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Abstract

A general branch-and-bound tree is a branch-and-bound tree which is allowed to use general
disjunctions of the form �⊤x ≤ �0 ∨ �⊤x ≥ �0 + 1, where � is an integer vector and �0 is an
integer scalar, to create child nodes. We construct a packing instance, a set covering instance, and
a Traveling Salesman Problem instance, such that any general branch-and-bound tree that solves
these instances must be of exponential size. We also verify that an exponential lower bound on
the size of general branch-and-bound trees persists when we add Gaussian noise to the coe�cients
of the cross polytope, thus showing that polynomial-size “smoothed analysis” upper bound is not
possible. �e results in this paper can be viewed as the branch-and-bound analog of the seminal
paper by Chvátal et al. [7], who proved lower bounds for the Chvátal-Gomory rank.

1 Introduction

Solving combinatorial optimization problems to optimality is a central object of study in Operations Re-
search, Computer Science, and Mathematics. One way to solve a combinatorial optimization problem
is to model it as mixed integer linear program (MILP) and use an MILP solver. �e branch-and-bound
algorithm, invented by Land and Doig in [20], is the underlying algorithm implemented in all modern
state-of-the-art MILP solvers.

As is well known, the branch-and-bound algorithm searches the solution space by recursively par-
titioning it. �e progress of the algorithm is monitored by maintaining a tree. Each node of the tree
corresponds to a linear program (LP) solved, and in particular, the root node corresponds to the LP
relaxation of the integer program. A�er solving the LP corresponding to a node, the feasible region of
the LP is partitioned into two subproblems (which correspond to the child nodes of the given node),
so that the fractional optimal solution of the LP is not included in either subproblem, but any integer
feasible solution contained in the feasible region of the LP is included in one of the two subproblems.
�is is accomplished by adding an inequality of the form �⊤x ≤ �0 to the �rst subproblem and the
inequality �⊤x ≥ �0 +1 to the second subproblem (these two inequalities are referred as a disjunction),
where � is an integer vector and �0 is an integer scalar. �e process of partitioning at a node stops
if (i) the LP at the node is infeasible, (ii) the LP’s optimal solution is integer feasible, or (iii) the LP’s
optimal objective function value is worse than an already known integer feasible solution. �ese three
conditions are sometimes referred to as the rules for pruning a node. �e algorithm terminates when
there are no more “open nodes” to process, that is all nodes have been pruned. A branch-and-bound
algorithm is completely described by �xing a rule for partitioning the feasible region at each node and
a rule for selecting which open node should be solved and branched on next. If the choice of � is lim-
ited to being unit vectors in direction j, then we call such an algorithm as a simple branch-and-bound
algorithm and without such a restriction on � we call the algorithm as a general branch-and-bound
algorithm. See [26, 8] for more discussion on branch-and-bound.
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1.1 Known bounds on sizes of branch-and-bound trees

Upper bounds on size of brand-and-bound tree and “positive” results. In 1983, Lenstra [22]
showed that integer programs can be solved in polynomial time in �xed dimension. �is algorithm,
can be viewed as a general branch-and-bound algorithm, and uses tools from geometry of numbers, in
particular the la�ice basis reduction algorithm [21] to decide on � for partitioning the feasible region.
Pataki [23] proved that most random packing integer programs can be solved at the root-node using a
partitioning scheme similar to the one proposed by Lenstra [22]. It has been observed that using such
general partitioning rules can be signi�cantly more e�cient than simple branch-and-bound for some
instances [1, 11], but most commercial solver use the la�er. Recently, we showed [15] that for certain
classes of random integer programs the simple branch-and bound-tree has polynomial size (number
of nodes), with good probability. See also [5] for nice extensions of this direction of results. Beame et
al. [4] recently studied how branch-and-bound can give good upper bounds for certain SAT formulas.

Lower Bounds on size of branch-and-bound tree and connections to size of cutting-plane
algorithms. Jeroslow [18] and Chvátal [6] present examples of integer programs where every sim-
ple branch-and-bound algorithm for solving has exponential size. However, these instances can be
solved with small (polynomial-size) general branch-and-bound trees; see Yang et al. [27] and Basu et
al. [2]. Cook et al. [10] present a TSP instance that require exponential-size branch-and-cut trees that
uses simple branching (recall that branch-and-cut is branch-and-bound where one is allowed to add
cuts to the intermediate LPs). Basu et al. [3] compare the performance of branch-and-bound with the
performance of cu�ing-plane algorithms, providing instances where one outperforms the other and
vice-versa. In another paper, Basu et al. [2] compare branch-and-bound with branch-and-cut , provid-
ing instances where branch-and-cut is exponentially be�er than branch-and-bound. �ey also present
a result showing that the sparsity of the disjunctions can have a large impact on the size of the branch-
and-bound tree. Beame et al. [4] asked as an open question whether there are superpolynomial lower
bounds for general branch-and-bound algorithm. Dadush et al. [12] se�led this in the a�rmative. In
particular, they show that any general branch-and-bound tree that proves the integer infeasibility of
the cross-polytope has at least 2n

n leaf nodes. �ey also note that the cross-polytope has an exponential
number of facets, a fact crucially used in their proof, and present the open question of whether there
is an exponential lower bound for a polytope described by a polynomial number of facets.

Concurrent to the development of our work, Fleming et al. [16] showed a fascinating relation-
ship between general branch-and-bound proofs and cu�ing-plane proofs using Chvátal-Gomory (CG)
cu�ing-planes:

�eorem 1 (�eorem 3.7 from [16]). Let P ⊆ [0, 1]n be an integer-infeasible polytope and suppose there
is a general branch-and-bound proof of infeasibility of size s and with maximum coe�cient c. �en there
is a CG proof of infeasibility of size at most

s(cn)log s .

�e following simple corollary allows us to infer exponential lower bounds for branch-and-bound
proofs for polytopes for which we have exponential lower bounds for CG proofs.

Corollary 1. Let P ⊆ [0, 1]n be an integer infeasible polytope such that any CG proof of infeasibility of
P has length at least L. �en, any general branch-and-bound proof of infeasibility of P with maximum
coe�cient c has size at least

L
1

1+log(cn) .

�e above result resolves an open question raised in Basu et al. [3]. Moreover, Pudlak [24] and Dash
[13] provide exponential lower bounds for CG proofs for the clique vs. coloring problem, which is of
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note since this problem has only polynomially many inequalities. �us Corollary 1 taken together with
results in [24] and [13] also se�les the question raised in Dadush et al. [12] as long as the maximum
coe�cient in the disjunctions used in the tree is bounded by a polynoimal of n.

1.2 Contributions of this paper and relationship to exisiting results

Contributions. We construct an instance of packing-type and a set cover instance such that any
general branch-and-bound tree that solves these instances must be of exponential (with respect to
the ambient dimension) size. We note that the packing and covering instances are described using
an exponential number of constraints. We also present a simple proof that any branch-and-bound
tree proving the integer infeasibility of the cross-polytope must have 2n leaves. We then extend this
result to give (high probability) exponential lower bounds for perturbed instances of the cross polytope
where independent Gaussian noise is added to the entries of the constraint matrix. To our knowledge,
this is the �rst result that shows that a “smoothed analysis” polynomial upper bound on the size of
branch-and-bound trees is not possible. Finally, we show an exponential lower bound on the size of
any general branch-and-bound tree for the Traveling Salesman Problem (TSP).

Comparison to previous results. We now discuss our results in the context of the recent landscape,
in particular with the results of [12] and [16].

1. New problems with exponential lower bounds on size of general branch-and-bound tree: As men-
tioned earlier, recently Dadush et al. [12] provided the �rst exponential lower bound on the size
of general branch-and-bound tree for the cross polytope. Corollary 1 from [16] only implies
branch-and-bound hardness for polytopes for which we already have CG hardness. �ese come
few and far between in the existing literature and these instances are o�en a bit arti�cial; see
[24] and [13]. In this paper, we provide lower bounds on size of general branch-and-bound tree
for packing and set covering instances, which are more natural combinatorial problems.

2. Improved quality of bounds: Dadush et al. [12] show that any branch-and-bound proof of infea-
sibility of the cross-polytope has at least 2n

n leaves. We improve on this result by providing a
simple proof that any such proof of infeasibility must have 2n leaves.
Chvatal et al. [7] provide a 1

3n2
n/8 lower bound on CG proofs for TSP. Combined with Corollary

1, this can be used to show a lower bound of 2O(
n

log cn) for TSP for branch-and-bound trees using
maximum coe�cient c for disjunctions. We are able to achieve a stronger lower bound of 2Ω(n).

3. Removing dependence on the maximum coe�cient size used in the branch-and-bound proof: �e
bound given in Corollary 1 depends on the maximum coe�cient size used in the branch-and-
bound proof. In [16], the authors mention that they “view this as a step toward proving [branch-
and-bound] lower bounds (with no restrictions on the weight)”. Our results satisfy this con-
straint, as none of the bounds presented in this work depend on the coe�cients of the inequalities
of the general branch-and-bound proof.

1.3 Roadmap and notation

Since this paper focuses on lower bounds for general branch-and-bound trees (obviously implying
lower bounds for simple branch-and-bound tree), we drop the term “general” in the rest of the paper.
�e paper is organized as follows. In Section 2, we present necessary de�nitions. In Section 3, we
present key reduction results that allow for transferring lower bounds on size of branch-and-bound
trees from one optimization problem to another. In Section 4, we present a lower bound on the size of
branch-and-bound trees for packing and set covering instances. In Section 5, we present lower bound
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on size of branch-and-bound tree for the cross polytope and some other related technical results. In
Section 6, we show that even a�er adding Gaussian noise to the coe�cients of the cross polytope,
with good probability, general branch-and-bound will require an exponentially large tree to prove its
infeasibility. Finally, in Section 7, we use results from Section 5 and Section 3 to provide an exponential
lower bound on the size of a branch-and-bound tree for solving a TSP instance.

For a positive integer n, we denote the set {1,… , n} as [n]. When the dimension is clear from
context, we use the notation 1 to be a vector whose every entry is 1. Let A be a set of linear constraints
of the form (� i)⊤x ≤ � i0, ∀i ∈ [m]. �en let {x ∶ A} denote the set of all x ∈ [0, 1]n such that all of
the constraints A are valid for x (i.e. the polytope de�ned by the set of constraints A). Also note that
for a subset of these constraints B ⊆ A, it holds that {x ∶ B} ⊇ {x ∶ A}. Also note that for two sets of
constraints A, B, it holds that {x ∶ A ∪ B} = {x ∶ A} ∩ {x ∶ B}. Given a set S, we denotes it convex
hull by conv(S). Given a polytope P ⊆ ℝn, we denote its integer hull, that is the set conv(P ∩ℤn), as PI .

2 Abstract branch-and-bound trees and notions of hardness

In order to present lower bounds on the size of branch-and-bound (BB) trees, we simplify our analysis
by removing two typical condition assumed in a BB algorithm – (i) the requirement that the partitioning
into two subproblems (which correspond to the child nodes of the given node) is done is such a way that
the fractional optimal solution of the parent node is not included in either subproblem, (ii) branching is
not done on pruned nodes. By removing these conditions, we can talk about a branch-and-bound tree
independent of the underlying polytope – it is just a full binary tree with (that is each node has 0 or 2
child nodes). �e root node has an empty set of branching constraints. If a node has two child nodes,
these are obtained by applying some disjunction �⊤x ≤ �0 ∨ �⊤x ≥ �0 + 1, where each of the child
nodes adds one of these constraints to its set of branching constraints together with all the branching
constraints of the parent node. Note that proving lower bounds on the size of such branch-and-bound
trees that solves a given integer program certainly gives a lower bound on the size of branch-and-
bound trees where we require the optimal solution of the linear program at a node to not belong to the
child nodes and where we require to stop branching on a node that is pruned. Finally, note that since
a BB tree is a full binary tree, the total number of nodes of a BB tree with N leaf nodes is 2N − 1.

De�nition 1. Given a branch-and-bound tree  , applied to a polytope P , and a node v of the tree:

• We denote the the number of nodes of the branch-and-bound tree  by | |.

• We denote by Cv the set of branching constraints of v (as explained above, these are the constraints
added by the branch-and-bound tree along the path from the root node to v).

• We call the feasible region de�ned by the LP relaxation P and the branching constraints at node v
the atom of this node, i.e. P ∩ {x ∶ Cv} is the atom corresponding to v.

• We let  (P ) to denote the union of the atoms corresponding to the leaves of  when run on polytope
P , i.e.  (P ) = ⋃v∈leaves( )(P ∩ {x ∶ Cv}).

• For any x ∗ ∈ P ⧵ PI , we say that  separates x ∗ from P if x ∗ ∉ conv( (P )).

• Given a vector c ∈ ℝn, we say  solves maxx∈P∩{0,1}n⟨c, x⟩, if for all the leaf nodes v of  , one
of the following three conditions hold: (i) the atom of v is empty, (ii) the optimal solution of the
linear program maxx ∈ atom of v⟨c, x⟩ is integral, or (iii) maxx ∈ atom of v⟨c, x⟩ is at most the objective
function value of another atom whose optimal solution is integral. (If P ∩ℤn = ∅, then (ii) and (iii)
are not possible.)
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Given a polytope P ⊆ ℝn, we de�ne its BB hardness as:

BBhardness = max
c∈ℝn (min

{
| | ∶  solves max

x∈P∩ℤn
⟨c, x⟩

}
)

Our goal for most of this paper is to provide lower bounds on the BB hardness of certain polytopes.
To get exponential lower bounds on BB hardness for some P , we will o�en present a particular

point x ∗ ∈ P ⧵ PI such that any  that separates x ∗ from P must have exponential size. We formalize
this below.

De�nition 2 (BBdepth). Let P ⊆ ℝn be a polytope and consider any x ∗ ∈ P ⧵ PI . Let  be the smallest BB
tree that separates x ∗ from P . �en, de�ne BBdepth(x ∗, P ) to be | |.

De�nition 3 (BBrank). De�ne BBrank(P ) = maxx∈P⧵PI BBdepth(x, P ).

Lemma 1 (BBrank lower bounds BB hardness). Let P ⊆ ℝn be a polytope. �en, there exists c ∈ ℝn such
that any BB tree solving maxx∈P∩ℤn⟨c, x⟩ must have size at least BBrank(P ), that is the BB hardness of P
is at least BBrank(P ).

Proof. Let x ∗ ∈ argmaxx∈P⧵PI BBdepth(x, P ), so that BBrank(P ) = BBdepth(x ∗, P ). Since x ∗ does not
belong to the convex set PI , there exists c with the separation property ⟨c, x ∗⟩ > maxx∈PI ⟨c, x⟩. By
choice of x ∗, for any BB tree  with | | < BBrank(P ) it holds that x ∗ ∈ conv( (P )). �en such tree 
must have a leaf whose optimal solution has value at least ⟨c, x ∗⟩ > maxx∈PI ⟨c, x⟩, and therefore must
still be explored, showing that  does not solve maxx∈P∩ℤn⟨c, x⟩.

We now show that, under some conditions, the reverse of this kind of relationship can hold. We will
use this reverse relationship to prove the BB hardness of optimizing over an integer feasible polytope
given the BB hardness of proving the infeasibility of another “smaller” polytope.

Lemma 2 (Infeasibility to optimization). Let P ⊆ ℝn be a polytope and ⟨c, x⟩ ≤ � be a facet de�ning
inequality of PI . Assume the a�ne hull of P and PI are the same. �en, for every " > 0

BBrank(P ) ≥ BBhardness({x ∈ P ∶ ⟨c, x⟩ ≥ � + "}).

Before we can present the proof of Lemma 2 we require a technical lemma from [14]. �e full-
dimensional case L = ℝn is Lemma 3.1 of [14], and the general case follows directly by applying it to
the a�ne subspace L.

Lemma 3 ([14]). Consider an a�ne subspace L ⊆ ℝn and a hyperplane H = {x ∈ ℝn ∶ ⟨c, x⟩ = �} that
does not contain L. Consider dim(L) a�nely independent points s1, s2… , sdim(L) in L ∩ H . Let � ′ > � and
let G be a bounded and non-empty subset of L ∩ {x ∈ ℝn ∶ ⟨c, x⟩ ≥ � ′}. �en there exists a point x in
⋂g∈G conv(s1,… , sdim(L), g) satisfying the strict inequality ⟨c, x⟩ > � .

Proof of Lemma 2. Let L be the a�ne hull of PI . �en there exist d ∶= dim(PI ) = dim(L) a�nely
independent vertices of {x ∈ PI ∶ ⟨c, x⟩ = �}. Let s1,… , sd be d such a�nely independent vertices and
note that since they are vertices of PI , they are all integral. Let G ∶= {x ∈ P ∶ ⟨c, x⟩ ≥ � + "}, which is
a bounded set since P is bounded. Let N ∶= BBhardness(G).

Let  be a BB tree such that | | < N . �en we have that  (G) ≠ ∅, that is, there exists x ∗( ) ∈  (G).
In particular x ∗( ) ∈ G. Moreover, since G ⊆ P , we have  (G) ⊆  (P ) (see Lemma 4 in the next section
for a formal proof of this), we have x ∗( ) ∈  (P ). Also note that since s1,… , sd ∈ P ∩ℤn, we have that
these points also belong to  (P ). �us,

conv (s1,… , sd , x ∗( )) ⊆ conv( (P )).
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Now applying Lemma 3, with � ′ = � + ", we have that there exists x ∗ such that

x ∗ ∈ ⋂
 ∶| |<N

conv (s1,… , sd , x ∗( )) ⊆ ⋂
 ∶| |<N

conv( (P )) (1)

and such that ⟨c, x⟩ > � . Clearly, x ∗ ∉ PI , since ⟨c, x⟩ ≤ � is a valid inequality for PI . �us, since (1)
implies x ∗ ∈ conv( (P )) for all  with | | < N , we have that BBdepth(x ∗, P ) ≥ N and consequently,
BBrank(P ) ≥ N .

3 Framework for BB hardness reductions

We begin by showing monotonicity of the operator  (⋅).

Lemma 4 (Monotonicity of leaves). Let Q ⊆ P ⊆ ℝn be polytopes. �en  (Q) ⊆  (P ).

Proof. For any leaf v ∈  , recall that Cv is the set of branching constraints of v. �en  (Q) =
⋃v∈leaves( )(Q ∩ {x ∶ Cv}) = Q ∩⋃v∈leaves( ){x ∶ Cv} ⊆ P ∩⋃v∈leaves( ){x ∶ Cv} = ⋃v∈leaves( )(P ∩ {x ∶
Cv}) =  (P ).

�e following corollary follows easily from Lemma 4. In particular, consider the smallest BB tree
 that separates x ∗ from P . By Lemma 4, the same tree, when applied to Q, will not have x ∗ in the
convex hull of its leaves and therefore separates x ∗ from Q.

Corollary 2 (Monotonicity of depth). Let Q ⊆ P ⊆ ℝn be polytopes. Suppose there is some x ∗ ∈ (Q ⧵QI ) ∩
(P ⧵ PI ) = Q ⧵ PI . �en,

BBdepth(x ∗, P ) ≥ BBdepth(x ∗, Q).

Inspired by the lower bounds for cu�ing-plane rank from [7], we show that integral a�ne transfor-
mations conserve the hardness of separating a point via branch-and-bound, i.e. they conserve BBdepth.
�en, we give a condition where BBrank is also conserved. �ese will be use to obtain lower bounds
in the subsequent sections.

We say that f ∶ ℝn → ℝm is an integral a�ne function if it has the form f (x) = Cx + d , where
C ∈ ℤm×n, d ∈ ℤm.

Lemma 5 (Simulation for integral a�ne transformations). Let P ⊆ ℝn be a polytope, f ∶ ℝn → ℝm an
integral a�ne function, and denote Q ∶= f (P ) ⊆ ℝm. Let ̂ be any BB tree. �en, there exists a BB tree 
such that | | = |̂ | and

f ( (P )) ⊆ ̂ (Q).

Proof. Let f (x) = Cx + d with C ∈ ℤm×n, d ∈ ℤm. We construct a BB tree  , that satis�es the result
of the lemma, with the same size as ̂ as follows:  has the same nodes as ̂ but each branching
constraint ⟨a, y⟩ ≤ b of ̂ is replaced by the constraint ⟨CTa, x⟩ ≤ b − ⟨a, d⟩ in  .

First we verify that  only uses legal disjunctions: First note that CTa ∈ ℤn and b − ⟨a, d⟩ ∈ ℤ. If
a node of ̂ has ⟨a, y⟩ ≤ b ∨ ⟨a, y⟩ ≥ b + 1 as its disjunction, the corresponding node in  has the
disjunction ⟨CTa, x⟩ ≤ b−⟨a, d⟩ ∨ ⟨−CTa, x⟩ ≤ −b−1−⟨−a, d⟩ (notice ⟨a, y⟩ ≥ b+1 ≡ ⟨−a, y⟩ ≤ −b−1).
Since the second term in the la�er disjunction is equivalent to ⟨CTa, x⟩ ≥ b − ⟨a, d⟩ + 1, we see that
this disjunction is a legal one.

Now we show the desired claim. Let S be the atom of a leaf v of  and Ŝ be the atom of the
corresponding leaf v̂ of ̂ . We show that for all x ∈ S, it must be that f (x) ∈ Ŝ. To see this, notice that
if x satis�es an inequality ⟨CTa, x⟩ ≤ b − ⟨a, d⟩ then f (x) satis�es ⟨a, f (x)⟩ ≤ b:

⟨a, f (x)⟩ = ⟨a, Cx + d⟩ = ⟨a, Cx⟩ + ⟨a, d⟩ = ⟨CTa, x⟩ + ⟨a, d⟩ ≤ b.
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Since any x ∈ S belongs to P and satis�es all the branching constraints of the leaf v, this implies f (x)
belongs to Q and satis�es all the branching constraints of the leaf v̂, and hence belongs to the atom Ŝ.
�e result of the lemma follows.

Corollary 3. Let P , Q, and f satisfy the assumptions of Lemma 5. Further, suppose P and Q are both
integer infeasible (i.e. P ∩ {0, 1}n = ∅ and Q ∩ {0, 1}n = ∅). �en,

BBhardness(Q) ≥ BBhardness(P ).

Proof. Let ̂ be the smallest BB tree such that ̂ (Q) = ∅. �en, by Lemma 5, it must hold that  (P ) = ∅.
�e desired result follows.

Corollary 4. Let P , Q, and f satisfy the assumptions of Lemma 5. Further, suppose there is some x ∗ ∈ ℝn
such that x ∗ ∉ PI and f (x ∗) ∉ QI . �en,

BBdepth(f (x ∗), Q) ≥ BBdepth(x ∗, P ).

Proof. Let ̂ be the smallest BB tree that separates f (x ∗) from Q and  be constructed as in the
proof of Lemma 5. By Lemma 5 and the fact that f is a�ne, this implies that if x ∈ conv( (P ))
then f (x) ∈ conv(̂ (Q)): there exists x1, ..., xk ∈  (P ) and �1, ..., �k ∈ [0, 1] s.t. ∑i∈[k] �i = 1 such that
x = ∑i∈[k] �ix i , and so

f (x) = C(∑
i∈[k]

�ix i) + d = ∑
i∈[k]

�i(Cx i) + ∑
i∈[k]

�id

= ∑
i∈[k]

�i(Cx i + d) = ∑
i∈[k]

�if (x i) ∈ conv(̂ (Q)),

where the last containment is due to Lemma 5. Since we know f (x ∗) ∉ conv(̂ (Q)), this implies that
x ∗ ∉ conv( (P )), namely  separates x ∗ from P as desired.

Lemma 6 (Hardness lemma). Let P ⊆ ℝn and T ⊆ ℝm be polytopes and f ∶ ℝn → ℝm an integral a�ne
function such that f (P ) ⊆ T . Suppose f is also one-to-one and T ∩ ℤm ⊆ f (P ∩ ℤn). �en,

BBrank(T ) ≥ BBrank(P ).

Proof. First we show that x ∉ PI implies f (x) ∉ TI by proving the contrapositive. Suppose f (x) ∈ TI ;
then ∃y1, ..., yk ∈ T ∩ ℤm and �1, ..., �k ∈ [0, 1] s.t. ∑i∈[k] �i = 1 such that f (x) = ∑i∈[k] �iy i . Since
T ∩ ℤm ⊆ f (P ∩ ℤn), for each i there is x i ∈ P ∩ ℤn such that y i = f (x i). �en

f (x) = ∑
i∈[k]

�if (x i) = ∑
i∈[k]

�i(Cx i + d) = C ∑
i∈[k]

�ix i + d = f (∑
i∈[k]

�ix i),

and so f (x) belongs to f (PI ). Since f is one-to-one, this implies that x belongs to PI , as desired.
Let x ∗ = argmaxx∈P⧵PI BBdepth(x, P ). Since x ∗ ∉ PI , by the above claim f (x ∗) ∉ TI . By assumption

f (P ) ∩ ℤm ⊆ T ∩ ℤm, and so (f (P ))I ⊆ TI , and therefore f (x ∗) ∉ (f (P ))I . �en by Corollary 4, we have

BBdepth(f (x ∗), f (P )) ≥ BBdepth(x ∗, P ).

Since by assumption f (P ) ⊆ T , f (x ∗) ∈ f (P ), and f (x ∗) ∉ TI , by Corollary 2, we have

BBdepth(f (x ∗), T ) ≥ BBdepth(f (x ∗), f (P )).

Finally, pu�ing it all together

BBrank(T ) = max
y∈T ⧵TI

BBdepth(y, T ) ≥ BBdepth(f (x ∗), T ) ≥ BBdepth(f (x ∗), f (P )) ≥ BBdepth(x ∗, P )

= max
x∈P⧵PI

BBdepth(x, P ) = BBrank(P ).

7



In the rest of the paper, we will use Corollary 3, Corollary 4 or Lemma 6 together with some
appropriate a�ne transformation to reduce the BB hardness of one problem to another. �e three a�ne
one-to-one functions we will use (and there compositions) are Flipping, Embedding, and Duplication
as de�ned below.

De�nition 4 (Flipping). We say f ∶ [0, 1]n → [0, 1]n is a �ipping operation if it “�ips” some coordinates.
�at is, there exists J ⊆ [n] such that

y = f (x) ⟹ yi =

{
xi if i ∉ J
1 − xi if i ∈ J

.

In other words, f (x) = Cx + d , where

C i =

{
ei if i ∉ J
−ei if i ∈ J

di =

{
0 if i ∉ J
1 if i ∈ J .

.

De�nition 5 (Embedding). We say f ∶ [0, 1]n → [0, 1]n+k is an embedding operation if

y = f (x) ⟹ yi =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

xi if 1 ≤ i ≤ n
0 if n < i ≤ n + k1
1 if n + k1 < i ≤ n + k

,

for some 0 ≤ k1 ≤ k. In other words, f (x) = Cx + d , where

C i =

{
ei if 1 ≤ i ≤ n
0 otherwise

di =

{
1 if n + k1 < i ≤ n + k
0 otherwise

.

Note that we can always renumber the coordinates so that the additional coordinates with values 0 or 1
are interspersed with the original ones and not grouped at the end.

De�nition 6 (Duplication). Consider a k-tuple of coordinates {j1, ..., jk} that are not necessarily distinct,
where ji ∈ {1, ..., n} for i = 1, ..., k. We say that f ∶ [0, 1]n → [0, 1]n+k is a duplication operation using
this tuple if

y = f (x) ⟹ yi =

{
xi if 1 ≤ i ≤ n
xji−n if n < i ≤ n + k

.

Further, let Jj = {i ∈ {1, ..., k} ∶ yn+i = xj} be the indices of y that are duplicates of xj . In other words,
f (x) = Cx , where

C i =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

ei if 1 ≤ i ≤ n
e1 if i − n ∈ J1
⋮
en if i − n ∈ Jn

8



4 BB hardness for packing polytopes and Set Cover

�is section will begin by presenting a packing polytope with BBrank of 2Ω(n). �e proof of this result
will be based on a technique developed by Dadush et al. [12]. �en we will employ a�ne maps that
satisfy Lemma 6 to obtain lower bounds on BBrank for a set cover instance.

We present a slightly generalized version of a key result from Dadush et al. [12]. �e proof is
essentially the same as of the original version, but we present it for completeness.

Lemma 7 (Generalized Dadush-Tiwari Lemma). Let P ⊆ ℝn be an integer infeasible non-empty polytope
(i.e. P ∩ ℤn = ∅). Further, suppose P is de�ned by the set of constraints CP (i.e. P = {x ∶ CP}) and let
D ⊆ CP be a subset of constraints such that if we remove any constraint in D, the polytope becomes integer
feasible (i.e. for all subsets C ⊂ CP such that D ⧵ C ≠ ∅, it holds that {x ∶ C} ∩ {0, 1}n ≠ ∅). �en,
any branch-and-bound tree  proving the integer infeasibility of P has at least |D|

n leaf nodes, that is
| | ≥ 2 |D|

n − 1.

Proof. Let  denote any branch-and-bound proof of infeasibility for P and let N denote the number of
leaf nodes of  . Suppose for sake of contradiction, that N < |D|

n . Consider any leaf node of  , denoted
v. Let Cv be the set of branching constraints on the path to v. Since v is a leaf and  is a proof of
infeasibility, we note {x ∶ Cv ∪ CP} = {x ∶ Cv} ∩ P = ∅.

By Helly’s �eorem, there exists a set of n + 1 constraints Kv ⊆ Cv ∪ CP such that {x ∶ Kv} = ∅.
Also, we see that

|Kv ∩ CP | ≤ n, ∀v ∈ leaves( ). (2)

�is is because if we had |Kv ∩ CP | = n + 1, this would imply Kv ⊆ CP , hence {x ∶ CP} ⊆ {x ∶ Kv},
and since {x ∶ Kv} = ∅; this would imply {x ∶ CP} = P = ∅, which is clearly a contradiction since we
know P is non-empty.

Next observe  certi�es that the set P̃ ∶=
{
x ∶ ⋃v∈leaves( )(Kv ∩ CP )

}
is integer infeasible, since

P̃ ∩ {x ∶ Cu} =
{
x ∶ Cu ∪⋃v∈leaves( )(Kv ∩ CP )

}
⊆ {x ∶ Ku} = ∅ for all u ∈ leaves( ).

On other hand, observe that by (2) we have that | ⋃v∈leaves( )(Kv ∩ CP )| ≤ nN < |D|, so by the
assumption of the lemma, we see that {x ∶ ⋃v∈leaves( )(Kv ∩ CP )} contains an integer point, a contra-
diction.

4.1 Packing polytopes

Consider the following packing polytope

PPA = {x ∈ [0, 1]n ∶ ∑
i∈S

xi ≤ k − 1 for all S ⊆ [n], |S| = k},

where we assume 2 ≤ k ≤ n
2 .

Lemma 8. �ere exists an x ∗ ∈ PPA ⧵ (PPA)I such that any branch-and-bound tree that separates x ∗ from
PPA has at least 2n ((

n
k) + 1) − 1 nodes. �erefore, BBrank(PPA) ≥ 2

n ((
n
k) + 1) − 1.

�e starting point for proving this lemma is the following following proposition.

Proposition 1. Any branch-and-bound tree proving the infeasibility of Q = PPA ∩ {x ∶ ⟨1, x⟩ ≥ k} has
at least 2n ((

n
k) + 1) − 1 nodes.

9



Proof. We show that Q satis�es all of the requirements of Lemma 7.
First we show that Q ≠ ∅. Consider the point x̂ ∈ ℝn where x̂i = k

n for i ∈ [n]. �en, for any S ⊆ [n]
with |S| = k, we have ∑i∈S x̂i = k ⋅ kn ≤ k ⋅

1
2 ≤ k − 1, where the last two inequalities are implied by the

assumption 2 ≤ k ≤ n
2 . Also, ∑i∈[n] x̂i = k. �us, x̂ satis�es all the constraints of Q.

Next we show Q ∩ {0, 1}n = ∅. Suppose for sake of contradiction there is some x ∗ ∈ Q ∩ {0, 1}n.
Since ∑i∈[n] x ∗i ≥ k, there is a set S ⊆ [n] of size k such that ∑i∈S x ∗i = k. �is violates the cardinality
constraint corresponding to S, so x ∗ ∉ Q, a contradiction.

Finally, we show that there is a set of (nk) + 1 constraints D such that removing any of these con-
straints makes Q integer feasible. Suppose we remove the constraint ∑i∈S xi ≤ k − 1, denote this new
polytope Q′. �en let x ∗i = 1 for all i ∈ S and x ∗i = 0 for all i ∉ S. Clearly ∑i∈[n] x ∗i ≥ k and since for all
S′ ⊆ [n], |S′| = k it holds that |S′ ∩ S| ≤ k − 1, it is also the case that ∑i∈S′ x ∗i ≤ k − 1. So x ∗ ∈ Q′ ∩ {0, 1}n.
Now suppose we remove instead the constraint ∑i∈[n] xi ≥ k, resulting in polytope PPA. Clearly PPA is
down monotone, and therefore 0 ∈ PPA.

Finally by Lemma 7, any branch-and-bound proof of infeasibility for Q has at least 2
n ((

n
k) + 1) − 1

nodes.

Now, combining Proposition 1 with Lemma 2, we are ready to prove Lemma 8.

Proof of Lemma 8. We will show that PPA, (1, k − 1) satisfy the conditions on P, (c, �) set by Lemma
2. First, ⟨1, x⟩ ≤ k − 1 is a valid inequality for (PPA)I : this follows from the integer infeasibility of
Q = PPA ∩ {x ∶ ⟨1, x⟩ ≥ k}, as proven in Proposition 1. In the following paragraph we will show that
{x ∈ (PPA)I ∶ ⟨1, x⟩ = k − 1} has dimension n − 1, that is, ⟨1, x⟩ ≤ k − 1 is facet-de�ning for (PPA)I .
With this at hand we can apply Lemma 2 to obtain

BBrank(PPA) ≥ BBhardness(PPA ∩ {x ∶ ⟨1, x⟩ ≥ k}) =
2
n ((

n
k)

+ 1) − 1

where the last inequality follows from Proposition 1.
To show facet-de�ning, let T ⊆ [n] be such that |T | = k−1. Let � (T ) denote the characteristic vector

of T , so that � (T )i = 1 if and only if i ∈ T . We know that all these point belong to the hyperplane
{x ∶ ⟨1, x⟩ = k−1}. �us, there can be at most n a�nely independent points among {� (T )}T⊆[n],|T |=k−1.
We �rst verify that there are exactly n a�nely independent points among {� (T )}T⊆[n],|T |=k−1 by showing
that the a�ne hull of the points in {� (T )}T⊆[n],|T |=k−1 is the hyperplane {x ∶ ⟨1, x⟩ = k − 1}. Consider
the system in variables a, b:

⟨a, � (T )⟩ = b, ∀T ⊆ [n] such that |T | = k − 1.

We have to show that all solutions of the above system are a scaling of (1, k − 1). For that, let T 1 =
{1,… , k − 1} and T 2 ∶= {2,… , k}. Subtracting the equation corresponding to T 1 from that of T 2, we
obtain a1 = ak . Using the same argument by suitably selecting T 1 and T 2, we obtain: a1 = a2 = ⋯ = an.
�erefore, without loss of generality, we may rescale all the ai’s to 1. �en we see the only possible
value for b is k − 1. �is shows that the only a�ne subspace containing the points {� (T )}T⊆[n],|T |=k−1 is
{x ∶ ⟨1, x⟩ = k − 1}, in other words, there are n a�nely independent points among them.

Finally, the following simple corollary to Lemma 8 gives the desired hardness bound.

Corollary 5. Consider the polytope PPA = {x ∈ [0, 1]n ∶ ∑i∈S xi ≤ n
2 for all S ⊆ [n], |S| =

n
2 + 1}. �en,

BBrank(PPA) ≥ 2Ω(n), i.e. there exists a c ∈ ℝn such that the smallest branch-and-bound tree that solves

max
x∈PPA∩{0,1}n

⟨c, x⟩

has size at least 2Ω(n).
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4.2 Set Cover

In order to obtain a Set Cover instance that requires an exponential-size branch-and-bound tree, we will
use Lemma 6 together with the �ipping a�ne mapping (De�ntion 4) applied to the packing instance
from Section 4.1.

Proposition 2. Let PPA still be the packing polytope from Section 4.1. Let f ∶ [0, 1]n → [0, 1]n be the
�ipping function with J = [n]. �en:

• TSC = f (PPA), where

TSC = {y ∈ [0, 1]n ∶ ∑
i∈S

yi ≥ 1 for all S ⊆ [n], |S| = k}.

• TSC ∩ {0, 1}n ⊆ f (PPA ∩ {0, 1}n).

Proof. By substituting yi = 1 − xi for i ∈ [n] in the polytope PPA, we obtain that TSC = f (PPA).
Now consider any y ∈ TSC ∩ {0, 1}n. Notice x = 1 − y ∈ PPA ∩ {0, 1}n and y = f (x), and hence

y ∈ f (PPA ∩ {0, 1}n). �is gives TSC ∩ {0, 1}n ⊆ f (PPA ∩ {0, 1}n).

�en by Lemma 6, we have that BBrank(TSC) ≥ BBrank(PPA) ≥ 2Ω(n).

Corollary 6. BBrank(TSC) ≥ BBrank(P ) ≥ 2Ω(n), i.e. there exists a c ∈ ℝn such that the smallest branch-
and-bound tree that solves

max
x∈TSC∩{0,1}n

⟨c, x⟩

has size at least 2Ω(n).

5 BB hardness for Cross Polytope

In this section, we present in Proposition 3 a simple proof of BB hardness for the cross polytope. As
discussed before, this result slightly improves on the result when Lemma 7 is applied to the cross
polytope.

Next in this section we develop Proposition 4 that shows that there is a point in the cross polytope
that is hard to separate using BB tree of small size. �is allows us to use the machinery of Lemma
6 and a composition of a�ne functions described in Section 3 to reduce the BBhardness of the cross
polytope to TSP, which we do in Section 7.

�e cross polytope is de�ned as

Pn =

{

x ∈ [0, 1]n ∶ ∑
i∈J

xi +∑
i∉J
(1 − xi) ≥

1
2

∀J ⊆ {1, ..., n}

}

.

Proposition 3. Let  be a BB tree for Pn that certi�es the integer infeasibility of Pn. �en | | ≥ 2n+1 − 1
(i.e. BBhardness(Pn) ≥ 2n+1 − 1).

Proof. In order to certify the integer infeasibility of Pn, every leaf node’s atom must be an empty set.
We will verify that in order for the atom of a leaf v to be empty, no more than one integer point is
allowed to satisfy the branching constraints Cv of v. �is will complete the proof, since we then must
have at least 2n leaves.

Consider any leaf v of  such that two distinct integer points are feasible for its branching con-
straints. �en the average of these two points is a point in {0, 1, 12}

n with at least one component
equal to 1

2 , which also satis�es the branching constraints. However, a point in {0, 1, 12}
n with at least

one component equal to 1
2 satis�es the constraints de�ning Pn. �us the atom of the leaf v is non-

empty.

11



Corollary 7. Let F ⊆ ℝn be a face of Pn with dimension d . �en BBhardness(F ) ≥ 2d+1 − 1.

Proof. Notice that F is a copy of Pd with n−d components �xed to 0 or 1. �us, when we consider Pd and
apply the appropriate embedding a�ne transformation (De�nition 5), call it f , we obtain f (Pd ) = F .
Also since F ∩ ℤn = ∅, we obtain that f , Pd and F satisfy all the conditions of Corollary 3. �us,
BBhardness(F ) ≥ BBhardness(Pd ) ≥ 2d+1 − 1, where the last inequality follows from Proposition 3.

Next we show that the point 1
21 is hard to separate from Pn. For that we need a technical result

that any halfspace that contains 1
21 must also contain a face of [0, 1]n of dimension at least ⌈n/2⌉.

Lemma 9. Consider any (�, �0) ∈ ℝn × ℝ such that ⟨�, 121⟩ > �0. Let G = {x ∈ [0, 1]n ∶ ⟨�, x⟩ > �0}.
�ere exists a face F of [0, 1]n of dimension at least ⌈n/2⌉ contained in G.

Proof. We �rst consider the case where n is even.
Note that �0 = ∑n

i=1
1
2�i − � for some � > 0. WLOG, we may assume |�i | ≥ |�i+1| for odd values of

i ∈ [n]. Let O ⊆ [n] be the set of odd indices, i.e., i = {1, 3, 5,… , n − 1}. Now consider the following face
F of [0, 1]n of dimension n

2 :

F =

{

x ∈ [0, 1]n
|||||
xi = �i , ∀i ∈ O,where �i = 1 if �i ≥ 0,

�i = 0 if �i < 0

}

In order to prove that F ⊆ G, note that is su�cient to verify that:

�i�i + �i+1xi+1 ≥
1
2
(�i + �i+1), ∀xi+1 ∈ [0, 1], i ∈ O, (3)

since then we have that

∑
i∈O
(�i�i + �i+1xi+1) > ∑

i∈O

1
2
(�i + �i+1) − � = �0, ∀xi+1 ∈ [0, 1], i ∈ O.

In order to verify (3), we use the fact |�i | ≥ |�i+1| and consider the following cases:

• �i ≥ 0:

– �i+1 ≥ 0: In this case, it is su�cient to verify �i + �i+1 ⋅ 0 ≥ 1
2 (�i + �i+1) which is true since

�i ≥ �i+1.
– �i+1 ≤ 0: In this case, it is su�cient to verify �i + �i+1 ⋅ 1 ≥ 1

2 (�i + �i+1) which is true since
�i + �i+1 ≥ 0.

• �i ≤ 0:

– �i+1 ≥ 0: In this case, it is su�cient to verify �i+1 ⋅ 0 ≥ 1
2 (�i + �i+1) which is true since

�i + �i+1 ≤ 0.
– �i+1 ≤ 0: In this case, it is su�cient to verify �i+1 ⋅ 1 ≥ 1

2 (�i + �i+1) which is true since
�i ≤ �i+1.

�e same proof can be used when n is odd. Apart from the �rst n − 1 indices in this case set �n = 1
if �n ≥ 0 or �n = 0 if �n < 0, which gives a desired face of dimension n

2 + 1.

Proposition 4. BBdepth( 121, Pn) ≥ 2
⌈n/2⌉+1 − 1.
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Proof. For sake of contradiction suppose there exists a tree  of size less than 2⌊n/2⌋+1 − 1 such that
1
21 ∉ conv( (Pn)). By the separation theorem, there exists (�, �0) ∈ ℝn × ℝ such that ⟨�, 121⟩ > �0
and ⟨�, x⟩ ≤ �0 for all x ∈ conv( (Pn)). By Lemma 9, let F be a face of [0, 1]n of dimension ⌈n/2⌉
contained in {x ∈ ℝn | ⟨�, x⟩ > �0}; notice that Pn ∩ F is a face of Pn of the same dimension. Since
 (Pn) ⊆ conv( (Pn)) ⊆ ℝn ⧵ {x ∈ ℝn | ⟨�, x⟩ > �0} ⊆ ℝn ⧵ F and  (F ) ⊆ F , by Lemma 4 we get
 (Pn ∩ F ) ⊆  (Pn) ∩  (F ) = ∅, i.e. the atoms of the leaves of  applied to Pn ∩ F are all empty. �us, 
is a branch-and-bound tree to certify the infeasibility of Pn ∩ F of size less than 2⌈n/2⌉+1 − 1. However,
this contradicts Corollary 7.

6 BB hardness for Perturbed Cross Polytope

We now show that exponential BB hardness for the cross polytope persists even a�er adding Gaus-
sian noise to the entries of the contraint matrix. �is implies an exponential lower bound even for a
“smoothed analysis” of general branch-and-bound.

We consider the consider the cross polytope (Ax ≤ b) ∩ [0, 1]n and add to each entry in A an
independent gaussian noise N (0, 1/202); actually the RHSs will be something like n

20 instead of the
traditional 12 . �is gives the following random polytope Q:

Q ≡ ∑
i∈I

(1 + N (0, 1
202 )) xi +∑

i∉I
(1 − (1 + N (0, 1

202 )) xi) ≥
1.6n
20

, ∀I ⊆ [n]

x ∈ [0, 1]n,

where each occurrence of N (0, 1
202 ) is independent.

�eorem 2. With probability at least 1− 2
en/2 the polytopeQ is integer infeasible and every BB tree proving

its infeasibility has at least 2Ω(n) nodes.

We need the following standard tail bound for the Normal distribution (see equation (2.10) of [25]).

Fact 1. Let X ∼ N (0, �2) be a mean zero Gaussian with variance �2. �en for every p ∈ (0, 1), with
probability at least 1 − p we have X ≤ �

√
2 ln(1/p), and with probability at least 1 − p we have X ≥

−�
√
2 ln(1/p).

Let LHSI (x) be the LHS of the constraint I evaluated at x .

Lemma 10. With probability at least 1 − 1
en/2 the polytope Q is integer infeasible.

Proof. Fix a 0/1 point x ∈ {0, 1}n, and let I ⊆ [n] be the set of coordinates i where xi = 0. Let I c = [n] ⧵ I .
Notice LHSI (x) is a Gaussian with mean 0 and variance |I c |

202 ≤ n
202 , and so with probability at least

1 − 1
en/22n we have

LHSI (x) ≤
√
n
20

√
2 ln(en/22n) =

√
n
20

√
(1 + 2 ln 2)n <

1.6n
20

,

i.e., does not satisfy this inequality, so does not belong to Q. Taking a union bound over all 2n points
x ∈ {0, 1}n, with probability at least 1 − 1

en/2 none of them belong to Q.

Lemma 11. With probability at least 1 − 1
en/2 the polytope Q contains all points {0, 12 , 1}

n that have at
least s = 4n

10 coordinates with value 1
2 . (We call this set of points Halfs .)
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Proof. Consider x ∈ Halfs . Fix I ⊆ [n]. Let nhalf ≥ s be the number of coordinates of x with value 1
2 ,

nones be the number of coordinates with value 1, and let ndi� be the number of coordinates i where
either i ∈ I and xi = 1, or i ∉ I and xi = 0. Recalling that for independent Gaussians Y ∼ N (a, b) and
Y ′ ∼ N (a′, b′) their sum Y +Y ′ has is distributed as N (a + a′, b + b′), we see that LHSI (x) distributed as

LHSI (x) =d
nhalf
2

+ ndi� +
1
2
N (0, nhalf

202 ) + N (0,
nones
202 )

=d
nhalf
2

+ ndi� + N (0, (nhalf
4 + nones) ⋅ 1

202 ),

where again the occurrences of N (0, ⋅) are independent. Since the last term is a Gaussian with variance
at most n

202 , we get that with probability at least 1 − 1
en/2⋅2n ⋅3n

LHSI (x) ≥
nhalf
2

+ ndi� −
1
20

√
n
√
2 log(en/2 ⋅ 2n ⋅ 3n) ≥

4n
20

−
2.4n
20

=
1.6n
20

,

that is, x satis�es the constraint of Q indexed by I .
Taking a union bound over all x ∈ Halfs and all subsets I ⊆ [n], we see that all points in Halfs

satisfy all constraints of Q with probability at least 1 − 1
en/2 . �is concludes the proof.

Lemma 12. Let F ⊆ {0, 1}n be a set of 0/1 points. For any k, if |F | > ∑i≤k−1 (
n
i), conv(F ) contains a point

with at least k coordinates of value 1/2.

Proof. By the Sauer-Shelah Lemma (Lemma 11.1 of [19]), there is a set of coordinates J ⊆ [n] of size
|J | = k such that the points in F take all possible values in coordinates J , i.e., the projection FJ onto the
coordinates J equals {0, 1}k . So the point 1

21 belongs to conv(FJ ), which implies that conv(F ) has the
desired point.

Proof of �eorem 2. Let E be the event that both the bounds from Lemmas 10 and 11 hold. By union
bound this event happens with probability at least 1− 2

en/2 . So it su�ces to show that there is a constant
c > 0 such that for every scenario in E, every BB tree proving the infeasibility of Q has at least 2cn
leaves.

In hindsight, set c ∶= 1−ℎ( sn ), where ℎ is the binary entropy function ℎ(p) ∶= p log 1
p +(1−p) log

1
1−p .

Notice that c > 0, since ℎ is strictly increasing in the interval [0, 12 ] and hence ℎ( sn ) < ℎ(
1
2 ) = 1.

Consider any tree  that proves integer infeasibility of Q, and we claim that it has more than
2cn leaves. By contradiction, suppose not. �en  has a leaf v whose branching constraints Cv are
satis�ed by at least 2n

2cn = 2
n⋅ℎ(s/n) 0/1 points. But since 2n⋅ℎ(s/n) > ∑i≤s−1 (

n
i) (see e.g. Lemma 5 of [17]),

by Lemma 12 we know {x ∶ Cv} contains a point x̄ ∈ [0, 1]n with at least s coordinates of value 1/2.
Moreover, notice that x̄ also belongs to conv(Halfs), which is contained inQ by assumption of E. Hence
x̄ ∈ {x ∶ Cv}∩Q, namely the atom of v. But this contradicts that this atom is empty (which is required
since  proves integer infeasibility of Q).

7 BB hardness for TSP

Proposition 5. Let f be any composition of �ipping (De�ntion 4), embedding (De�nition 5), and dupli-
cation (De�nition 6) operations. Let H ⊆ [0, 1]n be a polytope such that f (Pk) ⊆ H and f ( 121) ∉ HI , where
k ≤ n. �en, BBrank(H ) ≥ 2⌈k/2⌉.

Proof. Notice that if f is a composition of �ipping, embedding, and duplication operations, it holds that
f is an integral a�ne transformation.

Note that, if P is integer infeasible, f (P ) is also integer infeasible. In particular, since Pk is integer
infeasible we have (f (Pk))I = ∅, and hence f ( 121) ∉ (f (Pk))I . Now, Corollary 4 and Proposition 4 give us
BBdepth (f ( 121) , f (Pk)) ≥ BBdepth ( 121, Pk) ≥ 2

⌈k/2⌉+1 −1. Finally, since f (Pk) ⊆ H , Corollary 2 implies
that BBdepth(f ( 121), H ) ≥ 2

⌈k/2⌉+1−1. �is implies the desired result BBrank(H ) ≥ 2⌈k/2⌉+1−1 ≥ 2⌈k/2⌉.
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We next present a key result from Section 4 of [9] (see also [7]), that shows how we can apply
Proposition 5 to obtain BB hardenss of the TSP polytope. Let TTSPn be the standard LP relaxation of
the TSP polytope (using subtour elimination constraints) for n cities:

x(�(v)) = 2 ∀v ∈ V
x(�(W )) ≥ 2 ∀W ⊂ V ,W ≠ ∅
0 ≤ x(e) ≤ 1 ∀e ∈ E

Proposition 6 ([9]). �ere exists a function f which is a composition of �ipping, embedding, and dupli-
cation such that f (P⌊n/8⌋) is contained in TTSPn and f (

1
21) does not belong to the integer hull of TTSPn .

Employing Proposition 5 we obtain a BB hardness for TSP.

Corollary 8 (BB hardness for TSP). BBrank(TTSPn ) ≥ 2⌊n/16⌋, i.e, there is a c ∈ ℝn(n−1)/2 such that the
smallest branch-and-bound tree that solves

max
x∈TTSPn∩{0,1}n(n−1)/2

⟨c, x⟩

has size at least 2⌊n/16⌋.
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