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Abstract

Transforming into an exact penalty function model with convex compact constraints yields ef-
ficient infeasible approaches for optimization problems with orthogonality constraints. For smooth
and `2,1-norm regularized cases, these infeasible approaches adopt simple and orthonormalization-
free updating schemes and show high efficiency in some numerical experiments. However, to avoid
orthonormalization while enforcing the feasibility of the final solution, these infeasible approaches
introduce a quadratic penalty term, where an inappropriate penalty parameter can lead to numerical
inefficiency. Inspired by penalty-free approaches for smooth optimization problems, we proposed
a sequential linearized proximal gradient method (SLPG) for a class of optimization problems with
orthogonality constraints and nonsmooth regularization term. This approach alternatively takes
tangential steps and normal steps to improve the optimality and feasibility respectively. In SLPG,
the orthonormalization process is invoked only once at the last step if high precision for feasibil-
ity is needed, showing that main iterations in SLPG are orthonormalization-free. Besides, both the
tangential steps and normal steps do not involve the penalty parameter, and thus SLPG is penalty-
free and avoids the inefficiency caused by possible inappropriate penalty parameter. We analyze
the global convergence properties of SLPG where the tangential steps are inexactly computed. By
inexactly computing tangential steps, for smooth cases and `2,1-norm regularized cases, SLPG has a
closed-form updating scheme, which leads to cheap tangential steps. Numerical experiments illus-
trate the advantages of SLPG when compared with existing first-order methods.

1 Introduction

1.1 Problem description

In this paper, we focus on a class of composite optimization problems with orthogonality con-
straints,

min
X∈Rn×p

f (X) + r(X)

s.t. X>X = Ip,
(COS)

where the objective is the summation of two functions f , r : Rn×p 7→ R satisfying the following
blanket assumption.

Assumption 1 (blanket assumption). • Function f is differentiable and ∇ f (X) is locally Lipschitz
continuous in Rn×p;
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• Function r is convex and Lipschitz continuous in Rn×p;

• For any X, G ∈ Rn×p and any η > 0, the problem

min
D∈Rn×p

〈G, D〉+ r(D) +
1

2η
‖D− X‖2

F

is of closed-form solution or can be solved efficiently by certain iterative approach.

The feasible region of the orthogonality constraints X>X = Ip is the Stiefel manifold embedded
in real matrix space X ∈ Sn,p := {X ∈ Rn×p|X>X = Ip}. We also call it as the Stiefel manifold for
brevity.

The optimization problems of the form (COS) have wide applications in data science and statistics.
We mention a few of them in the following.

Problem 1 (Sparse Principal Component Analysis). Principal component analysis (PCA) is a basic tool
in data processing and dimensional reduction. It pursues the p leading eigenvectors of the empirical covariance
matrix L associated with N samples in Rn. Contemporary datasets often have a new feature that the dimension
n is comparable with or even much larger than the samples N. At this point, we need to take into account the
sparsity in the principal components for better representation and consistency. Mathematically, we consider
the following sparse PCA model [9, 36], which admits a nonsmooth `1 norm regularization term.

min
X∈Rn×p

− 1
2

tr
(

X>LX
)
+ γ ‖X‖1

s. t. X>X = Ip,
(1.1)

where γ is a positive parameter controlling the sparsity.

Problem 2 (`2,1-norm regularized PCA ). To pursue the sparsity in the features (variables) of the principal
components, we can impose the row sparsity to the classical PCA model and arrive at the following `2,1-norm
regularized PCA problem [46, 9].

min
X∈Rn×p

− 1
2

tr
(

X>LX
)
+

n

∑
i=1

γi ‖Xi·‖2

s. t. X>X = Ip,

(1.2)

where Xi· and γi are the i-th row of matrix X ∈ Rn×p and a positive parameter controlling the row spar-
sity, respectively, for all i = 1, ..., n. The problem (1.2) is also known as the Coordinate-independent Sparse
Estimation [14].

When the nonsmooth part vanishes, i.e. r = 0, the objective function of (COS) reduces to a smooth
function. There are many applications in this scenario as well, for instance, the discretized Kohn-
Sham energy minimization problem arising in material sciences.

Problem 3 (Discretized Kohn-Sham Energy Minimization). Kohn-Sham density functional theory (KS-
DFT) [33] is widely used in electronic structure calculation. In the last step of KSDFT, it requires to minimize
the following discretized Kohn-Sham energy function over the Stiefel manifold.

min
X∈Rn×p

1
4

tr
(

X>LX
)
+

1
2

tr
(

X>VionX
)
+

1
4

ρ>L†ρ +
1
2

ρ>εxc(ρ)

s.t. X>X = Ip,
(1.3)

where L ∈ Rn×n and diagonal matrix Vion ∈ Rn×n refers to the Laplace operator in the planewave basis and
discretized local ionic potential, respectively, ρ := diag(XX>) denotes the charge density, and εxc : <n 7→ <n

stands for the exchange correlation function.

Remark 1. The blanket assumption is not strict at all, since it holds at all the instances we listed above.
Moreover, it is the same as those imposed in [12, 30, 31].
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1.2 Existing methods

On minimizing smooth objectives over the Stiefel manifold, there exist several efficient approaches,
such as gradient-based methods [37, 39, 2], conjugate gradient methods [18, 1], projection-based meth-
ods [4, 17], constraint preserving updating scheme [47, 32], Newton methods [27], trust-region meth-
ods [3], first-order methods with multipliers correction framework [19], infeasible methods [20, 49],
etc. Interested readers are referred to the book [4], the survey paper [28] and the references therein.
It is worth mentioning that several infeasible approaches have been proposed and show their high
efficiency in solving optimization problems over the Stiefel manifold. The ALM-based approaches
PLAM and PCAL[20] update the Lagrangian multipliers by an explicit expression derived by the
first-order stationarity conditions. Such explicit expression involves the gradient of the objective, and
hence these algorithms can only tackle the problems with smooth objective function. Gao et al. [21]
provide a clear route of applying PCAL to the electronic structure calculation. Xiao et al. [49] present
a novel penalty function with compact convex constraints (PenC). In the framework of PenC, they
propose approximate projected gradient and Newton methods PenCF and PenCS, respectively. Hu
et al. [29] propose an unconstrained penalty model for sparse dictionary learning and dual principal
component pursuit.

However, most of the above-mentioned approaches can hardly be applied to the problem with
nonsmooth objective function directly. The approaches for solving (COS) with r 6= 0 are not as many
as those for smooth minimization. We review a few representative ones in the following.

The first class of approaches are based on the splitting and alternating. The splitting method
for orthogonality constrained problem (SOC) [34] introduces auxiliary variables to split the objective
function and the orthogonality constraints, and then applies the alternating direction method of mul-
tipliers (ADMM) to solve the equivalent splitting model. The subproblem related to the objective
function lacks closed-form solution in general which is a main limit of SOC. Meanwhile, Rosman et
al. [41] propose a variable splitting framework based on augmented Lagrangian method for prob-
lems on imaging processing, which can also be extended to solve optimization problems on Sn,n.
Besides, Chen et al. [13] propose a proximal alternating minimization approach based on augmented
Lagrangian method (PAMAL). Different from SOC, PAMAL develops an equivalent model by intro-
ducing two blocks of variables to split the orthogonality constraints, smooth and nonsmooth terms
apart. PAMAL invokes the augmented Lagrangian method (ALM) framework and block coordinate
descent (BCD) method to solve the split model and the subproblems related to the primal variables,
respectively.

The second classes of approaches apply the proximal gradient method to tackle the nonsmooth
term in (COS). Chen et al. [12] propose the Riemannian proximal gradient method (ManPG) and its
accelerated version, ManPG-Ada. The main iteration, which occupies the main computational cost
of ManPG or ManPG-Ada, is to compute the following proximal mapping restricted to the tangent
space TXk := {∆ ∈ Rn×p|∆>Xk + Xk

>∆ = 0} of the Stiefel manifold.

min
D∈Xk+TXk

〈D,∇ f (Xk)〉+ r(D) +
1

2ηk
‖D− Xk‖2

F , (1.4)

where ηk > 0 is the stepsize. The subproblem (1.4) is a nonsmooth convex optimization problem with-
out closed-form solution in general and can be solved by the semi-smooth Newton method (SSN) [43].
Their numerical experiments show that both ManPG and ManPG-Ada outperform the existing split-
ting and alternating based approaches SOC and PAMAL. Recently, Huang et al. present a Riemannian
version of fast iterative shrinkage-thresholding algorithm with safeguard (AManPG) in [30], which
exhibits the accelerated behavior over the Riemannian proximal gradient method. Nevertheless, no
convergence rate analysis is presented for AManPG. They also propose a modified Riemannian prox-
imal gradient method (RPG) and its accelerated version (ARPG), respectively, in [31]. They show
theO( 1

k )-convergence rate of RPG and ARPG. However, the proximal mapping subproblems in both
RPG and ARPG are even more expensive to solve than ManPG due to their nonsmoothness and non-
convexiety. Thus, ARPG and RPG are usually slower than AManPG and ManPG-Ada in solving
optimization problems on the Stiefel manifold as illustrated in [31].

The key motivation of PenC is to utilize the explicit expression of the Lagrangian multipliers at
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first-order stationary points, which involves the Euclidian gradient of the objective function. Hence,
it can hardly be generalized to the nonsmooth case, in which the gradient of the objective function
is absent. Xiao et al. [50] extend PenC to a special case of (COS) in which r takes the `2,1-norm like
(1.2) in Problem 2. Although the subdifferential of r in this case is set-valued, the term X>∂r(X) is
single-valued. Based on this observation, the authors of [50] propose the corresponding PenC model
and a proximal gradient method called PenCPG. In PenCPG, the proximal subproblem is of closed-
form solution, which leads to its numerical superiority when compared with the existing Riemannian
proximal gradient approaches in solving `2,1-norm regularized problems.

However, if the nonsmooth term r is not a `2,1-norm, the term X>∂r(X) is set-valued in general.
Hence, the Lagrangian multipliers at any stationary point no longer have closed-form expression.
Therefore, the PenC model does not apply to (COS) in general.

Another limitation of PenC based approaches is that their numerical performances are related
to the choice of the penalty parameter, as reported in [19, 49, 50]. But slow convergence or even
divergence occurs, if the penalty parameter is out of such range. The authors in [20] provide heuristic
way to select the penalty parameter without theoretical guarantee.

1.3 Motivation

In order to develop an efficient infeasible approach for solving (COS) which is not sensitive to
the penalty parameter, we borrow the idea from a class of sequential quadratic programming (SQP)
approaches developed for solving the equality constrained smooth nonlinear optimization problems.
These approaches include the inexact-restoration method proposed by Martinez [38], the nonmono-
tone trust-region based SQP methods proposed by Ulbrich and Ulbrich [44], Gould and Toint [23],
Liu and Yuan [35], and Chen et al. [15], respectively. In particular, the authors in [23] and [35] pro-
vide inexact strategies to tackle the SQP subproblems. Besides, the approaches presented in [45] and
[42] utilize the nonmonotone filter techniques. However, all of these approaches invoke the second-
order oracle or use the first-order information to approximate the Hessian of the objective function
or its Lagrangian. Hence, these approaches are only valid in the smooth problems. To the best of
our knowledge, there are few approaches for solving the nonsmooth optimization problems such as
(COS) by adopting the SQP-like techniques.

Our main idea is to reduce the objective function in the tangent space and to improve the feasibility
in the normal space alternatively. We first approximate the objective function by a proximal linearized
model and minimize it on an affine subspace spanned at the current iterate which is parallel to a
tangent space of the Stiefel manifold. We then invoke a normal step which searches in the range
space of the Jacobian of the constraints X>X− Ip = 0 to reduce the feasibility violation.

1.4 Contributions

We propose a first-order penalty-free infeasible approach, called sequential linearized proximal
gradient method (SLPG), for solving a class of composite optimization problems with orthogonal-
ity constraints (COS). In each iteration, SLPG takes the tangential and the normal steps one after
the other, both of which do not involve any orthonormalization procedure or updating of penalty
parameters. Consequently, SLPG enjoys high scalability and avoids the numerical inefficiency from
inappropriately selected penalty parameters. We discuss how to solve the tangential subproblems
inexactly, which is different from the existing approaches since the iterates are no longer feasible. We
provide a novel idea to conduct the normal steps which simultaneously have both low computational
cost and fast convergence to the feasible region. To combine the tangential and normal steps together,
the subsequence convergence as well as the worst-case complexity of SLPG can be established un-
der mild assumptions. Furthermore, when the nonsmooth term of (COS) has a special structure, i.e.
the Lagrange multipliers with respect to the orthogonality constraints are of closed-form expressions,
the tangential steps of SLPG enjoy closed-form approximate solutions, and hence an inner loop to
solve the tangential subproblem is waived. The efficiency and robustness of SLPG are illustrated
by a set of numerical experiments on the sparse PCA, the `2,1-norm regularized PCA, and the dis-
cretized Kohn-Sham energy minimization problems. SLPG visibly outperforms the state-of-the-art
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feasible approaches in solving those nonsmooth problems. It exhibits its prominent robustness when
compared with the existing infeasible approaches.

1.5 Notations and Organization

Let Sp×p := {A | A ∈ Rp×p, A = A>} be the set containing all the real symmetric p× p matrices.
We use Ip to denote the p × p identity matrix. The entry in the i-th row and the j-th column of a
matrix X ∈ Rn×p is denoted by Xij. For brevity, we use ‖X‖1 to represent the component-wise `1
norm, i.e. ‖X‖1 = ∑i,j |Xij|. The Euclidean inner product of two matrices X, Y ∈ Rn×p is defined as
〈X, Y〉 = tr(X>Y), where tr(A) is the trace of a matrix A ∈ Rp×p. ‖·‖2 and ‖·‖F represent the 2-norm
and the Frobenius norm, respectively. For a positive semi-definite matrix A ∈ Rp×p, A

1
2 refers to the

unique positive semi-definite matrix satisfying A
1
2 A

1
2 = A and A−

1
2 is its inverse.

The rest of this paper is organized as follows. In Section 2, we present the detailed description
of SLPG , and introduce the practical implementations on computing the tangential and the normal
steps. We establish the convergence analysis for SLPG in Section 3. The preliminary numerical exper-
iments are reported in Section 4. Finally, we conclude this paper in Section 5.

2 Algorithm Description

In this section, we mainly propose the framework of SLPG. We first provide some necessary pre-
liminary definitions. Then we present the mathematical formulations of the tangential and normal
subproblems and introduce how to solve them respectively. Finally, we demonstrate the complete
algorithm framework.

2.1 Preliminary

We first review the definition of Clark’s subdifferential [16] for nonsmooth functions.

Definition 1 ([16, 40]). For any Lipschitz continuous f on Rn×p, the generalized directional derivative of f
in the direction D ∈ Rn×p is defined by,

f o(X, D) := lim sup
Y→X,t→0+

f (Y + tD)− f (Y)
t

. (2.1)

Based on generalized directional derivative of f , the Clark’s subdifferential (“subdifferential” for brevity) of f is
defined by,

∂ f (X) :=
{

W ∈ Rn×p| 〈W, D〉 ≤ f o(X, D) for any D ∈ Rn×p} . (2.2)

Next we describe the stationarity of (COS), which is same as [12, Definition 3.3].

Definition 2. Under the Assumption 1, we call X a first-order stationary point of (COS) if and only if there
exists W ∈ ∂r(X) such that ∇ f (X) + W − XΦ

(
X> (∇ f (X) + W)

)
= 0,

X>X = Ip.
(2.3)

Definition 3. A operator T : Rp×p 7→ Rp×p is nonexpansive if and only if there exists a constant c ∈ [0, 1]
such that

‖T(Λ1)− T(Λ2)‖F ≤ c ‖Λ1 −Λ2‖F

holds for any Λ1, Λ2 ∈ Rp×p.
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2.2 Computing the tangential step

Suppose Xk is the current iterate, we define the affine subspace Ak as

Ak :=
{

X ∈ Rn×p
∣∣∣Φ(X>Xk) = Xk

>Xk

}
.

Here Φ : Rp×p → Rp×p, Φ(M) = M+M>
2 is an operator that symmetrize the square matrices in Rp×p.

To reduce the function value, we minimize the following proximal linearized approximation of the
objective function with stepsize ηk on the space Ak.

min
D∈Ak

〈∇ f (Xk), D〉+ r (D) +
1

2ηk
‖D− Xk‖2

F . (2.4)

We call (2.4) the tangential subproblem for convenience hereinafter. Different with the tangential step
in [12], the subproblem (2.4) is constructed on an infeasible point Xk.

By simple calculations, we can obtain the following KKT condition of the convex optimization
problem (2.4). 0 ∈ ∇ f (Xk)− XkΛ + ∂r(D) +

1
ηk

(D− Xk),

Φ(D>Xk) = Xk
>Xk,

(2.5)

where Λ ∈ Sp×p is the Lagrangian multiplier of the linear constraint D ∈ Ak.
Once Λ is fixed, the first relation in (2.5) determines

D = proxηk
(∇ f (Xk)− XkΛ; Xk),

where the proximal mapping proxηk
: Rn×p ⊗Rn×p 7→ Rn×p is defined by

proxηk
(G; Xk) := arg min

D∈Rn×p
〈G, D〉+ r(D) +

1
2ηk
‖D− Xk‖2

F .

Then it is clear that the KKT condition (2.5) is equivalent to the nonlinear equation E(Λ) = 0, where

E(Λ) := Φ
((

proxηk
(∇ f (Xk)− XkΛ; Xk)− Xk

)>
Xk

)
.

This equation can be rewritten as the fixed point equation

Λ− tE(Λ) = Λ, where t > 0. (2.6)

We adopt the following Arrow-Hurwicz algorithm proposed by Beale et al. [6] to solve (2.6).

Algorithm 1 Fixed point iteration
Require: Input data: current iterate Xk, parameter ηk;

1: Choose initial guess Λ0 ∈ Sp×p, set j := 0;
2: while not terminate do
3: Calculate the proximal mapping: Dj = proxηk

(∇ f (Xk)− XkΛj; Xk);

4: Main update: Λj+1 = Λj − 1
ηk

E(Λj);
5: Set j := j + 1;
6: end while
7: Return Yk := Dj.

Chambolle et al. [10] have provided an O
(

1
k

)
convergence rate of the Arrow-Hurwicz algorithm

locally. Later on, He et al. [24] have shown that the Arrow-Hurwicz algorithm, as a special case
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of their primal-dual hybrid gradient algorithm (PDHG), enjoys an O
(

1
k

)
convergence rate in the

ergodic sense under mild conditions containing our case.
In our infeasible framework, we actually do not need an accurate solution to the tangential sub-

problem (2.4). More specifically, in Algorithm 1, we adopt the following terminating condition for
the residual.

Condition 1. There exist C > 0 such that Yk ∈ Rn×p returned by Algorithm 1 satisfy∥∥∥Φ
(
(Yk − Xk)

> Xk

)∥∥∥
F
≤ cηk

∥∥∥Xk
>Xk − Ip

∥∥∥
F

. (2.7)

2.3 A practical inexact tangential step in special cases

In [49] and [50], it is shown that for two special cases of (COS) with r(X) = 0 and r(X) =
∑n

i=1 γi ‖Xi·‖2, the Lagrangian multipliers have explicit expressions

Λ(X) = Φ(X>∇ f (X)) and (2.8)

Λ(X) = Φ(X>∇ f (X)) +
n

∑
i=1

γiS(X>i· ), (2.9)

respectively, at any first-order stationary point, where S is defined by

S(x) :=

{
xx>
‖x‖2

, if x 6= 0;
0p, otherwise,

(2.10)

and 0p is the zero vector in Rp.
Here we can propose an alternative way to inexactly solve the tangential subproblem (2.4) other

than Algorithm 1 with Condition 1 by using the expressions (2.8) and (2.9) to estimate the multipliers
of (2.4) and then get the proximal mapping. Namely, we adopt the following two step algorithm.

Algorithm 2 Using explicit expressions
Require: Input data: current iterate Xk, parameter ηk;

1: If r(X) = 0, calculate Λ by (2.8) with X = Xk;
2: If r(X) = ∑n

i=1 γi ‖Xi·‖2, calculate Λk by (2.9) with X = Xk;
3: Calculate the proximal mapping: Yk = proxηk

(∇ f (Xk)− XkΛk; Xk);
4: Return Yk.

2.4 Computing the normal step

After obtaining Yk, an inexact solution of the tangential subproblem, we need to consider a normal
step to reduce the feasibility violation. A usual way to realize it is to pull this intermediate point back
to the Stiefel manifold through certain projection, i.e. orthonormalization process, such as the QR
decomposition, the polar decomposition, and so on. As we know, orthonormalization is usually
unscalable and expensive when p is large. An accurate normal step usually does not help much for
the overall performance as the tangential step is an inexact solution of a linear approximate model.
Therefore, we consider to compute the orthonormalization inexactly to balance the accuracies of the
tangential and the normal steps. A parallelizable algorithm proposed in [25] computes the polar
decomposition by adopting the Padé approximant, whose main computational cost can be attributed
to the inverse of a series of p× p matrices which can be realized by solving linear equations.

The Taylor expansion of z−
1
2 at z = 1 to order one is z−

1
2 = 1 − 1

2 (z − 1) + O((z − 1)2). Let
z = X>X, we have ∥∥∥∥(X>X)−

1
2 −

(
3
2

Ip −
1
2

X>X
)∥∥∥∥

F
= O

(∥∥∥X>X− Ip

∥∥∥2

F

)
.
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Hence, the polar decomposition at the intermediate iterate Yk(Yk
>Yk)

− 1
2 can be approximated by the

following normal step

Xk+1 = Yk

(
3
2

Ip −
1
2

Yk
>Yk

)
. (2.11)

Next we show how the above normal step reduce the feasibilit violation.

Lemma 1. For any X ∈ Rn×p satisfying
∥∥X>X− Ip

∥∥
2 ≤

1
4 , let X̂ := X

(
3
2 Ip − 1

2 X>X
)

, then it holds that∥∥∥X̂>X̂− Ip

∥∥∥
F
≤ 13

16

∥∥∥X>X− Ip

∥∥∥2

F
.

Proof. It directly follows from the condition
∥∥X>X− Ip

∥∥
2 ≤

1
4 that∥∥∥∥Ip −

1
4

X>X
∥∥∥∥

2
=

∥∥∥∥3
4

Ip +
1
4
(Ip − X>X)

∥∥∥∥
2
≤ 3

4
+

1
4

∥∥∥X>X− Ip

∥∥∥
2
≤ 13

16
.

Together with the definition of X̂, we have∥∥∥X̂>X̂− Ip

∥∥∥
F
=

∥∥∥∥X>X− Ip + (Ip − X>X)X>X +
1
4

X>X(X>X− Ip)
2
∥∥∥∥

F

=

∥∥∥∥(Ip −
1
4

X>X
)
(X>X− Ip)

2
∥∥∥∥

F
≤ 13

16

∥∥∥(X>X− Ip)
2
∥∥∥

F
≤ 13

16

∥∥∥X>X− Ip

∥∥∥2

F
.

(2.12)

2.5 Algorithm

Now, we are ready to present the framework of our SLPG algorithm which alternatively takes the
tangential and the normal steps introduced in the Subsections 2.2, 2.4, respectively.

Algorithm 3 Sequential Linearized Proximal Gradient method (SLPG)

Require: Input data: functions f and r;
1: Choose initial guess X0, set k := 0;
2: while not terminate do
3: Choose parameter ηk;
4: Solve the tangential subproblem (2.4) inexactly to make Condition 1 hold by Algorithm 1, and

obtain Yk;
5: Compute the normal step (2.11), and obtain Xk+1;
6: Set k := k + 1;
7: end while
8: if need post-process then
9: Compute Xk := UkV>k , where Xk = UkΣkV>k is the singular value decomposition (SVD) of Xk

in economic size;
10: end if
11: Return Xk.

The post-process stated in Line 9 of Algorithm 3 pursues an accurate feasible solution if necessary.
As shown later in theoretical and numerical analyses, such post-process does not affect the substa-
tionarity much. In addition, it can further reduce the function value while decreasing the feasibility
violation to machine precision.

Remark 2. It is also worth mentioning that if the normal step in SLPG takes the orthonormalization process,
the sequence {Xk} generated by SLPG is on the Stiefel manifold. In addition, the tangential subproblem is
strictly on the tangent space of the Stiefel manifold at Xk. By choosing suitable parameter c, SLPG reduces to
the existing approach ManPG [12]. In other word, ManPG can be regarded as a special variant of SLPG in
which both of the tangential and the normal steps are computed more precisely.
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3 Global Convergence of SLPG

In this section, we first establish the global convergence of SLPG without the post-process by con-
structing a merit function and evaluating the sufficient function value reduction. For convenience,
when we mention Algorithm 3 in the first two subsections in this section, the post-process is switched
off. Then we demonstrate that the post-process provides further function value reduction. For con-
venience, we define the following constants at the very beginning:

L f := sup
X, Y∈Ω1/2

| f (X)− f (Y)|
‖X−Y‖F

= sup
X∈Ω1/2

||∇ f (X)||F,

L f ′ := sup
X, Y∈Ω1/2

‖∇ f (X)−∇ f (Y)‖F
‖X−Y‖F

,

Lr := sup
X, Y∈Ω1/2

|r(X)− r(Y)|
‖X−Y‖F

,

where Ωr := {X |
∥∥X>X− Ip

∥∥
F ≤ r}, for any given r ≥ 0. We also introduce a new assumption on

the parameter sequence {ηk}.

Assumption 2. Assume that the parameters in Algorithm 3 satisfies ηk ∈
[

η̃
2 , η̃
]

for all k = 0, 1, ..., where

η̃ = min

{
1

6(1 + c)(L f + Lr + c + 1)
,

1
2L f ′ + 8(L f + Lr) + 3

}
,

and c is defined in Condition 1.

3.1 Preliminary properties of the iterate sequences

We first demonstrate some properties of the iterate sequences {Xk} and {Yk} generated by SLPG
including the boundedness and the reduction on the feasibility under a mild assumption on the initial
guess.

Lemma 2. Suppose the sequences {Xk} and {Yk} are generated by Algorithm 3. Then, it holds that∥∥∥Yk
>Yk − Ip

∥∥∥
F
≤ (1 + 2cηk)

∥∥∥Xk
>Xk − Ip

∥∥∥
F
+ ‖Yk − Xk‖2

F . (3.1)

Proof. Let D̃ := Yk − Xk, we have∥∥∥Yk
>Yk − Ip

∥∥∥
F
=
∥∥∥Xk

>Xk + 2Φ(D̃>Xk) + D̃>D̃− Ip

∥∥∥
F

≤
∥∥∥Xk

>Xk − Ip

∥∥∥
F
+ 2

∥∥∥Φ(D̃>Xk)
∥∥∥

F
+
∥∥∥D̃>D̃

∥∥∥
F

≤ (1 + 2cηk)
∥∥∥Xk

>Xk − Ip

∥∥∥
F
+ ‖Yk − Xk‖2

F .

Here the last inequality follows from Condition 1.

Lemma 2 shows that the tangential step may increase the feasibility violation. But fortunately, it
can be controlled in some senses. Next, we investigate the boundedness of the iterate sequences with
a suitable initial guess.

Lemma 3. Suppose that Assumption 2 holds and Xk ∈ Ωτ with

τ =
1

4(1 + c)2 (3.2)

9



Then, we have

〈Yk,∇ f (Xk)〉+ r(Yk) +
1

2ηk
‖Yk − Xk‖2

F

≤ 〈Xk,∇ f (Xk)〉+ r(Xk) +
6c(5L f + 5Lr + c)ηk

25

∥∥∥Xk
>Xk − Ip

∥∥∥
F

.

(3.3)

Proof. For convenience, we denote pk(D) := 〈D,∇ f (Xk)〉 + r(D) + 1
2ηk
‖D− Xk‖2

F. It directly fol-

lows from the fact Xk ∈ Ωτ that Xk
>Xk is non-singular and hence we can define Zk := Xk +

Xk(Xk
>Xk)

−1Φ((Yk − Xk)
>Xk). By the definition of Zk, we first obtain

Φ((Zk − Xk)
>Xk) = Φ((Yk − Xk)

>Xk).

Besides, together with Condition 1, the distance between Zk and Xk can be estimated by

‖Zk − Xk‖F ≤
∥∥∥Xk(Xk

>Xk)
−1
∥∥∥

2

∥∥∥Φ((Yk − Xk)
>Xk)

∥∥∥
F
≤ 6cηk

5

∥∥∥Xk
>Xk − Ip

∥∥∥
F

,

where the last inequality results from the fact that
∥∥∥Xk(Xk

>Xk)
−1
∥∥∥

2
≤ 2

√
3

3 < 6/5 which is implied
by the inclusion Xk ∈ Ωτ .

Then we have

|pk(Zk)− pk(Xk)| ≤ |〈Zk − Xk,∇ f (Xk)〉|+ |r(Zk)− r(Xk)|+
1

2ηk
‖Zk − Xk‖2

F

≤ (L f + Lr) ‖Zk − Xk‖F +
1

2ηk
‖Zk − Xk‖2

F

≤
6c(L f + Lr)ηk

5

∥∥∥Xk
>Xk − Ip

∥∥∥
F
+

18c2ηk
25

∥∥∥Xk
>Xk − Ip

∥∥∥2

F
.

(3.4)

On the other hand, we consider the following optimization problem,

min
D∈Rn×p

〈D,∇ f (Xk)〉+ r(D) +
1

2ηk
‖D− Xk‖2

F

s.t. Φ(Xk
>(D− Xk)) = Φ(Xk

>(Yk − Xk)).
(3.5)

As described in Algorithm 1, there exists a symmetric matrix Λk such that Yk = proxηk
(∇ f (Xk) −

XkΛk; Xk). Then by Rockafellar and Wets [40], we have

0 ∈ ∇ f (Xk)− XkΛk +
1
ηk

(Yk − Xk) + ∂r(Yk) = ∂pk(Yk)− XkΛk. (3.6)

Therefore, there exists Wk ∈ ∂pk(Yk) such that W − XkΛk = 0. Therefore, for any feasible D in (3.5),
we have

〈W, D−Yk〉 = 〈XkΛk, D−Yk〉 =
〈

Λk, Xk
>(D−Yk)

〉
=
〈

Λk, Φ(Xk
>(D−Yk))

〉
=
〈

Λk, Φ(Xk
>(D− Xk))

〉
−
〈

Λk, Φ(Xk
>(Yk − Xk))

〉
= 0− 0 = 0.

(3.7)

Then together with [26, Theorem 1.1.1], we can conclude that Yk is the global minimizer of (3.5), and
hence pk(Yk) ≤ pk(Zk). Recall the inequality (3.4), we arrive at

pk(Yk)− pk(Xk) ≤ pk(Zk)− pk(Xk) ≤ |pk(Zk)− pk(Xk)|

≤
6ηkc(L f + Lr)

5

∥∥∥Xk
>Xk − Ip

∥∥∥
F
+

18c2ηk
25

∥∥∥Xk
>Xk − Ip

∥∥∥2

F

≤
6c(5L f + 5Lr + c)ηk

25

∥∥∥Xk
>Xk − Ip

∥∥∥
F

.

Here the last inequality follows the the inclusion Xk ∈ Ωτ ⊂ Ω1/3. Then we complete the proof.
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Lemma 4. Suppose that Assumption 2 holds and the iterate sequences {Xk} and {Yk} are generated by Algo-
rithm 3 initiated from X0 satisfying X0 ∈ Ωτ with τ defined in (3.2). Then for any k = 0, 1, ..., it holds

max
{
‖Yk − Xk‖F ,

∥∥∥Yk
>Yk − Ip

∥∥∥
F

}
≤ 1

2(1+c) ,
∥∥∥Xk

>Xk − Ip

∥∥∥
F
≤ 1

4(1+c)2 , (3.8)∥∥∥Xk+1
>Xk+1 − Ip

∥∥∥
F
≤ 13

32

∥∥∥Xk
>Xk − Ip

∥∥∥
F
+ 13

32 ‖Yk − Xk‖2
F . (3.9)

Proof. We use mathematical induction. Clearly
∥∥∥Xk

>Xk − Ip

∥∥∥
F
≤ 1

4(1+c)2 holds for k = 0. From
Lemma 3, we have

1
2ηk
‖Yk − Xk‖2

F ≤ (L f + Lr) ‖Yk − Xk‖F +
6ηkc(5L f + 5Lr + c)

25

∥∥∥Xk
>Xk − Ip

∥∥∥
F

. (3.10)

Suppose that ‖Yk − Xk‖F > 3ηk(L f + Lr + c + 1), we have

1
2ηk
‖Yk − Xk‖2

F =
1

3ηk
‖Yk − Xk‖2

F +
1

6ηk
‖Yk − Xk‖2

F

> (L f + Lr) ‖Yk − Xk‖F +
3
2
(L f + Lr + c + 1)2ηk

> (L f + Lr) ‖Yk − Xk‖F +
6c(5L f + 5Lr + c)ηk

25

∥∥∥Xk
>Xk − Ip

∥∥∥
F

,

where the last inequality results from the inclusion Xk ∈ Ωτ . Clearly, this statement contradicts the
inequality (3.10). Therefore, we have

‖Yk − Xk‖F ≤ 3ηk(L f + Lr + c + 1) ≤ 1
2(1 + c)

,

where the last inequality follows from Assumption 2.
On the other hand, by recalling Lemmas 1, 2 and the Cauchy-Schwartz inequality, we obtain∥∥∥Xk+1

>Xk+1 − Ip

∥∥∥
F
≤ 13

16

∥∥∥Yk
>Yk − Ip

∥∥∥2

F
≤ 13

16

(
(1 + 2ηkc)

∥∥∥Xk
>Xk − Ip

∥∥∥
F
+ ‖Yk − Xk‖2

F

)2

≤ 13
8

(
(1 + 2ηkc)2

∥∥∥Xk
>Xk − Ip

∥∥∥2

F
+ ‖Yk − Xk‖4

F

)
≤ 13

32

∥∥∥Xk
>Xk − Ip

∥∥∥
F
+

13
32
‖Yk − Xk‖2

F .

Finally, by Lemma 1 we have∥∥∥Xk+1
>Xk+1 − Ip

∥∥∥
F
≤ 13

16

∥∥∥Yk
>Yk − Ip

∥∥∥2

F
<

1
4(1 + c)2 . (3.11)

Thus, we can conclude the proof by using the mathematical induction.

3.2 Global convergence

Before presenting the main convergence theorem of SLPG, we first estimate certain sufficient func-
tion value reduction.

Lemma 5. Suppose that Assumption 2 holds and the iterate sequences {Xk} and {Yk} are generated by Algo-
rithm 3 initiated from X0 satisfying X0 ∈ Ωτ with τ defined in (3.2). Then for any k = 0, 1, ..., it holds

f (Xk+1) + r(Xk+1) ≤ f (Xk) + r(Xk) +

(
− 1

2ηk
+

L f ′

2
+ L f + Lr

)
‖Yk − Xk‖2

F

+

(
L f + Lr +

3c
4 + 4c

)∥∥∥Xk
>Xk − Ip

∥∥∥
F

.
(3.12)
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Proof. Recalling the inequality (3.3) and the Taylor expansion of the objective function of (COS), we
can obtain

( f (Yk) + r(Yk))− ( f (Xk) + r(Xk))

≤ 〈Yk − Xk,∇ f (Xk)〉+
L f ′

2
‖Yk − Xk‖2

F + r(Yk)− r(Xk)

+
6ηkc(5L f + 5Lr + 3c)

25

∥∥∥Xk
>Xk − Ip

∥∥∥
F

.

≤
(
− 1

2ηk
+

L f ′

2

)
‖Yk − Xk‖2

F +
c

4 + 4c

∥∥∥Xk
>Xk − Ip

∥∥∥
F

.

(3.13)

Here the last inequality follows the upper-bound for ηk described in Assumption 2.
On the other hand, the assertion (3.8) of Lemma 4 directly implies that ‖Yk‖2 ≤ 2, which together

with the normal step (2.11) lead to the fact that

‖Xk+1 −Yk‖F =

∥∥∥∥Yk

(
3
2

Ip −
1
2

Yk
>Yk

)
−Yk

∥∥∥∥
F
=

1
2

∥∥∥Yk(Yk
>Yk − Ip)

∥∥∥
F
≤
∥∥∥Yk
>Yk − Ip

∥∥∥
F

.

Then by the Lipschitz continuity of f and r, Lemma 2 and Assumption 2, we arrive at

( f (Xk+1) + r(Xk+1))− ( f (Yk) + r(Yk))

≤(L f + Lr) ‖Xk+1 −Yk‖F ≤ (L f + Lr)
∥∥∥Yk
>Yk − Ip

∥∥∥
F

≤ (1 + 2ηkc) (L f + Lr)
∥∥∥Xk

>Xk − Ip

∥∥∥
F
+ (L f + Lr) ‖Yk − Xk‖2

F

≤
(

L f + Lr +
c

2 + 2c

)∥∥∥Xk
>Xk − Ip

∥∥∥
F
+ (L f + Lr) ‖Yk − Xk‖2

F .

(3.14)

After summing up the inequalities (3.13) and (3.14) together, we complete the proof.

In the next step, we need to evaluate the sufficient reduction of the following merit function.

h(X) := f (X) + r(X) +

(
2L f + 2Lr +

3
2

)∥∥∥X>X− Ip

∥∥∥
F

. (3.15)

Lemma 6. Suppose that Assumption 2 holds and the iterate sequences {Xk} and {Yk} are generated by Algo-
rithm 3 initiated from X0 satisfying X0 ∈ Ωτ with τ defined in (3.2). Then for any k = 0, 1, ..., it holds

h(Xk+1)− h(Xk) ≤ −
1

4ηk
‖Yk − Xk‖2

F −
3

16

(
L f + Lr + 1

) ∥∥∥Xk
>Xk − Ip

∥∥∥
F

. (3.16)

Proof. This is a direct corollary of inequalities (3.9), (3.12) and (3.15).

Theorem 1. Suppose that Assumption 2 holds and the iterate sequences {Xk} and {Yk} are generated by
Algorithm 3 initiated from X0 satisfying satisfying X0 ∈ Ωτ with τ defined in (3.2). Then the sequence {Xk}
exists at least one accumulation point which must be a first-order stationary point of (COS).

Moreover,

min
0≤i≤k

1
ηi
‖Yi − Xi‖F ≤

√
26L f + 26Lr + 6

(k + 1)η̃
. (3.17)

and
min

0≤i≤k

∥∥∥Xi
>Xi − Ip

∥∥∥
F
≤ 52

3(k + 1)
. (3.18)
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Proof. Summing up the inequality (3.16) from k = 0 to +∞, we obtain

+∞

∑
k=0

[
1

4ηk
‖Yk − Xk‖2

F +
3

16

(
L f + Lr + 1

) ∥∥∥Xk
>Xk − Ip

∥∥∥
F

]
≤ h(X0)− lim

N→+∞
h(XN)

≤ sup
N→+∞

(L f + Lr) ‖XN − X0‖F +

(
2L f + 2Lr +

3
2

)
· 2 · 1

4(1 + c)2

≤
(

13
4

L f +
13
4

Lr +
3
4

)
,

(3.19)

where the last inequality uses the fact ||Xk||F ≤
√

5
2 which is implied by the second inequality of (3.8).

Thus, it holds that

lim
k→+∞

‖Yk − Xk‖F = 0, and lim
k→+∞

∥∥∥Xk
>Xk − Ip

∥∥∥
F
= 0.

On the other hand, by the boundedness of {Xk}, we know that this sequence exists accumulation
point, and denote it by X̄. Recalling the boundedness of {Xk}, {Yk} and {ηk}, without loss of gener-
ality, we can assume that there exists a subsequence {k j}j=1,2,... such that Xkj

→ X̄ and meanwhile it
holds that ηkj

→ η̄. It can be easily verified that∥∥∥Ykj
− Xkj

∥∥∥
F
→ 0 and

∥∥∥Xkj
>Xkj

− Ip

∥∥∥
F
→ 0, (3.20)

which imply X̄>X̄− Ip = 0.
For convenience, we invoke the Maximum Theorem stated in [7, p.116] without proof. The Max-

imum Theorem tells us that the Lipschitz continuities of ∇ f and r lead to the fact that the global
minimizer of (2.4) is continuous with respect to Xk. We define Ȳ as

Ȳ = arg min
Φ(D>X̄)=Φ(X̄>X̄)

〈∇ f (X̄), D〉+ r(D) +
1

2η̄
‖D− X̄‖2

F .

Combining the definition of the tangential step, the orthonormalization of X̄, the relation (3.20), we
have Ȳ = X̄. By simple calculation, we can conclude that X̄ satisfies (2.3) and hence is a first-order
stationary point of (COS).

By summing up the inequality (3.16) from i = 0 to k, and using the same deduction in (3.19), we
obtain

k
∑

i=0

1
4ηi

2 ‖Yi − Xi‖2
F ≤

k
∑

0=1

1
2η̄ηi
‖Yi − Xi‖2

F ≤
13L f +13Lr+3

2η̄ ,

and
k
∑

i=0

3
16

(
L f + Lr + 1

) ∥∥∥Xi
>Xi − Ip

∥∥∥
F
≤ 13L f +13Lr+3

4 ,

which imply the inequalities (3.17) and (3.18) immediately.

3.3 Orthonormalization as post-process

In the last subsection, we present a result on how the post-process affects the value of the merit
function.

Proposition 1. Suppose X satisfying
∥∥X>X− Ip

∥∥
F ≤

1
4 . Let X = UΣV> be the SVD of X in economic size

for X and we set Xorth := UV>, then it holds that

h(Xorth) ≤ h(X)−
(

L f + Lr +
3
2

)∥∥∥X>X− Ip

∥∥∥
F

.
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Proof. Firstly, by simple calculation, we have

‖Xorth − X‖F =
∥∥Σ− Ip

∥∥
F ≤

∥∥(Σ + Ip)(Σ− Ip)
∥∥

F =
∥∥∥X>X− Ip

∥∥∥
F

. (3.21)

Then by the Lipschitz continuity of f and r, we obtain

( f (Xorth) + r(Xorth))− ( f (X) + r(X)) ≤ (L f + Lr) ‖Xorth − X‖F ≤ (L f + Lr)
∥∥∥X>X− Ip

∥∥∥
F

,

which implies

h(Xorth)− h(X)

≤ ( f (Xorth) + r(Xorth))− ( f (X) + r(X))−
(

2L f + 2Lr +
3
2

)∥∥∥X>X− Ip

∥∥∥
F

≤ −
(

L f + Lr +
3
2

)∥∥∥X>X− Ip

∥∥∥
F

.

4 Numerical Experiments

In this section, we perform preliminary numerical experiments to illustrate the efficiency and the
robustness of SLPG . We first present the test settings including how to choose the parameters in
SLPG, introduce the test problems and then illustrate some observations in the numerical tests. Then
we compare SLPG with some of the state-of-the-art algorithms on these test problems.

All the numerical experiments in this section are run in serial in a platform with Intel(R) Xeon(R)
Silver 4110 CPU @ 2.10GHz and 384GB RAM running MATLAB R2018a under Ubuntu 18.10.

4.1 Test settings

Theorem 1 has provided a range for choosing the stepsize parameter ηk with guaranteed conver-
gence. However, such choice is too restrictive to be practically useful. In this section, we suggest
to adopt the following extended version, which was first proposed in [48], of Barzilar-Borwein (BB)
stepsize [5] in SLPG.

ηk =
〈

Sk, Vk
〉/〈

Vk, Vk
〉

, (4.1)

where Sk = Xk − Xk−1 and

Vk =
[
∇ f (Xk)− XkΦ(Xk

>∇ f (Xk))
]
−
[
∇ f (Xk−1)− Xk−1Φ(Xk−1

>∇ f (Xk−1))
]

.

In Algorithm 1, we set the maximum iterations as 10 and choose the stepsize t as 1/ηk. In SLPG,
we also adopt the warm-start technique in selecting the initial guess of Algorithm 1. Namely, Λ0 in
the k + 1-th iteration can be set as the last Λj in the k-th iteration. Besides, we set the constant c as
1000 in Condition 1.

In this paper, the substationarity, the feasibility violation (“feasibility” for short) and that of the
tangential subproblem (“TS feasibility” for short) at the k-th iterate are estimated by

‖Yk − Xk‖F /ηk,
∥∥∥Xk

>Xk − Ip

∥∥∥
F

, and
∥∥∥Φ(Xk

>(Yk − Xk))
∥∥∥

F
,

respectively. Unless otherwise stated, SLPG terminates if either the stopping criteria ‖Yk − Xk‖F /ηk ≤
10−4 is satisfied or the maximum number of iterations 10000 is reached.
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4.2 Test Problems

We adopt Problems 1-3 as the test problems. Unless otherwise stated, for Problems 1 and 2, we set
the covariance matrix L ∈ R1000×1000 of 200 randomly generated samples S = randn(1000, 200) with
unified normalization as the following

L = SS>/ ‖S‖2
2 . (4.2)

For Problem 3, we uses the test instances as “h2o” molecular from KSSOLV toolbox [51]. Additionally,
the initial points are chosen as the leading p eigenvectors of L for Problems 1 and 2, or generated by
the build-in function “getX0” in KSSOLV toolbox [51] for Problem 3.

4.3 Observations in testing SLPG

We first investigate how the substationarity, feasibility and TS feasibility vary in the running of
SLPG without post-process in solving Problems 1 and 2 with randomly generated data. We put the
numerical results in Figure 1. The blue, red and yellow lines represent the substationarity, feasibility
and TS feasibility, respectively. The problem parameters are listed below the subfigures. We can learn
from Figure 1(a)-1(c) that the feasibility violation of SLPG is actually a high order infinitesimal of the
substationarity, which coincides with the theoretical results in Lemma 1. It is worthy of mentioning
that SLPG decreases the feasibility violation much faster than those existing infeasible first-order
approaches, such as PLAM, PCAL in [20], and PenCF from [49], in solving (COS). Although we
can only theoretically establish the global sublinear convergence rate for SLPG, in Figure 1, we have
observed its local linear convergence rate in solving Problems 1-3.
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(a) Problem 1, (p, γ) = (5, 0.007)
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(b) Problem 2, (p, γ) = (5, 0.001)
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(c) Problem 3, (n, p) = (2013, 7)

Figure 1: The substationarity, feasibility and TS feasibility of SLPG.

Next we investigate how the post-process of SLPG affects the substationarity by testing SLPG in
solving Problems 1 and 2 with randomly generated data. We display the substationarity and the
feasibility of SLPG without the post-process, and the difference on the substationarity of SLPG after
imposing the post-process as the blue, red and yellow lines, respectively, in Figure 2. The problem
parameters are listed below the subfigures. We can learn from Subfigures 2(b) and 2(a) that the post-
process only affects the substationarity a little. In fact, the difference is a high order infinitesimal
of the substationarity, which can partly be explained as the feasibility violation itself is a high order
infinitesimal of the substationarity.

We note that our original problem (COS) is nonconvex, hence it is expected to have multi-stationary
points. Therefore, it is meaningful to check how the initial guesses affect the performance of SLPG. We
generate two data sets by (4.2) for Problems 1 and 2, respectively. Then we fix these two data sets and
run SLPG for 1000 times with different randomly generated initial points X0 = qr(randn(n, p)) for
each problem. To achieve high precision in function value, we set the stopping criteria as ‖Yk − Xk‖F /ηk ≤
10−10 here. We regard the function values varying in a range less than 10−7 as one value due to the
possible numerical error. We study the function value distribution in the 1000 runs for each problem
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(a) Problem 1, (p, γ) = (5, 0.007)
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Figure 2: The effect of the post-process.

and put the results into Figure 3. The problem parameters are listed below the subfigures. From both
Subfigures 3(a) and 3(b), we can conclude that SLPG has high probability to reach the lowest function
values, which could be regarded as good estimates of the global minimizers of Problems 1 and 2,
respectively, with certain probability.
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Figure 3: Function value distributions of SLPG .

Finally, we investigate how the inner solver affects the overall performance of SLPG. We com-
pare our fixed point iteration Algorithm 1 with the frequently used semi-smooth Newton methods
in solving Problem 1. In our numerical examples, SLPG refers to SLPG where the subproblem is
solved by Algorithm 1 while SLPG+SSN refer to the algorithm where the the subproblems are solved
by semi-smooth Newton methods. The parameters of the semi-smooth Newton method adopted in
SLPG+SSN are fixed as its default setting as stated in [30]. Figure 4 illustrates the performance of
SLPG and SLPG+SSN under different column size with (n, γ) fixed as (4000, 0.07). From subfigures
4(b)-4(c) we can learn that SLPG reaches the same function value in same number of iterations, but
requires slightly less CPU time than SLPG+SSN. That is the reason we use Algorithm 1 as the default
inner solver in SLPG.

4.4 `2,1-norm regularized PCA

In this subsection, we first compare SLPG with some of the state-of-the-art algorithms including
ManPG-Ada and PenCPG. Then, we further investigate the robustness brought by our penalty-free
scheme. The first algorithm in comparison is ManPG-Ada, which is an accelerated version of ManPG
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Figure 4: The comparison of inner solver.

[11]. The second one is PenCPG, which is an infeasible proximal gradient method based on the closed-
form expression of the multipliers. In our experiments, all three algorithms are run in their default
settings. As suggested in [22], the penalty parameter of Problem 2 is set as γ = b

√
p + log(n), where

parameter b is used to control the sparsity.
Figure 5 illustrates the performance of the three algorithms in comparison in solving Problem 2

with different combinations of n, p, b. The detailed problem parameters are listed below the subfig-
ures. As illustrated in Figure 5, all of these three algorithm reach the same function values. SLPG
takes fewer iterations than the other two, meanwhile it takes much less CPU time than ManPG-Ada.
Since PenCPG does not have any subproblem to solve, it has the lowest computational cost in each
iteration among the three. Finally, it only takes slightly less CPU time than SLPG . We can conclude
that SLPG is superior to the other two algorithms in the testing problems.

From the above experiment, we notice that PenCPG is comparable with SLPG in the aspect of
CPU time. However, we notice that PenCPG requires to tune a penalty parameter β while SLPG does
not have one. In the following experiment, we compare SLPG with PenCPG equipped with different
choices of β. We still use Problem 2 with data set generated randomly as stated in (4.2). We present
the results in Figure 6. The detailed problem settings are listed below the subfigures. We can learn
for Figure 6 that the performance of PenCPG is sensitive to the penalty parameter, meanwhile, SLPG
can always outperforms PenCPG with the best choice of β.

4.5 Sparse PCA

In this subsection, we compare SLPG with two state-of-the-art algorithms including ManPG-Ada
[12] and AManPG [30] in solving sparse PCA problem. In our experiments, all the three algorithms
are run in their default settings. Figure 5 illustrates the performance of the three algorithms in com-
parison in solving Problem 1 with different combinations of n, p, γ. The detailed problem parameters
are listed below the subfigures. We can learn from Figure 5 that all of these three algorithms reach
the same function values. SLPG takes much fewer iterations than ManPG-Ada and slightly fewer
iterations than AManPG. Meanwhile, it takes much less CPU time than the other two algorithms.

4.6 Kohn-Sham total energy minimization

In this subsection, we compare our algorithm with some state-of-the-art approaches in solving
Problem 3. The test problems are selected from the Kohn-Sham total energy minimization plat-
form KSSOLV [51], which is a MATLAB toolbox designed for electronic structure calculation. The
algorithms in comparison include PCAL [20] and PenCF [49]. We compare all these algorithms in
their default settings. We first study the numerical performance of SLPG and compare it with PCAL
and PenCF equipped with different penalty parameter β. The performances of these algorithms are
demonstrated in Figure 8. We can learn that the performances of PCAL and PenCF are sensitive to
the penalty parameter β. Meanwhile, SLPGis penalty-paramter-free and has comparable performs
with the other two algorithms equipped with fine-tuned penalty parameters.
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Figure 5: A comparison among SLPG, PenCPG and ManPG-Ada in solving `2,1-norm regularized
PCA problems.
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Figure 6: A comparison between SLPG and PenCPG with different penalty parameters.
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Figure 7: A comparison among SLPG, AManPG and ManPG-Ada in solving sparse PCA problems.
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Finally, we comprehensively compare the performance of SLPG with more state-of-the-art algo-
rithms, including the projection-based feasible method with QR factorization as retraction (“ManOp-
tQR” for short) from Manopt toolbox [4, 8], OptM proposed by Wen and Yin [47], PCAL and PenCF.
In this experiment, all the algorithms are run in their default settings. We set the stopping criteria
and the maximum number of iterations as

∥∥∥∇ f (Xk)− XkΦ(Xk
>∇ f (Xk))

∥∥∥
F
≤ 10−7 and 1000, respec-

tively. Table 1 illustrates the performance of these algorithms on 8 test problems with respect to dif-
ferent molecules. The terms “Etot”, “Substationarity”, “Iteration”, “Feasibility violation” and “CPU
time” stand for the function value, ‖∇ f (X)− XΛ(X)‖F, the number of iterations,

∥∥X>X− Ip
∥∥

F, and
the wall-clock running time, respectively. We can learn from Table 1 that SLPG is comparable with
these state-of-the-art algorithms in the aspect of iterations and CPU time in solving all the test prob-
lems.

To sum up, from the above numerical experiments, we can conclude that SLPG exhibits its robust-
ness and efficiency comparing with the existing algorithms in solving both smooth and nonsmooth
minimization over the Stiefel manifold.

Solver Etot Substationarity Iteration Feasibility violation CPU time(s)

alanine, (n, p) = (12671, 18)

ManOptQR -6.11e+01 9.88e-08 80 2.01e-15 24.16
OptM -6.11e+01 2.15e-08 87 4.22e-14 26.35
PCAL -6.11e+01 7.16e-08 97 2.80e-15 30.56
PenCF -6.11e+01 2.83e-08 83 1.90e-15 24.10
SLPG -6.11e+01 7.15e-08 73 6.65e-16 21.27

benzene, (n, p) = (8407, 15)

ManOptQR -3.72e+01 8.48e-08 163 2.07e-15 27.52
OptM -3.72e+01 1.19e-08 82 2.46e-14 14.91
PCAL -3.72e+01 6.88e-08 67 2.35e-15 13.17
PenCF -3.72e+01 7.44e-08 67 2.57e-15 12.15
SLPG -3.72e+01 1.68e-08 66 8.66e-16 11.83

c12h26, (n, p) = (5709, 37)

ManOptQR -8.15e+01 8.85e-08 439 5.06e-15 131.12
OptM -8.15e+01 2.49e-08 105 8.50e-14 33.71
PCAL -8.15e+01 8.46e-08 66 4.68e-15 25.23
PenCF -8.15e+01 7.70e-08 81 4.72e-15 25.92
SLPG -8.15e+01 8.83e-08 72 1.34e-15 24.26

ctube661, (n, p) = (12599, 48)

ManOptQR 2.51e+01 2.45e+01 1000 4.22e-15 743.02
OptM -1.34e+02 8.64e-09 108 4.89e-15 90.88
PCAL -1.34e+02 9.54e-08 73 4.80e-15 68.42
PenCF -1.34e+02 5.04e-08 76 5.04e-15 60.32
SLPG -1.34e+02 7.67e-08 69 1.36e-15 56.94

glutamine, (n, p) = (16517, 29)

ManOptQR -9.18e+01 7.03e-08 180 3.20e-15 138.08
OptM -9.18e+01 1.39e-08 129 3.29e-15 102.58
PCAL -9.18e+01 6.67e-08 108 3.08e-15 88.68
PenCF -9.18e+01 9.35e-08 109 3.16e-15 83.01
SLPG -9.18e+01 9.06e-08 104 9.50e-16 78.98

graphene16, (n, p) = (3071, 37)

ManOptQR -9.40e+01 8.74e-08 326 4.24e-15 67.13
OptM -9.40e+01 2.34e-08 313 4.34e-15 66.44
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Table 1 continued from previous page
PCAL -9.40e+01 4.81e-08 416 4.41e-15 94.70
PenCF -9.40e+01 3.74e-08 327 4.18e-15 65.00
SLPG -9.40e+01 9.53e-08 286 1.22e-15 56.71

pentacene, (n, p) = (44791, 51)

ManOptQR -1.31e+02 9.20e-08 150 4.79e-15 425.62
OptM -1.31e+02 2.37e-08 126 4.52e-15 374.43
PCAL -1.31e+02 8.62e-08 111 4.06e-15 365.80
PenCF -1.31e+02 6.40e-08 109 4.56e-15 301.13
SLPG -1.31e+02 9.58e-08 113 1.25e-15 308.88

ptnio, (n, p) = (4069, 43)

ManOptQR -2.26e+02 8.62e-08 661 3.90e-15 166.45
OptM -2.26e+02 2.49e-08 662 3.96e-15 171.86
PCAL -2.26e+02 9.53e-08 596 3.75e-15 169.96
PenCF -2.26e+02 8.54e-08 508 3.98e-15 123.19
SLPG -2.26e+02 6.70e-08 706 1.19e-15 169.87

si64, (n, p) = (6451, 128)

ManOptQR 1.58e+02 2.88e+01 1000 8.02e-15 2413.09
OptM -2.53e+02 2.18e-08 124 1.03e-14 328.57
PCAL -2.53e+02 9.97e-08 74 1.02e-14 227.23
PenCF -2.53e+02 7.48e-08 68 1.03e-14 179.30
SLPG -2.53e+02 9.73e-08 74 2.25e-15 194.01

si8, (n, p) = (799, 16)

ManOptQR -3.13e+01 9.39e-08 394 2.33e-15 38.27
OptM -3.13e+01 2.20e-08 182 1.73e-15 18.66
PCAL -3.13e+01 8.23e-08 73 2.16e-15 8.27
PenCF -3.13e+01 9.14e-08 90 1.73e-15 9.22
SLPG -3.13e+01 8.54e-08 72 5.81e-16 7.60

Table 1: The results in Kohn-Sham total energy minimization

5 Conclusion

In this paper, we have presented a penalty-free infeasible approach called SLPG for solving opti-
mization problems over the Stiefel manifold with possibly nonsmooth objective functions. Our SLPG
has two main steps. The first step is to solve a linearized proximal approximation in an affine sub-
space, which reduces to a tangent space of the Stiefel manifold if the iterate is feasible. We suggest
to adopt a fixed point iteration to solve this tangential subproblem. Particularly, when the objec-
tive function is smooth or of `2,1 regularization term, we can adopt an empirical direct approach to
inexactly solve the tangential subproblem instead of the fixed point iteration. The other step is to
approximate the orthonormalization procedure by a cheap normal step, which is inspired from the
Taylor expansion of the polar decomposition. The main advantages of our approach lie in the follow-
ing three aspects. Firstly, we adopt an infeasible framework which is of better scalability than those
manifold-based approaches. Secondly, compared with the existing infeasible approaches, SLPG does
not invoke any penalty function, and hence the sensitivity of the performance to the choice of penalty
parameters is naturally eliminated. Thirdly, numerical experiments demonstrate the great potential
of SLPG in solving (COS) with both smooth and nonsmooth objective functions. In addition, we have
established the global convergence results for SLPG.
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Figure 8: A detailed comparison on the iterations and CPU time taken by SLPG, PenCF and PCAL in
KSSOLV.
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[26] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex analysis and minimization algorithms
I: Fundamentals, volume 305. Springer science & business media, 2013.

[27] Jiang Hu, Andre Milzarek, Zaiwen Wen, and Yaxiang Yuan. Adaptive quadratically regularized
newton method for riemannian optimization. SIAM Journal on Matrix Analysis and Applications,
39(3):1181–1207, 2018.

[28] Jiang Hu, Xin Liu, Zaiwen Wen, and Ya-xiang Yuan. A brief introduction to manifold optimiza-
tion. Journal of the Operations Research Society of China, (8):199–248, 2020.

[29] Xiaoyin Hu and Xin Liu. An efficient orthonormalization-free approach for sparse dictionary
learning and dual principal component pursuit. Sensors, 20(3041), 2020.

[30] Wen Huang and Ke Wei. Extending fista to riemannian optimization for sparse pca. arXiv
preprint arXiv:1909.05485, 2019.

[31] Wen Huang and Ke Wei. Riemannian proximal gradient methods. arXiv preprint
arXiv:1909.06065, 2019.

[32] Bo Jiang and Yu-Hong Dai. A framework of constraint preserving update schemes for optimiza-
tion on stiefel manifold. Mathematical Programming, 153(2):535–575, 2015.

[33] Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation
effects. Physical review, 140(4A):A1133, 1965.

[34] Rongjie Lai and Stanley Osher. A splitting method for orthogonality constrained problems.
Journal of Scientific Computing, 58(2):431–449, 2014.

[35] Xinwei Liu and Yaxiang Yuan. A sequential quadratic programming method without a penalty
function or a filter for nonlinear equality constrained optimization. Siam Journal on Optimization,
21(2):545–571, 2011.

[36] Zongming Ma et al. Sparse principal component analysis and iterative thresholding. The Annals
of Statistics, 41(2):772–801, 2013.

[37] Jonathan H Manton. Optimization algorithms exploiting unitary constraints. IEEE Transactions
on Signal Processing, 50(3):635–650, 2002.

25



[38] J. M. Martinez. Inexact-restoration method with lagrangian tangent decrease and new merit
function for nonlinear programming. Journal of Optimization Theory and Applications, 111(1):39–
58, 2001.

[39] Yasunori Nishimori and Shotaro Akaho. Learning algorithms utilizing quasi-geodesic flows on
the stiefel manifold. Neurocomputing, 67:106–135, 2005.

[40] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science &
Business Media, 2009.

[41] Guy Rosman, Xuecheng Tai, Ron Kimmel, and Alfred M Bruckstein. Augmented-lagrangian
regularization of matrix-valued maps. Methods and applications of analysis, 21(1):105–122, 2014.

[42] Chungen Shen, Sven Leyffer, and Roger Fletcher. A nonmonotone filter method for nonlinear
optimization. Computational Optimization and Applications, 52(3):583–607, 2012.

[43] Defeng Sun and Jie Sun. Semismooth matrix-valued functions. Mathematics of Operations Re-
search, 27:150–169, 2002.

[44] Michael Ulbrich and Stefan Ulbrich. Non-monotone trust region methods for nonlinear equality
constrained optimization without a penalty function. Mathematical Programming, 95(1):103–135,
2003.

[45] Stefan Ulbrich. On the superlinear local convergence of a filter-sqp method. Mathematical Pro-
gramming, 100(1):217–245, 2004.

[46] Magnus O Ulfarsson and Victor Solo. Sparse variable pca using geodesic steepest descent. IEEE
Transactions on Signal Processing, 56(12):5823–5832, 2008.

[47] Zaiwen Wen and Wotao Yin. A feasible method for optimization with orthogonality constraints.
Mathematical Programming, 142(1-2):397–434, 2013.

[48] Zaiwen Wen, Wotao Yin, Donald Goldfarb, and Yin Zhang. A fast algorithm for sparse recon-
struction based on shrinkage, subspace optimization, and continuation. SIAM Journal on Scien-
tific Computing, 32(4):1832–1857, 2010.

[49] Nachuan Xiao, Xin Liu, and Ya-xiang Yuan. A class of smooth exact penalty function methods
for optimization problems with orthogonality constraints. Optimization Methods and Software,
2020.

[50] Nachuan Xiao, Xin Liu, and Ya-xiang Yuan. Exact penalty function for `2,1 norm minimization
with orthogonality constraints. Optimization Online preprint:2020/07/7908, 2020.

[51] Chao Yang, Juan C Meza, Byounghak Lee, and Lin-Wang Wang. Kssolv—a matlab toolbox for
solving the kohn-sham equations. ACM Transactions on Mathematical Software (TOMS), 36(2):10,
2009.

26


