs from the depot to
all j P N , from each i P N to its depot and the arc p0, n� 1q that is used by a vehicle if it
does not transport any patients.

• The digraph is G :� pV,Aq with V :� N Y t0, n� 1u and A :� AN YAK .

• For each i P N , ti is the target time of transport Ti.

• For k P K, rak, bks � R� denotes the shift of the driver(s) of vehicle k.

• For i, j P N , τi,j ¥ 0 denotes the time a vehicle needs to reach Oj after starting transport Ti,
i.e., the sum of di and the travel time disti,j ¥ 0 from Di to Oj .

• For j P N , τk0,j ¡ 0 denotes the travel time for vehicle k P K to reach Oj from its depot
and τkj,n�1 ¡ 0 denotes the travel time for vehicle k P K to reach its depot from Dj . We set
τk0,n�1 :� 0 for all k P K. We need the superscript k here, since there can be multiple depots.

The variables of our model are:
• xi,j,k P t0, 1u is the binary variable that indicates whether vehicle k travels from node i to j,

i.e., whether vehicle k carries out transport Tj directly after it carries out transport Ti.

• For all i P N , yi :� yi,k P R� denotes the time when vehicle k arrives at node i, i.e., when
transport Ti starts. We only need one variable for each transport Ti as at most one vehicle
serves it.

• y0,k P R� denotes the time when a vehicle starts its trip and yn�1,k P R denotes the time
when it ends its trip. Here we need a variable for each vehicle.

As a choice of an objective function that evaluates the quality of the schedule adequately, we use
piecewise linear measures of quality that we will linearize whenever necessary. To simplify notation,
we thus introduce the following concept for penalty weights:
Definition 4.1 (Penalty weights). Let Λ be a set of variables. A penalty weight is a parameter
γ P R that is used to penalize all variables λ P Λ. The penalty set Γ contains the tuples pγ,Λq.
Using this representation, an objective function has the form

¸

pγ,ΛqPΓ

¸

λPΛ
γ � λ.
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Since our goal is to create a fair schedule, we attempt to minimize the maximum delay throughout
the day. To this end, we introduce a penalty parameter γmax ¡ 0. Further, we minimize the
individual delays (possibly weighted by γi), yielding the (piecewise linear) measure of quality

γmax �maxt0, y1 � t1, . . . , yn � tnu �
¸

iPN

γi maxt0, yi � tiu (3)

as we defined it in Definition 3.4. Objective function (3) can be easily linearized, as one can see in
the Objective function (4a) and Constraints (4h), (4i) of the following MIP where our (linearized)
instance is formulated:

min γmax �∆max �
¸

iPN

γi∆i (4a)

s.t. Constraints (1b)� (1e), (4b)
yi � τi,j � yj ¤Mi,jp1� xi,j,kq @k P K, pi, jq P AN , (4c)

yi,k � τki,j � yj,k ¤Mi,jp1� xi,j,kq @k P K, pi, jq P AK , (4d)
ak ¤ y0,k @k P K, (4e)

yn�1,k ¤ bk @k P K, (4f)
ti ¤ yi @i P N, (4g)

yi � ti ¤ ∆i @i P N, (4h)
0 ¤ ∆i ¤ ∆max @i P N, (4i)
xi,j,k P t0, 1u @k P K, pi, jq P A, (4j)
yi,k ¥ 0 @i P N, k P K. (4k)

We can represent the current penalties for the delays using the penalty weights of Definition 4.1 by

Γ :� tp1, t∆i | i P Nuqu Y tpγmax, t∆maxuqu ,

so we do not state the delays explicitly in the following.
The remaining constraints of Model (4) that are not directly taken over from the general formulation
model the following: Constraints (4e) and (4f) are hard bounds that ensure shift times are met
and feasible schedules as introduced in Definition 3.2 are obtained. Constraint (4g) prevents a
vehicle from starting a transport before its target time.
With the solution of Model (4), we can consequently establish a feasible schedule: If xi,j,k � 1
then vehicle k carries out transport Tj after carrying out transport Ti. Thus, from the optimal
solution px�, y�q, it is possible to reconstruct the path of vehicle k from 0 to n � 1 to the form
pvk1 , . . . , vksq, where s P N denotes the number of transports for the respective vehicle. Along with
the optimal arrival times y�, an optimal schedule is obtained.

4.2 Extending the plannable formulation
So far, we have modeled the problem of finding optimal schedules for transports for which all
information is known, i.e., plannable transports. This model is now extended to handle transports
with incomplete information, including ad hoc transports. In addition, using the Covid-19 pandemic
as an example, we propose and model how to treat the situation of endemic diseases, or, to be
more precise, when a patient is at least suspected to be infected with a highly infectious disease.
We begin by introducing labels for transports:

Definition 4.2 (Transport labels). A (transport) label is a function φ : Tplan Y Tsemi Y Tdummy Y
Tadhoc Ñ t0, 1u that indicates whether a transport T P Tplan Y Tsemi Y Tdummy Y Tadhoc fulfills some
property. Multiple labels can be collected in a label set Φ.

Label information may include whether a transport involves infectious diseases, needs to fulfill
certain priorities, or the question whether certain equipment is needed. Another example can be
the information about the type (plannable, semiplannable, ad hoc, dummy) of a transport. Recall
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that all types of transports are defined in Definitions 3.1, 3.6, 3.7 and 3.8. A similar set can also
be introduced for vehicles, e.g., for indicating whether certain equipment is available. In this case,
only such vehicles can handle transports that need this equipment. Using the definition of labels
from Definition 4.2, we can introduce additional constraints for the patient transport problem
on an abstract level. These constraints can be hard or soft, the latter using penalty weights and
additional variables.
Now we are presenting different modeling possibilities that allow us to extend Model (4) in various
ways. Let Φ be a set of labels. One possibile extension is to limit the number of transports per
vehicle with a label φ P Φ to a fixed number a P N. This can be modeled by

¸

pi,jqPA

xi,j,k � φpTiq ¤ a @k P K. (5)

If a specific label is not of importance then we can just omit it. With a � 1, each vehicle can
handle at most one transport of a specific type. Let φ1, φ2 P Φ and assume that it is not allowed
to handle a transport j with φ2pTjq � 1 immediately after a transport Ti with φ1pTiq � 1. This is
represented by adding constraints

φ1pTiq � φ2pTjq � xi,j,k � 0 @k P K, pi, jq P A. (6)

to Model (4). Naturally, it is also possible to set φ1 � φ2 and, thus, prohibit the handling of
similar transports after another.

4.2.1 Incorporation of transports with incomplete information

We now look at how to modify the plannable formulation, first to handle semiplannable transports,
and then to handle ad hoc transports. Therefore, we apply the strategy for the operational phase
that have been proposed in Section 3. In fact, similar to the planning phase, this means creating
or extending the VRP formulation and solving the resulting MIP.
Whenever possible, we estimate the target times of semiplannable transports and treat dummy
transports like plannable transports. In other words, in Model (4), N is modified such that the
nodes corresponds to the transports in TplanYTdummy and the extended VRP is solved. To take the
data-driven nature of dummy transports into account, we establish the following rules: Firstly, for
the maximum delay as a measure of quality, delays of dummy transports are not taken into account,
i.e., only the delays of the initial plannable transports are relevant. Secondly, the individual delay
of dummy transports is a quality of measure and is weighted by some parameter γi for Ti P Tdummy.
Thus, after incorporating the dummy transports, Objective (4a) of Model (4) is

γmax �∆max �
¸

iPN,
TiRTdummy

γi∆i �
¸

iPN,
TiPTdummy

γi maxt0, yi � test
i u. (7)

With the scheduling of Tplan, the planning phase is completed.
In addition to semiplannable transports, the dispatchers usually need to incorporate ad hoc
transports. They are called whenever such a transport has to be scheduled at a certain time σ on
the fly. With a schedule already in place, some vehicles are already on their tour. Therefore, we
need to reoptimize our schedule.
We now introduce some notation. Let σ P R� be a given point of time. The set V σ � V denotes
the nodes that correspond to transports known before an ad hoc transport is requested at σ. Using
the optimal solution px�, y�q of Model (4) at σ, the set

Pσ :�
 
pi, k, y�i q P V

σ �K � R� | Dj P V σ : x�i,j,k � 1
(

denotes the schedule that is carried out at σ. If no ad hoc transports have been requested before
σ, we have Pσ � P0, i.e., the solution of the plannable model. Transports already in operation are
not changed. They are elements of the set

Pσ
fixed :�

 
pi, k, y�i q P Pσ | @j P V σ : x�i,j,k � 1 ñ σ ¥ y�j,k � disti,j

(
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that contains all transports where the vehicle is either on the way from DTi to OTj or has started
or finished transport Tj . If an ad hoc transport is requested for some time point σ then transports
of Pσ

fixed are not changed while the transports in PσzPσ
fixed are removed of the schedule. This

ensures that vehicles not carrying out transports at σ are available again since the schedule after
σ was deleted. Thus, every transport scheduled after σ, including the ad hoc transport, can
be rescheduled by solving Model (4) with the additional restriction that all transports in Pσ

fixed
are unchanged. Therefore, we first update G by including the new ad hoc transport in V σ and
Aσ :� tpi, jq P A : i, j P V σu, respectively. Thereupon, to ensure that fixed transports are not
changed, we introduce two additional constraints to Model (4), namely

xi,j,k � x�i,j,k @pi, j, k, y
�
i q P Pσ

fixed (8)

and
yj � y�j @pi, j, k, y

�
i q P Pσ

fixed. (9)

If we have dummy transports, we need to be cautious about their waiting times since, whenever a
transport T P Tdummy exceeds its waiting time, it is deleted and treated as an ad hoc transport
(once requested). Then, in order to use the vehicle that should have handled T , we reoptimize our
schedule.

4.2.2 Adjusting the model during the Covid-19 pandemic

To decrease the risk of infections for patient transports during the Covid-19 pandemic, it is desirable
that transports are distinguished into two types, depending on whether a patient is (suspected to
be) infected with Covid-19 or not, resulting in an additional property of transports. From now
on, we refer to patients with a suspected infection with Covid-19 as ‘infected’ as well. In the
following, we will discuss some ideas how such Covid-19 transports can be handled and proceed
with a mathematical formulation how minimizing the risk of infections can be incorporated in our
Model (4) using Definition 4.2.
There are different possibilities to decrease the risk of infections. In practice, when dealing with
dangerous infectious diseases like Covid-19, the staff needs to wear protective clothing and the
vehicle is disinfected after every transport. In addition to these protective measures, it can be
helpful to minimize the number of changes from a Covid-19 transport to a non-Covid-19 transport.
This will reduce the number of contacts between patients and staff and thus the risk of infection
even further, even if vehicles are disinfected after each transport.
We present two different approaches: reducing the number of vehicles that are allowed to carry
infected patients and limiting the number of infected patients per vehicle. In addition to the goal
of reducing the number of changes, these approaches have been developed due to the fact that
the supply of protective clothing is limited and therefore should be distributed as efficiently as
possible. Nevertheless, in both cases, we still aim to minimize the delays for patients. This is
incorporated by using different penalty parameters for, e.g., the delay and the number of changes
in the objective function.
The additional time for disinfection and changing of clothes needs to be taken into account when
establishing schedules. This is easily done by increasing the duration di of each transport by a
constant. Thus, it is not necessary to introduce additional constraints to Model (4).
To indicate, for which transports additional Covid-19 requirements are necessary, we introduce
a label c : T Ñ t0, 1u where T � Tplan Y Tsemi Y Tdummy Y Tadhoc. A value of 1 corresponds to a
patient’s infection. This label is used to create additional constraints. For sake of notation, we
write ci instead of cpTiq. Furthermore, we write c̄, meaning a transport is not a Covid-19 transport,
with c̄i � 1� ci for all Ti P T . To model travels from and to the depot adequatly, we further define
c0 :� cn�1 :� 0 and, consequently, c̄0 :� c̄n�1 :� 1.

Minimizing the number of changes. To formalize minimizing the number of changes, we use
the labels c and c̄ with Constraint (6):

ci � c̄j � xi,j,k � 0 @k P K, pi, jq P AN . (10)
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Equation (10) models that no vehicle is allowed to carry a non-Covid-19 transport directly after a
Covid-19 transport. We do not wish to prohibit all changes because otherwise, the solution quality
w.r.t. the delay would decrease or we would not able to create feasible schedules at all. Therefore,
we use a soft constraint. Instead of minimizing the number of changes, we introduce the additional
variable λchange

i,j,k P t0, 1u for pi, jq P AN , k P K and modify (10) accordingly:

ci � c̄j � xi,j,k � λchange
i,j,k @k P K, pi, jq P AN . (11)

Now the variables λchange
i,j,k are penalized using γchange and we modify Γ by appending the tuple

pγchange, tλchange
i,j,k | pi, jq P AN , k P Kuq.

Approach 1: Minimizing the number of Covid-19 vehicles. An option to reduce contact
between uninfected and infected persons is dividing the vehicle fleet into different pools, i.e., one
pool of vehicles that only handle Covid-19 transports and one pool for non-Covid-19 transports. It
is possible to additionally use so-called floater vehicles that are allowed to handle both types of
transports to maintain some degree of flexibility. Here, the protective clothing can be distributed
among the Covid-19 vehicles and the floater vehicles so that no vehicle is carrying it needlessly.
The corresponding constraint is

ci � xi,j,k ¤ λvehicle
k , @k P K, pi, jq P A. (12)

Here, for k P K, λvehicle
k are new binary variables. They are penalized using γvehicle

k , i.e., we update
Γ Ð ΓY pγvehicle, tλvehicle

k | k P Kuq.

Approach 2: Limiting the number of Covid-19 transports for each vehicle. Another
approach to incorporate Covid-19 requirements is to distribute protective clothing equally among
all vehicles. In this case, every vehicle is able to serve a limited number of Covid-19 transports
before it needs to return to its depot to obtain new sets of clothing. An advantage of this approach
is that each vehicle is able to carry out Covid-19 transports with less delay than when separating
the fleets completely. Nevertheless, this modeling approach might increase the number of switches
between infected and non-infected patients in vehicles.
To implement the limitation of protective clothing, we use a tuple of a penalty weight and integer
variables λclothing P N|K|

0 , namely pγclothing,Λclothingq where Λclothing :� tλclothing
k | k P Ku. The

objective function is increased by the penalty value every time a vehicle has to return to the depot
to obtain new clothing. Thus, for all k P K, we introduce the constraint

¸

pi,jqPA

ci � xi,j,k ¤ αp1� λclothing
k q (13)

where α P N is the amount of sets of clothes per vehicle. Inequality (13) is Constraint (5), with
the difference that not every exceedance of α is penalized. Instead, every time α is reached again,
we increment the variable λclothing

k by one. In our model, it is not possible that vehicles return to
the depot during their shift, and, thus, we prohibit this by choosing the penalty for this scenario
quite high. This means that a vehicle only exceeds its limit when it is not avoidable, i.e., if there
are more than α|K| Covid-19 transports. However, this never happens in our numerical study.
This concludes the modeling of the patient transport problem. In the next section, we present
and discuss our numerical experiment and show the efficiency of our plannable approach and its
extensions.

5 Implementation and numerical results
In this section, we provide details on the implementation as well as the insights that can be
obtained from the optimized schedules. The models presented in the earlier section are solved
via state-of-the-art available global MIP solvers like Gurobi [24] or SCIP [9] which are applying
solution approaches for MIPs, cf. [33], [58] or [59]. The rationale behind the usage of available
solvers is to enable possible transfer of the developed approaches to the practitioners so that they
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can also maintain the program in the future. Moreover, using a MIP formulation, we are able to
incorporate the extensions for pandemic requirements.
All models and algorithms were implemented in Python 3.7.7. To solve the MIPs, we used Gurobi
9.0.2 on the NHR@FAU clusters with Intel Xeon E3-1240 v5 or Intel Xeon E3-1240 v6 CPUs,
respectively. Each of these has four cores with 3.5 GHz each and a RAM of 32 GB.
We start with the description of a simulated reality to evaluate our schedules in Subsection 5.1.
Thereupon we present some heuristic approaches in Subsection 5.2 and, finally, we evaluate
the performance of our approach in Subsection 5.3. There, we also cover the incorporation of
semiplannable transports and the extensions to cover issues and problems for patient transports
during the Covid-19 pandemic.
For all numerical results, we use historical data from 2019 to mid-2021, provided by the ILS that
covers regions in Middle Franconia. In practice, this area is divided into different counties, and
each one is scheduled individually, with a transport T assigned based on its origin location OT .
With our optimization strategy, we proceed in a similar manner. Counties are different in size and
population density. We have rural counties with a low population density in comparison to their
size, as well as urban counties with a high population density, what causes a higher number of
transports and, thus, more difficult instances.
We optimize each day separately because they do not influence each other as during the night
almost no transports are requested. Unless otherwise mentioned, we specify a time limit of 60
minutes. We will elaborate on the time limit in Subsection 5.3.
We must overcome some issues with the available historical data: On the one hand, some transports
are stated incorrectly, such as missing timestamps or locations. Missing data have been handled
during preprocessing by either estimating travel times using a distance matrix or deleting the
corresponding transports if too much data were missing. For the estimation of travel times, we
refer to [34]. On the other hand, there are cases where the dispatcher needs to make decisions on
the fly that could have not been planned beforehand. For example, vehicles, can be lent between
different counties. Technically, each vehicle is assigned to a specific county but in exceptional
circumstances and if necessary, this can be relaxed. Further, the distinction between patient and
rescue transports can be neglected when absolutely necessary. Moreover, if a transport’s delay is
excessive, it can be postponed for another day. We do not consider any decisions out of the set
of rules or usual decision makings in our model since we are not in a position to make them. In
practice, the set of feasible schedules can possibly be improved by incorporating expert decisions.

5.1 Implementation of a simulated reality
For the reason mentioned above, we cannot compare our schedules directly to the ones in the
historical data. So, in order to evaluate the optimized schedules, we require a baseline solution.
To ensure the most accurate comparison, we have implemented a simulation of the ILS’s decision
making that operates similarly to the practice. They apply a greedy approach: Every time a
transport is necessary, the vehicle that would arrive the fastest is assigned to it. However, vehicles
currently involved in a transport cannot be used, and shift times need to be respected whenever
possible.
For the baseline implementation, we thus sort all plannable transports by their target time given
in the historical data. Then the vehicles are assigned in that order: For each vehicle, we calculate
the earliest time it could reach the requested transport’s origin by adding the travel time to the
time it is expected to become available, which is either the start of its shift or the expected end of
the previous transport. Furthermore, we check whether the vehicle could reach its depot without
violating its shift times using the estimated duration, i.e., expected travel times, of the transport.
The vehicle that can carry out the transport request with the smallest delay is assigned to it. If
there is more than one vehicle with minimal delay then the one with the shortest travel time is
chosen. In the case that no vehicle can handle the transport without violating its shift times, we
choose the vehicle with the smallest shift violation time.
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5.2 Heuristic methods for the MIP solver
We present some algorithmic approaches for speeding up the MIP solution process for the arising
models. This is necessary because, while conducting our numerical study (see Subsection 5.3),
we have realized that without any improvements, our solution approach is incapable of solving
many instances to optimality. For the evaluation of the heuristic methods, we use a subset of real
historical data, namely data corresponding to 59 days (January and February 2020) from two
counties, for a total of 118 instances. The counties differ in size; the smaller one has about 100,000
residents, the larger one about 500,000.

Using a primal heuristic. The first heuristic we have implemented is a primal heuristic that
aims to find good feasible solutions early in the MIP solution process. At every kth node of the
branch-and-bound tree within the MIP solver, we tentatively round a part of the optimal solution
of the LP relaxation. In every feasible solution, the number of variables xi,j,k that are set to 1 is
given by |K| � |V |. For a primal heuristic, all values for xi,j,k in the solution of the LP relaxation
are sorted and a number of them are fixed in order to faster obtain a feasible MIP solution. Here,
we have chosen the number of vehicles |K| and set the |K| greatest variables to 1. If a feasible
solution is found by using this start solution then it is used for the following solving process.
Otherwise, it is discarded. It is important not to fix too many variables as the solution may then
become infeasible since we could, e.g., accidentally schedule two vehicles to the same transport.
However, we also note that fixing too few variables will not speed up the solving process and that
the respective values are based on empirical analysis.

Using a greedy heuristic to obtain a first feasible solution. The simulation of the current
scheduling approach given in Subsection 5.1 creates an (at least weakly) feasible schedule as defined
in Definitions 3.2 and 3.3. It can be computed very quickly. Thus, it can be used as a starting
solution for the variables xi,j,k. The remaining variables depend on the values for xi,j,k and, thus,
are computed by the applied solver. This greedy heuristic can be applied once at the beginning of
each (re-)scheduling process.

Determining a branching priority. Within each branching step, a variable is chosen from
all binary and integer variables, depending on some measure that aims to create preferably small
branch-and-bound trees, see for example [1]. We consider the determination of optimized plans
under Covid-19 restrictions as described in Subsubsection 4.2.2.
When the values for the binary variables xi,j,k are decided, the unique values for the remaining
binary and integer variables can easily be computed. The values for the remaining binary variables,
i.e., Covid-19 vehicle and change labels, are directly induced by Constraints (11), (12) and (13).
The values for yi, i P N , model the time when transport Ti starts. Starting at the depot, the
values are computed successively. This is possible because each value only depends on its unique
predecessor, so we can simply follow the paths of the vehicles. Thus, we obtain a branching priority
and branch on the former variables first that we provide as input.

Handling of difficult instances. Especially on days where many transports need to be sched-
uled, the solving process of the resulting MIPs can take a long time. We have days with around
140 transports in our data, as presented in Section 1. While we can limit the total running time,
we can also directly limit the time required for each MIP. To accomplish this, the solving process
is interrupted when the time limit is reached and the current best solution is used for establishing
a schedule at this time. To ensure that a (weakly) feasible solution is found before the time limit,
we provide a start solution, namely the previously described solution of our greedy heuristic. The
idea behind this is that short-term decisions can be dealt with directly while long-term decisions,
i.e., decisions that are made several hours beforehand, can be postponed. Further possibilities for
improving the VRPGTW’s solving process, e.g. determining bounds of the optimal solution, are
discussed in [12].

Comparison of the heuristic methods. We now evaluate the performance of the heuristics.
In Table 1, both heuristic methods to enhance the MIP solver are compared to each other and
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Table 1: Comparison of different speed up methods for smaller problems in the upper table and
larger problems in the lower table. The unit s stands for seconds.

Primal heuristic Greedy heuristic No heuristic

Average time for solved problems 69.3s 58.0s 62.8s
Solved problems in 60 minutes 55 55 55
Solved problems in 10 minutes 54 55 55
Solved problems in 5 minutes 53 55 55
Solved problems in 3 minutes 53 55 53

Average time for solved problems 520.3s 437.8s 642.6s
Solved problems in 60 minutes 27 33 31
Solved problems in 30 minutes 23 32 26
Solved problems in 15 minutes 21 27 22
Solved problems in 10 minutes 21 25 22

to the results when no such heuristic is used. We assess an easier set as well as a more difficult
set with a larger number of transports. The easier test set requests around 20 transports per day,
while the more difficult test set requests up to 65 transports per day. The instances are smaller on
weekends. The number of available vehicles ranges between 5 and 20, depending on the weekday
and the size of the county under consideration.
The number of binary and continuous variables are estimated by Op|K| � |V |2q and Op|K| � |V |q,
respectively. The number of constraints is Op|K| � |V |2q, i.e., also quadratic in the number of
patients. In general, the number of transports is greater than the number of vehicles. On the easier
problem set, as shown in the upper part of Table 1, all approaches are able to solve most of the
problems to optimality. The application of a greedy heuristic is slightly faster than the primal
heuristic but there are no significant differences.
In contrast, on the more difficult test set, the usage of the greedy heuristic yields a high improvement.
Compared to the other approaches, instances are solved significantly faster. If we use the baseline
solution then a weakly feasible solution is given at the root node, where many branch-and-bound
nodes that yield a worse solution can be pruned. In fact, in most cases, the baseline solution is even
feasible and not only weakly feasible, which further improves the running time of our algorithm.
The solution time is improved as a result of the branching priority from Subsection 5.2. This
enables us to increase the number of problems solved within 60 seconds by around 50%. Note that
if we do not consider Covid-19 requirements, this priority will have no impact. Thus, we always
prioritize the variables xi,j,k for branching.

5.3 Improvements applying the VRPGTW model
For the following results, we applied the greedy heuristic together with a branching priority. The
proposed results are chosen exemplary and are characteristically similar for other counties. In
the following, we compare the historical data’s solution and the existing course of action with
our optimization approach. Firstly, we consider the results of our general model including ad hoc
transports in Subsubsection 5.3.1. Secondly, in Subsubsection 5.3.2, we consider insights that can
be drawn from these results. Finally, in Subsubsection 5.3.3 we present the exemplary results for
our extensions for handling semiplannable transports and the Covid-19 pandemic.

5.3.1 Plannable and ad hoc transports without further requirements

We evaluate the optimized schedules against the baseline solution of Subsection 5.1. We use the
data from 2019 as there have been no Covid-19 transports that distort the scheduling process.
Here, semiplannable transports (Definition 3.6) are treated as ad hoc transports (Definition 3.7).
We investigate semiplannable transports in Subsubsection 5.3.3.
In each plot, we compare the baseline solution to the optimized schedules regarding shift time
violations and delays for different regions and all instances that could be solved within 60 minutes.
Instances that are not solved to optimality at this time are very likely also not solvable to optimality
within a larger time horizon since the MIPs’ respective gaps are too large. All results are sorted
according to our objectives, which are reducing shift time violations, maximum delay, and total
delay. We recall that it is critical to adhere to the shift times of the drivers, so this is our primary
goal.
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Figure 3: Improvement that can be gained using our optimization approach, when compared
to the simulated reality. Two different regions are considered, the above one is a smaller urban
region while the bottom one is larger but more rural. The areas from left to right correspond to:
Decreased shift time violations (green), decreased maximum delay (dark gray), decreased total
delay (light gray), increase in any metric (red). Further, we show the maximum MIP gap for all
MIPs occurring in one instance.
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In Figure 3, the results are compared for two different regions, Erlangen at the top and the county
Erlangen-Höchstadt at the bottom. Each plot displays the differences in shift time violations and
delays computed by the optimization model compared to the baseline. A positive value indicates
that an improvement could be made, whereas a negative value indicates that some measure has
increased with respect to the simulation of the current scheduling approach. The leftmost green
section displays all instances in which shift times were improved. As a result, some transportation
delays may increase. The second area shows all improvements in maximum delay. Again, the
less prioritized measure, total delay, could worsen. The third area, shown in light gray, contains
all results in which there is no difference in shift time violation or maximum delay between the
optimal and baseline solutions. Thus, our approach only improved the overall delay. All instances
in which no measurement changes are neglected.
Finally, the rightmost red part displays all instances in which we obtained a slightly worse solution.
This could be due to a numerical error or uncertainties in the realization of transports what we
will elaborate later on.
In the upper plot, an improvement with respect to shift times was achieved in more than 20 days.
As respecting shift times is highly desirable, a somewhat longer maximum delay is acceptable.
Apart from that, the optimized maximum delay is up to 60 minutes shorter than that of the
baseline solution. In particular, there is one day for which the improvement is much larger than on
the other days. On this day, many transports were requested for the late afternoon.
The lower plot shows results for problems in a larger but more rural county. In such an county
there are less available vehicles but also a smaller number of requested transports. The optimized
schedule often decreases the maximum delay by up to 60 minutes. Furthermore, on two days, there
is a reduced number of shift time violations as well as a smaller maximum delay. Since we aim
to only violate them if necessary, this is a great result. The overall delay is reduced by about 10
minutes on a daily average.
In addition to the objective improvements, we plot the maximum gap per day, which is the largest
MIP gap observed across all VRPs that must be solved in a single instance. The gap is represented
on a logarithmic scale. In our smaller instance set (bottom plot), all gaps are smaller than 0.01%.
For the more difficult instance set, we only exceed this value in cases where we can improve the
shift time violations. This could be due to the fact that we have another optimization goal to meet,
and the complexity of these instances has, thus, increased significantly.
There are also instances where optimized plans perform worse than the baseline scheduling: On one
day, the optimized schedule yields a maximum delay that is around ten minutes longer than that
of the baseline schedule. This is caused by some ad hoc transports. The schedule of the optimized
solution up to this point might be at least as good as the baseline schedule but the vehicles are
organized differently. Then, although the baseline schedule is often not the optimal solution of
Model (4), it could lead to a better final schedule when an ad hoc transport is requested. This
is not completely preventable as there is no information about such transports earlier in the day.
However, our approach concerning semiplannable transports from Subsubsection 4.2.1 aims to
prevent such settings by including dummy transports for expected transports, and so this situation
occurs only rarely.

Using a smaller time limit for each MIP. Now, instead of solving each MIP of an instance
to optimality and aborting after a total time limit, we specify a time limit after which the solving
process of a single MIP is aborted and the best, w.r.t. the objective value of Model (4), is used.
For practical reasons, namely scheduling on the HPC cluster, there is still a total time limit of 24
hours, but this was never reached in our experiments.
Using this approach, it is possible to solve instances in larger counties. In these counties, we have
to schedule up to 130 transports per day, but more vehicles are available. In the following, we
evaluate the resulting schedules. Figure 4 shows a comparison to the simulated reality described in
Subsection 5.1. The representation is similar to that in Figure 3. Here, we enforced a time limit of
60 minutes per MIP.
In many instances there is a much greater delay in our optimized schedule than in the baseline
solution, which results from the fact that we are able to decrease the number and duration of
shift time violations. Sometimes, it is even possible to find a feasible solution where the baseline
solution is just weakly feasible. Thus, it proves to be possible to respect the drivers’ shift times
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Figure 4: Improvement and gap for a larger county, similar to Figure 3

completely when applying our approach instead of a greedy approach. For the remaining problems,
we decrease the maximum delay by up to 32 minutes, with an average improvement of around 5
minutes. In smaller counties this value is much higher.
In 289 of 364 instances, we found an optimal solution for at least 80% of all MIPs. An optimal
solution for every MIP could be found in 267 instances. Consider the gaps in Figure 4 to evaluate
solution qualities. Each day, we solve multiple MIPs and evaluate the MIP gap after either finding
an optimal solution or meeting the 60-minute time limit. Similarly to Figure 3, the most significant
gaps occur when drivers’ shift times are difficult to meet. However, in this case, not all of the
remaining instances could be solved to optimality. But it is worth noting that in most instances
that were solvable to optimality within our time limit, whether they are weakly feasible or feasible,
the optimal solution was found quite early in the solving process, although it took a long time for
the solver to find an appropriate dual bound, i.e., to prove optimality. Thus, it is possible that in
these cases with a large gap, we already discovered a (nearly) optimal solution but were unable to
prove optimality.

5.3.2 Insights from the optimal solution

In the previous section we have evaluated the optimization results and discovered that they improve
the (simulated) current course of action. Now, we investigate the optimized schedules in more
detail.
We begin by examining how the delays vary over the course of the day. In Figure 5a, the maximum
and average delay aggregated over the year is plotted for every hour. The average delay is computed
using the number of transports. In Figure 5b, we further provide the total delay over the year.
The maximum delay is roughly equal throughout the day. From the late afternoon, there is nearly
no delay, with one exception at 5pm. This is presumably caused by shift ends. The average delay
is highest in the early morning and decreases continuously. We also consider the total delay on
the right hand side. Here, we have high delays from 6am, not from 5am as for the maximum and
average delay. While only a small number of transports are needed at this time, there are only few
vehicles working a shift at this time, so the average delay for these patients becomes very high.
This continues with the transports starting shortly after 6am. As the morning shift times do not
start earlier than 6am and they first need to drive to the origin of a transport, it is not possible
to reach these patients without a delay. In general, the night shifts end at 6am. Thus, they can
probably not handle these transport requests without risking shift time violations.
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Figure 5: Delays in the optimal schedules for instances of 2019, distinguished by target time.

A more detailed evaluation shows that the vehicles with earlier, i.e., morning shift times have to
handle considerably more transports. Vehicles are working almost at full capacity at least until
noon. Afterwards, less ad hoc transports are requested and the situation eases. This means that
as soon as a vehicle becomes available, it will be assigned to some transport. As few vehicles are
available at the beginning of a day, some transports cannot be handled on time. These delays then
cause delays for later transports. This occurs because vehicles are occupied by earlier transports
that are preferred as we minimize the maximum delay. In the afternoon, less transports are
requested. Thus, more vehicles are available and the delays finally decrease.

5.3.3 Examples for semiplannable transports and further requirements

This section contains some sample schedules for our modeling approach extensions from Subsub-
sections 4.2.1 and 4.2.2. We have been unable to conduct a full numerical study due to a lack of
data, but we were able to identify some exemplary days where our extensions worked well. For
both, using dummy transports for semiplannable transports as well as incorporating Covid-19
requirements, we explain the problems with the given data before presenting some examples.

Using dummy transports for semiplannable transports While trying to handle semi-
plannable transports (Definition 3.6) using dummy transports (Definition 3.8), the following data
issues have occurred: At the beginning of the optimization process, each transport T is assigned
to the county of the origin location OT . Often, the destination DT is located in another county.
In this case, patients have to be transported between different counties, causing outward and
return trips optimized in different models. This leads to dummy transports that are not applied in
the actual return trip. In practice, the dispatcher can assign such transports to the same county.
Furthermore, in more recent data provided by the ILS, a type of dummy node is used for dialysis
transports. As soon as a dialysis is requested, two transports are created, including the return trip
on 23:59 on the same day. Its target time is corrected as soon as it becomes known. Thus, if a
dialysis is created at least one day before, then it is a plannable transport but its return trip is
not, although it is stated to be plannable in the data.
Due to these reasons, we provide an example day where the incorporation of a dummy transport
leads to a significantly better result.

Example 5.1 (Advantages of using dummy transports). In Table 2, one can see two schedules
that have been established on an example day in 2019. Table 2a is the current schedule shortly
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Table 2: A schedule before and after transport 20 has been replaced by its dummy node d28.
The second dummy node, d24 for transport 24, does not correspond to a future transport and
will thus not be replaced before the end of the day. The information about the return trip has
become known at 11:00, all fixed transports are given below the line, so the remaining ones could
be rescheduled. As can be seen, the delays remain the same for all transports. Note that there are
relatively few transports in the afternoon as they are often ad hoc ones and thus are not known at
this point.

(a) Schedule before 11:00.
ID (i) ti k start (yi) end ∆i

28 06:45 0 06:45 07:52 0
4 07:30 13 07:30 11:57 0
24 08:00 0 08:00 08:33 0
23 08:00 6 08:03 11:01 3.8629
25 08:30 0 08:33 10:00 3.2262
11 08:45 7 08:45 09:46 0
6 09:00 5 09:40 10:02 4.2565
0 09:00 8 09:40 11:10 4.2565
26 09:45 10 09:45 11:01 0
2 09:45 7 09:47 10:37 2.0320
13 10:00 10 10:45 11:59 45.0436
3 10:00 1 10:33 11:46 33.8629
12 10:00 0 10:00 10:58 0.5156
14 10:00 5 10:14 10:56 14.6932
15 10:00 7 10:37 11:48 37.1338
21 10:00 10 10:05 10:43 4.8170
7 10:15 5 10:59 12:18 44.0412
16 10:30 0 10:58 11:44 27.8051
9 10:30 11 11:03 12:30 33.8629

18 10:40 10 11:23 12:22 43.1832
1 11:00 0 11:44 12:31 44.0945
d28 11:52 1 11:52 12:59 0
d24 12:33 10 12:33 13:08 0
17 15:30 2 15:30 18:21 0

(b) Schedule at 11:00.

ID (i) ti k start (yi) end ∆i

28 06:45 0 06:45 07:52 0
4 07:30 13 07:30 11:57 0
24 08:00 0 08:00 08:33 0
23 08:00 6 08:03 11:01 3.8629
25 08:30 0 08:33 10:00 3.2262
11 08:45 7 08:45 09:46 0
6 09:00 5 09:40 10:02 4.2565
0 09:00 8 09:40 11:10 4.2565
26 09:45 10 09:45 11:01 0
2 09:45 7 09:47 10:37 2.0320
13 10:00 10 10:45 11:59 45.0436
3 10:00 1 10:33 11:46 33.8629
12 10:00 0 10:00 10:58 0.5156
14 10:00 5 10:14 10:56 14.6932
15 10:00 7 10:37 11:48 37.1338
21 10:00 10 10:05 10:43 4.8170
7 10:15 5 10:59 12:18 44.0412
16 10:30 0 10:58 11:44 27.8051
9 10:30 11 11:03 12:30 33.8629

18 10:40 9 11:23 12:22 43.1832
1 11:00 0 11:44 12:31 44.0945
20 12:00 7 12:00 13:10 0
d24 12:33 0 12:33 13:08 0
17 15:30 2 15:30 18:21 0

before 11:00. At 11:00, a new transport is requested. This transport is a return trip for a previous
dialysis transport for which a dummy node has been created. The dummy node’s target time was
estimated based on the duration of previous dialysis appointments at the same location, i.e., in
the same hospital. The outward journey has ID 28 and the dummy node is denoted by d28. It is
determined that the new transport with ID 20 corresponds to this dummy node. Thus, it is deleted
and replaced by the new transport using the new information, i.e., the actual target time.
Table 2b shows the schedule created at 11:00. As can be seen, the vehicles allocated to the transports
not contained in Pσ

fixed for σ � 11:00, have changed. This is due to the fact that the transport is
requested a little later than expected and vehicle 7 is available at that time. The schedule shows
that it finishes its previous transport at 11:48, the new transport is requested at 12:00 instead of
the presumed 11:52. So, this vehicle can reach the origin of the return trip in time.

The maximum delay in this example county is reduced by 20 minutes when compared to the
schedule created without dummy nodes. As a result, the total delay decreases. In this case, we
only create one dummy node, which is later replaced, and, the penalty weight was set to γ � 0.5
for dummy transports. Taking this into account, this is a very positive result, and an even greater
improvement can be predicted if more dummies are used whenever appropriate data is available.
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Table 3: Optimized pools for vehicles in one example area and the example shift times for Tuesdays.
For each shift time, the number of handled transports, as well as the percentage of the allocation
to each pool are given.

Number of Number of Covid-19 Non-Covid Floater
Shift time vehicles transports vehicles vehicles vehicles

06:00 - 14:00 1 189 2.9% 94.2% 2.9%
07:00 - 15:00 1 191 1.5% 91.2% 7.3%
08:00 - 16:00 1 161 2.9% 90.0% 7.1%
08:30 - 16:30 1 135 1.5% 93.9% 4.6%
09:00 - 17:00 2 237 0.8% 95.2% 4.0%
10:00 - 18:00 2 128 4.6% 94.3% 1.1%
10:30 - 18:30 1 119 2.9% 97.1% 0.0%
11:00 - 19:00 1 37 6.7% 93.3% 0.0%
14:00 - 22:00 1 69 7.3% 90.9% 1.8%
15:00 - 22:00 1 14 9.1% 90.9% 0.0%
16:00 - 24:00 1 20 10.5% 89.5% 0.0%
22:00 - 06:00 1 9 0.0% 100.0% 0.0%

Incorporating further requirements. Now, we consider schedules when dealing with Covid-19
transports. The dispatcher does not have a special course of action in the Covid-19 pandemic.
Instead, it treats transports of infected patients in the same manner as other transports. As a
result, evaluating our extension from Subsubsection 4.2.2 against the (simulated) reality is no
longer useful, because explicit minimization of infection risks is not taken into account.
Instead, we aim to obtain new insights into how the pandemic requirements could be handled.
The first example shows how a computed pool division can look, while the second one attempts
to compare our two different approaches discussed in Subsubsection 4.2.2 to handling Covid-19
transports.
In a pool division, the first and second pools contain vehicles that transport either only Covid-19
patients or no Covid-19 patients at all. Floater vehicles make up a third pool. We evaluate the
results and devise a strategy for implementing this pool division in practice.

Example 5.2 (Distribution of vehicles in an optimized pool division). We have collected all
information about transports that took place in some county between 1st January, 2020 and 30th
June, 2021. The percentage of Covid-19 transports is quite low, as days with very few (or even zero)
transports are included. In Table 3, the pool division aggregated over all Tuesdays is given. Floater
vehicles are mostly used in the earlier shifts. Later in the day, it is often possible to use Covid-19
vehicles. This might be caused by a higher number of transports in the morning, as discussed in
Section 1.

We can gain an intuition which vehicles are a good choice for fixed Covid-19 vehicles using such
tables. Depending on the number of Covid-19 transports on one day, some of these vehicles
should be assigned to the Covid-19 vehicle pool. Similar peculiarities are obtained for different
combinations of counties and weekdays.
Because the exact distribution of transports, i.e., how many infected patients should be transported,
is not known in advance, it is helpful to decide on the number of vehicles for each pool depending
on the current number of Covid-19 cases. We assumed previously in Section 1 that these numbers
can have a high correlation. Furthermore, it can be helpful to hold an additional floater vehicle in
reserve to allow for any discrepancies.
We now compare the two options for handling Covid-19 transports that have been discussed
in Subsubsection 4.2.2. In total, there are little data containing a high percentage of Covid-19
transports. Thus, we consider an example that yields the same maximum and total delay for both
heuristic approaches, but the transports are handled very differently depending on the approach
used. We will discuss these differences concerning the vehicle fleet.

Example 5.3 (Comparison of the approaches for handling Covid-19 transports). On our example
day in April 2020, 45 transports are requested, 17 of which are for Covid-19 patients. Semiplannable
transports are treated as ad hoc transports. For the second approach, limiting the number of Covid-
19 transports per vehicle, we assume that each vehicle has two sets of protective clothing. In our
example, there are 17 vehicles available. In both schedules, 15 of them are used. In particular, both
approaches use the same vehicles. Those with a shift early in the morning are not required because
no transport is requested.
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If we minimize the number of Covid-19 vehicles used, three of the fifteen vehicles are Covid-19
vehicles, with five additional vehicles serving as floater vehicles. There are four Covid-19 and
six floater vehicles in the other case. Because the number of transports it can handle is limited,
a larger pool is required (and not penalized). In fact, when minimizing the number of Covid-19
vehicles, some Covid-19 and floater vehicles carry out at least three Covid-19 transports, which is
hardly penalized when distributing the clothing equally.
One thing that stands out in both schedules is that every vehicle that transports any infected patient
ends its shift with all transports of infected persons. As a result, the penalty γchange is never applied.
The fact that this is possible with both approaches and also results in a relatively short delay is a
positive result in terms of reducing infection risks. The longest delays occur later in the evening
and cannot be avoided even if we do not include any Covid-19 requirements aside from increasing
transport duration. This is due to a lack of available vehicles at the same time.

To summarize, both approaches have advantages and produce similar results especially when the
number of Covid-19 transports is relatively low in practice. For example, the amount of protective
clothing available may influence the dispatcher’s approach. As this number grows, the need to
consider this limitation diminishes and the dispatchers’ focus may shift to minimizing contact
between infected and non-infected patients and drivers. Another possibility is to combine both
approaches, distributing protective clothing to all vehicles but providing more to those that are
likely to have more Covid-19 transports. A fleet division, such as the one previously mentioned,
could be useful in this regard.

6 Conclusion and future research
In this work, we have proposed a solution approach for scheduling patient transports that are not
rescue transports. Information about these transports can be incomplete and may only be partly
known several hours before they are required. Our objective is minimizing the delay for patients in
a fair manner while respecting shift times. We apply a VRPGTW formulation that can then be
solved by state-of-the-art MIP solvers.
We implemented the MIP formulation for the cases of full and incomplete information. We classify
required transports into plannable transports (full information), semiplannable transports (almost
full information but the target time is unknown) and ad hoc transports (no information about the
transport at all). Ad hoc transports are incorporated by an iterative algorithm that solves Model (4)
every time that full information about a transport becomes known. Semiplannable transports can,
on the one hand, be treated like ad hoc transports or, on the other hand, by introducing dummy
transports with an estimated target time. When using the second approach, they are treated like
plannable transports. We have compared our modeling approach to the current scheduling practice
of the dispatcher. Thereby, we have exemplarily observed that the waiting times in the optimized
schedules are significantly lower than those obtained via a simulation of the current scheduling
practice. To incorporate semiplannable transports where significant improvements can be seen,
we require more data that includes such transports. Using the current data, we were only able to
elaborate on some examples.
We have extended the model so that Covid-19 transports can be handled by different vehicle fleets.
Still, the model remains solvable in real time and can be solved with MIP-based algorithms. We
have outlined algorithmic approaches, which speed up the solution process.
In summary, we have proposed a formulation for the scheduling problem of patient transports
that can be used in practice, also with further extensions to the pandemic situation. However,
extensions are not limited to this application. We are able to decrease the delays for patients.
Further, we can adhere to drivers’ shift times more often than a simulation of the reality can, while,
in almost all instances, even preserving smaller delays. With the availability of more data, it is
expected that the proposed approach will work even better.
Several research directions are of interest for the future. As already mentioned, the usage of
multi-objective optimization might be helpful as we have conflicting goals, e.g. minimizing delays
and adhering to shift times. Another potential for improvement lies in incorporating semiplannable
transports, where — assuming more data is available — other methods, e.g., further estimations
of the duration and target time of transports, can be implemented. Furthermore, the usage of

25



dummy nodes can be extended, so that they can be created for more types of transport than those
presented here for dialysis. Our approach can also be transferred to different scheduling or routing
problems.
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