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Problem definition: We study the problem of finding the optimal assortment that maximizes expected rev-

enue under the decision forest model, a recently proposed nonparametric choice model that is capable of

representing any discrete choice model and in particular, can be used to represent non-rational customer

behavior. This problem is of practical importance because it allows a firm to tailor its product offerings

to profitably exploit deviations from rational customer behavior, but at the same time is challenging due

to the extremely general nature of the decision forest model. Methodology/Results: We approach this prob-

lem from a mixed-integer optimization perspective and propose two different formulations. We theoretically

compare the two formulations in strength, and analyze when they are integral in the special case of a single

tree. We further propose a methodology for solving the two formulations at a large-scale based on Ben-

ders decomposition, and show that the Benders subproblem can be solved efficiently by primal-dual greedy

algorithms when the master solution is fractional for one of the formulations, and in closed form when the

master solution is binary for both formulations. Using synthetically generated instances, we demonstrate

the practical tractability of our formulations and our Benders decomposition approach, and their edge over

heuristic approaches. Managerial implications: In a case study based on a real-world transaction data, we

demonstrate that our proposed approach can factor the behavioral anomalies observed in consumer choice

into assortment decision and create higher revenue.
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1. Introduction

Assortment optimization is a basic operational problem faced by many firms. In its simplest form,

the problem can be posed as follows. A firm has a set of products that it can offer, and a set of

customers who have preferences over those products; what is the set of products the firm should

offer so as to maximize the revenue that results when the customers choose from these products?

While assortment optimization and the related problem of product line design have been studied

extensively under a wide range of choice models, the majority of research in this area focuses

on rational choice models, specifically those that follow the random utility maximization (RUM)
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assumption. A significant body of research in the behavioral sciences shows that customers behave

in ways that deviate significantly from predictions made by RUM models. In addition, there is a

substantial number of empirical examples of firms that make assortment decisions in ways that

directly exploit customer irrationality. For example, the paper of Kivetz et al. (2004) provides an

example of an assortment of document preparation systems from Xerox that are structured around

the decoy effect, and an example of an assortment of servers from IBM that are structured around

the compromise effect.

A recent paper by Chen and Mǐsić (2022) proposed a new choice model called the decision

forest model for capturing customer irrationalities. This model involves representing the customer

population as a probability distribution over binary trees, with each tree representing the decision

process of one customer type. In a key result of the paper, the authors showed that this model is

universal: every discrete choice model is representable as a decision forest model. While the paper

of Chen and Mǐsić (2022) alludes to the downstream assortment optimization problem, it is entirely

focused on model representation and prediction: it does not provide any answer to how one can

select an optimal assortment with respect to a decision forest model.

In the present paper, we present a methodology for assortment optimization under the decision

forest model, based on mixed-integer optimization. Our approach allows the firm to obtain assort-

ments that are either provably optimal or within a desired optimality gap for a given decision

forest model. At the same time, the approach easily allows the firm to incorporate business rules as

linear constraints in the MIO formulation. Most importantly, given the universality property of the

decision forest model, our optimization approach allows a firm to optimally tailor its assortment

to any kind of predictable irrationality in the firm’s customer population.

We make the following specific contributions:

1. We propose two different integer optimization models – SplitMIO and ProductMIO– for

the problem of assortment optimization under the decision forest model. In terms of formulation

strength, ProductMIO is stronger than SplitMIO. In the special case of a single purchase

decision tree, we show that SplitMIO is integral in the special case that a product appears at

most once in the splits of a purchase decision tree, and ProductMIO is always integral regardless

of the structure of the tree.

2. We propose a Benders decomposition approach for solving the two formulations at a large

scale. We show that Benders cuts for the linear optimization relaxations of SplitMIO can be

obtained via a greedy algorithm that solves both the primal and dual of the subproblem. We

also provide a simple example to show that the same type of greedy algorithm fails to solve the

primal subproblem of ProductMIO. We further show how to obtain Benders cuts for the integer

solutions of both SplitMIO and ProductMIO in closed form.



Akchen and Mǐsić: Assortment Optimization under the Decision Forest Model
3

3. We present numerical experiments using both synthetic and real-world data. We first use

the synthetic data to examine the formulation strength of SplitMIO and ProductMIO models,

and to demonstrate the scalability of the Benders decomposition approach for the SplitMIO

formulation in problem instances involving up to 3000 products, 500 trees, and 512 leaves per

tree. We then use a real-world dataset to demonstrate how the decision forest model can factor a

behavioral anomaly (choice overload) into its assortment decision and create higher revenue.

We organize the paper as follows. Section 2 reviews the related literature in choice modeling

and assortment optimization. Section 3 defines the assortment problem and presents the two MIO

formulations. Section 4 proposes a Benders decomposition approach to our formulations, and ana-

lyzes the subproblem for each of the formulations for fractional and binary solutions of the master

problem. Sections 5 and 6 present the numerical results involving both the synthetic and real-world

data. All proofs are relegated to the appendix.

2. Literature review

The problem of assortment optimization has been extensively studied in the operations manage-

ment community; we refer readers to Gallego and Topaloglu (2019) for a recent review of the

literature. The literature on assortment optimization has focused on developing approaches for

finding the optimal assortment under many different rational choice models, such as the MNL

model (Talluri and Van Ryzin 2004, Sumida et al. 2020), the latent class MNL model (Bront et al.

2009, Méndez-Dı́az et al. 2014), the Markov chain choice model (Feldman and Topaloglu 2017,

Désir et al. 2020) and the ranking-based model (Aouad et al. 2020, 2018, Feldman et al. 2019).

In addition to the assortment optimization literature, our paper is also related to the literature

on product line design found in the marketing community. While assortment optimization is more

often focused on the tactical decision of selecting which existing products to offer, where the

products are ones that have been sold in the past and the choice model comes from transaction data

involving those products, the product line design problem involves selecting which new products

to offer, where the products are candidate products (i.e., they have not been offered before) and

the choice model comes from conjoint survey data, where customers are asked to rate or choose

between hypothetical products. Research in this area has considered different approaches to solve

the problem under the ranking-based/first-choice model (McBride and Zufryden 1988, Belloni et al.

2008, Bertsimas and Mǐsić 2019) and the multinomial logit model (Chen and Hausman 2000, Schön

2010); for more details, we refer the reader to the literature review of Bertsimas and Mǐsić (2019).

Our paper is related to Bertsimas and Mǐsić (2019), which presents integer optimization formu-

lations of the product line design problem when the choice model is a ranking-based model. As

we will see later, our formulation SplitMIO can be viewed a generalization of the formulation
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Bertsimas and Mǐsić (2019), to the decision forest model. In addition, the paper of Bertsimas and

Mǐsić (2019) develops a specialized Benders decomposition approach for its formulation, which

uses the fact that one can solve the subproblem associated with each customer type by applying a

greedy algorithm. We will show in Section 4 that this same property generalizes to the SplitMIO

formulation, leading to a tailored Benders decomposition algorithm for solving SplitMIO at scale.

Beyond these specific connections, the majority of the literature on assortment optimization and

product line design considers rational choice models, whereas our paper contributes a methodol-

ogy for non-rational assortment optimization. Fewer papers have focused on choice modeling for

irrational customer behavior; besides the decision forest model, other models include the gener-

alized attraction model (GAM; Gallego et al. 2015), the generalized stochastic preference model

(Berbeglia 2018) and the generalized Luce model (Echenique and Saito 2019). An even smaller set

of papers has considered assortment optimization under non-rational choice models, which we now

review. The paper of Flores et al. (2017) considers assortment optimization under the two-stage

Luce model, and develops a polynomial time algorithm for solving the unconstrained assortment

optimization problem. The paper of Rooderkerk et al. (2011) considers a context-dependent util-

ity model where the utility of a product can depend on other products that are offered and that

can capture compromise, attraction and similarity effects; the paper empirically demonstrates how

incorporating context effects leads to a predicted increase of 5.4% in expected profit.

Relative to these papers, our paper differs in that it considers the decision forest model. As

noted earlier, the decision forest model can represent any type of choice behavior, and as such, an

assortment optimization methodology based on such a model is attractive in terms of allowing a

firm to take the next step from a high-fidelity model to a decision. In addition, our methodology is

built on mixed-integer optimization. This is advantageous because it allows a firm to leverage con-

tinuing improvements in solution software for integer optimization (examples include commercial

solvers like Gurobi and CPLEX), as well as continuing improvements in computer hardware. At

the same time, integer optimization allows firms to accommodate business requirements using lin-

ear constraints, enhancing the practical applicability of the approach. Lastly, integer optimization

also allows one to take advantage of well-studied large-scale solution methods for integer optimiza-

tion problems. One such method that we focus on in this paper is Benders decomposition, which

has seen an impressive resurgence in recent years for delivering state-of-the-art performance on

large-scale problems such as hub location (Contreras et al. 2011), facility location (Fischetti et al.

2017) and set covering (Cordeau et al. 2019); see also Rahmaniani et al. (2017) for a review of the

recent literature. Stated more concisely, the main contribution of our paper is a general-purpose

methodology for assortment optimization under a general-purpose choice model.
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In addition to the assortment optimization and product line design literatures, our formulations

also have connections with others that have been proposed in the broader optimization litera-

ture. The formulation SplitMIO that we will present later can be viewed as a special case of the

mixed-integer optimization formulation of Mǐsić (2020) for optimizing the predicted value of a tree

ensemble model, such as a random forest or a boosted tree model. The formulation ProductMIO,

which is our strongest formulation, also has a connection to the literature in the integer optimiza-

tion community on formulating disjunctive constraints through independent branching schemes

(Vielma et al. 2010, Vielma and Nemhauser 2011, Huchette and Vielma 2019); we also discuss this

connection in more detail in Section 3.3.

3. Optimization model

In this section, we define the decision forest assortment optimization problem (Section 3.1) and

subsequently develop our formulations, SplitMIO (Section 3.2) and ProductMIO (Section 3.3).

3.1. Problem definition

In this section, we briefly review the decision forest model of Chen and Mǐsić (2022), and then

formally state the assortment optimization problem. We assume that there are n products, indexed

from 1 to n, and let N = {1, . . . , n} denote the set of all products. An assortment S corresponds to

a subset of N . When offered S, a customer may choose to purchase one of the products in S, or

to not purchase anything from S at all; we use the index 0 to denote the latter possibility, which

we will also refer to as the no-purchase option or the outside option.

The basic building block of the decision forest model is a purchase decision tree. A purchase

decision tree is a directed binary tree, with each leaf node corresponding to an option in N ∪{0},
and each non-leaf (or split) node corresponding to a product in N . We use splits(t) to denote the

set of split nodes of tree t, and leaves(t) to denote the set of leaf nodes. We use c(t, ℓ) to denote

the purchase decision of leaf ℓ of tree t, i.e., the option chosen by tree t if the assortment is mapped

to leaf ℓ. We use v(t, s) to denote the product that is checked at split node s in tree t.

Each tree represents the purchasing behavior of one type of customer. Specifically, for an assort-

ment S, the customer behaves as follows: the customer starts at the root of the tree. The customer

checks whether the product corresponding to the root node is contained in S; if it is, she proceeds

to the left child, and if not, she proceeds to the right child. She then checks again with the product

at the new node, and the process repeats, until the customer reaches a leaf; the option that is at

the leaf represents the choice of that customer. Figure 1 shows an example of a purchase decision

tree being used to map an assortment to a purchase decision.

We make the following assumption about our purchase decision trees.
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Figure 1 Example of a purchase decision tree for n= 5 products. Leaf nodes are enclosed in squares, while split

nodes are not enclosed. The number on each node corresponds either to v(t, s) for splits, or c(t, ℓ) for

leaves. The path highlighted in red indicates how a customer following this tree maps the assortment

S = {1,3,4,5} to a leaf. For this assortment, the customer’s decision is to purchase product 5.

Assumption 1. Let t be a purchase decision tree. For any two split nodes s and s′ of t such

that s′ is a descendant of s, v(t, s) ̸= v(t, s′).

This assumption states that once a product appears on a split s, it cannot appear on any subsequent

split s′ that is reached by proceeding to the left or right child of s; in other words, each product in

N appears at most once along the path from the root node to a leaf node, for every leaf node. As

discussed in Chen and Mǐsić (2022), this assumption is not restrictive, as any tree for which this

assumption is violated has a set of splits and leaves that are redundant and unreachable, and the

tree can be modified to obtain an equivalent tree that satisfies the assumption.

The decision forest model assumes that the customer population is represented by a collection of

trees or a forest F . Each tree t∈ F corresponds to a different customer type. We use λt to denote

the probability associated with customer type/tree t, and λ = (λt)t∈F to denote the probability

distribution over the forest F . For each tree t, we use Â(t,S) to denote the choice that a customer

type following tree t will make when given the assortment S. For a given assortment S ⊆N and a

given choice j ∈ S ∪ {0}, we use P(F,λ)(j | S) to denote the choice probability, i.e., the probability

of a random customer customer choosing j when offered the assortment S. It is defined as

P(F,λ)(j | S) =
∑
t∈F

λt · I{Â(t,S) = j}. (1)

We now define the assortment optimization problem. We use r̄i to denote the marginal revenue

of product i; for convenience, we use r̄0 = 0 to denote the revenue of the no-purchase option. The

assortment optimization problem that we wish to solve is

maximize
S⊆N

∑
i∈S

r̄i ·P(F,λ)(i | S). (2)

This is a challenging problem because of the general nature of the choice model P(F,λ)(· | ·). It
turns out that problem (2) is theoretically intractable.
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Proposition 1. The decision forest assortment optimization problem (2) is NP-Hard.

The proof of this result (see Appendix B.1) follows by a reduction from the MAX 3SAT problem.

In the next two sections, we present different mixed-integer optimization (MIO) formulations of

this problem.

3.2. Formulation 1: SplitMIO

We now present our first formulation of the assortment optimization problem (2) as a mixed-integer

optimization (MIO) problem. To formulate the problem, we introduce some additional notation.

For notational convenience we let rt,ℓ = r̄c(t,ℓ) be the revenue of the purchase option of leaf ℓ of tree

t. We let left(s) denote the set of leaf nodes that are to the left of split s (i.e., can only be reached

by taking the left branch at split s), and similarly, we let right(s) denote the leaf nodes that are

to the right of s. We introduce two sets of decision variables. For each i∈N , we let xi be a binary

decision variable that is 1 if product i is included in the assortment, and 0 otherwise. For each tree

t ∈ F and leaf ℓ ∈ leaves(t), we let yt,ℓ be a binary decision variable that is 1 if the assortment

encoded by x is mapped to leaf ℓ of tree t, and 0 otherwise.

With these definitions, our first formulation, SplitMIO, is given below.

SplitMIO : maximize
x,y

∑
t∈F

λt ·

 ∑
ℓ∈leaves(t)

rt,ℓyt,ℓ

 (3a)

subject to
∑

ℓ∈leaves(t)

yt,ℓ = 1, ∀ t∈ F, (3b)∑
ℓ∈left(s)

yt,ℓ ≤ xv(t,s), ∀ t∈ F, s∈ splits(t), (3c)∑
ℓ∈right(s)

yt,ℓ ≤ 1−xv(t,s), ∀ t∈ F, s∈ splits(t), (3d)

xi ∈ {0,1}, ∀ i∈N , (3e)

yt,ℓ ≥ 0, ∀ t∈ F, ℓ∈ leaves(t). (3f)

In order of appearance, the constraints in this formulation have the following meaning. Con-

straint (3b) requires that for each customer type t, the assortment encoded by x is mapped to

exactly one leaf. Constraint (3c) imposes that for a split s in tree t, if product v(t, s) is not in the

assortment, then the assortment cannot be mapped to any of the leaves that are to the left of split

s in tree t. Constraint (3d) is the symmetric case of constraint (3c) for the right-hand subtree of

split s of tree t. The last two constraints require that x is binary and y is nonnegative. Note that

it is not necessary to require y to be binary, as the constraints ensure that each yt,ℓ automatically

takes the correct value whenever x is binary. Finally, the objective function corresponds to the

expected per-customer revenue of the assortment.
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The SplitMIO formulation is related to two existing MIO formulations in the literature. First,

it can be viewed as a specialized case of the MIO formulation in Mǐsić (2020). In that paper,

the author develops a formulation for tree ensemble optimization, i.e., the problem of setting the

independent variables in a tree ensemble model (e.g., a random forest or a gradient boosted tree

model) to maximize the value predicted by that ensemble. Second, the SplitMIO formulation also

relates to the MIO formulation for the product line design problem under the ranking-based model

(Bertsimas and Mǐsić 2019). Note that Chen and Mǐsić (2022) showed that the ranking-based

model can be regarded as a special case of the decision forest model. In the special case that each

tree in the forest corresponds to a ranking and the decision forest corresponds to a ranking-based

choice model, it can be verified that the formulation (3) can be reduced to the MIO formulation

for product line design under ranking-based models presented in Bertsimas and Mǐsić (2019).

Before continuing to our second formulation, we establish an important property of problem (3)

when |F | = 1. When |F | = 1, we can show that FSplitMIO is integral in a particular special case.

(Note that in the statement of the proposition below, we drop the index t to simplify notation.)

Proposition 2. Let (F,λ) be a decision forest model consisting of a single tree, i.e., |F |= 1.

In addition, assume that for every i ∈ N , v(s) = i for at most one s ∈ splits. Then FSplitMIO is

integral, i.e., every extreme point (x,y) of the polyhedron FSplitMIO satisfies x∈ {0,1}N .

The proof of this result (see Appendix B.2) follows by showing that the constraint matrix defining

FSplitMIO is totally unimodular. Proposition 2 is significant because it implies that for |F |= 1, the

distinction between trees where each product appears at most once in any split and trees where a

product may appear two or more times as a split is sharp. This insight provides the motivation for

our second formulation, ProductMIO, which we present next.

3.3. Formulation 2: ProductMIO

The second formulation of problem (2) that we will present is motivated by the behavior of Split-

MIO when a product participates in two or more splits. In particular, observe that in a given

purchase decision tree, a product i may participate in two different splits s1 and s2 in the same

tree. In this case, constraint (3c) in the SplitMIO will result in two constraints:∑
ℓ∈left(s1)

yt,ℓ ≤ xi, (4)∑
ℓ∈left(s2)

yt,ℓ ≤ xi. (5)

In the above two constraints, observe that left(s1) and left(s2) are disjoint (this is a direct conse-

quence of Assumption 1). Given this and constraint (3b) that requires the yt,ℓ variables to sum to

1, we can come up with a constraint that strengthens constraints (4) and (5) by combining them:∑
ℓ∈left(s1)

yt,ℓ +
∑

ℓ∈left(s2)

yt,ℓ ≤ xi. (6)
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In general, one can aggregate all the yt,ℓ variables that are to the left of all splits involving a

product i to produce a single left split constraint for product i. The same can also be done for

the right split constraints. Generalizing this principle leads to the following alternate formulation,

which we refer to as ProductMIO:

ProductMIO : maximize
x,y

∑
t∈F

λt ·

 ∑
ℓ∈leaves(t)

rt,ℓyt,ℓ

 (7a)

subject to
∑

ℓ∈leaves(t)

yt,ℓ = 1, ∀ t∈ F, (7b)∑
s∈splits(t):
v(t,s)=i

∑
ℓ∈left(s)

yt,ℓ ≤ xi, ∀ t∈ F, i∈N , (7c)

∑
s∈splits(t):
v(t,s)=i

∑
ℓ∈right(s)

yt,ℓ ≤ 1−xi, ∀ t∈ F, i∈N , (7d)

xi ∈ {0,1}, ∀ i∈N , (7e)

yt,ℓ ≥ 0, ∀ t∈ F, ℓ∈ leaves(t). (7f)

Relative to SplitMIO, ProductMIO differs in several ways. First, note that while both formu-

lations have the same number of variables, formulation ProductMIO has a smaller number of

constraints. In particular, SplitMIO has one left and one right split constraints for each split

in each tree, whereas ProductMIO has one left and one right split constraint for each product.

When the trees involve a large number of splits, this can lead to a sizable reduction in the number

of constraints. Note also that when a product does not appear in any splits of a tree, we can also

safely omit constraints (7c) and (7d) for that product.

The second difference with formulation SplitMIO, as we have already mentioned, is in formu-

lation strength. Let FProductMIO be the feasible region of the linear optimization (LO) relaxation

of ProductMIO. The following proposition formalizes the fact that formulation ProductMIO

is at least as strong as formulation SplitMIO.

Proposition 3. For any decision forest model (F,λ), FProductMIO ⊆FSplitMIO.

The proof follows straightforwardly using the logic given above; we thus omit the proof.

The last major difference is in how ProductMIO behaves when |F |= 1. We saw that a sufficient

condition for FSplitMIO to be integral when |F | = 1 is that each product appears in at most one

split in the tree. In contrast, formulation ProductMIO is always integral when |F |= 1.

Proposition 4. For any decision forest model (F,λ) with |F |= 1, FProductMIO is integral.

The proof of this proposition, given in Appendix B.3, follows by recognizing the connection between

ProductMIO and another type of formulation in the literature. In particular, a stream of papers



Akchen and Mǐsić: Assortment Optimization under the Decision Forest Model
10

in the mixed-integer optimization community (Vielma et al. 2010, Vielma and Nemhauser 2011,

Huchette and Vielma 2019) has considered a general approach for deriving small and strong for-

mulations of disjunctive constraints using independent branching schemes; we briefly review the

most general such approach from Huchette and Vielma (2019) and showcase its connection to Pro-

ductMIO. In this approach, one has a finite ground set J , and is interested in optimizing over a

particular subset of the (|J |−1)−dimensional unit simplex over J , ∆J = {λ∈RJ |∑j∈J λj = 1;λ≥
0}. The specific subset that we are interested in is called a combinatorial disjunctive constraint

(CDC), and is given by

CDC(S) =
⋃
S∈S

Q(S), (8)

where S is a finite collection of subsets of J and Q(S) = {λ∈∆ | λj ≤ 0 for j ∈ J \S} for any S ⊆ J .

This approach is very general: for example, by associating each j with a point xj in Rn, one can

use CDC(S) to model an optimization problem over a union of polyhedra, where each polyhedron

is the convex hull of a collection of vertices in S ∈ S.
A k-way independent branching scheme of depth t is a representation of CDC(S) as a sequence

of t choices between k alternatives:

CDC(S) =
t⋂

m=1

k⋃
i=1

Q(Lm
i ), (9)

where Lm
i ⊆ J . In the special case that k = 2, we can write CDC(S) = ∩t

m=1(Lm ∪ Rm) where

Lm,Rm ⊆ J . This representation is known as a pairwise independent branching scheme and the

constraints of the corresponding MIO can be written simply as∑
j∈Lm

λj ≤ zm, ∀ m∈ {1, . . . , k}, (10a)∑
j∈Rm

λj ≤ 1− zm, ∀ m∈ {1, . . . , k}, (10b)

zm ∈ {0,1}, ∀ m∈ {1, . . . , k}, (10c)∑
j∈J

λj = 1, (10d)

λj ≥ 0, ∀ j ∈ J. (10e)

This particular special case is important because it is always integral (see Theorem 1 of Vielma et al.

2010). Moreover, we can see that ProductMIO bears a strong resemblance to formulation (10).

Constraints (10a) and (10a) correspond to constraints (7c) and (7d), respectively. In terms of

variables, the λj and zm variables in formulation (10) correspond to the yt,ℓ and xi variables in

ProductMIO, respectively.

One notable difference is that in practice, one would use formulation (10) in a modular way;

specifically, one would be faced with a problem where the feasible region can be written as
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CDC(S1)∩CDC(S2)∩ · · · ∩CDC(SG), where each Sg is a collection of subsets of J . To model this

feasible region, one would introduce a set of zg,m variables for the gth CDC, enforce constraints (10a)

- (10c) for the gth CDC, and use only one set of λj variables for the whole formulation. Thus, the

λj variables are the “global” variables, while the zg,m variables would be “local” and specific to

each CDC. In contrast, in ProductMIO, the xi variables (the analogues of zm) are the “global”

variables, while the yt,ℓ variables (the analogues of λj) are the “local” variables.

4. Solution methodology based on Benders decomposition

While the formulations in Section 3 bring the assortment optimization problem under the decision

forest choice model closer to being solvable in practice, the effectiveness of these formulations can

be limited in large-scale problems. In particular, consider the case where there is a large number

of trees in the decision forest model and each tree consists of a large number of splits and leaves.

In this setting, both formulations – SplitMIO and ProductMIO– will have a large number of

yt,ℓ variables and a large number of constraints to link those variables with the xi variables, and

may require significant computation time.

At the same time, SplitMIO and ProductMIO share a common problem structure. In par-

ticular, they have two sets of variables: the x variables, which determine the products that are to

be included, and the (yt)t∈F variables, which model the choice of each customer type. In addition,

for any two trees t, t′ such that t ̸= t′, the yt variables and yt′ variables do not appear together in

any constraints. Thus, one can view each of our two formulations as a two-stage stochastic pro-

gram, where each tree t corresponds to a scenario; the variable x corresponds to the first-stage

decision; and the variable yt corresponds to the second-stage decision under scenario t, which is

appropriately constrained by the first-stage decision x.

Thus, one can apply Benders decomposition to solve the problem. At a high level, Benders

decomposition involves using linear optimization duality to represent the optimal value of the

second-stage problem for each tree t as a piecewise-linear concave function of x, and to eliminate

the (yt)t∈F variables. One can then re-write the optimization problem in epigraph form, resulting

in an optimization problem in terms of the x variable and an auxiliary epigraph variable θt for

each tree t, and a large family of constraints linking x and θt for each tree t. Although the family

of constraints for each tree t is too large to be enumerated, one can solve the problem through

constraint generation.

The main message of this section of the paper is that, in most cases, the primal and the dual

forms of the second-stage problem can be solved either in closed form (when x is binary) or via

a greedy algorithm (when x is fractional), thus allowing one to identify violated constraints for

either the relaxation or the integer problem in a computationally efficient manner. In the remaining

sections, we carefully analyze the second-stage problem for both formulations.
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For SplitMIO, we show that the second-stage problem can be solved by a greedy algorithm

when x is fractional (Section 4.1). For ProductMIO, we show that the same greedy approach

does not solve the second-stage problem in the fractional case (Section 4.2). For both formulations,

when x is binary, we characterize the primal and dual solutions in closed form (Section 4.3).

Lastly, in Section 4.4, we briefly describe our overall algorithmic approach to solving the assortment

optimization problem, which involves solving the Benders reformulation of the relaxed problem,

followed by the Benders reformulation of the integer problem.

4.1. Benders reformulation of the SplitMIO relaxation

The Benders reformulation of the LO relaxation of SplitMIO can be written as

maximize
x,θ

∑
t∈F

λtθt (11a)

subject to θt ≤Gt(x), ∀ t∈ F, (11b)

x∈ [0,1]n, (11c)

where function Gt(x) is the optimal value of the following subproblem corresponding to tree t:

Gt(x) = maximize
yt

∑
ℓ∈leaves(t)

rt,ℓ · yt,ℓ (12a)

subject to
∑

ℓ∈leaves(t)

yt,ℓ = 1, (12b)∑
ℓ∈left(s)

yt,ℓ ≤ xv(t,s), ∀ s∈ splits(t), (12c)∑
ℓ∈right(s)

yt,ℓ ≤ 1−xv(t,s), ∀ s∈ splits(t), (12d)

yt,ℓ ≥ 0, ∀ ℓ∈ leaves(t). (12e)

We now present a greedy algorithm for solving problem (12) in Algorithm 1. This algorithm

requires as input an ordering τ of the leaves in nondecreasing revenue. In particular, we require

a bijection τ : {1, . . . , |leaves(t)|} → leaves(t) such that rt,τ(1) ≥ rt,τ(2) ≥ · · · ≥ rt,τ(|leaves(t)|, i.e., an

ordering of leaves in nondecreasing revenue. In addition, in the definition of Algorithm 1, we use

LS(ℓ) and RS(ℓ) to denote the set of left and right splits, respectively, of ℓ, which are defined as

LS(ℓ) = {s∈ splits(t) | ℓ∈ left(s)},

RS(ℓ) = {s∈ splits(t) | ℓ∈ right(s)},

In words, LS(ℓ) is the set of splits for which we must proceed to the left in order to be able to

reach ℓ, and RS(ℓ) is the set of splits for which we must proceed to the right to reach ℓ. A split

s∈LS(ℓ) if and only if ℓ∈ left(s), and similarly, s∈RS(ℓ) if and only if ℓ∈ right(s).
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Intuitively, this algorithm progresses through the leaves from highest to lowest revenue, and sets

the yt,ℓ variable of each leaf ℓ to the highest value it can be set to without violating the left and

right split constraints (12c) and (12d) and without violating the constraint
∑

ℓ∈leaves(t) yt,ℓ ≤ 1. At

each iteration, the algorithm additionally keeps track of which constraint became tight through

the event set E . An As event indicates that the left split constraint (12c) for split s became tight;

a Bs event indicates that the right split constraint (12d) for split s became tight; and a C event

indicates that the constraint
∑

ℓ∈leaves(t) yt,ℓ ≤ 1 became tight. When a C event is not triggered,

Algorithm 1 looks for the split which has the least remaining capacity (line 15). In the case that

the argmin is not unique and there are two or more splits that are tied, we break ties by choosing

the split s with the lowest depth d(s) (i.e., the split closest to the root node of the tree).

The function f keeps track of which leaf ℓ was being checked when an As / Bs / C event occurred.

We note that both E and f are not needed to find the primal solution, but they are essential to

determining the dual solution in the dual procedure (Algorithm 2, which we will define shortly).

Algorithm 1 Primal greedy algorithm for SplitMIO.

Require: Bijection τ : {1, . . . , |leaves(t)|} → leaves(t) such that rt,τ(1) ≥ rt,τ(2) ≥ · · · ≥
rt,τ(|leaves(t)|)

1: Initialize yt,ℓ← 0 for each ℓ∈ leaves(t).
2: for i= 1, . . . , |leaves(t)| do
3: Set qC← 1−∑i−1

j=1 yt,τ(j).
4: for s∈LS(τ(i)) do
5: Set qs← xv(t,s)−

∑i−1
j=1:

τ(j)∈left(s)

yt,τ(j)

6: for s∈RS(τ(i)) do
7: Set qs← 1−xv(t,s)−

∑i−1
j=1:

τ(j)∈right(s)

yt,τ(j)

8: Set qA,B←mins∈LS(τ(i))∪RS(τ(i)) qs
9: Set q∗←min{qC , qA,B}

10: Set yt,τ(i)← q∗

11: if q∗ = qC then
12: Set E ← E ∪{C}.
13: Set f(C) = τ(i).
14: else
15: Set s∗← argmins∈LS(τ(i))∪RS(τ(i)) qs
16: if s∗ ∈LS(τ(i)) then
17: Set e=As

18: else
19: Set e=Bs

20: if e /∈ E then
21: Set E ← E ∪{e}.
22: Set f(e) = τ(i).

It turns out that Algorithm 1 returns a feasible solution that is an extreme point of the polyhe-

dron defined in problem (12). We state the result formally as the following theorem.
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Theorem 1. Fix t ∈ F . Let yt be a solution to problem (12) produced by Algorithm 1. Then:

(a) yt is a feasible solution to problem (12); and (b) yt is an extreme point of the feasible region

of problem (12).

Theorem 1 implies that problem (12) is feasible, and since the problem is bounded, it has a finite

optimal value. By strong duality, the optimal value of problem (13) is equal to the optimal value

of its dual:

minimize
αt,βt,γt

∑
s∈splits(t)

xv(t,s) ·αt,s +
∑

s∈splits(t)

(1−xv(t,s))βt,s + γt (13a)

subject to
∑

s:ℓ∈left(s)

αt,s +
∑

s:ℓ∈right(s)

βt,s + γt ≥ rt,ℓ, ∀ ℓ∈ leaves(t), (13b)

αt,s ≥ 0, ∀ s∈ splits(t), (13c)

βt,s ≥ 0, ∀ s∈ splits(t). (13d)

Letting Dt,SplitMIO denote the set of feasible solutions to the dual subproblem (13), we can formulate

the master problem (11) as

maximize
x,θ

∑
t∈F

λtθt (14a)

subject to θt ≤
∑

s∈splits(t)

xv(t,s) ·αt,s +
∑

s∈splits(t)

(1−xv(t,s))βt,s + γt,

∀ (αt,βt, γt)∈Dt,SplitMIO, (14b)

x∈ [0,1]n. (14c)

The value of this formulation, relative to the original formulation, is that we have replaced the

(yt)t∈F variables and the constraints that link them to the x variables, with a large family of

constraints in terms of x. Although this new formulation is still challenging, the advantage of this

formulation is that it is suited to constraint generation.

The constraint generation approach to solving problem (14) involves starting the problem with

no constraints and then, for each t ∈ F , checking whether constraint (14b) is violated. If con-

straint (14b) is not violated for any t∈ F , then we conclude that the current solution x is optimal.

Otherwise, for any t∈ F such that constraint (14b) is violated, we add the constraint corresponding

to the (αt,βt, γt) solution at which the violation occurred, and solve the problem again to obtain

a new x. The procedure then repeats at the new x solution until no more violated constraints have

been found.

The crucial step to solving this problem is being able to solve the dual subproblem (13); that is,

for a fixed t∈ F , either asserting that the current solution x satisfies constraint (14b) or identifying
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a (αt,βt, γt) at which constraint (14b) is violated. This amounts to solving the dual subproblem (13)

and comparing its objective value to θt.

Fortunately, it turns out that we can solve the dual subproblem (13) using a specialized algorithm,

in the same way that we can solve the primal subproblem (12) using Algorithm 1. Algorithm 2

uses auxiliary information obtained during the execution of Algorithm 1. In the definition of Algo-

rithm 2, we use d(s) to denote the depth of an arbitrary split, where the root split corresponds to

a depth of 1, and dmax =maxs∈splits(t) d(s) is the depth of the deepest split in the tree. In addition,

we use splits(t, d) = {s∈ splits(t) | d(s) = d} to denote the set of all splits at a particular depth d.

Algorithm 2 Dual greedy algorithm for SplitMIO.

1: Initialize αt,s← 0, βt,s← 0 for all s∈ splits(t), γt← 0
2: Set γ← rf(C)

3: for d= 1, . . . , dmax do
4: for s∈ splits(t, d) do
5: if As ∈ E then
6: Set αt,s← rt,f(As)− γt−

∑
s′∈LS(f(As)):

As′∈E,
d(s′)<d

αt,s′ −
∑

s′∈RS(f(As)):
Bs′∈E,
d(s′)<d

βt,s′

7: if Bs ∈ E then
8: Set βt,s← rt,f(Bs)− γt−

∑
s′∈LS(f(As)):

As′∈E,
d(s′)<d

αt,s′ −
∑

s′∈RS(f(As)):
Bs′∈E,
d(s′)<d

βt,s′

We provide a worked example of the execution of both Algorithms 1 and 2 in Appendix A.

We can show that the dual solution produced by Algorithm 2 is a feasible extreme point solution

of the dual subproblem (13).

Theorem 2. Fix t ∈ F . Let (αt,βt, γt) be a solution to problem (13) produced by Algorithm 2.

Then: (a) (αt,βt, γt) is a feasible solution to problem (13); and (b) (αt,βt, γt) is an extreme point

of the feasible region of problem (13).

Lastly, and most importantly, we show that the solutions produced by Algorithms 1 and 2 are

optimal for their respective problems. Thus, Algorithm 2 is a valid procedure for identifying values

of (αt,βt, γt) at which constraint (14b) is violated.

Theorem 3. Fix t ∈ F . Let yt be a solution to problem (12) produced by Algorithm 1 and

(αt,βt, γt) be a solution to problem (13) produced by Algorithm 2. Then: (a) yt is an optimal

solution to problem (12); and (b) (αt,βt, γt) is an optimal solution to problem (13).

The proof of this result follows by verifying that the two solutions satisfy complementary slackness.

Before continuing, we note that Algorithms 1 and 2 can be viewed as the generalization of

the algorithms arising in the Benders decomposition approach to the ranking-based assortment
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optimization problem (Bertsimas and Mǐsić 2019). The results of that paper show that the primal

subproblem of the MIO formulation in Bertsimas and Mǐsić (2019) can be solved via a greedy

algorithm (analogous to Algorithm 1) and the dual subproblem can be solved via an algorithm

that uses information from the primal algorithm (analogous to Algorithm 2). This generalization is

not straightforward. The main challenge in this generalization is designing the sequence of updates

in the greedy algorithm according to the tree topology. For example, in Algorithm 1, one considers

all left/right splits and the y values of their left/right leaves when constructing the lowest upper

bound of yℓ for each leaf node ℓ. Also, as shown in Algorithm 2, the dual variables αt,s and βt,s

have to be updated according to the tree topology and the events As′ and Bs′ of the split s′ with

smaller depth. In contrast, in the ranking-based assortment optimization problem, one only needs

to calculate the “capacities” (the qs values in Algorithm 1) by subtracting the y values of the

preceding products in the ranking, which does not inherit any topological structure. For these

reasons, the primal and dual Benders subproblems for the decision forest assortment problem are

much more challenging than those of the ranking-based assortment problem.

4.2. Benders reformulation of the ProductMIO relaxation

We also consider a Benders reformulation of the relaxation of ProductMIO. The Benders master

problem is given by formulation (11) where the function Gt(x) is defined as the optimal value of the

ProductMIO subproblem for tree t. To aid in the definition of the subproblem, let P (t) denote

the set of products that appear in the splits of tree t:

P (t) = {i∈N | i= v(t, s) for some s∈ splits(t)}.

With a slight abuse of notation, let left(i) denote the set of leaves for which product i must be

included in the assortment for those leaves to be reached, and similarly, let right(i) denote the set

of leaves for which product i must be excluded from the assortment for those leaves to be reached;

formally,

left(i) =
⋃

s∈splits(t):
v(t,s)=i

left(s), and right(i) =
⋃

s∈splits(t):
v(t,s)=i

right(s).

With these definitions, we can write down the ProductMIO subproblem as follows:

Gt(x) = maximize
yt

∑
ℓ∈leaves(t)

rt,ℓ · yt,ℓ (15a)

subject to
∑

ℓ∈leaves(t)

yt,ℓ = 1, (15b)∑
ℓ∈left(i)

yt,ℓ ≤ xi, ∀ i∈ P (t), (15c)
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Figure 2 Structure of tree for which the ProductMIO primal subproblem is not solvable via a greedy algorithm.

∑
ℓ∈right(i)

yt,ℓ ≤ 1−xi, ∀ i∈ P (t), (15d)

yt,ℓ ≥ 0, ∀ ℓ∈ leaves(t). (15e)

In the same way as SplitMIO, one can consider solving problem (15) using a greedy approach,

where one iterates through the leaves from highest to lowest revenue, and sets each leaf’s yt,ℓ

variable to the highest possible value without violating any of the constraints. Unlike SplitMIO,

it unfortunately turns out that this greedy approach is not always optimal, which is formalized in

the following proposition.

Proposition 5. There exists an x∈ [0,1]n, a tree t and revenues r̄1, . . . , r̄n for which the greedy

solution to problem (15) is not optimal.

We provide a counterexample as follows. Consider an instance where N = {1,2,3} and x =

(0.5,0.5,0.5). Assume the revenues of the products are r̄1 = 20, r̄2 = 19 and r̄3 = 18. Consider the

tree shown in Figure 2. We label the leaves as 1, 2, 3, 4, 5 and 6 from left to right. When we apply the

greedy algorithm to solve this LO problem, we can see that there are multiple orderings of the leaves

in decreasing revenue: (i) 1,2,3,5,4,6; (ii) 1,2,5,3,4,6; (iii) 1,2,3,5,6,4; and (iv) 1,2,5,3,6,4. For any

of these orderings, the greedy solution will turn out to be (y1, y2, y3, y4, y5, y6) = (0.5,0,0,0,0,0.5),

resulting in an objective value of 10. However, the actual optimal solution Gt(x) turns out to be

(y∗
1 , y

∗
2 , y

∗
3 , y

∗
4 , y

∗
5 , y

∗
6) = (0,0.5,0,0,0.5,0), for which the objective value is 18.5. This counterexample

shows that in general, the ProductMIO primal subproblem cannot be solved to optimality via

the same type of greedy algorithm as for SplitMIO.

4.3. Bender Cuts for Integer Master Solutions

We further propose closed form expressions for the structure of the optimal primal and dual Benders

subproblem solutions for integer solutions x.

4.3.1. SplitMIO Our results in Section 4.1 for obtaining primal and dual solutions for the

subproblem of SplitMIO apply for any x∈ [0,1]n; in particular, they apply for fractional choices

of x, thus allowing us to solve the Benders reformulation of the relaxation of SplitMIO.
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In the special case that x is a candidate integer solution of SplitMIO, we can find optimal

solutions to the primal and dual subproblems of SplitMIO in closed form.

Theorem 4. Fix t∈ F , and let x∈ {0,1}n. Define the primal subproblem solution yt as

yt,ℓ =

{
1 if ℓ= ℓ∗,
0 if ℓ ̸= ℓ∗,

where ℓ∗ denotes the leaf that the assortment encoded by x is mapped to. Define the dual subproblem

solution (αt,βt, γt) as

αt,s =

{
max{0,maxℓ∈left(s) rt,ℓ− rt,ℓ∗} if s∈RS(ℓ∗),
0 otherwise,

βt,s =

{
max{0,maxℓ∈right(s) rt,ℓ− rt,ℓ∗} if s∈LS(ℓ∗),
0 otherwise,

γt = rt,ℓ∗ .

Then: (a) yt is a feasible solution to problem (12); (b) (αt,βt, γt) is a feasible solution to prob-

lem (13); and (c) yt and (αt,βt, γt) are optimal for problems (12) and (13), respectively.

The significance of Theorem 4 is that it provides a simpler means to checking for violated

constraints when x is binary than applying Algorithms 1 and 2. In particular, for the integer version

of SplitMIO, a similar derivation as in Section 4.1 leads us to the following Benders reformulation

of the integer problem for the SplitMIO formulation:

maximize
x,θ

∑
t∈F

λtθt (16a)

subject to θt ≤
∑

s∈splits(t)

xv(t,s) ·αt,s +
∑

s∈splits(t)

(1−xv(t,s))βt,s + γt,

∀ (αt,βt, γt)∈Dt,SplitMIO, (16b)

x∈ {0,1}n. (16c)

To check whether constraint (16b) is violated for a particular x and a tree t, we can simply use

Theorem 4 to determine the optimal value of the subproblem, and compare it against θt; if the

constraint corresponding to the dual solution of Theorem 4 is violated, we add that constraint to

the problem. In our implementation of Benders decomposition, we embed the constraint generation

process for the integer problem (16) within the branch-and-bound tree, using a technique referred

to as lazy constraint generation; we discuss this more in Section 4.4.

4.3.2. ProductMIO We also consider ProductMIO. We begin by writing down the dual

of the subproblem, for which we need to define several additional sets. We let LP(ℓ) denote the

set of “left products” of leaf ℓ (those products that must be included in the assortment for leaf
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ℓ to be reached), and let RP(ℓ) denote the set of “right products” of leaf ℓ (those products that

must be excluded from the assortment for leaf ℓ to be reached). Note that ℓ∈ left(i) if and only if

i∈LP(ℓ), and similarly ℓ∈ right(i) if and only if i∈RP(ℓ).

With these definitions, the dual of the primal subproblem (15) is

minimize
αt,βt,γt

∑
i∈P (t)

αt,ixi +
∑

i∈P (t)

βt,i(1−xi)+ γt (17a)

subject to
∑

i∈LP(ℓ)

αt,i +
∑

i∈RP(ℓ)

βt,i + γt ≥ rℓ, ∀ ℓ∈ leaves(t), (17b)

αt,i ≥ 0, ∀ i∈ P (t), (17c)

βt,i ≥ 0, ∀ i∈ P (t). (17d)

In the case that x is integer, we can obtain optimal solutions to the primal subproblem (15) and

its dual (17) in closed form.

Theorem 5. Fix t∈ F and let x∈ {0,1}n. Let yt be defined as

yt,ℓ =

{
1 if ℓ= ℓ∗,
0 otherwise,

(18)

and let (αt,βt, γt) be defined as

αt,i =

{
max{0,maxℓ∈left(i) rt,ℓ− rt,ℓ∗}, if i∈RP(ℓ∗),
0 otherwise,

(19)

βt,i =

{
max{0,maxℓ∈right(i) rt,ℓ− rt,ℓ∗}, if i∈LP(ℓ∗),
0 otherwise,

(20)

γt = rt,ℓ∗ . (21)

Then: (a) yt is a feasible solution for problem (15); (b) (αt,βt, γt) is a feasible solution for prob-

lem (17); and (c) yt and (αt,βt, γt) are optimal for problems (15) and (17), respectively.

4.4. Overall Benders algorithm

We conclude Section 4 by summarizing how the results are used. In our overall algorithmic approach

below, we first focus on SplitMIO, as the subproblem can be solved for the formulation when x

is either fractional or binary.

1. Relaxation phase. We first solve the relaxed problem (14) using ordinary constraint generation.

Given a solution x ∈ [0,1]n, we generate Benders cuts by running the primal-dual procedure (

Algorithm 1 followed by Algorithm 2).

2. Integer phase. In the integer phase, we add all of the Benders cuts generated in the relaxation

phase to the integer version of problem (14). We then solve the problem as an integer optimization

problem, where we generate Benders cuts for integer solutions using the closed form expressions
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in Theorem 4. We add these cuts using lazy constraint generation. That is, we solve the master

problem using a single branch-and-bound tree, and we check whether the main constraint (14b) of

the Benders formulation is violated at every integer solution generated in the branch-and-bound

tree.

For ProductMIO, as the subproblem can only be solved when x is binary, its overall Benders

algorithm directly starts with the Integer Phase.

5. Numerical Experiments with Synthetic Data

In this section, we examine the formulation strength of SplitMIO and ProductMIO (Section 5.2)

and demonstrate the scalability of the Benders decomposition approach(Section 5.3). We focus on

synthetically generated instances so that we can scale the problem size. In Appendix C, we report

our implementation details and include additional numerical results.

5.1. Background

To test our method, we generate three different families of synthetic decision forest instances, which

differ in the topology of the trees and the products that appear in the splits:

1. T1 forest. A T1 forest consists of balanced trees of depth d (i.e., trees where all leaves are

at depth d+1). For each tree, we sample d products i1, . . . , id uniformly without replacement from

N . Then, for every depth d′ ∈ {1, . . . , d}, we set the split product v(t, s) as v(t, s) = id′ for every

split s that is at depth d′.

2. T2 instances. A T2 forest consists of balanced trees of depth d. For each tree, we set the split

products at each split iteratively, starting at the root, in the following manner: (a) Initialize d′ = 1;

(b) For all splits s at depth d′, set v(s, t) = is where is is drawn uniformly at random from the set

N \∪s′∈A(s){v(t, s′)}, where A(s) is the set of ancestor splits to split s (i.e., all splits appearing on

the path from the root node to split s); (c) Increment d′← d′+1; and (d) If d′ >d, stop; otherwise,

return to Step (b).

3. T3 instances. A T3 forest consists of unbalanced trees with L leaves. Each tree is generated

according to the following iterative procedure: (a) Initialize t to a tree consisting of a single leaf; (b)

Select a leaf ℓ uniformly at random from leaves(t), and replace it with a split s and two child leaves

ℓ1, ℓ2. For split s, set v(s, t) = is where is is drawn uniformly at random from N \∪s′∈A(s){v(t, s′)};
(c) If |leaves(t)|=L, terminate; otherwise, return to Step (b).

For all three types of forests, we generate the purchase decision c(t, ℓ) for each leaf ℓ in each tree t

in the following way: for each leaf ℓ, we uniformly at random choose a product i∈∪s∈LS(ℓ){v(t, s)}∪
{0}. In words, the purchase decision is chosen to be consistent with the products that are known

to be in the assortment if leaf ℓ is reached. Figure 3 shows an example of each type of tree (T1, T2,
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(c) T3 tree (L= 8).
Figure 3 Examples of T1, T2 and T3 trees.

and T3). Given a forest of any of the three types above, we generate the customer type probability

vector λ= (λt)t∈F by drawing it uniformly from the (|F | − 1)−dimensional unit simplex.

In our experiments, we fix the number of products n= 100 and vary the number of trees |F | ∈
{50,100,200,500}, and the number of leaves |leaves(t)| ∈ {8,16,32,64}. (Note that the chosen

values for |leaves(t)| correspond to depths of {3,4,5,6} for the T1 and T2 instances.) For each

combination of n, |F | and |leaves(t)| and each type of instance (T1, T2 and T3) we randomly

generate 20 problem instances, where a problem instance consists of a decision forest model and

the product marginal revenues r̄1, . . . , r̄n. For each instance, the decision forest model is generated

according to the process described above and the product revenues are sampled uniformly with

replacement from the set {1, . . . ,100}.

5.2. Experiment #1: Formulation Strength

Our first experiment is to simply understand how the two formulations – SplitMIO and Product-

MIO– compare in terms of formulation strength. Recall from Proposition 3 that ProductMIO is

at least as strong as SplitMIO. For a given instance and a given formulationM (one of Split-

MIO and ProductMIO), we define the integrality gap Gint
M ≡ 100%× (ZM−Z∗)/Z∗, where Z∗

is the optimal objective value of the integer problem and ZM is the optimal objective of the LO

relaxation. We consider the T1, T2 and T3 instances with n = 100, |F | ∈ {50,100,200,500} and

|leaves(t)|= 8. We restrict our focus to instances with n= 100 and |leaves(t)|= 8, as the optimal

value Z∗ of the integer problem could be computed within one hour for these instances.

Table 1 displays the average integrality gap of each of the two formulations for each combination

of n and |F | and each instance type. From this table, we can see that the integrality gap of both

SplitMIO and ProductMIO is in general about 0 to 17%. Note that the difference between

ProductMIO and SplitMIO is most pronounced for the T1 instances, as the decision forests in

these instances exhibit the highest degree of repetition of products within the splits of a tree. In
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Type |F | Gint
SplitMIO Gint

ProductMIO

T1 50 0.9 0.0
T1 100 2.5 0.1
T1 200 5.6 0.2
T1 500 15.8 3.3

T2 50 0.2 0.2
T2 100 1.0 1.0
T2 200 5.4 5.3
T2 500 16.7 16.4

T3 50 0.2 0.2
T3 100 0.5 0.5
T3 200 4.1 3.9
T3 500 14.2 14.0

Table 1 Average integrality gap of SplitMIO and ProductMIO for T1, T2 and T3 instances with n= 100,

|leaves(t)|= 8.

contrast, the difference is smaller for the T2 and T3 instances, where the trees are balanced but

there is less repetition of products within the splits of the tree (as the trees are not forced to have

the same product appear on all of the splits at a particular depth).

We also test the tractability of SplitMIO and ProductMIO when they are solved as integer

programs (i.e., not as relaxation). We present the results in Section C.1.

5.3. Experiment #2: Benders Decomposition for Large-Scale Problems

In this experiment, we report on the performance of our Benders decomposition approach for

solving large scale instances of SplitMIO. We focus on the SplitMIO formulation, as we are able

to efficiently generate Benders cuts for both fractional and integral values of x.

We deviate from our previous experiments by generating a collection of T3 instances with n ∈
{200,500,1000,2000,3000}, |F |= 500 trees and |leaves(t)|= 512 leaves. As before, the marginal

revenue r̄i of each product i is chosen uniformly at random from {1, . . . ,100}. For each value of

n, we generate 5 instances. For each instance, we solve the SplitMIO problem subject to the

constraint
∑n

i=1 xi = b, where b is set as b= ρn and we vary ρ∈ {0.02,0.04,0.06,0.08,0.10,0.12}.
We compare three different methods: the two-phase Benders method described in Section 4.4,

using the SplitMIO cut results (Section 4.1 and Section 4.3); the divide-and-conquer (D&C)

heuristic; and the direct solution approach, where we attempt to directly solve the full SplitMIO

formulation using Gurobi. The D&C heuristic is a type of local search heuristic proposed in the

product line design literature (see Green and Krieger 1993; see also Belloni et al. 2008). In this

heuristic, one iterates through the b products currently in the assortment, and replaces a single

product with the product outside of the assortment that leads to the highest improvement in the

expected revenue; this process repeats until the assortment can no longer be improved. We choose
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the initial assortment uniformly at random from the collection of assortments of size b. For each

instance, we repeat the D&C heuristic 10 times, and retain the best solution. We do not impose

a time limit on the D&C heuristic. For the Benders approach, we impose a time limit of one hour

on the LO phase, and impose a time limit of one hour on the integer phase. For the direct solution

approach, we impose a time limit of two hours, in order to be comparable to the Benders approach.

Table 2 reports the performance of the three methods – the Benders approach, the D&C heuristic

and direct solution of SplitMIO– across all combinations of n and ρ. We consider several metrics.

The metric GM is defined as GM = (Z ′ − ZM)/Z ′ × 100%, i.e., it is the optimality gap of the

solution obtained by methodM – either the Benders approach, the direct approach or the D&C

heuristic – relative to the objective value of the best solution obtained out of the three methods,

which is indicated by Z ′. Lower values of GM indicate that the approach tends to deliver solutions

that are close to being the best out of the three methods, and a value of 0% implies that the

solution obtained by the approach is the best (or tied for the best) out of the three methods.

The metric TM indicates the solution time required for approach M in seconds. Finally, for the

Benders and direct approaches, we compute the optimality gap OM, which is defined as OM =

(ZUB,M−ZLB,M)/ZUB,M× 100%, where ZUB,M and ZLB,M are the best upper and lower bounds,

respectively, obtained from either the Benders or direct approach after the computation time limit is

exhausted. The value reported of each metric is the average over the five replications corresponding

to the particular (n,ρ) combination.

Comparing the performance of the Benders approach with the D&C heuristic, we can see that in

general, the Benders approach is able to find better solutions than the D&C heuristic. In particular,

for larger instances, GBenders is lower than GD&C (for example, with n= 2000, ρ= 0.08, the Benders

solution is in general the best one, and the D&C solution has an expected revenue that is 4.6%

worse). In addition, from a computation time standpoint, the Benders approach compares quite

favorably to the D&C heuristic. While the D&C heuristic is faster for small problems with low n

and/or low ρ, it can require a significant amount of time for n= 2000 or n= 3000. In addition to

this comparison against the D&C heuristic, in Appendix C.2, we also provide a comparison of the

MIO solutions for the smaller T1, T2 and T3 instances used in the previous two sections against

three other heuristic solutions; in those instances, we similarly find that solutions obtained from

our MIO formulations can be significantly better than heuristic solutions.

Comparing the performance of the Benders approach with the direct solution approach, our

results indicate two types of behavior. The first type of behavior corresponds to “easy” instances.

These are instances with ρ∈ {0.02,0.04} for which it is sometimes possible to directly solve Split-

MIO to optimality within the two hour time limit. For example, with n= 2000 and ρ= 0.04, all

five instances are solved to optimality by the direct approach. For those instances, the Benders
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n ρ b GBenders GD&C GDirect TBenders TD&C TDirect OBenders ODirect

200 0.02 4 0.00 0.00 0.00 14.54 2.86 2060.81 0.00 0.00
200 0.04 8 0.00 0.04 0.61 187.96 4.46 7015.65 0.00 7.72
200 0.06 12 0.11 0.00 0.77 3615.82 7.34 7200.25 8.23 16.71
200 0.08 16 0.70 0.00 2.86 3612.43 9.97 7200.47 17.38 23.39
200 0.10 20 0.47 0.01 6.94 3613.19 15.07 7200.16 22.13 30.38
200 0.12 24 0.67 0.12 7.68 3614.96 18.93 7200.25 27.27 34.03

500 0.02 10 0.00 0.19 0.00 16.71 11.24 184.29 0.00 0.00
500 0.04 20 0.00 0.20 0.08 1640.78 28.93 7200.21 0.48 3.06
500 0.06 30 0.02 0.68 3.57 3630.19 65.75 7200.26 8.10 11.89
500 0.08 40 0.00 0.48 1.05 3623.51 115.36 7200.57 14.26 14.82
500 0.10 50 0.00 1.49 6.88 3625.89 177.26 7200.18 18.26 23.74
500 0.12 60 0.69 0.95 4.11 3631.14 223.61 7200.38 22.94 25.30

1000 0.02 20 0.00 0.29 0.00 18.83 47.62 156.49 0.00 0.00
1000 0.04 40 0.00 1.65 2.76 2823.19 183.33 7200.18 1.05 4.10
1000 0.06 60 0.00 2.48 6.61 3671.12 397.35 7200.18 6.16 12.53
1000 0.08 80 0.00 2.92 7.86 3662.76 687.02 7200.44 10.07 17.39
1000 0.10 100 0.00 2.31 8.65 3670.95 1052.76 7200.17 13.60 20.99
1000 0.12 120 0.00 2.13 5.92 3696.24 1552.76 7200.22 15.77 20.73

2000 0.02 40 0.00 1.36 0.00 14.55 328.25 70.02 0.00 0.00
2000 0.04 80 0.00 3.49 0.00 1774.85 1259.21 1057.28 0.21 0.00
2000 0.06 120 0.00 4.26 21.38 3774.67 2578.07 7200.16 2.42 23.29
2000 0.08 160 0.00 4.63 100.00 3806.42 4431.39 7200.28 5.21 100.00
2000 0.10 200 0.00 5.23 100.00 3925.28 6435.67 7200.17 7.16 100.00
2000 0.12 240 0.74 0.94 100.00 4319.62 10949.83 7200.16 11.91 100.00

3000 0.02 60 0.00 1.97 0.00 16.16 923.12 32.40 0.00 0.00
3000 0.04 120 0.00 4.03 0.00 1883.80 3365.35 1541.40 0.08 0.00
3000 0.06 180 0.00 5.26 0.04 4144.41 7620.89 7200.16 1.81 1.80
3000 0.08 240 0.00 4.55 99.98 4554.74 13624.07 7209.41 4.23 99.99
3000 0.10 300 0.00 4.04 99.98 5013.31 31137.18 7200.38 6.17 99.98
3000 0.12 360 0.32 1.12 99.98 6999.60 43173.66 7216.75 9.83 99.99

Table 2 Comparison of the Benders decomposition approach, the D&C heuristic and direct solution of

SplitMIO in terms of solution quality, computation time and optimality gap.

approach is either able to prove optimality (for example, for n= 200 and ρ= 0.04, OBenders = 0%)

or terminate with a low optimality gap (for example, for n= 3000 and ρ= 0.04, OBenders = 0.08%);

among all instances with ρ∈ {0.02,0.04}, the average optimality gap is no more than about 1.05%.

More importantly, the solution obtained by the Benders approach is at least as good as the solution

obtained after two hours of direct solution of SplitMIO, which can be seen from the fact that

GBenders is 0.0% in all of these (n,ρ) combinations.

The second type of behavior corresponds to “hard” instances, which are the instances with ρ ∈
{0.06,0.08,0.10,0.12}. For these instances, Gurobi generally struggles to solve the LO relaxation

of SplitMIO within the two hour time limit. When this happens, the integer solution returned by

Gurobi is obtained from applying heuristics before solving the root node of the branch-and-bound
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tree, which is often quite suboptimal. (This often results in integer solutions with an objective

value of 0.0, leading to values of ODirect and GDirect that are close to 100%.) In contrast, the Benders

approach delivers significantly better solutions; among all of these instances, GBenders is within 1%,

indicating that on average the Benders approach is within 1% of the best solution of each instance.

In addition, OBenders is generally lower than ODirect, indicating that the Benders approach in general

makes more progress towards proving optimality than the direct approach.

Overall, these results suggest that our Benders approach can deliver high quality solutions to

large-scale instances of the assortment optimization problem in a reasonable computational time-

frame that are at least as good, and often significantly better, than those obtained by the D&C

heuristic or those obtained by directly solving the problem using Gurobi.

6. Numerical Experiments with Real Transaction Data

In this section, we examine the performance of the optimal assortment generated by the decision

forest model on problem instances calibrated with a real-world transaction dataset. Different from

Section 5, the problem instances in this section are of a smaller scale, which help us glean operational

insights. We organize the section as follows. Section 6.1 describes the dataset and the pre-processing

steps. Section 6.2 compares the performance of the assortments generated according to the decision

forest model and the ranking-based model. Section 6.3 is a case study that demonstrates how the

decision forest model factors a well-known behavioral anomaly into its assortment decision.

6.1. Background

We consider the IRI Academic Dataset (Bronnenberg et al. 2008), which is comprised of real-

world transaction records of store sales for thirty product categories from forty-seven U.S. markets.

The same dataset has been used by Jagabathula and Rusmevichientong (2019) to empirically

demonstrate the loss of rationality in consumer choice and by Chen and Mǐsić (2022) to evaluate

the predictive performance of the decision forest model.

We follow the literature to pre-process the raw transaction data. We first aggregate items with

the same vendor code as a product, a common pre-processing technique in the marketing science

community (Bronnenberg and Mela 2004, Nijs et al. 2007). Following the setup in the literature

(Jagabathula and Rusmevichientong 2019, Chen and Mǐsić 2022) and focusing on the data from the

first two weeks of the calendar year 2007 due to the data volume, we select the top nine purchased

items as the products and combine the remaining items as the outside/no-purchase option. We

further transform the transactions into assortment-choice pairs as follows. We first call T the set

of transactions. For each transaction t ∈ T , we have the following information: the week of the

purchase tweek, the store where the transaction happened tstore, the sold product tprod, and the selling

price tprice. Let W and Z be the nonrepeated collection of {tweek}t∈T and {tstore}t∈T , respectively.
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For each week w ∈W and store s ∈Z, we define Sw,s =
⋃

t∈T {tprod | tweek =w, tstore = s} as the set

of products that was purchased at least once at store s during week w. The set of transactions T
is thus transformed into the set of assortment-choice pairs as {

(
Stweek,tstore , tprod

)
}t∈T , which will

be used for choice model estimation. We further define the marginal revenue r̄i as the average of

the historical prices (tprice)t∈T :tprod=i
for i∈N .

6.2. Results: Improvement in Expected Revenue

We estimate the ranking-based model and the decision forest model from the assortment-choice

pairs {
(
Stweek,tstore , tprod

)
}t∈T in each product category by maximum likelihood estimation (van

Ryzin and Vulcano 2014, Chen and Mǐsić 2022). In particular, for the decision forest model, we

follow Chen and Mǐsić (2022) to warm start the solver by setting the initial solution as the estimated

ranking-based model. For simplicity, we set the tree depth limit as three (i.e., leaves can have depth

at most four). Typically, the tree depth is determined by cross validation. Chen and Mǐsić (2022)

have reported that trees of depth three lead to good predictive performance and deeper trees tend

to over-fit the data.

We further denote SRM and SDF as the optimal assortments under the estimated ranking-based

model and the decision forest model, respectively. We use Z∗
C to denote the maximal expected

revenue under a given choice model C and ZC(S) to denote the expected revenue of assortment S.

Obviously, Z∗
RM = ZRM(S

RM) and Z∗
DF = ZDF(S

DF). To discuss the relative performance of assort-

ments SRM and SDF, we define the following two metrics

RIDF = 100%× ZDF(S
DF)−ZDF(S

RM)

ZDF(SRM)
and RIRM = 100%× ZRM(S

RM)−ZRM(S
DF)

ZRM(SDF)
.

The two metrics measure the relative improvement of the optimal assortment SDF (or SRM) from

SRM (or SDF) under the decision forest model (or the ranking-based model). Note that both metrics

are non-negative by their definitions. We also define the Hamming distance ∆H =
∑n

i=1 |I [i∈ SDF]−
I [i∈ SRM] | to measure how different the two assortments are.

Table 3 summarizes the comparison of SDF and SRM in terms of expected revenue under the

measures RIDF and RIRM. When the ground truth is the estimated decision forest model, the

assortment SDF can outperform SRM up to 32% and with 7% improvement on average in the

expected revenue. Meanwhile, when the ground truth is the estimated ranking-based mode, the

assortment SDF only performs 3% worse than the optimal assortment SRM on average. Recall

that the class of the ranking-based models is equivalent to the class of choice models of random

utility maximization (RUM) principle, or, the class of rational choice models (Jagabathula and

Rusmevichientong 2019). Table 3 suggests that the optimal assortment generated by the decision

forest model can be quite beneficial when customer choice deviates from the rational choice theory,
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Category RIDF RIRM ∆H

Beer 32.8 5.9 3
Blades 0.0 0.0 0
Carbonated Beverages 4.8 3.8 4
Cigarettes 2.5 8.3 1
Coffee 26.3 11.0 4
Cold Cereal 6.1 0.3 2
Deodorant 3.7 2.2 3
Diapers 0.0 0.0 0
Facial Tissue 0.2 0.6 1
Frozen Dinners 2.7 5.2 2
Frozen Pizza 10.9 4.0 4
Household Cleaners 16.0 6.6 4
Hotdogs 18.7 1.4 4
Laundry Detergent 0.1 1.9 1
Margarine / Butter 5.3 12.9 1
Mayonnaise 0.0 0.0 0
Milk 5.2 0.7 1
Mustard / Ketchup 5.6 1.1 1
Paper Towels 1.0 2.4 2
Peanut Butter 10.9 5.6 3
Photo 0.0 0.0 0
Salty Snacks 12.0 3.7 2
Shampoo 19.0 1.4 4
Soup 13.0 5.0 3
Spaghetti / Italian Sauce 4.9 3.3 2
Sugar Substitutes 10.7 6.0 1
Toilet Tissue 0.0 0.0 0
Toothbrush 0.0 0.0 0
Toothpaste 2.7 0.9 2
Yogurt 3.8 2.1 1

Average 7.3 3.2 1.9

Table 3 The relative performance of the assortments generated by the decision forest model and the

ranking-based model in each product category in the IRI Academic Dataset

and does not lose much even if customers are strictly rational. We also remark that on average,

the two assortments SDF and SRM only differ from each other with Hamming distance 1.9, while

they have similar sizes: the average sizes of SDF and SRM are 4.9 and 5.3, respectively.

6.3. Case Study: Beer Category

To investigate why we observed high relative improvement with the assortment SDF over SRM in

some categories, we look into the Beer category, where the relative improvement is 32.8%.

We first observe that the consumer choice within the Beer category exhibits a notable phe-

nomenon known as choice overload, a well-documented behavioral anomaly in the field of market-

ing science (Iyengar and Lepper 2000, Chernev et al. 2015, Long et al. 2023). This phenomenon
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describes the situation in which an abundance of available products can actually deter customers

from making a purchase. Choice overload contradicts with the principles of rational choice theory.

According to this theory, when a store increases the assortment size, a rational consumer should

theoretically be more inclined to make a purchase from the assortment. This is because a larger

assortment would increase the chance that the customer finds one product that aligns with her

preference. In the context of choice modeling, a rational choice model adheres to the following

principle:

P (0 | S)≥ P (0 | S′) whenever S ⊆ S′. (22)

Note that equation (22) directly stems from the regularity property, which the ranking-based model

and other RUM choice models, such as the mixed-MNL model, always adhere to (Rieskamp et al.

2006, Jagabathula and Rusmevichientong 2019). However, real-world scenarios often deviate from

equation (22). When provided with more options, customers may become fatigued from the search

process or experience a decrease in their confidence in decision-making, leading them to opt not

to make a purchase. In the consumer psychology literature, Iyengar and Lepper (2000) conducted

a field experiment demonstrating that individuals are more likely to purchase gourmet jams or

chocolates when presented with a smaller assortment of size six rather than a more extensive

assortment of size 24 or 30.
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Figure 4 The choice overload effect in the Beer category. Each scatter point represents the empirical no-purchase

probability P̄ (0 | S) for an historical assortment S ∈ Shist.

Figure 4 visually depicts the prevalence of choice overload within the Beer category of the IRI

dataset. Each data point in the figure corresponds to a pair (|S|, P̄ (0 | S)), where |S| represents the
assortment size of a historical assortment S ∈ Shist ≡ {Sw,s |w ∈W, s∈ S}, and P̄ (0 | S) represents
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the empirical probability of the no-purchase option being chosen when the assortment S was offered.

For a better illustration, we have excluded assortments with very few transactions (less than or

equal to 10) from Figure 4. In Figure 4, the rightmost data point, denoted by a red triangle,

corresponds to the no-purchase probability when the assortment contains all available products

(|S| = 9). It is important to note that in a scenario where equation (22) holds, indicating the

absence of choice overload, each data point should exhibit a higher y-value than the red triangle.

However, this condition is met for only 8 out of the 41 data points in the figure, suggesting a

violation of equation (22) within the Beer category.

The presence of choice overload in the data has a significant impact on the estimation outcomes

of both the ranking-based model and the decision forest model, leading to divergent assortment

decisions. To begin, we define P̄C(0 |m) as the average no-purchase probability when presented

with an assortment of size m,

P̄C(0 |m) =

∑
S⊆N : |S|=mPC(0 | S)
|{S ⊆N : |S|=m}| . (23)

Here, PC(0 | S) represents the no-purchase probability given assortment S under a choice model

C. We consider two choice models, the decision forest model (DF) and the ranking-based model

(RM), both estimated from data. Figure 5 presents the average no-purchase probability curves,

P̄C(0 |m), for these two models, with the error bars representing the standard deviation. Recall

that the ranking-based model adheres to the regularity property and strictly follows equation (22).

Consequently, the resulting no-purchase probability curve (depicted in blue) does not exhibit the

choice overload effect; it consistently decreases as we expand the assortment size. In contrast,

the decision forest model is not bound by the regularity property and has the capacity to learn

the choice overload effect from the data. The resulting no-purchase probability curve (shown in

red) indicates that customers are indeed more inclined to make a purchase as the assortment

initially expands. However, after reaching an assortment size of |S|= 6, the choice overload effect

becomes evident. Customers become less motivated, and we observe an increase in the no-purchase

probability when |S| ≥ 7.

The extent to which the decision forest model and the ranking-based model capture the phe-

nomenon of choice overload from the data significantly influences their downstream assortment

decisions. It is important to note that within the dataset, the marginal revenues r̄i of the products

exhibit low variation, ranging between 8.14 and 10.83 USD (keeping in mind that beer is often sold

in packs of six). Since prices are quite uniform and well above zero, the optimal strategy is not

about making customers choose a specific product but rather about making them buy any product

from the offered assortment, i.e., reducing the no-purchase probability.
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Figure 5 The average no-purchase probability of the two choice models under different assortment sizes (with

the error bars as the standard deviation). The black triangle represents that PDF(0 | SDF) = 8.6%.

For the ranking-based model, the optimal assortment SRM includes all products, resulting in

|SRM|= 9, since this is the only way it can minimize the no-purchase probability. In contrast, the

decision forest model, having captured the choice overload effect from the data, takes a different

approach. It examines assortments of size six and identifies one that decreases the no-purchase

probability from PDF(0 | SRM) = 33.1% to PDF(0 | SDF) = 8.6% (see the black triangle in Figure 5).

This strategic choice results in a remarkable 32% improvement in expected revenue, measured

according to the decision forest model. This highlights the advantage of the assortment planning

approach proposed in this paper: by leveraging the decision forest model’s ability to capture con-

sumer choice patterns, businesses can tailor their product offerings to effectively capitalize on

consumers’ departures from strictly rational purchasing behavior.

7. Conclusions

In this paper, we have developed a mixed-integer optimization methodology for solving the assort-

ment optimization problem when the choice model is a decision forest model. This methodology

allows a firm to find optimal or near optimal assortments given a decision forest model, which is

valuable due to the ability of the decision forest model to capture non-rational customer behavior.

We developed two formulations, connected them with the optimization models in the literature, and

proposed a large-scale methodology based Benders decomposition. We showed that for one of our

formulations it is possible to solve the primal and dual subproblems in the Benders decomposition

using a greedy algorithm when the master solution is fractional, and that for both formulations it

is possible to solve primal and dual subproblems in closed form when the master solution is binary.

Using synthetic data, we demonstrated the scalability of our models and solution methods. We
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further used a real-world dataset to showcase how consumers’ behavioral anomalies can be learned

and capitalized under the framework proposed in this paper.
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D. Bertsimas and V. V. Mǐsić. Exact first-choice product line optimization. Operations Research, 67(3):
651–670, 2019.

D. Bertsimas and R. Weismantel. Optimization over integers, volume 13. Dynamic Ideas Belmont, 2005.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical computing.
SIAM review, 59(1):65–98, 2017.

B. J. Bronnenberg and C. F. Mela. Market roll-out and retailer adoption for new brands. Marketing Science,
23(4):500–518, 2004.

B. J. Bronnenberg, M. W. Kruger, and C. F. Mela. Database paper—the IRI marketing data set. Marketing
science, 27(4):745–748, 2008.

J. J. M. Bront, I. Méndez-Dı́az, and G. Vulcano. A column generation algorithm for choice-based network
revenue management. Operations research, 57(3):769–784, 2009.

K. D. Chen and W. H. Hausman. Mathematical properties of the optimal product line selection problem
using choice-based conjoint analysis. Management Science, 46(2):327–332, 2000.
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V. V. Mǐsić. Optimization of tree ensembles. Operations Research, 68(5):1605–1624, 2020.

V. R. Nijs, S. Srinivasan, and K. Pauwels. Retail-price drivers and retailer profits. Marketing Science, 26
(4):473–487, 2007.

R. Rahmaniani, T. G. Crainic, M. Gendreau, and W. Rei. The benders decomposition algorithm: A literature
review. European Journal of Operational Research, 259(3):801–817, 2017.

J. Rieskamp, J. R. Busemeyer, and B. A. Mellers. Extending the bounds of rationality: Evidence and theories
of preferential choice. Journal of Economic Literature, 44(3):631–661, 2006.

R. P. Rooderkerk, H. J. Van Heerde, and T. H. A. Bijmolt. Incorporating context effects into a choice model.
Journal of Marketing Research, 48(4):767–780, 2011.

C. Schön. On the optimal product line selection problem with price discrimination. Management Science,
56(5):896–902, 2010.

M. Sumida, G. Gallego, P. Rusmevichientong, H. Topaloglu, and J. Davis. Revenue-utility tradeoff in assort-
ment optimization under the multinomial logit model with totally unimodular constraints. Management
Science, 2020.

K. Talluri and G. Van Ryzin. Revenue management under a general discrete choice model of consumer
behavior. Management Science, 50(1):15–33, 2004.

G. van Ryzin and G. Vulcano. A market discovery algorithm to estimate a general class of nonparametric
choice models. Management Science, 61(2):281–300, 2014.

J. P. Vielma and G. L. Nemhauser. Modeling disjunctive constraints with a logarithmic number of binary
variables and constraints. Mathematical Programming, 128(1-2):49–72, 2011.

J. P. Vielma, S. Ahmed, and G. Nemhauser. Mixed-integer models for nonseparable piecewise-linear opti-
mization: Unifying framework and extensions. Operations Research, 58(2):303–315, 2010.
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Figure EC.1 Tree used in example of SplitMIO primal-dual algorithms.

Appendix A: Example of Benders algorithms for SplitMIO

In this section, we provide a small example of the primal-dual procedure (Algorithms 1 and 2) for solving

the SplitMIO subproblem. Suppose that n= 6, and that x= (x1, . . . , x6) = (0.62,0.45,0.32,0.86,0.05,0.35).

Suppose that r̄= (r̄1, . . . , r̄6) = (97,72,89,50,100,68). Suppose that the purchase decision tree t has the form

given in Figure EC.1a; in addition, suppose that the splits and leaves are indexed as in Figure EC.1b. For

example, in the latter case, 8 corresponds to the split node that is furthest to the bottom and to the left,

while 30 corresponds to the second leaf from the right.

We first run Algorithm 1 on the problem, which carries out the steps shown below in Table EC.1. For this

execution of the procedure, we assume that the following ordering of leaves (encoded by τ) is used:

20,22,30,24,25,28,29,17,19,21,23,26,27,16,18,31.

After running the procedure, the primal solution y= (y16, . . . , y31) follows that y17 = y24 = 0.35, y28 = 0.15,

y20 = y22 = y30 = 0.05 and all other components are zero. Here we drop the index t to simplify the notation.

The event set is E = {A10,A11,A15,A3,B1,C}, and the function f : E → leaves is defined as f(A10) = 20,

f(A11) = 22, f(A15) = 30, f(A3) = 24, f(B1) = 28, and f(C) = 17.

We now run Algorithm 2, which carries out the steps shown in Table EC.2. We obtain the dual solution

(α,β, γ) as follows. γ = 72. α= (α1, . . . , α15) follows that α10 = α11 = 28, α15 = 11, and all other components

are zero. β= (β1, . . . , β15) follows that β1 = 17 and other components are zero.

The feasibility of the dual solution is visualized in Figure EC.2. The colored bars correspond to the

different dual variables; a colored bar appears multiple times when the variable participates in multiple dual

constraints. The height of the black lines for each leaf indicates the value of rℓ, while the total height of the

colored bars at a leaf corresponds to the value γ+
∑

s∈LS(ℓ)αs +
∑

s∈RS(ℓ) βs (the left hand side of the dual

constraint (13b). For each leaf, the total height of the colored bars exceeds the black line, which indicates

that all dual constraints are satisfied.
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Iteration Values of qC and qA,B Steps

ℓ= 20 qC = 1.0, qA,B = 0.05 Set y20← 0.05
A10 event

ℓ= 22 qC = 0.95, qA,B = 0.05 Set y22← 0.05
A11 event

ℓ= 30 qC = 0.90, qA,B = 0.05 Set y30← 0.05
A15 event

ℓ= 24 qC = 0.85, qA,B = 0.35 Set y24← 0.35
A3 event

ℓ= 25 qC = 0.5, qA,B = 0.0 Set y25← 0.0

ℓ= 28 qC = 0.5, qA,B = 0.15 Set y28← 0.15
B1 event

ℓ= 29 qC = 0.35, qA,B = 0.0 Set y29← 0.0

ℓ= 17 qC = 0.35, qA,B = 0.35 Set y17← 0.35
C event
break

Table EC.1 Steps of primal procedure (Algorithm 1).

Phase Calculation

Initialization αs← 0, βs← 0 for all s
Set γ γ← r17 = 72
Loop: d= 1 β1← r28− γ = 89− 72 = 17
Loop: d= 2 α3← r24− γ−β1 = 97− 72− 17 = 8
Loop: d= 4 α10← r20− γ = 100− 72 = 28

α11← r22− γ = 100− 72 = 28
α15← r30− γ−β1 = 100− 72− 11 = 11

Table EC.2 Steps of dual procedure (Algorithm 2).
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x5 ∨¬x7 ∨x8.

The objective value of the primal solution is
∑

ℓ∈leaves rℓ ·yℓ = r20×y20+ r22×y22+ r30×y30+ r24×y24+

r28 × y28 + r17 × y17 = 87.5. The objective value of the dual solution is γ + (1− x2)× β1 + x6 × α3 + x5 ×
α10 +x5×α11 +x5×α15 = 72.0+0.55× 17+0.35× 8+0.05× 28+0.05× 28+0.05× 11 = 87.5

Appendix B: Proofs

B.1. Proof of NP-Hardness

We show that MAX 3SAT problem reduces to the decision forest assortment optimization problem. In the

MAX 3SAT problem, one has K binary variables, x1, . . . , xK , and is given a Boolean formula of the form

c1∧ c2∧ · · ·∧ cM , where ∧ denotes “and”. Each clause is a disjunction involving three literals, where a literal
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is either one of the binary variables or its negation, and the literals involve distinct binary variables. For

example, a clause could be x5 ∨ ¬x7 ∨ x8, where ∨ denotes “or”. The MAX 3SAT problem is to find the

assignment of the variables x1, . . . , xK so as to maximize the number of clauses c1, . . . cT that are true.

Given an instance of the MAX 3SAT problem, we show how the problem can be transformed into an

instance of the decision forest assortment optimization problem (2). Consider an instance of problem (2)

with n=K +1 products. Each of the first K products corresponds to one of the binary variables; the last

(K+1)-th product is necessary to ensure that the revenue of the assortment can correspond to the number

of satisfied clauses. Assume that the marginal revenues of the products are set so that r̄1 = · · ·= r̄K = 0, and

r̄K+1 = 1. For each clause m∈ {1, . . . ,M}, introduce a tree tm which is constructed as follows:

1. Set the root node of the tree to be a split node involving product K + 1. The right child of the root

node is a leaf node with 0 (the no-purchase option) as the purchase decision. (The left child node will be

defined in the next step.)

2. For the first literal, create a split at the left child node of the root, with the corresponding binary

variable’s index as the product (e.g., if the literal is x7 or ¬x7, the split node has product 7). If the literal

is the binary variable itself (i.e., xk), we set the left child node of the split to be a leaf node with product

K+1 as the purchase decision. Otherwise, if the literal is the negation of the binary variable (i.e., ¬xk), we

set the right child node of the split to be a leaf node with product K +1 as the purchase decision.

3. For the other child node of the split created in Step 2, repeat Step 2 with the second literal.

4. For the other child node of the split created in Step 3, repeat Step 2 with the third literal.

5. Lastly, for the other child node of the third split node in Step 4 corresponding to the third literal, set

the purchase decision to be 0.

Figure EC.3 visualizes the structure of the tree for the example clause x5 ∨¬x7 ∨x8. Applying the above

procedure for each clause results in a forest F consisting ofM trees. Lastly, we set the probability distribution

λ by setting λt = 1/M for each tree t∈ F .

We note that in the resulting instance of problem (2), any optimal assortment must include produce K+1:

due to the structure of the trees, the expected revenue is exactly equal to 0 if K +1 is not included in the

assortment, but by including K + 1 and including/excluding products from {1, . . . ,K} in accordance with

one of the clauses, one can obtain an expected revenue of at least 1/M . (For example, if the set of clauses

includes the clause x5∨¬x7∨x8 shown in Figure EC.3, then any assortment S that includes products 5 and

8 and does not include product 7 automatically has an expected revenue of at least 1/M .)

Note that given an optimal assortment S ⊆N = {1, . . . ,K +1}, we immediately obtain an assignment x

for the MAX 3SAT problem by setting xi = I{i∈ S}. The revenue obtained from each tree tm corresponding

to clause m, which is given by
∑K+1

j=1 r̄jI{Â(tm, S) = j}, is exactly 1 if the assignment x that corresponds to

S satisfies clause m, and 0 otherwise; this holds because the optimal assortment must include product K+1.

Since each tree tm has a probability of 1/M , the expected revenue of the assortment S therefore corresponds

to the fraction of the M clauses that are satisfied by the assignment x. Thus, it follows that an assignment

x that corresponds to an optimal assortment S is an optimal solution of MAX 3SAT. Since the MAX 3SAT

problem is NP-Complete (Garey and Johnson 1979), it follows that problem (2) is NP-Hard. □



ec4 e-companion to Akchen and Mǐsić: Assortment Optimization under the Decision Forest Model

B.2. Proof of Proposition 2

The feasible region FSplitMIO of the LO relaxation of problem (3) is the set of (x,y) solutions to the following

system of inequalities: ∑
ℓ∈leaves

yℓ ≤ 1, (EC.1a)∑
ℓ∈leaves

−yℓ ≤−1, (EC.1b)∑
ℓ∈left(s)

yℓ−xv(s) ≤ 0, ∀ s∈ splits, (EC.1c)

∑
ℓ∈right(s)

yℓ +xv(s) ≤ 1, ∀ s∈ splits, (EC.1d)

xi ≤ 1, ∀ i∈N , (EC.1e)

xi ≥ 0, ∀ i∈N , (EC.1f)

yℓ ≥ 0, ∀ ℓ∈ leaves. (EC.1g)

(Since |F |= 1, we drop the index t to simplify the notation.) In the above, note that the unit sum constraint

on y has been re-written as a pair of inequalities, and that all constraints from problem (3) have been

re-arranged to have the variables on one side. This system of inequalities can be written compactly as

A

[
x
y

]
≤ b, x,y≥ 0. (EC.2)

To show that FSplitMIO is integral, we will prove that the matrix A is totally unimodular. We do so using

the following standard characterization of total unimodularity (see Bertsimas and Weismantel 2005):

Proposition EC.1 (Corollary 3.2 of Bertsimas and Weismantel 2005). A matrix A is totally

unimodular if and only if each collection Q of rows of A can be partitioned into two parts so that the sum of

the rows in one part minus the sum of the rows in the other part is a vector with entries only 0, +1, and -1.

To simplify our notation, we will work with algebraic expressions in terms of x and y rather than rows of

the matrix A. We have the following four primitive expressions:

A(s), s∈ splits :
∑

ℓ∈left(s)

yℓ−xv(s), (EC.3)

B(s), s∈ splits :
∑

ℓ∈right(s)

yℓ +xv(s), (EC.4)

C(i), i∈N : xi, (EC.5)

D(1) :
∑

ℓ∈leaves

yℓ, (EC.6)

D(2) :
∑

ℓ∈leaves

−yℓ. (EC.7)

Thus, a collection of rows Q of the matrix A can be viewed as a collection of each of the four types of

expressions above:

SA ⊆ splits, (EC.8)

SB ⊆ splits, (EC.9)

SC ⊆N , (EC.10)

SD ⊆ {1,2}. (EC.11)
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To establish the condition in Proposition EC.1, we need to show that given SA, SB, SC , SD, we can partition

these expressions into two groups R+ and R− such that the difference of the two groups,∑
e∈R+

e−
∑
e∈R−

e=
∑
i∈N

vixi +
∑

ℓ∈leaves

wℓyℓ, (EC.12)

is such that each vi ∈ {−1,0,+1} and each wℓ ∈ {−1,0,+1}. We proceed in several steps.

Step 1. We begin by assigning the A and B expressions. Before doing so, we require some additional

notation. Define d∗ =maxs∈SA∪SB
d(s), where d(s) is the depth of split s and we assume the depth of the root

node is 1. Let us define the sets SA(d) = {s ∈ SA | d(s) = d} and SB(d) = {s ∈ SB | d(s) = d} for each depth

d∈ {1, . . . , d∗}. These are the sets of splits in SA and SB, respectively, that are at a particular depth. Let us

also define LD(s) and RD(s) to be the sets of splits in SA ∪SB that are to the left and right, respectively,

of split s ∈ SA ∪ SB. (The splits in LD(s) are all those that can be reached by proceeding to the left child

of split s; similarly, RD(s) is the set of splits reachable by going to the right of split s.) Finally, define

σ : SA ∪SB→{−1,+1} to be a mapping that is specified according to the following procedure:

for d= 1, . . . , d∗ do

for s∈ SA(d) do

Set σ(s′) = (−1)σ(s) for s′ ∈LD(s)

for s∈ SB(d) do

Set σ(s′) = (−1)σ(s) for s′ ∈RD(s)

Now, assign the A and B expressions as follows:

• Assign A(s) to R+ for each s∈ SA with σ(s) =+1;

• Assign A(s) to R− for each s∈ SA with σ(s) =−1;
• Assign B(s) to R+ for each s∈ SB with σ(s) =+1;

• Assign B(s) to R− for each s∈ SB with σ(s) =−1.
For this assignment of the expressions in SA and SB, every yℓ coefficient in

∑
e∈R+

e−∑
e∈R−

e will be either

0 or +1. This follows because the sets of left and right leaves left(s) and right(s) are nested. In particular,

if s′ ∈LD(s), then we will have that left(s′)⊆ left(s) and right(s′)⊆ left(s). Similarly, if s′ ∈RD(s), then

we will have that left(s′)⊆ right(s) and right(s′)⊆ right(s).

In addition, by the assumption that there is at most one split s in splits such that v(s) = i, we are also

guaranteed that the coefficient of every xi in
∑

e∈R+
e−∑

e∈R−
e will be {−1,0,+1}. In particular, if s is in

both SA and SB (i.e., we were given the expression A(s) and B(s)), then observe that by the procedure for

setting σ above, we are guaranteed to assign both A(s) and B(s) to the same set (they cannot be assigned

to different sets). This means that the coefficients of xv(s) in A(s) and B(s) will cancel out, leaving xv(s)

with a coefficient of 0.

Step 2. We next assign the C expressions. After Step 1, we are guaranteed that the coefficient of each

xi in
∑

e∈R+
e −∑

e∈R−
e is 0, -1 or +1. Since each C(i) expression involves only one variable (xi), it is

straightforward to assign these expressions to R+ and R− to ensure that every variable’s coefficient in∑
e∈R+

e−∑
e∈R−

e is 0, -1 or +1. For completeness, we give the procedure below – for each i∈ SC :
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• If v(s) ̸= i for all splits s∈ splits, then xi does not appear in any A or B expressions and its coefficient

after Step 1 is just 0; thus, C(i) can be arbitrarily assigned to R+ or R−.

• If there exists an s∈ SA ∪SB such that v(s) = i, then:

—If s∈ SA∪SB, then A(s) and B(s) were both assigned to R+ and R−, and so the coefficient of xi will

be 0 due to cancellation; thus, C(i) can again be arbitrarily assigned to R+ or R−.

—If s ∈ SA, s /∈ SB, and σ(s) = +1, then the coefficient of xi is -1 after Step 1; thus, C(i) should be

assigned to R+.

—If s ∈ SA, s /∈ SB, and σ(s) =−1, then the coefficient of xi is +1 after Step 1; thus, C(i) should be

assigned to R−.

—If s /∈ SA, s ∈ SB, and σ(s) = +1, then the coefficient of xi is +1 after Step 1; thus, C(i) should be

assigned to R−.

—If s /∈ SA, s ∈ SB, and σ(s) = −1, then the coefficient of xi is -1 after Step 1; thus, C(i) should be

assigned to R+.

Step 3. Lastly, we assign the D expressions. This step is also straightforward:

• If SD = {1,2}, then assign D(1) and D(2) to R+; since D(1) is just the negative of D(2), the two

expressions will cancel out, and the expression
∑

e∈R+
e−∑

e∈R−
e will remain unchanged.

• If SD = {1}, then assign D(1) to R−; since the coefficient of each yℓ is 0 or +1 after Step 2, this will

ensure that the coefficient of each yℓ is either -1 or 0.

• If SD = {2}, then assign D(2) to R−; since the coefficient of each yℓ is 0 or +1 after Step 2, this will

ensure that the coefficient of each yℓ is either -1 or 0.

After completing Step 3, we have assigned all of the expressions in SA, SB, SC , SD to the sets R+ and R− in a

way that each expression is assigned to exactly one of the two sets, and no expression is unassigned. Moreover,

the difference of the two expressions,
∑

e∈R+
e −∑

e∈R−
e, is such that the coefficient of every xi and yℓ

variable is in {0,−1,+1}. By Proposition EC.1, this establishes that the matrix A is totally unimodular. We

now employ another standard result:

Proposition EC.2 (Theorem 3.1(b) of Bertsimas and Weismantel 2005). Let A be an integer

matrix. The matrix A is totally unimodular if and only if the polyhedron P (b) = {x∈Rn
+ |Ax≤ b} is integral

for all b∈Zm for which P (b) ̸= ∅.

To use this result, we simply have to establish that the feasible region of the polyhedron defined in (EC.1)

is nonempty. To do so, we explicitly construct a feasible solution to (EC.1). Let r be the root node of

the tree. Set xi = 0.5 for all i ∈ N . Fix any leaf ℓ′ ∈ left(r) and any leaf ℓ′′ ∈ right(r), and set yℓ′ = 0.5,

yℓ′′ = 0.5, and yℓ = 0 for all ℓ∈ leaves \ {ℓ′, ℓ′′}. It is straightforward to verify that this solution satisfies the

system of inequalities (EC.1): the yℓ’s sum to 1 and are nonnegative by construction, and each xi ∈ [0,1] by
construction. For constraints (EC.1c) and (EC.1d), note that since ℓ′ and ℓ′′ are on opposite sides of the root

node, it is impossible for ℓ′ and ℓ′′ to both belong to left(s) and right(s) for any split s; armed with this

fact, it is straightforward to establish the two constraints.

Since we have established that A is totally unimodular and that the set FSplitMIO is nonempty, invoking

Proposition EC.2 concludes the proof. □
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B.3. Proof of Proposition 4

Define ∆leaves = {y ∈R|leaves| |∑
ℓ∈leaves yℓ = 1;yℓ ≥ 0,∀ ℓ∈ leaves} to be the (|leaves|−1)-dimensional unit

simplex. In addition, for any S ⊆ leaves, define Q(S) = {y ∈∆leaves | yℓ ≤ 0 for ℓ∈ leaves\S}. We write the

combinatorial disjunctive constraint over the ground set leaves as CDC(leaves) =
⋃

ℓ∈leavesQ({ℓ}). Consider
now the optimization problem

maximize
y

{ ∑
ℓ∈leaves

rℓyℓ

∣∣∣∣ y ∈CDC(leaves)

}
. (EC.13)

We will re-formulate this problem into a mixed-integer optimization problem. To do this, we claim that

CDC(leaves) can be written as the following pairwise independent branching scheme:

⋃
ℓ∈leaves

Q({ℓ}) =
n⋃

i=1

(Q(Li)∪Q(Ri)) , (EC.14)

where Li = {ℓ ∈ leaves | ℓ ∈ left(s) for some s with v(s) = i} and Ri = {ℓ ∈ leaves | ℓ ∈
right(s) for some s with v(s) = i}. Note that (EC.14) is equivalent to the statement

⋃
ℓ∈leaves

{ℓ}=
n⋃

i=1

((leaves \Li)∪ (leaves \Ri)) . (EC.15)

To establish (EC.15), it is sufficient to prove the following equivalence:

{ℓ}=
⋂

i∈I(ℓ)

(leaves \Ri)∩
⋂

i∈E(ℓ)

(leaves \Li)∩
⋂
i∈N :

i/∈I(ℓ)∪E(ℓ)

(leaves \Li), (EC.16)

where I(ℓ) = {i∈N | ℓ∈⋃
s:v(s)=i

left(s)} and E(ℓ) = {i∈N | ℓ∈⋃
s:v(s)=i

right(s)}.
We now prove (EC.16). Equation (EC.16), ⊆ direction: For i∈ I(ℓ), we have that ℓ∈⋃s:v(s)=i left(s). This

means that there exists s̄ such that ℓ ∈ left(s̄) and v(s̄) = i. Since ℓ ∈ left(s̄), this means that ℓ /∈ right(s̄)

(a leaf cannot be to the left and to the right of any split). Moreover, ℓ cannot be in right(s) for any other

s with v(s) = i, because this would mean that product i appears more than once along the path to leaf ℓ,

violating Assumption 1. Therefore, ℓ∈ leaves \Ri for any i∈ I(ℓ).
For i∈E(ℓ), we have that ℓ∈⋃

s:v(s)=i
right(s). This means that there exists a split s̄ such that ℓ∈ right(s̄)

and v(s̄) = i. Since ℓ∈ right(s̄), we have that ℓ /∈ left(s̄). In addition, ℓ cannot be in left(s) for any other s

with v(s) = i. Therefore, ℓ∈ leaves \Li for any i∈E(ℓ).

Lastly, for any i /∈ I(ℓ)∪E(ℓ), note that product i does not appear in any split along the path from the

root of the tree to leaf ℓ. Therefore, for any s with v(s) = i, it will follow that either left(s)⊆ left(s′) for

some s′ for which ℓ ∈ right(s′), or left(s) ⊆ right(s′) for some s′ for which ℓ ∈ left(s′) – in other words,

there is a split s′ such that every leaf in left(s) is to one side of s′ and ℓ is on the other side of s′. This means

that ℓ′ cannot be in left(s) for any s with v(s) = i, or equivalently, ℓ∈ leaves \Li for any i /∈ I(ℓ)∪E(ℓ).

Equation (EC.16), ⊇ direction: We will prove the contrapositive {ℓ′ ∈ leaves | ℓ′ ̸= ℓ} ⊆ ⋃
i∈I(ℓ)Ri ∪⋃

i∈E(ℓ)Li∪
⋃

i∈N :
i/∈I(ℓ)∪E(ℓ)

Li. A straightforward result (see Lemma EC.1 from Mǐsić 2020) is that {ℓ′ ∈ leaves |
ℓ′ ̸= ℓ}=⋃

s:ℓ∈left(s) right(s)∪
⋃

s:ℓ∈right(s) left(s). Thus, if ℓ
′ ̸= ℓ, then we have that ℓ′ ∈ right(s) for some s
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such that ℓ ∈ left(s), or ℓ′ ∈ left(s) for some s such that ℓ ∈ right(s). Let i∗ = v(s). In the first case, since

ℓ∈ left(s), we have that i∗ ∈ I(ℓ), and we thus have

right(s)⊆
⋃

s′:v(s′)=i∗

right(s′) =Ri∗ ⊆
⋃

i∈I(ℓ)

Ri ∪
⋃

i∈E(ℓ)

Li ∪
⋃

i′∈N :
i′ /∈I(ℓ)∪E(ℓ)

Li.

In the second case, since ℓ∈ right(s), we have that i∗ ∈E(ℓ), and thus we have

left(s)⊆
⋃

s′:v(s′)=i∗

left(s′) =Li∗ ⊆
⋃

i∈I(ℓ)

Ri ∪
⋃

i∈E(ℓ)

Li ∪
⋃

i′∈N :
i′ /∈I(ℓ)∪E(ℓ)

Li.

This establishes the validity of the pairwise independent branching scheme (EC.15). Thus, a valid for-

mulation for problem (EC.13) (see formulation (9) in Vielma et al. 2010, formulation (14) in Vielma and

Nemhauser 2011 and formulation (13) in Huchette and Vielma 2019) is

maximize
x,y

∑
ℓ∈leaves

rℓyℓ (EC.17a)

subject to
∑

ℓ∈leaves

yℓ = 1, (EC.17b)∑
ℓ∈Li

yℓ ≤ xi, ∀ i∈N , (EC.17c)∑
ℓ∈Ri

yℓ ≤ 1−xi, ∀ i∈N , (EC.17d)

yℓ ≥ 0, ∀ ℓ∈ leaves, (EC.17e)

xi ∈ {0,1}, ∀ i∈N . (EC.17f)

Observe that, by the definition of Li and Ri, formulation (EC.17) is identical to ProductMIO when

|F |= 1. By invoking Theorem 1 from Vielma et al. (2010) with appropriate modifications, we can assert that

formulation (EC.17) is integral. Therefore, when |F |= 1, formulation ProductMIO is always integral. □

B.4. Proof of Theorem 1

Proof of part (a) (feasibility): By definition, the solution produced by Algorithm 1 produces a solution yt that

satisfies the left and right split constraints (12c) and (12d). With regard to the nonnegativity constraint (12e),

we can see that at each stage of Algorithm 1, the quantities xv(t,s)−
∑

ℓ∈left(s) yt,ℓ, 1−xv(t,s)−
∑

ℓ∈right(s) yt,ℓ

and 1−∑
ℓ∈leaves(t) yt,ℓ never become negative; thus, the solution yt produced upon termination satisfies the

nonnegativity constraint (12e).

The only constraint that remains to be verified is constraint (12b), which requires that yt adds up to

1. Observe that it is sufficient for a C event to occur during the execution of Algorithm 1 to ensure that

constraint (12b) is satisfied. We will show that a C event must occur during the execution of Algorithm 1.

We proceed by contradiction. For the sake of a contradiction, let us suppose that a C event does not occur

during the execution of the algorithm. Note that under this assumption, for any split s, it is impossible that

the solution yt produced by Algorithm 1 satisfies xv(t,s) =
∑

ℓ∈left(s) yt,ℓ and 1− xv(t,s) =
∑

ℓ∈right(s) yt,ℓ, as

this would imply that
∑

ℓ∈left(s) yt,ℓ+
∑

ℓ∈right(s) yt,ℓ = xv(t,s)+1−xv(t,s) = 1; by the definition of Algorithm 1,

this would have triggered a C event at one of the leaves in left(s)∪ right(s).
Thus, this means that at every split, either

∑
ℓ∈left(s) yt,ℓ < xv(t,s) or

∑
ℓ∈right(s) < 1− xv(t,s). Using this

property, let us identify a leaf ℓ∗ using the following procedure:
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Procedure 3:
1. Set j← root(t).
2. If j ∈ leaves(t), terminate with ℓ∗ = j; otherwise, proceed to Step 3.
3. If

∑
ℓ∈left(j) yt,ℓ <xv(t,j), set j← leftchild(j); otherwise, set j← rightchild(j).

4. Repeat Step 2.

Note that by our observation that at most one of the left or right split constraints can be satisfied at

equality for any split s, Procedure 3 above is guaranteed to terminate with a leaf ℓ∗ such that:

yt,ℓ∗ ≤
∑

ℓ∈left(s)

yt,ℓ <xv(t,s), ∀ s∈ splits(t) such that ℓ∗ ∈ left(s),

yt,ℓ∗ ≤
∑

ℓ∈right(s)

yt,ℓ < 1−xv(t,s), ∀ s∈ splits(t) such that ℓ∗ ∈ right(s).

However, this is impossible, because Algorithm 1 always sets each leaf yt,ℓ to the highest value it can be

without violating any of the left or right split constraints; the above conditions imply that yt,ℓ∗ could have

been set higher, which is not possible. We thus have a contradiction, and it must be the case that a C event

occurs.

Proof of part (b) (extreme point): To show that yt is an extreme point, let us assume that yt is not an

extreme point. Then, there exist feasible solutions y1
t and y2

t different from yt and a weight θ ∈ (0,1) such

that yt = θy1
t +(1−θ)y2

t . Let ℓ
∗ be the first leaf checked by Algorithm 1 at which yt,ℓ∗ ̸= y1t,ℓ∗ and yt,ℓ∗ ̸= y2t,ℓ∗ .

Such a leaf must exist because yt ̸= y1
t and yt ̸= y2

t , and because yt is the convex combination of y1
t and y2

t .

Without loss of generality, let us further assume that y1t,ℓ∗ < yt,ℓ∗ < y2t,ℓ∗ .

By definition, Algorithm 1 sets yt,ℓ at each iteration to the largest it can be without violating the left split

constraints (12c) and the right split constraints (12d), and ensuring that
∑

ℓ∈leaves(t) yt,ℓ does not exceed 1.

Since y2t,ℓ∗ > yt,ℓ∗ , and since y2
t and yt are equal for all leaves checked before ℓ∗, this implies that y2

t either

violates constraint (12c), violates constraint (12d), or is such that
∑

ℓ∈leaves(t) yt,ℓ > 1. This implies that y2
t

cannot be a feasible solution, which contradicts the assumption that y2
t is a feasible solution. □

B.5. Proof of Theorem 2 (SplitMIO dual is BFS)

Proof of part (a) (feasibility): Before we prove the result, we first establish a helpful property of the events

that are triggered during the execution of Algorithm 1.

Lemma EC.1. Let s1, s2 ∈ splits(t), s1 ̸= s2, such that s2 is a descendant of s1. Suppose that e1 = As1

or e1 = Bs1 , and that e2 = As2 or e2 = Bs2 . If e1 and e2 occur during the execution of Algorithm 1, then

rt,f(e1) ≤ rt,f(e2).

Proof: We will prove this by contradiction. Suppose that we have two splits s1 and s2 and events e1

and e2 as in the statement of the lemma, and that rt,f(e2) < rt,f(e1). This implies that leaf f(e1) is checked

before leaf f(e2). When leaf f(e1) is checked, the event e1 occurs, which implies that either the left split

constraint (12c) becomes tight (if e1 =As1) or the right split constraint (12d) becomes tight (if e1 =Bs1) at

s1. In either case, since s2 is a descendant of s1, the leaf f(e2) must be contained in the left leaves of split

s1 (if e = As1) or the right leaves of split s1 (if e1 = Bs1). Thus, when leaf f(e2) is checked, the event e2

cannot occur, because qs1 in Algorithm 1 will be zero (implying that qA,B = 0), and so s∗ cannot be equal to

s2 because s1 is a shallower split that attains the minimum of qA,B = 0. □
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To establish that (αt,βt, γt) is feasible for the SplitMIO dual subproblem (13), we will first show that

the αt,s variables are nonnegative.

Fix s∈ splits(t). If As /∈ E , then αt,s = 0, and constraint (13c) is satisfied. If As ∈ E , then consider the split

s̃ = argmins′ [{d(s′) | s′ ∈LS(f(As)), d(s
′)<d, As′ ∈ E}∪{d(s′) | s′ ∈RS(f(As)), d(s

′)<d, Bs′ ∈ E}],
where we recall that d= d(s) is the depth of split s. In words, s̃ is the shallowest split (i.e., closest to the

root) along the path of splits from the root node to split s such that either an As̃ event occurs or a Bs̃ event

occurs for split s̃. There are three possible cases that can occur here, which we now handle.

Case 1: s̃∈LS(f(As)). In this case, As̃ ∈ E , and we have

αt,s = rt,f(As)−

 ∑
s′∈LS(f(As)): d(s

′)<d, As′∈E

αt,s′ +
∑

s′∈RS(f(As)): d(s
′)<d, Bs′∈E

βt,s′ + γt


= rt,f(As)−

αt,s̃ +
∑

s′∈LS(f(As)): d(s
′)<d(s̃), As′∈E

αt,s′ +
∑

s′∈RS(f(As)): d(s
′)<d(s̃), Bs′∈E

βt,s′ + γt


= rt,f(As)−

αt,s̃ +
∑

s′∈LS(f(As̃)): d(s
′)<d(s̃), As′∈E

αt,s′ +
∑

s′∈RS(f(As̃)): d(s
′)<d(s̃), Bs′∈E

βt,s′ + γt

= rt,f(As)− rt,f(As̃) ≥ 0,

where the first step follows by the definition of αt,s in Algorithm 2; the second step follows by the definition

of αt,s̃ as the deepest split for which an A or B event occurs that is at a depth lower than s; the third step by

the fact that the left splits and right splits of f(As̃) at a depth below d(s̃) are the same as the left and right

splits of f(As) at a depth below d(s̃); and the fourth step follows from the definition of αt,s̃ in Algorithm 2.

The inequality follows by Lemma EC.1.

Case 2: s̃∈RS(f(As)). In this case, Bs̃ ∈ E , and analogously to Case 1, we have:

αt,s = rt,f(As)−

 ∑
s′∈LS(f(As)): d(s

′)<d, As′∈E

αt,s′ +
∑

s′∈RS(f(As)): d(s
′)<d,Bs′∈E

βt,s′ + γt


= rt,f(As)−

βt,s̃ +
∑

s′∈LS(f(As)): d(s
′)<d(s̃), As′∈E

αt,s′ +
∑

s′∈RS(f(As)): d(s
′)<d(s̃), Bs′∈E

βt,s′ + γt


= rt,f(As)−

βt,s̃ +
∑

s′∈LS(f(Bs̃)): d(s
′)<d(s̃), As′∈E

αt,s′ +
∑

s′∈RS(f(Bs̃)): d(s
′)<d(s̃), Bs′∈E

βt,s′ + γt

= rt,f(As)− rt,f(Bs̃) ≥ 0.

Case 3: s̃ is undefined because the underlying sets are empty. In this case, αt,s = rt,f(As)− γt, and we have

αt,s = rt,f(As) − γt = rt,f(As) − rt,f(C) ≥ 0, where the inequality follows because f(C) is the last leaf to be

checked before Algorithm 1 terminates, and thus it must be that rt,f(As) ≥ rt,f(C). This establishes that

(αt,βt, γt) satisfy constraint (13c). Constraint (13d) can be shown in an almost identical fashion; for brevity,

we omit the steps. We thus only need to verify constraint (13b). Let ℓ ∈ leaves(t). Here, there are four

mutually exclusive and collectively exhaustive cases to consider.

Case 1: rt,ℓ ≤ rt,f(C). In this case we have
∑

s∈LS(ℓ)αt,s +
∑

s∈RS(ℓ) βt,s + γt ≥ γt = rt,f(C) ≥ rt,ℓ.

Case 2: rt,ℓ > rt,f(C) and ℓ= f(As) for some s∈ splits(t). In this case, we have∑
s′∈LS(ℓ)

αt,s′ +
∑

s′∈RS(ℓ)

βt,s′ + γt ≥ αt,s +
∑

s′∈LS(ℓ):
d(s′)<d(s), As′∈E

αt,s′ +
∑

s′∈RS(ℓ):
d(s′)<d(s), Bs′∈E

βt,s′ + γt = rt,f(As) = rt,ℓ,
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where the first step follows by the nonnegativity of αt,s′ and βt,s′ for all s′, and the second step by the

definition of αt,s in Algorithm 2.

Case 3: rt,ℓ > rt,f(C) and ℓ= f(Bs) for some s∈ splits(t). By similar logic as case 2, we have∑
s′∈LS(ℓ)

αt,s′ +
∑

s′∈RS(ℓ)

βt,s′ + γt ≥ βt,s +
∑

s′∈LS(ℓ):
d(s′)<d(s), As′∈E

αt,s′ +
∑

s′∈RS(ℓ):
d(s′)<d(s), Bs′∈E

βt,s′ + γt = rt,f(Bs) = rt,ℓ.

Case 4: rt,ℓ > rt,f(C) and ℓ is not equal to f(As) or f(Bs) for any split s. In this case, when leaf ℓ is checked

by Algorithm 1, the algorithm reaches line 17 where s∗ is determined and e is set to either As∗ or Bs∗ , and

it turns out that e is already in E . If e= As∗ , then this means that leaf f(As∗) was checked before leaf ℓ,

and that rt,ℓ ≤ rt,f(As∗ ). We thus have∑
s∈LS(ℓ)

αt,s +
∑

s∈RS(ℓ)

βt,s + γt ≥ αt,s∗ +
∑

s∈LS(ℓ): d(s)<d(s∗), As∈E

αt,s +
∑

s∈RS(ℓ): d(s)<d(s∗), Bs∈E

βt,s + γt

= αt,s∗ +
∑

s∈LS(f(As∗ )):
d(s)<d(s∗), As∈E

αt,s +
∑

s∈RS(f(As∗ )):
d(s)<d(s∗), Bs∈E

βt,s + γt = rt,f(As∗ ) ≥ rt,ℓ,

where the first equality follows because ℓ and f(As∗), by virtue of being to the left of s∗, share the same left

and right splits at depths lower than d(s∗). Similarly, if e=Bs∗ , then the leaf f(Bs∗) was checked before ℓ,

which means that rt,ℓ ≤ rt,f(Bs∗ ); in this case, we have∑
s∈LS(ℓ)

αt,s +
∑

s∈RS(ℓ)

βt,s + γt ≥ βt,s∗ +
∑

s∈LS(ℓ): d(s)<d(s∗), As∈E

αt,s +
∑

s∈RS(ℓ): d(s)<d(s∗), Bs∈E

βt,s + γt

≥ βt,s∗ +
∑

s∈LS(f(Bs∗ )):
d(s)<d(s∗), As∈E

αt,s +
∑

s∈RS(f(Bs∗ )):
d(s)<d(s∗), Bs∈E

βt,s + γt = rt,f(Bs∗ ) ≥ rt,ℓ.

We have thus shown that (αt,βt, γt) is a feasible solution to the SplitMIO dual subproblem (13).

Proof of part (b) (extreme point): To prove this, we will use the equivalence between extreme points and

basic feasible solutions, and show that (αt,βt, γt) is a basic feasible solution of problem (13).

Define the sets LA = {ℓ ∈ leaves(t) | ℓ = f(As) for some s ∈ splits(t)} and LB = {ℓ ∈ leaves(t) | ℓ =
f(Bs) for some s∈ splits(t)}. Consider the following system of equations:∑

s∈LS(ℓ)

αt,s +
∑

s∈RS(ℓ)

βt,s + γt = rt,ℓ, ∀ℓ∈LA, (EC.18)

∑
s∈LS(ℓ)

αt,s +
∑

s∈RS(ℓ)

βt,s + γt = rt,ℓ, ∀ℓ∈LB, (EC.19)

∑
s∈LS(f(C))

αt,s +
∑

s∈RS(f(C))

βt,s + γt = rt,f(C), (EC.20)

αt,s = 0, ∀ s such that As /∈ E , (EC.21)

βt,s = 0, ∀ s such that Bs /∈ E . (EC.22)

Observe that each equation corresponds to a constraint from problem (13) made to hold at equality. In

addition, we note that there are |LA|+ |LB|+1+ (|splits(t)| − |LA|) + (|splits(t)| − |LB|) = 2|splits(t)|+1

equations, which is exactly the number of variables. We will show that the unique solution implied by this

system of equations is exactly the solution (αt,βt, γt) that is produced by Algorithm 2.

In order to establish this, we first establish a couple of useful results.
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Lemma EC.2. Suppose that e∈ E, ℓ= f(e) and e=As or e=Bs for some s∈ splits(t). Then: (a) As′ /∈ E
for all s′ ∈LS(ℓ) such that d(s′)>d(s); and (b) Bs′ /∈ E for all s′ ∈RS(ℓ) such that d(s′)>d(s).

Proof of Lemma EC.2: We will prove this by contradiction. Without loss of generality, let us suppose

that there exists an As′ event in E where s′ ∈ LS(ℓ) and d(s′)> d(s). (The case where there exists an Bs′

event in E where s′ ∈RS(ℓ) and d(s′)>d(s) can be shown almost identically.)

Since As′ ∈ E , consider the leaf ℓ′ = f(As′). There are now two possibilities for when Algorithm 1 checks

leaf ℓ′:

1. Case 1: Leaf ℓ′ is checked after leaf ℓ. In this case, in the iteration of Algorithm 1 corresponding to

leaf ℓ′, it will be the case that qs = 0 because the left constraint (12c) at split s (if e = As) or the right

constraint (12d) at split s (if e = Bs) became tight when leaf ℓ was checked. As a result, qA,B = 0 in the

iteration for leaf ℓ′. This implies that s′ cannot be the lowest depth split that attains the minimum qs value of

qA,B, because qs = 0, and s has a depth lower than s′, which contradicts the fact that the As′ event occurred.

2. Case 2: Leaf ℓ′ is checked before leaf ℓ. In this case, consider the value of qs when leaf ℓ is checked in

Algorithm 1.

If qs > 0, then there is immediately a contradiction, because qs′ = 0 when leaf ℓ is checked (this is true because

the left split constraint (12c) at s′ became tight after leaf ℓ′ was checked), and thus it is impossible that

s∗ = s. If qs = 0, then this implies that xv(t,s) = 0. This would imply that qs = 0 when leaf ℓ′ was checked,

which would imply that s∗ cannot be s′ when leaf ℓ′ is checked because s is at a lower depth than s′.

Thus, in either case, we arrive at a contradiction, which completes the proof. □

Lemma EC.3. Suppose ℓ= f(C). Then: (a) As′ /∈ E for all s′ ∈LS(ℓ); and (b) Bs′ /∈ E for all s′ ∈RS(ℓ).

Proof of Lemma EC.3: We proceed by contradiction. Suppose that As occurs for some s∈LS(ℓ) or that Bs

occurs for some s ∈ LS(ℓ); in the former case, let e= As, and in the latter case, let e= Bs. Let ℓ′ = f(e).

Then ℓ′ must be checked before ℓ by Algorithm 1, since the algorithm always terminates after a C event

occurs. Consider what happens when Algorithm 1 checks leaf ℓ:

1. Case 1: qC > 0. This is impossible, because if e occurs, then qs when leaf ℓ is checked would have to

be 0, which would imply that qA,B < qC and that a C event could not have occurred when ℓ was checked.

2. Case 2: qC = 0. This is also impossible, because it implies that the unit sum constraint (12b) was

satisfied at an earlier iteration, which would have triggered the C event at a leaf that was checked before ℓ.

We thus have that As′ does not occur for any s′ ∈LS(ℓ) and Bs′ does not occur for any s′ ∈RS(ℓ). □

With these two lemmas in hand, we now return to the proof of Theorem B.5 (b). Observe now that by using

Lemmas EC.2 and EC.3 and using equations (EC.23) and (EC.24), the system of equations (EC.18)-(EC.22)

is equivalent to

αt,s +
∑

s′∈LS(f(As): d(s
′)<d(s), As′∈E

αt,s′ +
∑

s′∈RS(ℓ): d(s′)<d(s), Bs′∈E

βt,s′ + γt = rt,f(As), ∀s such that As ∈ E ,

βt,s +
∑

s′∈LS(ℓ): d(s′)<d(s), As′∈E

αt,s′ +
∑

s′∈RS(ℓ): d(s′)<d(s), Bs′∈E

βt,s′ + γt = rt,f(Bs), ∀s such that Bs ∈ E ,

γt = rt,f(C),

αt,s = 0, ∀ s such that As /∈ E , (EC.23)

βt,s = 0, ∀ s such that Bs /∈ E . (EC.24)
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Thus the solution implied by this system of equations is exactly the solution produced by Algorithm 2,

establishing that (αt,βt, γt) is a basic feasible solution of problem (13), and thus an extreme point. □

B.6. Proof of Theorem 3 (SplitMIO primal and dual are optimal)

To prove that the yt and (αt,βt, γt) produced by Algorithms 1 and 2 are optimal for their respective

problems, we show that they satisfy complementary slackness for problems (12) and (13):

αt,s ·

xv(t,s)−
∑

ℓ∈left(s)

yt,ℓ

= 0, ∀ s∈ splits(t), (EC.25)

βt,s ·

1−xv(t,s)−
∑

ℓ∈right(s)

yt,ℓ

= 0, ∀ s∈ splits(t), (EC.26)

yt,ℓ ·

 ∑
s∈LS(ℓ)

αt,s +
∑

s∈RS(ℓ)

βt,s + γt− rt,ℓ

= 0, ∀ ℓ∈ leaves(t). (EC.27)

Condition (EC.25): If αt,s = 0, then the condition is trivially satisfied. If αt,s > 0, then this implies that

As ∈ E . This means that the left split constraint (12c) at s became tight after leaves f(As) was checked,

which implies that
∑

ℓ∈left(s) yt,ℓ = xv(t,s) or equivalently, that xv(t,s)−
∑

ℓ∈left(s) yt,ℓ = 0, which again implies

that the condition is satisfied.

Condition (EC.26): This follows along similar logic to condition (EC.25), only that we use the fact that

βt,s > 0 implies that a Bs event occurred and that the right split constraint (12d) at s became tight.

Condition (EC.27): If yt,ℓ = 0, then the condition is trivially satisfied. If yt,ℓ > 0, then either ℓ= f(C),

or ℓ= f(As) for some split s ∈ LS(ℓ), or ℓ= f(Bs) for some split s ∈RS(ℓ). In any of these three cases, as

shown in the proof of part (b) of Theorem 2, the dual constraint (13b) holds with equality for any such leaf

ℓ. Thus, we have that
∑

s∈LS(ℓ)αt,s +
∑

s∈RS(ℓ) βt,s + γt− rt,ℓ = 0, and the condition is again satisfied.

As complementary slackness holds, yt is feasible for the primal problem (12) (Theorem B.4), and (αt,βt, γt)

is feasible for the dual problem (13) (Theorem 2). Thus they are optimal for their respective problems. □

B.7. Proof of Theorem 4 (SplitMIO primal and dual are closed form solvable for binary x)

Proof of part (a): Observe that by construction, yt automatically satisfies the unit sum constraint (12b) and

the nonnegativity constraint (12e). We thus need to verify constraints (12c) and (12d). For constraint (12c),

observe that for any split s /∈ LS(ℓ∗), it must be that ℓ∗ /∈ left(s). Thus, we will have
∑

ℓ∈left(s) yt,ℓ = 0,

which means that constraint (12c) is automatically satisfied, because the right hand side xv(t,s) is always at

least 0. On the other hand, for any split s ∈ LS(ℓ∗), we will have that xv(t,s) = 1, and that
∑

ℓ∈left(s) yt,ℓ =∑
ℓ∈left(s):ℓ̸=ℓ∗ yt,ℓ+yt,ℓ∗ = 1, which implies that constraint (12c) is satisfied. Similar reasoning can be used to

establish that constraint (12d) holds. This establishes that yt is indeed a feasible solution of problem (12).

Proof of part (b): By construction, αt,s ≥ 0 and βt,s ≥ 0 for all s∈ splits(t), so constraints (13c) and (13d)

are satisfied. To verify constraint (13b), fix a leaf ℓ ∈ leaves(t). If ℓ ̸= ℓ∗, then either ℓ ∈ left(s′) for some

s′ ∈RS(ℓ∗) or ℓ∈ right(s′) for some s′ ∈LS(ℓ∗). If ℓ∈ left(s′) for some s′ ∈RS(ℓ∗), then∑
s:ℓ∈left(s)

αt,s +
∑

s:ℓ∈right(s)

βt,s + γt ≥ αt,s′ + γt ≥ max
ℓ′∈left(s′)

rt,ℓ′ − rt,ℓ∗ + rt,ℓ∗ ≥ rt,ℓ
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where the first inequality follows because ℓ∈ left(s′) and the fact that all αt,s and βt,s variables are nonneg-

ative; the second follows by how the dual solution is defined in the statement of the theorem; and the third

by the definition of the maximum. Similarly, if ℓ∈ right(s′) for some s′ ∈LS(ℓ∗), then we have∑
s:ℓ∈left(s)

αt,s +
∑

s:ℓ∈right(s)

βt,s + γt ≥ βt,s′ + γt ≥ max
ℓ′∈right(s′)

rt,ℓ′ − rt,ℓ∗ + rt,ℓ∗ ≥ rℓ− rt,ℓ∗ + rt,ℓ∗ = rt,ℓ.

Lastly, if ℓ= ℓ∗, then we automatically have
∑

s:ℓ∗∈left(s)αt,s +
∑

s:ℓ∗∈right(s) βt,s + γt ≥ γt = rt,ℓ∗ . Thus, we

have established that constraint (13b) is satisfied for all leaves ℓ, and thus (αt,βt, γt) as defined in the

statement of the theorem is a feasible solution of the dual (13).

Proof of part (c): To establish that the two solutions are optimal, by weak duality it is sufficient to show

that the two solutions attain the same objective values in their respective problems. For the primal solution

yt, it is immediately clear that its objective is rt,ℓ∗ . For the dual solution (αt,βt, γt), we have∑
s∈splits(t)

αt,sxv(t,s) +
∑

s∈splits(t)

βt,s(1−xv(t,s))+ γt =
∑

s∈RS(ℓ∗)

αt,sxv(t,s) +
∑

s∈LS(ℓ∗)

βt,s(1−xv(t,s))+ γt = γt = rt,ℓ∗ ,

where the first step follows because αt,s = 0 for s /∈RS(ℓ∗) and βt,s = 0 for s /∈LS(ℓ∗); the second step follows

by the fact that xv(t,s) = 0 for s∈RS(ℓ∗) and xv(t,s) = 1 for s∈LS(ℓ∗); and the final step follows just by the

definition of γt. This establishes that yt and (αt,βt, γt) are optimal for their respective problems. □

B.8. Proof of Theorem 5 (ProductMIO primal and dual are closed form solvable for binary

x)

The proof follows a similar argument to the proof of Theorem 4. Due to space limitations, we omit the proof.

Appendix C: Additional Numerical Results

Our experiments were implemented in the Julia programming language, version 1.8.4 (Bezanson et al. 2017)

and executed on Amazon Elastic Compute Cloud (EC2) using a single instance of type m6a.48xlarge (AMD

EPYC 7R13 processor with 2.95GHz clock speed, 192 virtual CPUs and 768 GB memory). All LO and

MIO formulations were solved using Gurobi version 10.0.1 and modeled using the JuMP package (Lubin and

Dunning 2015), with a maximum of four cores per formulation.

C.1. Experiment: Tractability

In this experiment, we seek to understand the tractability of SplitMIO and ProductMIO when they

are solved as integer problems (i.e., not as relaxations). For a given instance and a given formulation M,

we solve the integer version of formulation M. Due to the large size of some of the problem instances,

we impose a computation time limit of 1 hour for each formulation. We record TM, the computation time

required for formulation M, and we record OM which is the final optimality gap, and is defined as OM =

100%× (ZUB,M−ZLB,M)/ZUB,M, where ZUB,M and ZLB,M are the best upper and lower bounds, respec-

tively, obtained at the termination of formulation M for the instance. We test all of the T1, T2 and T3

instances with n = 100, |F | ∈ {50,100,200,500} and |leaves(t)| ∈ {8,16,32,64}. Table EC.3 displays the

average computation time and average optimality gap of each formulation for each combination of n, |F |
and |leaves(t)|. For ease of notation in the table, we abbreviate SplitMIO as S-MIO and ProductMIO

as P-MIO, and write NL ≡ |leaves(t)|.
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From this table, we can see that for the smaller instances, SplitMIO requires more time to solve than

ProductMIO. For larger instances, where the computation time limit is exhausted, the average gap obtained

by ProductMIO tends to be lower than that of SplitMIO.

Type |F | NL OS-MIO OP-MIO TS-MIO TP-MIO Type |F | NL OS-MIO OP-MIO TS-MIO TP-MIO

T1 50 8 0.0 0.0 0.0 0.0 T2 200 8 0.0 0.0 0.6 0.6
T1 50 16 0.0 0.0 0.1 0.0 T2 200 16 0.0 0.0 747.7 673.6
T1 50 32 0.0 0.0 0.5 0.1 T2 200 32 9.8 9.7 3600.0 3600.0
T1 50 64 0.0 0.0 2.4 0.5 T2 200 64 17.1 16.3 3600.1 3600.0

T1 100 8 0.0 0.0 0.0 0.0 T2 500 8 0.0 0.0 171.6 167.9
T1 100 16 0.0 0.0 0.8 0.1 T2 500 16 14.1 13.8 3600.0 3600.0
T1 100 32 0.0 0.0 13.5 1.6 T2 500 32 23.4 23.0 3600.1 3600.1
T1 100 64 0.0 0.0 479.0 65.1 T2 500 64 28.7 28.1 3600.1 3600.1

T1 200 8 0.0 0.0 0.1 0.0 T3 50 8 0.0 0.0 0.0 0.0
T1 200 16 0.0 0.0 25.0 3.0 T3 50 16 0.0 0.0 0.1 0.1
T1 200 32 0.7 0.0 2330.2 421.5 T3 50 32 0.0 0.0 0.6 0.6
T1 200 64 9.8 5.3 3600.1 3600.0 T3 50 64 0.0 0.0 4.1 3.7

T1 500 8 0.0 0.0 4.6 1.4 T3 100 8 0.0 0.0 0.0 0.0
T1 500 16 5.0 1.2 3600.0 2951.7 T3 100 16 0.0 0.0 0.8 0.7
T1 500 32 15.9 11.8 3600.1 3600.0 T3 100 32 0.0 0.0 29.0 26.4
T1 500 64 20.9 17.4 3600.1 3600.1 T3 100 64 0.9 0.5 2600.8 2206.5

T2 50 8 0.0 0.0 0.0 0.0 T3 200 8 0.0 0.0 0.4 0.4
T2 50 16 0.0 0.0 0.1 0.1 T3 200 16 0.0 0.0 76.8 79.1
T2 50 32 0.0 0.0 0.5 0.5 T3 200 32 5.3 5.1 3600.0 3600.0
T2 50 64 0.0 0.0 24.0 24.6 T3 200 64 13.5 12.5 3600.1 3600.0

T2 100 8 0.0 0.0 0.0 0.0 T3 500 8 0.0 0.0 75.9 72.9
T2 100 16 0.0 0.0 1.5 1.4 T3 500 16 8.8 8.8 3600.0 3600.0
T2 100 32 0.0 0.0 245.2 234.9 T3 500 32 21.0 20.3 3600.1 3600.0
T2 100 64 4.8 4.4 3600.0 3600.0 T3 500 64 28.9 27.9 3600.2 3600.1

Table EC.3 Comparison of final optimality gaps and computation times for SplitMIO and ProductMIO.

C.2. Comparison to Heuristic Approaches

In this experiment, we compare the performance of the two formulations to three different heuristic

approaches:

1. LS: A local search heuristic, which starts from the empty assortment, and in each iteration moves to the

neighboring assortment which improves the expected revenue the most. The neighborhood of assortments

consists of those assortments obtained by adding a new product to the current assortment, or removing one

of the existing products from the assortment. The heuristic terminates when there is no assortment in the

neighborhood of the current one that provides an improvement.

2. LS10: This heuristic involves running LS from ten randomly chosen starting assortments. Each assort-

ment is chosen uniformly at random from the set of 2n possible assortments. After the ten repetitions, the

assortment with the best expected revenue is retained.

3. ROA: This heuristic involves finding the optimal revenue ordered assortment. More formally, we define

Sk = {i1, . . . , ik}, where i1, . . . , in corresponds to an ordering of the products so that ri1 ≥ ri2 ≥ · · · ≥ rin , and

we find argmaxS∈{S1,...,Sn}R
(F,λ)(S).
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Type |F | NL GS-MIO GP-MIO GLS GLS10 GROA Type |F | NL GS-MIO GP-MIO GLS GLS10 GROA

T1 50 8 0.0 0.0 8.1 2.1 26.8 T2 200 8 0.0 0.0 3.8 0.8 23.1
T1 50 16 0.0 0.0 9.8 4.0 31.2 T2 200 16 0.0 0.0 5.5 2.8 24.2
T1 50 32 0.0 0.0 9.0 5.2 27.5 T2 200 32 0.2 0.2 7.0 4.5 24.7
T1 50 64 0.0 0.0 10.0 7.2 28.6 T2 200 64 1.0 0.4 8.2 5.5 23.5

T1 100 8 0.0 0.0 3.9 2.4 26.0 T2 500 8 0.0 0.0 2.0 0.5 15.6
T1 100 16 0.0 0.0 6.6 3.7 26.2 T2 500 16 0.1 0.1 3.8 1.5 16.3
T1 100 32 0.0 0.0 8.5 6.3 25.6 T2 500 32 0.5 0.4 4.9 1.8 15.1
T1 100 64 0.0 0.0 9.9 6.6 24.5 T2 500 64 1.1 0.9 4.5 1.9 14.3

T1 200 8 0.0 0.0 3.5 1.3 19.9 T3 50 8 0.0 0.0 13.2 3.8 33.1
T1 200 16 0.0 0.0 5.5 3.1 21.7 T3 50 16 0.0 0.0 14.4 5.2 34.9
T1 200 32 0.0 0.0 7.8 4.6 22.3 T3 50 32 0.0 0.0 12.6 5.0 33.7
T1 200 64 0.3 0.0 7.6 6.3 19.5 T3 50 64 0.0 0.0 13.9 8.1 33.0

T1 500 8 0.0 0.0 1.5 0.3 14.6 T3 100 8 0.0 0.0 8.0 1.9 30.2
T1 500 16 0.0 0.0 3.7 1.6 15.3 T3 100 16 0.0 0.0 10.0 3.1 32.6
T1 500 32 0.3 0.0 5.3 2.4 15.9 T3 100 32 0.0 0.0 10.4 3.8 32.0
T1 500 64 0.6 0.1 4.9 3.5 13.8 T3 100 64 0.0 0.0 10.0 4.5 31.0

T2 50 8 0.0 0.0 13.8 3.2 31.5 T3 200 8 0.0 0.0 4.0 1.1 25.8
T2 50 16 0.0 0.0 11.6 4.9 32.2 T3 200 16 0.0 0.0 6.5 2.5 26.5
T2 50 32 0.0 0.0 10.0 5.8 31.1 T3 200 32 0.1 0.1 7.6 3.3 26.9
T2 50 64 0.0 0.0 11.6 7.0 30.4 T3 200 64 0.3 0.1 9.2 4.1 24.1

T2 100 8 0.0 0.0 5.5 1.9 28.1 T3 500 8 0.0 0.0 2.6 0.4 15.8
T2 100 16 0.0 0.0 8.2 4.0 30.8 T3 500 16 0.0 0.0 4.3 1.1 16.5
T2 100 32 0.0 0.0 8.9 4.8 31.3 T3 500 32 0.5 0.5 5.3 1.3 16.0
T2 100 64 0.0 0.0 11.6 6.6 27.1 T3 500 64 0.9 0.4 5.5 1.3 16.3

Table EC.4 Comparison of SplitMIO and ProductMIO against the heuristics LS, LS10 and ROA.

We compare these heuristics against the best integer solution obtained by each of our two MIO formu-

lations, leading to a total of five methods for each instance. We measure the performance of the solution

corresponding to approachM using the metric GM, which is defined as GM = 100%× (Z ′−ZM)/Z ′, where

Z ′ is the highest lower bound (i.e., integer solution) obtained from among the two MIO formulations and

the three heuristics, and ZM is the objective value of the solution returned by approachM.

Table EC.4 shows the performance of the five approaches – SplitMIO, ProductMIO, LS, LS10 and

ROA – for each family of instances. The gaps are averaged over the twenty instances for each combination

of instance type, |F | and |leaves(t)|. Again, for ease of notation in the table, we abbreviate SplitMIO

as S-MIO and ProductMIO as P-MIO, and write NL ≡ |leaves(t)|. We can see from this table that in

general, for the small instances, the solutions obtained by the MIO formulations are either the best or close

to the best out of the five approaches, while the solutions produced by the heuristic approaches are quite

suboptimal. For cases where the gap is zero for the MIO formulations, the gap of LS ranges from 1.5% to

13.9%; the LS10 heuristic improves on this, due to its use of restarting and randomization, but still does

not perform as well as the MIO solutions (gaps ranging from 0.3 to 8.1%). For the larger instances, where

the gap of the MIO solutions is larger, LS and LS10 still tend to perform worse. Across all of the instances,

ROA achieves much higher gaps than all of the other approaches (ranging from 13.8 to 34.9%). Overall,

these results suggest that the very general structure of the decision forest model poses significant difficulty

to standard heuristic approaches, and highlight the value of using exact approaches over inexact/heuristic

approaches to the assortment optimization problem.


