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Abstract

Optimizing the hyperparameters and architecture of a neural network
is a long yet necessary phase in the development of any new application.
This consuming process can benefit from the elaboration of strategies de-
signed to quickly discard low quality configurations and focus on more
promising candidates. This work aims at enhancing HyperNOMAD, a li-
brary that adapts a direct search derivative-free optimization algorithm
to tune both the architecture and the training of a neural network si-
multaneously, by targeting two keys steps of its execution and exploiting
cheap approximations in the form of static surrogates to trigger the early
stopping of the evaluation of a configuration and the ranking of pools of
candidates. These additions to HyperNOMAD are shown to improve on
its resources consumption without harming the quality of the proposed
solutions.

Keywords: Hyperparameter optimization (HPO), Derivative-free optimization
(DFO), Blackbox optimization (BBO).

1 Introduction
The efficacy of deep neural networks (DNN) to discover patterns in complex
datasets is seen throughout multiple applications where the appropriate variant
of a DNN often manages to score higher than human experts or other machine
learning algorithms and even to push the current state of the art. A particular
class of DNN includes convolutional neural networks (CNN) which are used for
image classification, image segmentation, or object detection. They have been
gaining in popularity and attention from the scientific community in the recent
years as they are at heart of important technological advances such as imitation
learning [14] or medical imagery analysis [23] to name a few.
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An important challenge when adopting a deep learning approach for a new
task is to find the appropriate neural network by deciding on a set of hyper-
parameters that determine the architecture, i.e, the number of layers, type of
blocks and connection, and the training regime. The final score of the network
is highly sensitive to the tuning of these hyperparameters and there is no rig-
orous or intuitive rule that directly provides a range for their optimum values.
This hyperparameter optimization (HPO) problem can therefore be framed as
a blackbox optimization problem where the objective value is the result of a
computation with no analytical formula and no known derivatives. Moreover,
this process is time consuming and expensive in computational resources as each
configuration trial is equivalent to training a new network long enough to infer
its generalization score. In a supervised learning setting, the HPO problem can
be expressed as

min
Φ
f(Φ, θ∗) with θ∗ ∈ argmin

θ
LΦ,θ(X,Y ) (1)

where f is the objective function that corresponds to a measure of performance
of the neural network, usually the validation loss, Φ is the mixed integer vector
of all the hyperparameters that define the network, X,Y are the validation data
and labels, L is the loss function that the network optimizes during the training
by updating the weights θ.

Derivative-free optimization (DFO) [2, 10] provides a class of methods that
are well suited to tackle such blackbox HPO problems as they do not need
the explicit expression of the objective function and/or the constraints, nor do
they rely on the derivatives for their execution. Two classes of DFO algorithms
can be defined: Model-based and direct search methods. Model-based algo-
rithms use a static or dynamic surrogate function f̂ as an approximation of
the true objective f to guide the optimization. Static surrogates, also called
simplified physics surrogates, are defined before the start of the optimization
and remain unchanged during the execution in contrast to dynamic surrogates,
such as Gaussian processes that are updated with each iteration of the DFO
method or with each new evaluation of the objective function. Direct search
methods base their exploration of the search space solely on the values of the
evaluated points and explore said space through a pattern as it is the case for
the Mesh Adaptive Direct Search (MADS) [1] or on a simplex in the case of
the Nelder-Mead algorithm [24]. The properties of DFO methods explain their
popularity in the context of HPO of deep neural networks where they are of-
ten included in specialized libraries such as Hyperopt [6] or Oríon [7]. Similarly,
the HyperNOMAD toolbox [18, 19] is developed as an adaptation of MADS to
simultaneously optimize the architecture and the training phase of a CNN for a
given dataset as expressed in (1). This open source library was shown to have
a competitive performance against other popular approaches such as Bayesian
optimization [4] or a random search [5] on the MNIST [21], Fashion-MNIST [29]
and CIFAR-10 [17] datasets.

The objective of this work is to develop a set of protocols that speed up the
HPO process in HyperNOMAD. The proposed measures are based on the use
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of two static surrogates that affect different steps of the algorithm execution:
first the training log of the best encountered network serves as a baseline of
comparison with the currently evaluated point and allows for early stopping de-
cisions if the performance of the current network seems unsatisfactory. Second,
another static surrogate is employed to rank the candidates to be evaluated
at each iteration of HyperNOMAD which applies an opportunistic evaluation
strategy, meaning that an iteration is interrupted as soon as a better score is
recorded, therefore disregarding the other pool of candidates. The implementa-
tion of these two surrogates is shown to significantly speed up the HPO process
thus saving expensive resources.

The rest of the document is structured as follows: Section 2 provides an
overview of the literature regarding strategies for early stopping and acceler-
ating the costly HPO problem. Section 3 goes through the algorithm behind
HyperNOMAD to highlight where the added strategies are implemented. Sec-
tion 4 dives into the details of the proposed speed ups and the management of
each surrogate. Finally, Section 5 compares the original version of HyperNOMAD
with the proposed additions and a synthesis of these results is presented in the
discussion.

2 Related work
The common problem of fine tuning a neural network to yield the best perfor-
mance measure for a specific dataset is highly complex and consuming in terms
of time and computational resources, so much so that it is often treated in two
separate steps: one for finding the neural architecture and one for optimizing
the hyperparameters related to the training of the network. Regardless of which
phase is considered, the problem can be formulated as an expensive blackbox
optimization problem [2, 10] since the evaluation of the objective function is
equivalent to training a new neural network with a specific configuration for a
certain amount of time in order to estimate its final accuracy. That necessary
amount of time is unknown a priori and has a direct impact on the quantity of
resources needed to carry out this task. Moreover, experience shows that not
every hyperparameter configuration can yield satisfactory results and it is best
to develop the tools that quickly detect such cases and prematurely stop their
training, thus saving valuable resources than can be allocated to more promising
candidates.

Early stopping is first introduced as a regularization technique to ovoid the
overfitting issue that arises in machine learning. Theoretically, the training
of a network, and more generally any machine learning algorithm, should be
interrupted as soon as the validation error starts to increase as that behaviour
indicates a training saturation and an overfitting to the training data. However,
as the authors of [26] point out, this criteria can not be directly applied on a
real validation error curve that tend to be irregular This work also provides
a set of adapted criteria that prompt early stopping when the increase of the
validation error exceeds a predetermined threshold, when the deterioration of
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the validation error is greater than the improvement of the training error or when
the generalisation error consistently increases over a certain number of epochs.
An epoch describes one pass on the entire training data. The training usually
consists in multiple epochs before reaching convergence. Each of these criteria
is shown to provide good a trade-off between the overall training time and the
final performance of the network on a collection of problems. Early stopping is
also exploited in Hyperband [22] which adapts the random search (RS) [5] with
an efficient resource management scheme. This algorithm starts with allocating
a fraction of the resources to each new configuration and compares the resulting
validation loss, half of the the low performing candidates are stopped and the
other half is granted more resources and the process is repeated throughout
the execution of Hyperband with only the relative top performers being trained
with the full resources. Compared to other HPO algorithms such as Bayesian
methods, Hyperband allows for a significant speed up on multiple datasets such
as MNIST and CIFAR-10. The same principle of “starting many, stopping
early, continuing some” is applied in [11] where the authors obtained the best
results when discarding the least performing networks after 20% − 30% of the
total training budget. All aforementioned works rely on the observed validation
curves, yet they highlight a different aspect of the early stopping decisions.
In [26], stopping the training is only dependent on the scores of the network
itself whereas [11, 22] stop networks for their relative scores compared to a pool
of candidates.

Besides, early stopping strategies can base their decisions on the estimation
of future scores instead of the observed ones only. Survey [13] dedicates a section
to some of the methods used to estimate the final validation performance, or to
a lesser extent, the expected scores in future iterations. These strategies extrap-
olate the validation or training curves [12] via a regression method by factoring
the observed scores and, possibly, the architectural and learning hyperparam-
eters of the network [3, 16]. The usefulness of these estimators in speeding-up
hyperparameter optimization or neural architecture search is shown in each work
but their main challenge is their need to be trained on a substantial amount of
data before having reliable predictions. Another score estimation route uses low
fidelity surrogates such as training a network with a lower epoch budget [30], on
a subset of the dataset [15, 28] or on lower resolution images [8]. The predicted
scores with these methods are expected to be under-estimations of the real val-
idation scores, however they can still be used as a ranking tool to separate the
candidate configurations between the top and low performers as long as a good
balance in the low fidelity estimate is found so that the under-estimations are
not too large.

3 The HyperNOMAD package
The open-source library HyperNOMAD [18, 19] is designed as an adaptation
of the NOMAD software [20] to optimize the hyperparameters of deep neural
networks as formulated in (1). This package allows searching for both the archi-
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tecture and the convolutional network’s training regime for a specific dataset. It
contains two main components: the blackbox and the optimizer, as illustrated
in Figure 1 and presented in the following section.

Initial parameters: dataset,
initial point, budget evaluation

HyperNOMAD optimizer

Hyperparameters,
block structure

Neighbors
NOMAD

Blackbox

Construct network
Network training,
validation, testing

New pointValidation accuracy

Figure 1: The HyperNOMAD workflow is represented by the communication
of its two components. The optimizer suggests new candidates based on the
NOMAD software and the blackbox trains the corresponding neural network to
return its validation or test accuracy as the objective function value. Image
adapted from [19].

3.1 The blackbox
This component regroups the Python and Pytorch [25] modules responsible for
creating the equivalent deep neural network to the provided vector of hyperpa-
rameters. The blackbox module fully trains the resulting network before return-
ing its validation accuracy or its validation loss as a performance measure. The
package provides some computer vision datasets such as MNIST [21], Fashion-
MNIST [29], CIFAR-10/100 [17] and STL10 [9] but also allows to plug-in a new
dataset if needed.
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3.2 The optimizer
The second module is first responsible for handling the collected categorical,
integer, or real HPs. Categorical HPs include non-ordinal variables such as the
activation function or the choice of the training optimizer and some ordinal
variables such as the number of convolutional or fully connected layers. Then,
the module launches the optimization through the NOMAD software, which is
the official implementation of the Mesh Adaptive Direct Search (MADS) [1]
algorithm further discussed in Section 3.3.

In HyperNOMAD, each convolutional layer is defined by five HPs: the number
of output channels, the kernel size, the stride, the padding, and the pooling size;
And each fully connected layer is determined by the number of nodes it contains.
Hence, if n1 indicates the number of convolutional layers and n2 the number of
fully connected layers, the network’s architecture is determined by 5n1+n2 HPs.
Considering the remaining HPs such as the optimizer, batch size or dropout
rate, the dimension of the complete HPO problem becomes 5n1 + n2 + 10.
This dimension varies during the optimization if the values of n1 and n2 evolve,
explaining why these HPs are considered categorical variables. A change in their
values signals a change of search space, which HyperNOMAD handles through
the extended polls in Algorithm 1 with a predefined neighborhood structure
that states that each CNN has five neighbors. Four of these neighbors are
found by adding/subtracting one convolutional/fully connected layer and the
fifth neighbor keeps the same architecture and changes the optimizer for the
training task.

3.3 The mesh adaptive direct search (MADS) algorithm
As previously stated, the optimizer in HyperNOMAD launches the MADS algo-
rithm to explore the HPs search space. At each iteration k, MADS works on a
mesh Mk defined by a mesh size ∆k that is expanded or reduced depending on
whether the previous iteration is successful or not. An iteration is successful if
an improvement on the incumbent is recorded; otherwise, it is a failure.

Each iteration is composed of two steps. First, the search step is an optional
and flexible phase containing any exploration strategy as long as a finite number
of trials projected on the mesh Mk are evaluated. Then the poll step starts
by listing a set of poll points around the incumbent Pk = {xk + ∆kd | d ∈
Dk} where Dk is a set of search directions that form a positive basis. The
search directions are generated so that the equivalent unit directions become
asymptotically dense in the unit sphere. The points pk ∈ Pk are evaluated with
an opportunistic strategy, which means the poll step is interrupted as soon as
a configuration scores better than the incumbent xk, even if other poll points
are still available and hence will not be tested. Algorithm 1 summarizes the key
steps of the MADS algorithm with an emphasis on where surrogate functions
can be integrated.

In the general framework, surrogate functions are optionally plugged into the
MADS execution at different stages. For example, a static or dynamic surrogate
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can be used to explore a wide range of the space during the search phase to sug-
gest new candidates. The poll step can also benefit from surrogate assistance in
few distinct aspects, such as deciding on the evaluations to interrupt or provid-
ing a ranking so that MADS evaluates the most promising candidate first. Such
rankings coupled with the opportunistic strategy are essential to target better
solutions faster [27], especially when time and resource constraints are as severe
as in the current context. The present work focuses mainly on improving the
poll step by targeting both the resource allocation and the ranking aspects of
poll points evaluation. The incorporated improvements are discussed in detail
in Section 4.

Algorithm 1: MADS with static surrogates for ranking and early stop-
ping.
[0] Initialization

iteration k = 0, configuration x0, mesh size ∆0 and mesh M0,
ranking surrogate S1 and early stopping surrogate S2

[1] Search of iteration k (optional)
Construct a set of mesh points and evaluate them
If there is a success, go to [3]

[2] Poll of iteration k
Define the poll set Pk of new candidates around xk,
along search directions that define a positive basis.
Sort the poll points with surrogate S1

Evaluate the points in Pk with possible early stopping (S2)
If there is a success, interrupt the evaluations and go to [3]

[3] Updates of iteration k
Update ∆k, xk,Mk depending on the success of the previous phases
If no stopping condition is satisfied: k ← k + 1 and go to [1]

4 Proposed approach
This section details the proposed enhancements to speed-up the resolution of
the HPO problem with HyperNOMAD. This objective is achieved by introduc-
ing an early stopping mechanism that quickly interrupts the poor performing
candidates, coupled with a ranking strategy that allows to evaluate the most
promising poll candidates first. All tests in this section are on the MNIST
dataset and start the HPO process from two configurations. First with the de-
fault initialization of HyperNOMAD, noted p1, that corresponds to a network
with one convolutional layer and two fully connected layers, which amounts to
17 hyperparameters. The second initialization, noted p2, adds a convolutional
layer to the default point, which amounts to 22 hyperparameters.
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4.1 Early stopping
Implementing an adequate early stopping strategy is paramount to the efficient
execution of any hyperparameter optimization technique as the complete evalu-
ation of each encountered candidate is merely unreasonable due to the number of
wasted resources this direct approach can cause. The challenge is to detect when
a network is worth training further and when it needs to be interrupted based
on the observed validation curve and compared to other candidates previously
trained.

The validation accuracy of a network should gradually improve during the
training of a DNN until hitting a plateau or a maximum value after which the
accuracy decreases. Such scenarios need to be detected to avoid depleting the
remaining training budget on a configuration that can not improve its current
validation score any further. However, a plateau does not necessarily mean that
the best validation accuracy is reached but rather that the current training HPs,
especially the learning rate, need to be updated. To this effect, the PyTorch
library [25] provides multiple scheduler variants to manage the learning rate
during the training. In particular, the ReduceLROnPlateau scheduler can detect
plateaus and prompt the desired change in the learning rate. A common strategy
is to reduce the learning rate progressively until it reaches a predefined minimum
value, which triggers an early stopping. Figure 2a illustrates the benefit of such
a mechanism as adding the scheduler allows saving half the training budget in
that particular case.

Early stopping is also a decision based on the relative score of the current
network compared to the candidates previously evaluated. Such comparison
targets the networks whose validation scores are too far from the best solu-
tion seen thus far, even if that score gradually improves as the training ad-
vances. When training a new candidate, its validation accuracy curve is com-
pared against the best scoring network, called the baseline, at specific epochs:
[5, 10, 25, 50, 100, 125, 150] with each milestone having an associated error mar-
gin: [0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95]. After 5 epochs, a new configuration needs
to score at least 50% of the baseline score, 60% at 10 epochs, and so on. As such,
the error margins define an envelope under the baseline curve, and any network
that scores lower than the allowed error margin is interrupted at the next mile-
stone epoch. This early stopping mechanism is illustrated in Figure 2b. If a
better solution is found, the corresponding network becomes the new baseline,
and the envelope is redefined with its validation accuracy curve. Consequently,
as the HPO advances, better baselines are found, and only the high scoring net-
works are allowed a high training budget and the low performances are quickly
detected, and interrupted.

Early stopping effects are first tested on the MNIST dataset by comparing
the original version of HyperNOMAD with a variant that implements one early
stopping strategy. Every HPO execution starts from the same initial configura-
tion and allows for 200 blackbox evaluations (BBE), meaning that 200 different
configurations are trained and tested. The comparison aims at observing the
effect on the score of the best solution obtained and the quantity of resources
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needed to carry out the entire optimization task. Resource consumption is mea-
sured in terms of overall wall-clock time and total number of epochs used in
training every visited configuration. In this phase, every execution is run on
one Nvidia P100 GPU, and the batch size is fixed to 256. The tested early
stopping strategies are:

• Default settings of HyperNOMAD: stops if the validation accuracy does
not surpass 12% after 25 epochs or when the standard deviation of the
validation loss over the last 50 epochs is lower than 10−3.

• Last success: stops the training when the last improvement on the valida-
tion accuracy is recorded more than 25 epochs ago.

• Scheduler alone: corresponds to the ReduceLROnPlateau scheduler that
divides by 10 the learning rate if the validation accuracy has not improve
for the last 25 epochs until the learning rate becomes lower than 10−8.

• Baseline and scheduler: takes the previous scheduler scheme and adds the
relative scores comparison by defining a baseline and the corresponding
envelop as previously detailed.

Figures 3 displays the number of epochs used in training each of the 200
configurations evaluated during each execution. The original version is the most
resource-consuming, with a mean number of epochs per training at 170. All
three added early stopping strategies manage to reduce this measure. The
mean number of epochs per training drops to 101.4 with the scheduler, 72.5
with the last success criteria, and combining the scheduler with the baseline
comparison brings it down to 45.9. Tables 2a and 2b corroborate this conclusion
as the proposed approach is the quickest by a factor of 4 in the second example,
plus the score of the best solution does not appear to significantly deteriorate
compared to the original version of HyperNOMAD.

4.2 Ranking
In addition to early stopping, ranking a new pool of candidates based on the
expected performance can accelerate the overall HPO process. In HyperNOMAD,
the evaluations are opportunistic, meaning that the poll step at iteration k stops
as soon as a point pk ∈ Pk scores better than the incumbent xk. Therefore, the
opportunistic strategy prioritizes fast improvements and, when coupled with
an adequate ranking tool, has the potential to explore the search space more
efficiently and find the best configurations that much quicker.

Static surrogates, or low fidelity estimates, are approximating functions that
do not change during the HPO execution, contrary to dynamic surrogates, which
are updated to account for the collected information with each iteration. Cre-
ating a low fidelity surrogate to estimate the accuracy of a DNN can mean
training on a fraction of the full epoch budget or on a subset of the dataset in
this particular setting. The ideal static surrogate combines a cheap evaluation
with a reliable estimation to correctly rank a pool of candidates. Note that in
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(b) Example of early stopping due to the
comparison with the baseline network.

Figure 2: Two early stopping criteria: a scheduler that detects a plateau and
reduces the learning rate until it hits the lower limits (left) and the comparison
with a baseline network that stops any evaluation outside the envelope defined
by the relative errors compared to the baseline scores(right).

the context of HyperNOMAD and MADS, a good static surrogate does not need
to produce accurate approximations of the true objective but rather preserves
the ranking order between the candidates.

The effects of ranking the poll points are observed on the MNIST dataset by
comparing four static surrogates added to HyperNOMAD. Two surrogates train
the candidates on a low training budget, and two others train on a subset of
the dataset. Recall that the proposed early stopping strategy results in a mean
epoch budget per blackbox evaluation at around 45. Therefore, a static surro-
gate must use a lower training budget to qualify as a cheap approximation of
the true objective evaluation. Similarly, only a small portion of the dataset can
be used for the second set of surrogates. The tested surrogates are summarized
in Table 3.

All variants start from the same configurations p1 and p2, are allowed 100
blackbox evaluations with a budget of 200 epochs each, and no early stopping
criteria are considered at this stage. Evaluating a surrogate must also account
in the number of blackbox evaluations as they add to the resource consumption
of such HPO optimization. The cost of each surrogate in terms of blackbox
evaluation is provided in Table 3. Figures 4 and 5 summarize the results re-
garding the best validation accuracy per number of blackbox evaluations and
overall clock-time. Once again, all executions are run on a single Nvidia P100
GPU.

Figures 4a and 5a show the effect of adding ranking surrogate on the overall
convergence of HyperNOMAD. In Figure 4a, all variants are relatively equivalent
and surpass HyperNOMAD in the early stages of the execution. This tendency
shifts however after around 10 blackbox evaluations when R3 and R4 score
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(a) Scores of HyperNOMAD on
MNIST with each stopping criteria
starting from the default point p1.

Early
stopping
strategy

Top-1
val.
acc.

Wall-
clock
time
(s)

Total
epochs

HyperNOMAD 99.38% 305856 35503
Last success 99.40% 129600 17534
Scheduler 99.29% 170208 21987
Scheduler
and baseline

99.41% 126144 9681

(b) Scores of HyperNOMAD on
MNIST with each stopping criteria
starting from the configuration p2.

Early
stopping
strategy

Top-1
val.
acc.

Wall-
clock
time
(s)

Total
epochs

HyperNOMAD 99.43% 280800 32712
Last success 99.51% 280800 11480
Scheduler 99.29% 170208 18580
Scheduler
and baseline

99.44% 64800 8655

Table 1: Comparison between four early stopping strategies implemented in
HyperNOMAD in terms of top-1 validation accuracy, overall wall clock time and
total number of epochs. The variants are launched on MNIST from two starting
configurations, are allowed a total of 200 configuration trials and each network
can train during a maximum of 200 epochs.

Function Training
budget
(epochs)

Portion of
dataset

Cost ratio to
full BBE

Objective
function

200 100% 100%

Surrogate R1 25 100% 12.5%
Surrogate R2 10 100% 5%
Surrogate R3 200 20% 20%
Surrogate R4 200 10% 10%

Table 3: List of the static surrogates tested for ranking the pool candidates.
Their evaluation cost in terms of epochs and portion of datasets is compared to
a full blackbox evaluation (BBE).

better quality solutions faster than the other variants. In fact, R1 and R2 have
limited benefits to HyperNOMAD since the latter appears to have an equivalent
performance in this case. This observation is more obvious in Figure 5a where
adding R1 or R2 significantly slow down the execution of HyperNOMAD.

Figures 4b and 5b compare the convergence of each algorithm in term of
overall wall-clock time. The benefit of adding a sorting surrogate is apparent
in both executions as HyperNOMAD is the variant that takes the longest to
evaluate the 100 blackbox trials. This is a coherent observation with the fact
that every one of the 100 evaluations is equivalent to fully training a network
on the entire dataset. Also, in both series of tests, surrogates R1 and R2 are
the fastest and often terminate the 100 blackbox evaluation budget before all
the other variants. It appears that training on such low epoch budgets, even
on the full dataset, is faster than training on 10% of the dataset during 200
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epochs. However, this observation is expected to change when early stopping
is integrated again, which stops R3 and R4 from using the full 200 epochs in
their evaluation. Plus, since R1 and R2 harm the best configuration score, both
these strategies are discarded, and it is R4 that is retained.

5 Testing
This section incorporates both aspects of Section 4 into the HyperNOMAD
framework. Early stopping is triggered from a scheduler or by comparison with
the baseline network; and ranking a new pool of candidates is achieved through
training each candidate on 10% of the dataset.

The tests are now launched on the CIFAR-10 dataset, are allowed 100 black-
box evaluations with a maximum training budget of 200 epochs per configura-
tion. This time, each execution is launched on two Nvidia P100 GPUs. One
series of tests starts from the default configuration of HyperNOMAD noted p1,
and the second starts from a network with a 5 convolutional layers and 1 fully
connected layer, noted p3, which is equivalent to 36 hyperparameters.

Figure 6 summarizes the results from the comparison between the original
version of HyperNOMAD and the one with the proposed enhancements when
launched from the default settings p1. The benefits of early stopping and rank-
ing the new candidates are apparent, with the new version scoring better than
HyperNOMAD in terms of best validation score per blackbox evaluation bud-
get as seen in Figure 6a. Figure 6b also shows that adding surrogates saves
training resources in terms of total number of epochs to get to better quality
solution, and Figure 6c corroborates this tendency when comparing the overall
wall-clock time to deplete all 100 blackbox evaluations. The second test starts
from configuration p3. Figure 7a shows that the version with the surrogates is
slightly ahead when comparing the best validation score per blackbox evalua-
tion budget. Figure 7b illustrates a gain of 27% in total epoch budget, yet this
gain is not translated in terms of overall wall-clock time as shown in Figure 7c.
The difference is believed to be caused by the communication between the two
GPUs used at once.

6 Discussion
This work proposes a solution to speed up the time and resource-consuming
process of optimizing the hyperparameters of deep neural networks, based on
incorporating two strategies based on static surrogates into the HyperNOMAD
framework. The first defines a new early stopping strategy that quickly and
effectively interrupts poorly performing networks. The second allows ranking
a pool of new candidates to detect and then evaluate the most promising first.
Both techniques are shown individually and collectively to improve on the qual-
ity of solution and on the amount of computational resources needed.
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(a) HyperNOMAD: Stop if the standard de-
viation of the validation loss is lower than
1e−3.
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(b) HyperNOMAD + last success: Stop
if the last improvement on the validation
score is recorded more than 25 epochs ago.
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(c) HyperNOMAD + scheduler: Stop if a
plateau is detected with the scheduler.
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(d) HyperNOMAD + baseline + sched-
uler: Stop if a plateau is detected with the
scheduler, or if the network scores poorly
compared to the baseline.

Figure 3: Comparison between the resource consumption of HyperNOMAD and
one variant that adds an early stopping strategy, in terms of number of epochs
used to train each visited candidate during a single HPO. The HPO starts from
the default point p1 on the MNIST dataset.
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(a) Convergence of each variant in terms of
validation accuracy per number of BBE.
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Figure 4: Comparison between the original HyperNOMAD [18, 19] and four vari-
ants that implement a strategy to sort the new candidates in order to evaluate
the most promising first. Strategies R1 and R2 train on a small epoch budget
while strategies R3 and R4 train on a subset of the data. The optimization is
launched on the MNIST dataset from the default point p1.
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(a) Convergence of each variant in terms
of validation accuracy per number of BBE.
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Figure 5: Comparison between the original HyperNOMAD [18, 19] and four vari-
ants that implement a strategy to sort the new candidates in order to evaluate
the most promising first. Strategies R1 and R2 train on a small epoch budget
while strategies R3 and R4 train on a subset of the data. The optimization is
launched on the MNIST dataset from the default point p2.
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(a) Convergence in terms of validation ac-
curacy per number of BBE.
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(b) Convergence in terms of validation ac-
curacy per number of epochs.
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(c) Convergence in terms of validation ac-
curacy per execution time.

Figure 6: Comparison between HyperNOMAD with and without surrogates on
the CIFAR-10 dataset, starting from the default settings p1.
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Figure 7: Comparison between HyperNOMAD with and without surrogates on
the CIFAR-10 dataset, starting from the default settings p3.
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