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Abstract

The quadratic assignment problem (QAP) is an extremely challenging NP-hard com-
binatorial optimization program. Due to its difficulty, a research emphasis has been to
identify special cases that are polynomially solvable. Included within this emphasis are
instances which are linearizable; that is, which can be rewritten as a linear assignment
problem having the property that the objective function value is preserved at all feasible
solutions. Various known sufficient conditions for identifying linearizable instances have
been explained in terms of the continuous relaxation of a weakened version of the level-1
reformulation-linearization-technique (RLT) form that does not enforce nonnegativity
on a subset of the variables. Also, conditions that are both necessary and sufficient
have been given in terms of decompositions of the objective coefficients. The main con-
tribution of this paper is the identification of a relationship between polyhedral theory
and linearizability that promotes a novel, yet strikingly simple, necessary and sufficient
condition for identifying linearizable instances; specifically, an instance of the QAP is
linearizable if and only if the continuous relaxation of the same weakened RLT form is
bounded. In addition to providing a novel perspective on the QAP being linearizable, a
consequence of this study is that every linearizable instance has an optimal solution to
the (polynomially-sized) continuous relaxation of the level-1 RLT form that is binary.
The converse, however, is not true so that the continuous relaxation can yield binary
optimal solutions to instances of the QAP that are not linearizable. Another conse-
quence follows from our defining a maximal linearly independent set of equations in the
lifted RLT variable space; we answer a recent open question that the theoretically best
possible linearization-based bound cannot improve upon the level-1 RLT form.
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1 Introduction

The quadratic assignment problem (QAP) can be formulated as

P: minimize

∑
k

∑
ℓ

ckℓxkℓ +
∑
i

∑
j

∑
k ̸=i

∑
ℓ ̸=j

Cijkℓxijxkℓ : x ∈ X,x binary

 ,
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where

X ≡

x ≥ 0 :
∑
j

xij = 1 ∀ i,
∑
i

xij = 1 ∀ j

 (1)

is the assignment set. Unless otherwise stated, we assume that all indices and summations run from
1 to n. Since it is desired to minimize a quadratic objective function over the assignment set X, the
problem name results. The QAP is NP-hard, and first arose in a facility location scenario [32]. In
this context, the goal is to situate n facilities on n location sites, with each site housing exactly one
facility, in such a manner as to minimize the combined cost of construction and material flow. Here,
Cijkℓ = fikdjℓ to represent the product of the flow fik between pairs of facilities i and k with the
distance djℓ between pairs of location sites j and ℓ. Then each coefficient Cijkℓ represents the cost
of material flow between facilities i and k, given that facility i is located on site j and facility k is
located on site ℓ. Each coefficient ckℓ represents a construction cost for situating facility k on site
ℓ. This version of P is known as the Koopmans-Beckmann form. For this form, if the flows satisfy
fik = fki for all (i, k), i < k, and the distances satisfy djℓ = dℓj for all (j, ℓ), j < ℓ, then the problem
is called symmetric; otherwise it is asymmetric. More general forms that do not have Cijkℓ = fikdjℓ
have also been studied. The QAP boasts many applications [13, 20, 21, 24, 29, 33, 43, 44], with
surveys in [11, 14, 35, 37]. The most efficient exact solution strategies [1, 8, 25, 26, 27] are limited
to problems having n ≤ 40.

Due to the problem’s difficulty, a strategy for solving Problem P has been to seek out special
objective function structures that allow optimal solutions to be obtained in polynomial time. For
Koopmans-Beckmann forms, various works [10, 12, 15, 16, 19, 22, 34] exploit specific flow and
distance structures for this purpose. Another contribution [18] provides a variation of Problem P
that can be solved in pseudo-polynomial time. Of particular interest in our study is the identification
of objective coefficients that allow P to be transformed into an equivalent linear assignment problem;
such problems are referred to as being linearizable. Formally stated, an instance of Problem P with
objective coefficients ckℓ and Cijkℓ is defined to be linearizable if there exists a scalar κ and coefficients
ĉkℓ so that

κ+
∑
k

∑
ℓ

ĉkℓxkℓ =
∑
k

∑
ℓ

ckℓxkℓ +
∑
i

∑
j

∑
k ̸=i

∑
ℓ̸=j

Cijkℓxijxkℓ ∀ x ∈ X, x binary. (2)

Clearly, every instance of P that is expressible in the form (2) is polynomially solvable because each
is reducible to a linear assignment problem. Although not explicitly stated in these terms, the works
[10, 14, 23] provide sufficient conditions for recognizing such instances of Problem P. The paper
[31] extends this body of work by providing, in terms of decompositions of the objective function
coefficients, conditions that are both necessary and sufficient, and also gives an O(n4) algorithm
for checking whether these conditions are satisfied. The paper [38] shows that, for Koopmans-
Beckmann forms, the conditions can be checked in O(n2) time. Combinatorial characterizations of
both symmetric [38] and asymmetric [17] linearizable Koopmans-Beckmann instances of Problem P
are also available.

The primary contribution of this paper is a linkage between the notion of linearizability and a
known linear reformulation of the QAP that has demonstrated utility in exact solution algorithms.
This linkage provides a novel and simply-stated necessary and sufficient condition for identifying an
instance of Problem P as being linearizable. Specifically, we show that the QAP is linearizable if
and only if a certain linear program is bounded; this linear program is the continuous relaxation of a
weakened version of the level-1 reformulation-linearization-technique (RLT) representation of Prob-
lem P [2, 30] that relaxes nonnegativity on a subset of the variables. Earlier work [7] characterized
several sufficient conditions found in [10, 14, 23] by this representation, but no mention was made
as to the more challenging direction of necessity. A consequence of our study is that the continuous
relaxation of the non-weakened level-1 RLT form identifies a richer family of solvable instances of
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the QAP than those which are linearizable in the sense that an optimal binary solution will exist
to this linear program for every linearizable instance, but the program can have an optimal binary
solution without the QAP being linearizable.

Our approach is as follows. We first recall the level-1 RLT form in a known extended variable
space, and then use a suggestion of [2, 30] to obtain a compact representation via a substitution
of variables. We subsequently identify, in the new space, a maximal linearly independent (LI) set
of equations that is valid for the n-factorial feasible solutions associated with the QAP. This set
is obtained via a two-step procedure; the first step computes LI equations that are implied by the
compact form and the second step shows that every other valid equation is a linear combination
of those already computed. Specifically, the first step consists of deriving three sets of implied
LI equations, and then showing that the aggregation of these sets is itself LI. The three sets are
obtained, respectively, by: (i) judiciously selecting a subset of the constraints of the compact form,
(ii) computing implied equations associated with a complete bipartite graph, and (iii) choosing any
2n − 1 of the equations defining X. The second step uses the n-factorial feasible solutions to the
QAP to identify coefficient structures that prohibit the existence of other LI equations that are
valid in this space, thereby establishing our combined LI set of equations as being maximal. The
derived maximal LI set of equations then allows us to obtain our main result that an instance
of the QAP is linearizable if and only if a weakened version of our compact level-1 RLT form is
bounded. As a byproduct of identifying a maximal LI set of equations, we give the dimension of the
convex hull of feasible solutions for the compact level-1 RLT form, as well as for certain relaxations.
Furthermore, our results answer an open question of [28] as to the acquisition of a spanning set of
linearizable matrices for the quadratic expressions, establishing that the RLT gives their strongest
possible linearization-based bound.

The remainder of the paper details our approach. In the next section, we briefly review the
level-1 RLT form and present the more compact representation. We then provide a roadmap for
exploiting the RLT structure in order to compute our maximal LI set of equations. This roadmap
includes a pictorial description of the structure of our “to-be derived” LI constraints, including the
number of equations and a partitioning of the variables. Section 3 follows the roadmap in deriving
our three sets of implied LI equations and in explaining that the combined set is LI. Section 4 shows
this combined LI set of equations to be maximal, and then uses this fact to prove our main result
that an instance of the QAP is linearizable if and only if the continuous relaxation of a weakened
level-1 RLT form is bounded. Section 5 provides concluding remarks and future research directions.

2 Level-1 RLT and Roadmap for Computing Linearly Inde-
pendent Equations

In this section, we review the level-1 RLT form of Problem P, give a compact representation, and
provide a roadmap for computing a maximal LI set of equations that is valid for this formulation.
The roadmap details are presented in Sections 3 and 4, with Section 3 identifying the LI equations
and Section 4 showing that the set is maximal.

2.1 Level-1 RLT Form

The RLT methodology was introduced in [4, 5, 6] to reformulate linearly-
constrained quadratic 0-1 optimization problems into mixed-binary linear programs that afford tight
linear programming relaxations. It was later extended (see [3, 40, 41, 42] and their references) into
a broader theory for computing polyhedral outer-approximations of general discrete and nonconvex
sets. Given a mixed-discrete optimization problem, the RLT constructs a hierarchy of successively
tighter linear programming approximations, culminating at the highest level with a linear program
whose feasible region gives an explicit algebraic description of the convex hull of feasible solutions.

3



Characterizing Linearizable QAPs by the Level-1 RLT

The levels are obtained using the two steps of reformulation and linearization. For mixed-binary
programs, the reformulation step multiplies “product factors” of the problem variables with the
constraints, and enforces the binary identity that x2 = x for binary x. The linearization step then
substitutes a continuous variable for each resulting product term.

Relative to the QAP, various authors [1, 25, 26, 27] have reported success in using different RLT
levels to compute bounds within branch-and-bound schemes. Our specific interest here is with the
level-1 form, as detailed in [2, 30] and given below.

RLT1: minimize
∑
k

∑
ℓ

ckℓxkℓ +
∑
i

∑
j

∑
k ̸=i

∑
ℓ ̸=j

Cijkℓyijkℓ

subject to
∑
j ̸=ℓ

yijkℓ = xkℓ ∀ (i, k, ℓ), i ̸= k (3)

∑
i ̸=k

yijkℓ = xkℓ ∀ (j, k, ℓ), j ̸= ℓ (4)

yijkℓ = ykℓij ∀ (i, j, k, ℓ), i < k, j ̸= ℓ (5)

yijkℓ ≥ 0 ∀ (i, j, k, ℓ), i ̸= k, j ̸= ℓ (6)

x ∈ X, x binary (7)

Problem RLT1 derives from Problem P as follows. The reformulation step multiplies every
constraint defining X in (1), including the x ≥ 0 inequalities, by each binary variable xkℓ. Then
xkℓ = xkℓxkℓ is substituted for each (k, ℓ). The structure of X enforces that xijxkℓ = 0 for all
(i, j, k, ℓ) with i = k, j ̸= ℓ, or with i ̸= k, j = ℓ. For each remaining xijxkℓ product, the linearization
step then substitutes a continuous variable yijkℓ. Specifically, for every (k, ℓ), the n − 1 equations
found within each of (3) and (4) are computed by multiplying the restrictions

∑
j xij = 1 ∀ i ̸= k

and
∑

i xij = 1 ∀ j ̸= ℓ of X, respectively, by the variable xkℓ. (Multiplication of either equation∑
j xkj = 1 or

∑
i xiℓ = 1 by xkℓ reduces to xkℓ = xkℓ.) Equations (5) recognize that xijxkℓ = xkℓxij

for all (i, j, k, ℓ), i < k, j ̸= ℓ. Inequalities (6) result from multiplying the x ≥ 0 inequalities of X by
the variables xkℓ.

The RLT theory gives us that Problems P and RLT1 are equivalent in that an optimal solution
to either problem yields an optimal solution to the other. This result [2, 30] follows because, for
every x̂ ∈ X, x̂ binary, a point (x̂, ŷ) is feasible to constraints (3)–(6) if and only if ŷijkℓ = x̂ij x̂kℓ

for all (i, j, k, ℓ), i ̸= k, j ̸= ℓ.
As suggested in [2, 30], we can use (5) to remove, via substitution, all variables yijkℓ having i >

k, j ̸= ℓ, from Problem RLT1, and then discard constraints (5). The following compact formulation
results, where C ′

ijkℓ = Cijkℓ + Ckℓij for all (i, j, k, ℓ), i < k, j ̸= ℓ.

RLT1′: minimize
∑
k

∑
ℓ

ckℓxkℓ +
∑
i

∑
j

∑
k>i

∑
ℓ ̸=j

C ′
ijkℓyijkℓ

subject to
∑
j ̸=ℓ

yijkℓ = xkℓ ∀ (i, k, ℓ), i < k (8)

∑
j ̸=ℓ

ykℓij = xkℓ ∀ (i, k, ℓ), i > k (9)

∑
i<k

yijkℓ +
∑
i>k

ykℓij = xkℓ ∀ (j, k, ℓ), j ̸= ℓ (10)
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yijkℓ ≥ 0 ∀ (i, j, k, ℓ), i < k, j ̸= ℓ (11)

x ∈ X, x binary

Here, equations (3) become (8) and (9), equations (4) become (10), and inequalities (6) reduce to
(11).

Observe the difference in size between Problems RLT1 and RLT1′. Problem RLT1 has n2 vari-
ables x and n2(n− 1)2 variables y, for a total of n2(n2 − 2n+2). Relative to constraints, RLT1 has

2n2(n− 1) equations in (3) and (4) combined, n2(n−1)2

2 equations in (5), and 2n equations in X of

(7), for a total of n2(n−1)(n+3)
2 + 2n, in addition to the nonnegativity restrictions on x and y. Due

to the variable substitution, Problem RLT1′ has n2(n−1)2

2 fewer variables and constraints than does
RLT1. In addition, (11) has half the number of nonnegativity restrictions found in (6). Specifically,

RLT1′ has n2 +
n2(n− 1)2

2
variables and 2n2(n− 1) + 2n equations. (12)

A variant of Problem RLT1′ that is obtained by removing the nonnegativity restrictions on y

in (11), call this variant RLT1′′, will be important in this study. For future reference, we let RLT1
′

and RLT1
′′
be the linear programming relaxations of Problems RLT1′ and RLT1′′, respectively, that

are obtained by removing the binary restrictions on x. The paper [7] established boundedness of

RLT1
′′
as a sufficient condition for an instance of Problem P to be linearizable. In this paper, we

show the more challenging direction that boundedness of RLT1
′′
is also a necessary condition for

linearizability.

2.2 Roadmap for Computing a Maximal Linearly Independent Set of
Equations

In this section, we present a roadmap for computing a maximal LI set of equations in the variables
(x,y) that is valid for the n-factorial solutions to RLT1′. Each equation is implied by (8)–(10) and
the equality restrictions of X. The roadmap is followed in Section 3, and the maximal property is
shown in Section 4.

By the RLT process, restrictions (8)–(10) and the equations of X form a linearly dependent
set. Certain redundant constraints have been pointed out in prior works [7, 39] for RLT1, and
these dependencies transfer to RLT1′. The paper [7] eliminates n(n− 1) + 1 equations by observing
that any single equation in X is redundant, so that the n(n− 1) equations present in either (3) or
(4) which are computed by multiplying the chosen equation with the associated variables xkℓ, are
also redundant. In a different study, the paper [39] explains that either the first or second set of n
equations of X is implied by the other constraints of RLT1, so that the selected n equations can
be removed. We more generally observe in the next two sections that RLT1′ contains a maximal LI
set of 2(n − 1)3 + n(n − 1) equations, so that 3n2 − 3n + 2 of the 2n2(n − 1) + 2n total equations
reported in (12) are implied. For future reference, this number of LI equations is computed by(

2(n− 1)3 + n(n− 1)
)
=
(
2n2(n− 1) + 2n

)
−
(
3n2 − 3n+ 2

)
, (13)

with the right side of the expression subtracting the number of implied equations from the total.
In particular, Section 3 provides this number of LI constraints that are implied by the equations of
RLT1′, and Section 4 shows the number to be maximal. The tool we use is an exploitation of the
coefficient structure that must hold true within every equation valid for RLT1′.

To illustrate our desired maximal LI set of equations pictorially, consider the linear system of
equations in matrix form found in Figure 1, which is expressed in terms of the parametersm1,m2,m3,

and n1, n2, n3, n4, as given, where m1 = n2 and m2 = n3, with n1 + n2 + n3 + n4 = n2 + n2(n−1)2

2
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with

• m1 = 2(n− 1)3, m2 = (n− 1)(n− 2)− 1, m3 = 2n− 1

• n1 = n2, n2 = 2(n− 1)3, n3 = (n− 1)(n− 2)− 1, n4 =
(n−3)(n−2)(n−1)n

2 + 1

Figure 1: Pictorial depiction of linearly independent equations implied by (8)–(10) and the
equations of X in RLT1′

equaling the number of variables in RLT1′ as noted in (12), and with m1 +m2 +m3 = 2(n− 1)3 +
n(n− 1) as found in the left expression of (13). As indicated by the matrix multiplication, the first
set of n1 variables corresponds to x while the last three sets of n2 + n3 + n4 variables comprise a
partition of y into y1, y2, and y3. The first m1 +m2 equations will be constructed to be implied by
(8)–(10) so as to satisfy the following properties: the first m1 equations will associate an invertible
matrix B with the set of n2 variables y1 and the second m2 equations will contain none of these
variables y1, but will associate an invertible matrix F with the set of n3 variables y2. The final m3

equations will represent any selection of 2n− 1 equality constraints from X of (1). The last set of
n4 variables y3 are those variables y not present in either y1 or y2. The invertibility of the matrices
B and F , and the linear independence of the rows of H will make the overall system LI. Here,
the notation 0 and 1 is used to denote compatibly-sized matrices (vectors) of all zeroes and ones,
respectively. Also, the matrix C found in the first set of m1 equations is distinct from, and should
not be confused with, the quadratic objective coefficients Cijkℓ introduced in Problem P, with C in
bold and having no subscripts.

Sections 3 and 4 relate to Figure 1 as follows. Section 3 details the system formation from
the constraints of RLT1′, emphasizing the construction of the invertible matrices B and F . It then
states that the total collection of m1 + m2 + m3 equations is LI. Section 4 establishes that these
LI equations are maximal for the set of solutions to RLT1′. A key argument to show the maximal
property is that the vector β found in any chosen equation αx+ βy = κ that is valid for all (x,y)
feasible to RLT1′ has those entries βijkℓ associated with the variables y3 uniquely defined in terms
of the βijkℓ associated with the variables y1 and y2.

3 Identification of Linearly Independent Equations

In this section, and consistent with equation (13) and Figure 1, we identify 2(n− 1)3 + n(n− 1) =
m1 + m2 + m3 LI equations that are implied by the equations of RLT1′. Section 3.1 chooses the
first m1 equations as a subset of those found within (8)–(10). Section 3.2 derives the second m2

equations from (8)–(10) and shows that these equations, when combined with those of Section 3.1,
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form a LI set. Within these sections, we emphasize the invertibility of the matrices B and F , and
the corresponding partitioning of the variables y into y1, y2, and y3. Section 3.3 shows that these
m1 +m2 equations, when augmented with any m3 = 2n − 1 equations of X to describe Hx = 1,
collectively form a LI set.

3.1 First Set of Linearly Independent Equations

Choose the first m1 equations from (8)–(10) as follows, where we find it convenient for the proof of
upcoming Lemma 3.1 to express each equation (14)–(18) with a single variable in the left side.

• Select the (n−1)2(n−2)
2 equations of (8) having k < n and ℓ < n to obtain (14).

• Select the (n−1)2(n−2)
2 equations of (9) having i < n and ℓ < n to obtain (15).

• Select the (n− 1)2(n− 2) equations of (10) having j < n, k < n, and ℓ < n to obtain (16).

• Select the (n− 1)2 equations of (10) having k < n and ℓ = n to obtain (17).

• Select the (n− 1)2 equations of (10) having j = n and k < n to obtain (18).

yinkℓ = xkℓ −
∑
j ̸=ℓ,n

yijkℓ ∀ (i, k, ℓ), i < k < n, ℓ < n (14)

ykℓin = xkℓ −
∑
j ̸=ℓ,n

ykℓij ∀ (i, k, ℓ), k < i < n, ℓ < n (15)

ykℓnj = xkℓ −
∑
i<k

yijkℓ −
∑

k<i<n

ykℓij ∀ (j, k, ℓ), j ̸= ℓ, j < n, k < n, ℓ < n (16)

yknnj = xkn −
∑
i<k

yijkn −
∑

k<i<n

yknij ∀ (j, k), j < n, k < n (17)

ykℓnn = xkℓ −
∑
i<k

yinkℓ −
∑

k<i<n

ykℓin ∀ (k, ℓ), k < n, ℓ < n (18)

Consider the lemma below.

Lemma 3.1. Equations (14)–(18) form a LI set.

Proof. No equation in (14)–(16) contains a variable yijkℓ in the right side having an index i, j, k, ℓ
equal to n. But every such equation has that single variable found on the left side with an index
equal to n, and these 2(n − 1)2(n − 2) variables are distinct. Thus, (14)–(16) form a LI set. No
equation in (14)–(18) contains a variable yijkℓ in the right side having two indices i, j, k, ℓ equal to n.
But every equation in (17) and (18) has that single variable found on the left side with two indices
equal to n, and these 2(n− 1)2 variables are distinct. Thus, (14)–(18) form a LI set.

Via a simple counting argument, we have that every variable yijkℓ present in RLT1′ with at least
one subscript equal to n is found in the left side of an expression of (14)–(18). The total number of

such variables is computable from (12) by subtracting the (n−1)2(n−2)2

2 variables y in the formulation

of RLT1′ that models the QAP of size n − 1 from the n2(n−1)2

2 variables y in the formulation of
RLT1′ that models the QAP of size n. The result is 2(n− 1)3, which is the number of equations in
(14)–(18).

Relative to the roadmap of Figure 1, the vector y1 denotes those variables yijkℓ such that

yijkℓ has at least one index j, k, ℓ equal to n, (19)
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and the vectors y2 and y3 correspond to those variables yijkℓ having no index i, j, k, ℓ equal to n.
The matrices A and B correspond to the coefficients on the variables x and y1, respectively, in
(14)–(18), with B invertible. The matrices C and D correspond to the coefficients on the vectors
y2 and y3, with y2 and y3 further described in Section 3.2 following Theorem 3.3.

3.2 Second Set of Linearly Independent Equations

Given any (j, ℓ), j < ℓ < n, restrictions (10) enforce the n equations

−xkℓ +
∑
i<k

yijkℓ +
∑
i>k

ykℓij = 0 ∀ k < n and xnj −
∑
i<n

yiℓnj = 0.

Summing these equations for each such (j, ℓ) gives

xnj −
∑
k<n

xkℓ +
∑
k<n

(∑
i<k

yijkℓ +
∑

k<i<n

ykℓij

)
= 0 ∀ (j, ℓ), j < ℓ < n.

Interchanging indices i and k in the last terms of each above equation, we get that restrictions (10)

imply the following (n−1)(n−2)
2 equations.

xnj −
∑
k<n

xkℓ +

n−2∑
i=1

n−1∑
k=i+1

(yijkℓ + yiℓkj) = 0 ∀ (j, ℓ), j < ℓ < n (20)

Similarly, given any (i, k), i < k < n, restrictions (8) enforce the left n− 1 equations and restrictions
(9) enforce the right equation of

−xkℓ +
∑
j ̸=ℓ

yijkℓ = 0 ∀ ℓ < n and xin −
∑
j<n

yinkj = 0.

Summing these equations for each such (i, k) gives

xin −
∑
ℓ<n

xkℓ +
∑
ℓ<n

∑
j<ℓ

yijkℓ +
∑

ℓ<j<n

yijkℓ

 = 0 ∀ (i, k), i < k < n.

Interchanging indices j and ℓ in the last terms of each above equation, we get that restrictions (8)

and (9) imply the following (n−1)(n−2)
2 equations.

xin −
∑
ℓ<n

xkℓ +

n−2∑
j=1

n−1∑
ℓ=j+1

(yijkℓ + yiℓkj) = 0 ∀ (i, k), i < k < n (21)

The (n− 1)(n− 2) equations (20) and (21), less any single restriction, will form our second set
of m2 = (n− 1)(n− 2)− 1 LI equations as explained below.

Observe that each of the (n−1)2(n−2)2

4 variables yijkℓ having i < k < n and j < ℓ < n ap-
pears (with coefficient 1) only in that equation of (20) indexed by (j, ℓ) and in that equation of
(21) indexed by (i, k). Therefore, the structure of (20) and (21) has the columns corresponding to

these (n−1)2(n−2)2

4 variables forming the node-edge incidence matrix of a complete bipartite graph

consisting of edges between (n−1)(n−2)
2 nodes associated with the ordered pairs (j, ℓ) indexing the

equations (20) and (n−1)(n−2)
2 nodes associated with the ordered pairs (i, k) indexing the equations

(21). This graph is depicted in Figure 2, where the left and right columns of nodes are labeled with
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Figure 2: Complete bipartite graph associated with equations (20) and (21)

the ordered pairs (j, ℓ), j < ℓ < n, and (i, k), i < k < n, consistent with (20) and (21), respectively.
In this manner, an edge incident with a left node (j, ℓ) and a right node (i, k) symbolizes the variable
yijkℓ.

Since the variables yijkℓ associated with any spanning tree of Figure 2 (see chapters 9 and 10
of [9] for example) form a linearly independent set, the rank of the node-edge incidence matrix is
(n − 1)(n − 2) − 1 and, furthermore, the removal of any single equation does not lessen this rank.
Then Lemma 3.2 follows without proof.

Lemma 3.2. Every selection of m2 = (n− 1)(n− 2)− 1 equations from (20) and (21) contains m2

columns in the variables yijkℓ that form a LI set.

Theorem 3.3 below shows that the m1 LI equations of Section 3.1 combined with any m2 LI
equations from (20) and (21) form a LI set.

Theorem 3.3. The m1 = 2(n−1)3 equations of (14)–(18) together with any m2 = (n−1)(n−2)−1
equations of (20) and (21) form a LI set.

Proof. Lemma 3.1 established that the m1 equations (14)–(18) form a LI set and Lemma 3.2 showed
that any collection of m2 equations from (20) and (21) has m2 variables yijkℓ that form a LI set.
Each of the m1 variables yijkℓ found in y1 was noted in (19) to have at least one of the indices j, k, ℓ
equal to n. None of these variables appear in (20) or (21), completing the proof.

Equations (20) and (21), less any single restriction, relate to Figure 1 as follows. The matrix E
of Figure 1 corresponds to the variables x of (20) and (21), and the m2 × n2 matrix 0 follows from
the observation in the proof of Theorem 3.3 that no variables in y1 appear in either (20) or (21).
The invertible matrix F is composed of the columns associated with any m2 = n3 variables yijkℓ
whose edges form a spanning tree in Figure 2, as these columns are LI. Those variables yijkℓ selected

to define the spanning tree are denoted as y2. Then y3 corresponds to the n4 = (n−1)2(n−2)2

2 −(
(n − 1)(n − 2) − 1

)
variables yijkℓ found in (20) and (21) which are not in y2, and the matrix G

corresponds to the coefficients on y3 in the chosen m2 equations. These descriptions of y2 and y3

define the matrices C and D in terms of (14)–(18).

9
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Figure 3: Set of n3 basic variables from Figure 2 associated with matrix F of Figure 1

For future reference, we choose y2 to be those variables yijkℓ having either

y(n−2)j(n−1)ℓ with j < ℓ < n or yi(n−2)k(n−1) with i < k < n. (22)

Figure 3 graphically depicts the variables of (22), using the same sets of nodes as Figure 2, and a
subset of the edges.

3.3 Augmented Set of Linearly Independent Equations

Theorem 3.3 showed that the first m1 +m2 equations of Figure 1 form a LI set. Any m3 = 2n− 1
equations of the assignment set X, represented by Hx = 1 in Figure 1, form a LI set (again see
chapters 9 and 10 of [9]). The below theorem shows that the collection of m1 +m2 +m3 equations
obtained by appending any such m3 equations to the above-described m1 +m2 equations forms a
LI set.

Theorem 3.4. The m1 = 2(n−1)3 equations of (14)–(18) together with any m2 = (n−1)(n−2)−1
equations of (20) and (21) and any m3 = 2n− 1 equations of X form a LI set.

Proof. The first m1 +m2 equations are LI by Theorem 3.3, and any m3 equations of X are known
to be LI. Since the matrices B and F of Figure 1 are invertible and every such m3 equations of X
involve no variables y1 or y2, the proof is complete.

Theorem 3.4 shows that the m1 +m2 +m3 equations of Figure 1 form a LI set, but it does not
prove that this set is maximal in the sense that every valid equation for RLT1′ is implied by these
equations. Section 4 establishes this maximality result and then uses it to derive our necessary and
sufficient condition for Problem P to be linearizable.

4 Necessary and Sufficient Condition for Linearizability

Section 3 set the stage for establishing our necessary and sufficient condition for identifying an
instance of Problem P as being linearizable. Our argument is a two-step approach, with each of
Sections 4.1 and 4.2 devoted to a step. The first step is to show that the m1 + m2 + m3 LI

10
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equations of Figure 1 that were presented in Section 3 form a maximal LI set in that every linear
equation αx + βy = κ which is valid for the n-factorial solutions to RLT1′ can be expressed as a
linear combination of these equations of Figure 1. This result is given in Theorem 4.1. Following
the discussion at the end of Section 2.2, the step is accomplished by showing that for every such
αx+βy = κ, the vector β has those entries βijkℓ associated with the variables y3 uniquely defined
in terms of the βijkℓ associated with the variables y1 and y2. Notably, this maximal LI set of
equations will allow us to trivially compute the dimension of the convex hull of feasible solutions

to RLT1′, as well as the dimensions of the feasible regions to RLT1
′
and RLT1

′′
. The second step,

given in Theorem 4.3, relates equations (8)–(10) of RLT1
′′
, as well as the m1 +m2 +m3 equations

of Figure 1 that are implied by the constraints of RLT1
′′
, to the definition of linearizable found in

(2). The last portion of the proof of Theorem 4.3 uses the maximum LI set argument from Step 1 to
show that, if Problem P is linearizable, then there exists a linear combination of the m1 +m2 +m3

equations of Figure 1 that allows the quadratic objective coefficients of RLT1
′′
to be replaced by

linear expressions, so that RLT1
′′
can be reduced to a (bounded) assignment problem over the set

X.

4.1 Characterizing all Equations Valid for Problem RLT1′

We begin by defining index sets S and Spq of 4-tuples associated with the objective function coeffi-
cients C ′

ijkℓ of Problem RLT1′. These sets will appear in the upcoming proof of Theorem 4.1.

Definition 4.1. Let N ≡ {1, 2, . . . , n} and, for n ≥ 5, let N a ≡ N −{a} for each a ∈ {1, . . . , n−3}.

• Define S as the set of all 4-tuples (i, j, k, ℓ) ∈ N ×N ×N ×N having i < k, j ̸= ℓ, that satisfy
at least one of conditions (i)-(iii) below.

(i) j, k, or ℓ is equal to n

(ii) i = n− 2 and k = n− 1 with j < ℓ < n

(iii) j = n− 2 and ℓ = n− 1 with k < n

• For n ≥ 5, define Spq ⊆ S for p ∈ {1, . . . , n−3} and q ∈ {1, . . . , n−3} as the set of all 4-tuples
(i, j, k, ℓ) ∈ N p × N q × N p × N q having i < k, j ̸= ℓ, that satisfy at least one of conditions
(i)-(iii).

The sets N a, S, and Spq are defined in the given manner for three reasons. First, we have
from (19) and (22) that S is the set of indices (i, j, k, ℓ) of the variables yijkℓ ∈ y1 ∪ y2 within
RLT1′; that is, S = {(i, j, k, ℓ) : yijkℓ ∈ y1 ∪ y2}. Second, when n ≥ 5, for any chosen p and q with
p ∈ {1, . . . , n−3} and q ∈ {1, . . . , n−3}, we can apply the logic of Section 3 to that smaller instance
of RLT1′ defined over the size n− 1 assignment set in the variables xkℓ having k ∈ N p and ℓ ∈ N q

to obtain that Spq is the set of indices (i, j, k, ℓ) of the variables yijkℓ ∈ y1 ∪ y2 within that smaller
instance. Specifically, y1 and y2 for this smaller instance of RLT1′ are defined exactly as in (19)
and (22), respectively, with the additional restriction that (i, j, k, ℓ) ∈ N p ×N q ×N p ×N q instead
of the more general (i, j, k, ℓ) ∈ N ×N ×N ×N . Third, the sets N a and Spq are needed in our proof
only for n ≥ 5, and are thus accordingly defined.

Now consider Theorem 4.1, the main result of this section.

Theorem 4.1. The m1 +m2 +m3 LI equations associated with Figure 1 (and explicitly stated in
Theorem 3.4) form a maximal LI set in that every linear equation which is valid for the n-factorial
solutions to RLT1′ is implied. Equivalently, every equation of the form∑

k

∑
ℓ

αkℓxkℓ +
∑
i

∑
j

∑
k>i

∑
ℓ ̸=j

βijkℓyijkℓ = κ (23)

11
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that is satisfied for all (x,y) feasible to RLT1′ can be computed as a linear combination of the
m1 +m2 +m3 equations of Figure 1.

Proof. Consider any equation of the form (23), say∑
k

∑
ℓ

ᾱkℓxkℓ +
∑
i

∑
j

∑
k>i

∑
ℓ̸=j

β̄ijkℓyijkℓ = κ̄ (24)

that is satisfied for all (x,y) feasible to RLT1′. Given that S = {(i, j, k, ℓ) : yijkℓ ∈ y1 ∪ y2} and
B and F are invertible matrices, there exists a (unique) linear combination of the first m1 + m2

equations of Figure 1 that yields an equation of the form∑
k

∑
ℓ

α̂kℓxkℓ +
∑

(i,j,k,ℓ)∈S

β̄ijkℓyijkℓ +
∑

(i,j,k,ℓ)/∈S

β̂ijkℓyijkℓ = 0 (25)

such that the coefficients β̄ijkℓ having (i, j, k, ℓ) ∈ S are as found in (24).
The proof consists of two parts that combine to compute (24) as a linear combination of (25)

and the m3 equations Hx = 1 of Figure 1. The first part shows that, given any equation of the
form (23) that is satisfied for all (x,y) feasible to RLT1′, each βijkℓ having (i, j, k, ℓ) /∈ S is uniquely
defined in terms of the βijkℓ having (i, j, k, ℓ) ∈ S. Because (24) and (25) are both of the form (23)

and have coefficients of β̄ijkℓ for all (i, j, k, ℓ) ∈ S, then β̄ijkℓ of (24) and β̂ijkℓ of (25) must have

β̄ijkℓ = β̂ijkℓ for all (i, j, k, ℓ) /∈ S, so that equation (25) is expressible as∑
k

∑
ℓ

α̂kℓxkℓ +
∑
i

∑
j

∑
k>i

∑
ℓ ̸=j

β̄ijkℓyijkℓ = 0. (26)

The second part of the proof shows that there exists a linear combination of the m3 equations
Hx = 1 of Figure 1 that gives the equation∑

k

∑
ℓ

(ᾱkℓ − α̂kℓ)xkℓ = κ̄. (27)

The sum of (26) and (27) is (24), so (24) will then be computable as a linear combination of the
m1 +m2 +m3 equations of Figure 1.

The two parts of the proof follow.

1. As the constraints of RLT1′ enforce x ∈ X, x binary, and yijkℓ = xijxkℓ for all (i, j, k, ℓ), i <
k, j ̸= ℓ, the first part of the proof is to show that, given any equation of the form∑

k

∑
ℓ

αkℓxkℓ +
∑
i

∑
j

∑
k>i

∑
ℓ ̸=j

βijkℓxijxkℓ = κ (28)

that is satisfied for all x ∈ X, x binary, each βijkℓ having (i, j, k, ℓ) /∈ S is uniquely defined in
terms of the βijkℓ having (i, j, k, ℓ) ∈ S. The proof is inductive on the size n of the set X and
exploits the fact that fixing any variable xpq = 1 within X produces a size n− 1 assignment
set. As we will see, part of the inductive argument requires that n ≥ 6, necessitating the base
cases of n = 3, n = 4, and n = 5 found in the Appendix.

For the inductive step, consider an equation of the form (28) that is satisfied for all x ∈ X,
x binary, where X is a size n ≥ 6 assignment set and suppose that the result holds true for
all such equations that are valid for the size n− 1 assignment set. Specifically, then, for any
(p, q) having p ∈ {1, . . . , n− 3} and q ∈ {1, . . . , n− 3}, the result holds true for the equation∑
k<p

∑
ℓ̸=q

(αkℓ+βkℓpq)xkℓ+
∑
k>p

∑
ℓ ̸=q

(αkℓ+βpqkℓ)xkℓ+
∑
i̸=p

∑
j ̸=q

∑
k>i
k ̸=p

∑
ℓ ̸=j
ℓ ̸=q

βijkℓxijxkℓ = κ−αpq (29)
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that is formed by fixing xpq = 1 within (28). This equation is valid for all binary x feasible to
the size n− 1 assignment set in the variables xkℓ having k ∈ N p and ℓ ∈ N q. By the second
reason following Definition 4.1, the inductive hypothesis gives us that each coefficient βijkℓ in
(29) having (i, j, k, ℓ) /∈ Spq is uniquely defined in terms of the βijkℓ having (i, j, k, ℓ) ∈ Spq ⊆ S.

Now choose any βrstu found in (28) for which (r, s, t, u) /∈ S. Since n ≥ 6, we can select
p ∈ {1, . . . , n − 3} and q ∈ {1, . . . , n − 3} so that neither r nor t is equal to p and so that
neither s nor u is equal to q. Such a selection ensures that βrstu appears in (29). Since
(r, s, t, u) /∈ S, we have that (r, s, t, u) /∈ Spq and therefore that βrstu is uniquely defined in
terms of the βijkℓ having (i, j, k, ℓ) ∈ Spq ⊆ S.

2. Since (24) and (26) hold for all (x,y) feasible to RLT1′, equation (27) holds for all x ∈ X,
x binary. Additionally, as the extreme points of X are all binary, equation (27) holds for all

x ∈ X. In particular, since x̃ defined by x̃ij = 1
n for all (i, j) has x̃ ∈ X, every d ∈ Rn2

satisfying Hd = 0 must have
∑
k

∑
ℓ

(ᾱkℓ − α̂kℓ)dkℓ = 0 because, for sufficiently small ϵ > 0,

x̃ + ϵd ∈ X, and must therefore satisfy (27). Then no solution exists to Hd = 0 having∑
k

∑
ℓ

(ᾱkℓ − α̂kℓ)dkℓ > 0, so that Farkas’ Lemma (see [9, Section 5.3, pp. 234-237], for

example) shows the existence of a linear combination of the m3 equations Hx = 1 of Figure
1 yielding (27).

This completes the proof.

A consequence of Theorem 4.1 is the corollary below which gives the dimension of the convex
hull of feasible solutions to Problem RLT1′ and, as a result of the second statement of the corollary,

the dimensions of the feasible regions to RLT1
′
and RLT1

′′
.

Corollary 4.2. The dimension of the convex hull of feasible solutions to Problem RLT1′ is n +
(n−1)2(n−2)2

2 . Moreover, every relaxation of the convex hull that enforces the m1 + m2 + m3 =
2(n− 1)3 + n(n− 1) equations of Figure 1 has this same dimension.

Proof. Since the number of variables in RLT1′ is n2 + n2(n−1)2

2 as noted in (12), the dimension of
the convex hull of feasible solutions to Problem RLT1′ is

n+
(n− 1)2(n− 2)2

2
=

(
n2 +

n2(n− 1)2

2

)
−
(
2(n− 1)3 + n(n− 1)

)
,

as follows from Theorem 4.1 combined with, for example, [36, Proposition 2.4, p. 87]. Regarding the
second statement, every relaxation of the convex hull contains the convex hull itself, so its dimension
is at least that of the convex hull. On the other hand, for every relaxation that enforces the equations
of Figure 1, [36, Proposition 2.4, p. 87] gives us that the dimension of the relaxation is at most that
of the convex hull.

4.2 The Necessary and Sufficient Condition for Linearizability

Our necessary and sufficient condition for Problem P to be linearizable, which links the concept of
linearizability to polyhedral theory, follows.

Theorem 4.3. An instance of Problem P is linearizable if and only if the linear program RLT1
′′
is

bounded.
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Proof. Suppose that RLT1
′′
is bounded. Since RLT1

′′
is feasible, a dual solution exists. Compute a

linear combination of equations (8)–(10) using any chosen dual solution to obtain∑
k

∑
ℓ

c̃kℓxkℓ +
∑
i

∑
j

∑
k>i

∑
ℓ̸=j

C ′
ijkℓyijkℓ = 0 ∀ (x,y) feasible to RLT1

′′
, (30)

so that ∑
k

∑
ℓ

c̃kℓxkℓ +
∑
i

∑
j

∑
k>i

∑
ℓ̸=j

C ′
ijkℓxijxkℓ = 0 ∀ x ∈ X, x binary.

In computing (30), we used the fact that any chosen dual solution to RLT1
′′
must yield the objec-

tive coefficient C ′
ijkℓ of RLT1

′′
for each variable yijkℓ, but can yield values c̃kℓ which differ from the

objective coefficients ckℓ of RLT1
′′
corresponding to the variables xkℓ. Rewriting this last equation

with ĉkℓ = ckℓ − c̃kℓ for all (k, ℓ), we obtain (2) with κ = 0 upon recalling that xijxkℓ = xkℓxij and
C ′

ijkℓ = Cijkℓ + Ckℓij for all (i, j, k, ℓ), i < k, j ̸= ℓ.

Now suppose that Problem P is linearizable, so that there exist coefficients ĉkℓ for all (k, ℓ) and
a scalar κ satisfying (2). It follows that

κ+
∑
k

∑
ℓ

ĉkℓxkℓ =
∑
k

∑
ℓ

ckℓxkℓ +
∑
i

∑
j

∑
k>i

∑
ℓ ̸=j

C ′
ijkℓyijkℓ

∀ (x,y) feasible to RLT1′. (31)

Theorem 4.1 gives us that (31) can be computed as a linear combination of the m1 + m2 + m3

equations of Figure 1, which are implied by the constraints of RLT1
′′
. Thus, (31) holds for all (x,y)

feasible to RLT1
′′
so that the objective function to RLT1

′′
can be replaced with κ +

∑
k

∑
ℓ

ĉkℓxkℓ

without changing value at any feasible point. The resulting linear program is an assignment problem

over the set X so that RLT1
′′
is bounded.

Theorem 4.3 is our main result that establishes a connection between linearizability and bound-

edness of RLT1
′′
. Notably, a consequence of this theorem is an algebraic check via the matrices

B,C,D,F , and G of Figure 1 for determining in O(n4) time whether an instance of Problem P
is linearizable. This O(n4) complexity reaffirms, via a different approach, a result of [31]. Our
approach consists of two steps presented below as corollaries to Theorem 4.3. The first step, found
in Corollary 4.4, equates the determination of the linearizability of an instance of Problem P to
checking the consistency of a linear system of equations. The second step, found in Corollary 4.5,
shows that the consistency of these equations can be checked in O(n4) time.

Begin by rewriting Problem RLT1
′′
as Problem R below

R: minimize{cTx+ cT1 y1 + cT2 y2 + cT3 y3 : y1 = −B−1(Ax+Cy2 +Dy3),

y2 = −F−1(Ex+Gy3),Hx = 1, x ≥ 0},

where c, c1, c2, and c3 are column vectors of sizes n1, n2, n3, and n4, respectively, and where we
used the implication from Theorem 4.1 that the m1+m2+m3 equations of Figure 1 form a maximal

LI set of restrictions for RLT1
′′
. We also used the invertibility of the matrices B and F to isolate

the variables y1 and y2 in the constraints.
Now consider the following corollary to Theorem 4.3.

Corollary 4.4. Given an instance of Problem P, rewrite RLT1
′′
in terms of the matrices A through

H of Figure 1 as in Problem R. Then P is linearizable if and only if

cT3 = cT1 B
−1D + (cT2 − cT1 B

−1C)F−1G. (32)
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Proof. Use the first two families of equality constraints in R to sequentially substitute the variables
y1 and y2 out of the objective function to obtain R′ below.

R′: minimize{[cT − cT1 B
−1A− (cT2 − cT1 B

−1C)F−1E]x

+[cT3 − cT1 B
−1D − (cT2 − cT1 B

−1C)F−1G]y3 :

y1 = −B−1(Ax+Cy2 +Dy3),y2 = −F−1(Ex+Gy3),

Hx = 1, x ≥ 0}

Problem RLT1
′′
is bounded if and only if Problem R′ is bounded, and Problem R′ is clearly bounded

if and only if equations (32) hold true. The result follows from Theorem 4.3.

The below result shows that the complexity of determining whether equations (32) are satisfied
is O(n4).

Corollary 4.5. The linearizability of an instance of Problem P can be checked in O(n4) time.

Proof. It is sufficient to show that each of the three matrix products B−1C, B−1D, and F−1G of
(32) contains at most O(n4) nonzero entries. We first show that the total number of nonzero entries
in B−1C and B−1D combined is 4(n − 1)2(n − 2)2, and then show that the number of nonzero

entries in F−1G is 3n2(n−3)2

2 + n(n− 3) + 1.

1. For B−1C and B−1D, compute the representation y1 = −B−1(Ax + Cy2 + Dy3) from
(14)–(18) via the following steps.

• Leave (14)–(16) unchanged.

• Use (14) and (15) to substitute out of (17) all variables yijkℓ having a single index j, k,
or ℓ equal to n to obtain (33).

• Use (14) and (15) to substitute out of (18) all variables yijkℓ having a single index j, k,
or ℓ equal to n to obtain (34).

yknnj = xkn −
∑
i<k

[
xij −

∑
ℓ ̸=j,n

yijkℓ

]
−
∑

k<i<n

[
xij −

∑
ℓ ̸=j,n

ykℓij

]
∀ (j, k), j < n, k < n (33)

ykℓnn = xkℓ −
∑
i<k

[
xkℓ −

∑
j ̸=ℓ,n

yijkℓ

]
−
∑

k<i<n

[
xkℓ −

∑
j ̸=ℓ,n

ykℓij

]
∀ (k, ℓ), k < n, ℓ < n (34)

Equations (14)–(16), (33), and (34) take the form y1 = −B−1(Ax + Cy2 + Dy3). Count
the number of nonzero entries in B−1C and B−1D combined. Each of the (n − 1)2(n − 2)
total equations of (14) and (15) contains n − 2 such entries and each of the (n − 1)2(n − 2)
equations of (16) contains n − 2 such entries. Also, each of the 2(n − 1)2 total equations of
(33) and (34) contains (n − 2)2 such entries. Summing, the total number of such entries is
4(n− 1)2(n− 2)2.

2. For F−1G, compute the representation y2 = −F−1(Ex +Gy3) from (20) and (21) via the
following steps. Here, y2 is as defined in (22) and graphically depicted in Figure 3.

• Select the (n−1)(n−2)
2 − 1 equations of (20) having j < n− 2 to obtain (35).

• Select the (n−1)(n−2)
2 − 1 equations of (21) having i < n− 2 to obtain (36).
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• Select the equation of (20) having (j, ℓ) = (n − 2, n − 1). Use (36) to substitute out
variables yijkℓ with (j, ℓ) = (n− 2, n− 1), i < k < n, and i < n− 2 to obtain (37).

y(n−2)j(n−1)ℓ = −xnj +
∑
k<n

xkℓ − y(n−2)ℓ(n−1)j −
n−3∑
i=1

n−1∑
k=i+1

(yijkℓ + yiℓkj)

∀ (j, ℓ), j < ℓ < n, j < n− 2 (35)

yi(n−2)k(n−1) = −xin +
∑
ℓ<n

xkℓ − yi(n−1)k(n−2) −
n−3∑
j=1

n−1∑
ℓ=j+1

(yijkℓ + yiℓkj)

∀ (i, k), i < k < n, i < n− 2 (36)

y(n−2)(n−2)(n−1)(n−1) = −xn(n−2) +
∑
k<n

xk(n−1) − y(n−2)(n−1)(n−1)(n−2)

−
n−3∑
i=1

n−1∑
k=i+1

[
−xin +

∑
ℓ<n

xkℓ −
n−3∑
j=1

n−1∑
ℓ=j+1

(yijkℓ + yiℓkj)
]

(37)

Equations (35)–(37) take the form y2 = −F−1(Ex + Gy3). Count the number of nonzero
entries in F−1G. Each of the (n − 1)(n − 2) − 2 total equations of (35) and (36) contains

(n − 1)(n − 2) − 1 such entries, and the single equation of (37) contains n2(n−3)2

2 + 1 such

entries. Summing, the total number of such entries is 3n2(n−3)2

2 + n(n− 3) + 1.

We conclude this section with three remarks. First, we answer an open question of [28] relative
to obtaining the best possible “linearization-based” bound for the QAP. The work of [28] presents
a methodology for using linearizable objective structures to obtain linearization-based bounds for
quadratic combinatorial optimization problems. In general, to obtain the best possible such bound,
a spanning set of linearizable objective coefficients (see [28, Definition 1]) is needed. For the QAP,
this paper reported generating such a spanning set by brute force computation for instances having
n ≤ 9. For larger n, the spanning set remained unknown. The paper left as an open question
whether the best linearization-based bound can exceed that of the level-1 RLT. Theorems 4.1 and
4.3 combine to give a spanning set for general n and answer the question negatively. In fact, Theorem
4.1 not only gives an explicit representation of such a spanning set for general n by showing that the

equality constraints of RLT1
′′
span the set of linearizable objective functions, but it also establishes

the equations of Figure 1 as providing a maximal LI such set.
Second, Theorem 4.3 and Corollaries 4.4 and 4.5 explain the linearizable property in terms of the

linear program RLT1
′′
, but the related linear program RLT1

′
can solve a richer family of instances

of Problem P than those that are linearizable. The feasible region to RLT1
′
is contained within that

of RLT1
′′
so it is reasonable to expect that there exist instances where the former has an optimal

binary solution but the latter does not. This is indeed the case, as [7, Example 2] presents an

instance of Problem P where RLT1
′
gives an optimal binary solution, but RLT1

′′
is unbounded.

Using Theorem 4.3, we can now conclude that the given example is not linearizable.

Finally, if the linear program RLT1
′′
is bounded, then it has an optimal binary solution, and

consequently so does RLT1
′
. This implication, which follows from [7, Theorem 2], is readily explained

in terms of the proof of Theorem 4.3. As noted in the “if” direction, computing a linear combination

of (8)–(10) using any dual solution gives (30). Then the objective function to RLT1
′′
can be replaced

with
∑
k

∑
ℓ

(ckℓ− c̃kℓ)xkℓ without changing value at any feasible point. The resulting linear program

is an assignment problem over the set X with all binary extreme points. (The implication also
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follows from the equivalence between Problems RLT1
′′
and R′ found in the proof of Corollary 4.4

since RLT1
′′
bounded reduces R′ to an assignment problem over X.)

5 Conclusions and Future Research

This paper provides a simply-stated, polyhedral-based necessary and sufficient condition for identi-
fying an instance of the QAP as being linearizable. The notion of QAP linearizability has garnered
attention in the literature because, even though the QAP is known to be NP-hard in general, a
linearizable instance is solvable as an assignment problem. Our analysis is novel in that it relies on
the boundedness of a linear program. Notably, the form that we employ was used by [7] to explain
several sufficient conditions for linearizability found in [10, 14, 23], but no mention was made as
to the more challenging direction of necessity. Our approach is different than alternate methods
found in [31], which use decompositions of the objective coefficients. It also allows us to answer an
open question of [28] by giving the best possible linearization-based bound, and by doing so with a
minimal number of constraints.

A consequence of our analysis is the potential for improved solution methods. Since we have
available a maximal LI set of equations in the space of the level-1 RLT formulation, we have the

option to construct reduced versions of RLT1
′
by replacing the 2n2(n− 1)+ 2n equality constraints

with a maximal LI set of 2(n − 1)3 + n(n − 1) equations, lessening the number of equations by
3n2 − 3n + 2. As all omitted equations are implied, the reduced form does not sacrifice relaxation

strength. Given the recognized tightness [2, 30] of RLT1
′
, this reduction may prove fruitful in

branch-and-bound routines. The challenge now is to exploit the structure of the LI equations when
solving the linear programming relaxations.

In addition to providing a polyhedral perspective on linearizability, Problem RLT1
′
gives insights

into a role of linearizability for solving instances of the QAP which are not linearizable. Suppose

that RLT1
′
is solved for some instance of the QAP. As noted earlier, if the instance is linearizable,

then RLT1
′
will have an optimal binary solution. If the instance is not linearizable, then the reduced

costs on the variables y within RLT1
′
cannot all be 0. In this latter case, the nonzero reduced costs

can be used to guide branch-and-bound routines, as well as to serve as the basis for “hot starts” in
computing bounds. Updated such costs with hot starts were used within a decomposition method
[2, 30] to solve the continuous relaxation of RLT1 that relaxes the binary restrictions on x in (7), and
formed the basis of a global solution procedure for Problem P based on the level-2 RLT form [1]. The
branching on nonzero reduced costs within an enumerative routine can be envisioned as searching
for sub-instances of a QAP that are linearizable, and thus permit fathoming at the identified partial
binary solutions.

Additional research directions involve the level-1 and higher-level RLT forms, both for the QAP
and related problems. For the QAP, we conjecture that higher-level forms can be used to identify new
sets of conditions, other than linearizable, that permit solving in polynomial time. Known conditions
that show promise in this regard are found in [10, 12, 15, 16, 19, 22, 34]. For related problems such as
the quadratic shortest path and the quadratic semi-assignment, usage of the level-1 RLT to identify
a maximal LI set of equations holds promise for novel characterizations of linearizable instances.
Research in these directions is underway.
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6 Appendix

Theorem 3, Part 1 - Base Cases Consider an assignment set X of size n = 3, n = 4, or n = 5.
Given an equation of the form∑

k

∑
ℓ

αkℓxkℓ +
∑
i

∑
j

∑
k>i

∑
ℓ ̸=j

βijkℓxijxkℓ = κ (38)

that is satisfied for all x ∈ X, x binary, each βijkℓ having (i, j, k, ℓ) /∈ S is uniquely defined in terms
of the βijkℓ having (i, j, k, ℓ) ∈ S.

Proof. For n = 3 and n = 4, the proof explicitly states the n-factorial equations obtained by
individually inserting each solution to x ∈ X, x binary, within (38), and then computes linear
combinations of these equations to suitably define the βijkℓ having (i, j, k, ℓ) /∈ S. For n = 5, the
proof uses both an argument identical to the inductive step found in Part 1 of the proof of Theorem
4.1 and the approach of cases n = 3 and n = 4 to compute linear combinations of equations resulting
from (38). For this last case, the n-factorial equations are not explicitly stated for the sake of brevity.

We first define useful notation for given n. Let R denote the set of all 4-tuples (i, j, k, ℓ) ∈
N ×N ×N ×N having i < k, j ̸= ℓ, for which (i, j, k, ℓ) /∈ S. Consistent with Figure 1, we then have

R = {(i, j, k, ℓ) : yijkℓ ∈ y3} and |R| = n4 = (n−3)(n−2)(n−1)n
n + 1. Furthermore, distinguish each of

the n-factorial solutions to x ∈ X, x binary, with a distinct row vector in Rn in the following manner:
each row vector, say θ ∈ Rn, consists of a permutation of the numbers 1, . . . , n, so that xθ denotes
the binary solution having xiθ(i) = 1 for all i and xij = 0 otherwise. For example, when n = 3
and θ = (3, 1, 2), then xθ ≡ x(3,1,2) has x13 = x21 = x32 = 1, and xij = 0 otherwise. Let E(xθ)
denote the equation obtained by setting x = xθ within (38), and let f(xθ) denote the sum of the
terms within E(xθ) that correspond to those (i, j, k, ℓ) ∈ S, so that f(xθ) ≡

∑
(i,j,k,ℓ)∈S βijkℓxijxkℓ

evaluated at x = xθ.

Base Case: n = 3 There are 3-factorial = 6 solutions to x ∈ X, x binary, and R = {(1, 2, 2, 1)}.
The 6 equations resulting from (38) are listed below.

(1) E(x(1,2,3)) : α11 + α22 + α33 + f(x(1,2,3)) = κ

(2) E(x(1,3,2)) : α11 + α23 + α32 + f(x(1,3,2)) = κ

(3) E(x(2,1,3)) : α12 + α21 + α33 + f(x(2,1,3)) + β1221 = κ

(4) E(x(2,3,1)) : α12 + α23 + α31 + f(x(2,3,1)) = κ

(5) E(x(3,1,2)) : α13 + α21 + α32 + f(x(3,1,2)) = κ

(6) E(x(3,2,1)) : α13 + α22 + α31 + f(x(3,2,1)) = κ

Compute the linear combination

E(x(1,2,3))− E(x(1,3,2))− E(x(2,1,3)) + E(x(2,3,1)) + E(x(3,1,2))− E(x(3,2,1))

of these equations to obtain that

β1221 = f(x(1,2,3))− f(x(1,3,2))− f(x(2,1,3)) + f(x(2,3,1)) + f(x(3,1,2))− f(x(3,2,1)).

This completes the n = 3 base case.

Base Case: n = 4 There are 4-factorial = 24 solutions to x ∈ X, x binary, and R = {(1, 1, 2, 2),
(1, 1, 2, 3), (1, 1, 3, 2), (1, 1, 3, 3), (1, 2, 2, 1), (1, 2, 3, 1), (1, 3, 2, 1), (1, 3, 2, 2), (1, 3, 3, 1), (1, 3, 3, 2),
(2, 2, 3, 1), (2, 3, 3, 1), (2, 3, 3, 2)}. The 24 equations resulting from (38) are listed below.

(1) E(x(1,2,3,4)) : α11 + α22 + α33 + α44 + β1122 + β1133 + f(x(1,2,3,4)) = κ
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(2) E(x(1,2,4,3)) : α11 + α22 + α34 + α43 + β1122 + f(x(1,2,4,3)) = κ

(3) E(x(1,3,2,4)) : α11 + α23 + α32 + α44 + β1123 + β1132 + β2332 + f(x(1,3,2,4)) = κ

(4) E(x(1,3,4,2)) : α11 + α23 + α34 + α42 + β1123 + f(x(1,3,4,2)) = κ

(5) E(x(1,4,2,3)) : α11 + α24 + α32 + α43 + β1132 + f(x(1,4,2,3)) = κ

(6) E(x(1,4,3,2)) : α11 + α24 + α33 + α42 + β1133 + f(x(1,4,3,2)) = κ

(7) E(x(2,1,3,4)) : α12 + α21 + α33 + α44 + β1221 + f(x(2,1,3,4)) = κ

(8) E(x(2,1,4,3)) : α12 + α21 + α34 + α43 + β1221 + f(x(2,1,4,3)) = κ

(9) E(x(2,3,1,4)) : α12 + α23 + α31 + α44 + β1231 + β2331 + f(x(2,3,1,4)) = κ

(10) E(x(2,3,4,1)) : α12 + α23 + α34 + α41 + f(x(2,3,4,1)) = κ

(11) E(x(2,4,1,3)) : α12 + α24 + α31 + α43 + β1231 + f(x(2,4,1,3)) = κ

(12) E(x(2,4,3,1)) : α12 + α24 + α33 + α41 + f(x(2,4,3,1)) = κ

(13) E(x(3,1,2,4)) : α13 + α21 + α32 + α44 + β1321 + β1332 + f(x(3,1,2,4)) = κ

(14) E(x(3,1,4,2)) : α13 + α21 + α34 + α42 + β1321 + f(x(3,1,4,2)) = κ

(15) E(x(3,2,1,4)) : α13 + α22 + α31 + α44 + β1322 + β1331 + β2231 + f(x(3,2,1,4)) = κ

(16) E(x(3,2,4,1)) : α13 + α22 + α34 + α41 + β1322 + f(x(3,2,4,1)) = κ

(17) E(x(3,4,1,2)) : α13 + α24 + α31 + α42 + β1331 + f(x(3,4,1,2)) = κ

(18) E(x(3,4,2,1)) : α13 + α24 + α32 + α41 + β1332 + f(x(3,4,2,1)) = κ

(19) E(x(4,1,2,3)) : α14 + α21 + α32 + α43 + f(x(4,1,2,3)) = κ

(20) E(x(4,1,3,2)) : α14 + α21 + α33 + α42 + f(x(4,1,3,2)) = κ

(21) E(x(4,2,1,3)) : α14 + α22 + α31 + α43 + β2231 + f(x(4,2,1,3)) = κ

(22) E(x(4,2,3,1)) : α14 + α22 + α33 + α41 + f(x(4,2,3,1)) = κ

(23) E(x(4,3,1,2)) : α14 + α23 + α31 + α42 + β2331 + f(x(4,3,1,2)) = κ

(24) E(x(4,3,2,1)) : α14 + α23 + α32 + α41 + β2332 + f(x(4,3,2,1)) = κ

The 13 linear combinations of equation numbers (1)–(24) listed below use the functions f(xθ) to
recursively express the |R| = 13 coefficients βijkℓ having (i, j, k, ℓ) ∈ R in terms of the βijkℓ having
(i, j, k, ℓ) ∈ S. For simplicity in presentation, we refer to the equations by their corresponding
numbers.

• (1)− (2)− (3) + (4) + (5)− (6):
β2332 = f(x(1,2,3,4))− f(x(1,2,4,3))− f(x(1,3,2,4)) + f(x(1,3,4,2)) + f(x(1,4,2,3))− f(x(1,4,3,2))

• (7)− (8)− (9) + (10) + (11)− (12):
β2331 = f(x(2,1,3,4))− f(x(2,1,4,3))− f(x(2,3,1,4)) + f(x(2,3,4,1)) + f(x(2,4,1,3))− f(x(2,4,3,1))

• (13)− (14)− (15) + (16) + (17)− (18):
β2231 = f(x(3,1,2,4))− f(x(3,1,4,2))− f(x(3,2,1,4)) + f(x(3,2,4,1)) + f(x(3,4,1,2))− f(x(3,4,2,1))

• (7)− (8)− (13) + (14) + (19)− (20):
β1332 = f(x(2,1,3,4))− f(x(2,1,4,3))− f(x(3,1,2,4)) + f(x(3,1,4,2)) + f(x(4,1,2,3))− f(x(4,1,3,2))

• (9)− (11)− (15) + (17) + (21)− (23):
β1322 = f(x(2,3,1,4))− f(x(2,4,1,3))− f(x(3,2,1,4)) + f(x(3,4,1,2)) + f(x(4,2,1,3))− f(x(4,3,1,2))

• (1)− (2)− (7) + (8):
β1133 = −f(x(1,2,3,4)) + f(x(1,2,4,3)) + f(x(2,1,3,4))− f(x(2,1,4,3))

• (3)− (5)− (9) + (11):
β1123 = −f(x(1,3,2,4)) + f(x(1,4,2,3)) + f(x(2,3,1,4))− f(x(2,4,1,3)) + β2331 − β2332
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• (8)− (10)− (19) + (24):
β1221 = −f(x(2,1,4,3)) + f(x(2,3,4,1)) + f(x(4,1,2,3))− f(x(4,3,2,1))− β2332

• (7)− (12)− (13) + (18):
β1321 = f(x(2,1,3,4))− f(x(2,4,3,1))− f(x(3,1,2,4)) + f(x(3,4,2,1)) + β1221

• (1)− (6)− (15) + (17):
β1122 = −f(x(1,2,3,4)) + f(x(1,4,3,2)) + f(x(3,2,1,4))− f(x(3,4,1,2)) + β1322 + β2231

• (11)− (12)− (21) + (22):
β1231 = −f(x(2,4,1,3)) + f(x(2,4,3,1)) + f(x(4,2,1,3))− f(x(4,2,3,1)) + β2231

• (9)− (10)− (15) + (16):
β1331 = f(x(2,3,1,4))− f(x(2,3,4,1))− f(x(3,2,1,4)) + f(x(3,2,4,1)) + β1231 − β2231 + β2331

• (3)− (4)− (13) + (14):
β1132 = −f(x(1,3,2,4)) + f(x(1,3,4,2)) + f(x(3,1,2,4))− f(x(3,1,4,2)) + β1332 − β2332

This completes the n = 4 base case.

Base Case: n = 5 For this case, |R| = 61. We begin with an argument identical to the inductive
step found in Part 1 of the proof of Theorem 4.1 to establish the result for those βijkℓ ∈ R having
(i, k) ̸= (1, 2), (j, ℓ) ̸= (1, 2), and (j, ℓ) ̸= (2, 1). Specifically, these are the 41 βijkℓ having (i, j, k, ℓ) ∈
R−R0, where

R0 ≡ {(1, 1, 2, 2), (1, 1, 2, 3), (1, 1, 2, 4), (1, 1, 3, 2), (1, 1, 4, 2), (1, 2, 2, 1),
(1, 2, 2, 3), (1, 2, 2, 4), (1, 2, 3, 1), (1, 2, 4, 1), (1, 3, 2, 1), (1, 3, 2, 2),

(1, 4, 2, 1), (1, 4, 2, 2), (1, 4, 2, 3), (2, 1, 3, 2), (2, 1, 4, 2), (2, 2, 3, 1),

(2, 2, 4, 1), (3, 2, 4, 1)}.

For any (p, q) having p ∈ {1, 2} and q ∈ {1, 2}, consider the equation formed by fixing xpq = 1
within (38). This equation, given by∑

k<p

∑
ℓ ̸=q

(αkℓ + βkℓpq)xkℓ +
∑
k>p

∑
ℓ ̸=q

(αkℓ + βpqkℓ)xkℓ +
∑
i ̸=p

∑
j ̸=q

∑
k>i
k ̸=p

∑
ℓ̸=j
ℓ̸=q

βijkℓxijxkℓ = κ− αpq, (39)

is of the form (38) and is valid for all binary x feasible to the size n = 4 assignment set in the
variables xkℓ having k ∈ N p and ℓ ∈ N q. By the second reason following Definition 4.1, the n = 4
base case gives us that each coefficient βijkℓ in (39) having (i, j, k, ℓ) /∈ Spq is uniquely defined in
terms of the βijkℓ having (i, j, k, ℓ) ∈ Spq ⊆ S.

Consider any βrstu found in (38) for which (r, s, t, u) ∈ R − R0. By definition of the set R0,
we can select p ∈ {1, 2} and q ∈ {1, 2} so that neither r nor t is equal to p and so that neither s
nor u is equal to q. Such a selection ensures that βrstu appears in (39). Since (r, s, t, u) /∈ S, we
have that (r, s, t, u) /∈ Spq and therefore that βrstu is uniquely defined in terms of the βijkℓ having
(i, j, k, ℓ) ∈ Spq ⊆ S, as desired.

We now prove the result for the βijkℓ having (i, j, k, ℓ) ∈ R0 in a similar fashion as to the n = 3
and n = 4 base cases, but for brevity do not explicitly state the equations resulting from (38). We
instead specify linear combinations that recursively express these |R0| = 20 βijkℓ in terms of the
βijkℓ having (i, j, k, ℓ) ∈ S ∪ (R − R0). These linear combinations establish the result because, as
shown above, every βijkℓ having (i, j, k, ℓ) ∈ (R−R0) is uniquely defined in terms of the βijkℓ having
(i, j, k, ℓ) ∈ S.
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• E(x(3,4,1,2,5))−E(x(3,4,1,5,2))−E(x(3,4,2,1,5))+E(x(3,4,2,5,1))+E(x(3,4,5,1,2))−E(x(3,4,5,2,1)) :
β3241 = f(x(3,4,1,2,5))− f(x(3,4,1,5,2))− f(x(3,4,2,1,5)) + f(x(3,4,2,5,1))

+ f(x(3,4,5,1,2))− f(x(3,4,5,2,1))

• E(x(3,2,5,1,4))− E(x(3,2,5,4,1))− E(x(3,5,2,1,4)) + E(x(3,5,2,4,1)) :
β2241 = −f(x(3,2,5,1,4)) + f(x(3,2,5,4,1)) + f(x(3,5,2,1,4))− f(x(3,5,2,4,1))

+ β2244 + β3241

• E(x(3,2,1,5,4))− E(x(3,2,4,5,1))− E(x(3,5,1,2,4)) + E(x(3,5,4,2,1)) :
β2231 = −f(x(3,2,1,5,4)) + f(x(3,2,4,5,1)) + f(x(3,5,1,2,4))− f(x(3,5,4,2,1))

+ β2234 − β3442

• E(x(3,1,4,2,5))− E(x(3,1,4,5,2))− E(x(3,4,1,2,5)) + E(x(3,4,1,5,2)) :
β2142 = −f(x(3,1,4,2,5)) + f(x(3,1,4,5,2)) + f(x(3,4,1,2,5))− f(x(3,4,1,5,2))

+ β2442 − β3442

• E(x(3,1,2,4,5))− E(x(3,1,5,4,2))− E(x(3,4,2,1,5)) + E(x(3,4,5,1,2)) :
β2132 = −f(x(3,1,2,4,5)) + f(x(3,1,5,4,2)) + f(x(3,4,2,1,5))− f(x(3,4,5,1,2))

+ β2432 + β3241

• E(x(3,2,1,5,4))− E(x(3,4,1,5,2))− E(x(5,2,1,3,4)) + E(x(5,4,1,3,2)) :
β1322 = −f(x(3,2,1,5,4)) + f(x(3,4,1,5,2)) + f(x(5,2,1,3,4))− f(x(5,4,1,3,2))

+ β2243 − β2443

• E(x(3,2,1,4,5))− E(x(3,5,1,4,2))− E(x(4,2,1,3,5)) + E(x(4,5,1,3,2)) :
β1422 = f(x(3,2,1,4,5))− f(x(3,5,1,4,2))− f(x(4,2,1,3,5)) + f(x(4,5,1,3,2))

+ β1322 − β2243 + β2244

• E(x(4,2,1,5,3))− E(x(4,3,1,5,2))− E(x(5,2,1,4,3)) + E(x(5,3,1,4,2)) :
β1423 = f(x(4,2,1,5,3))− f(x(4,3,1,5,2))− f(x(5,2,1,4,3)) + f(x(5,3,1,4,2))

+ β1422 − β2244

• E(x(2,4,1,3,5))− E(x(2,5,1,3,4))− E(x(3,4,1,2,5)) + E(x(3,5,1,2,4)) :
β1224 = −f(x(2,4,1,3,5)) + f(x(2,5,1,3,4)) + f(x(3,4,1,2,5))− f(x(3,5,1,2,4))

+ β2442 − β2443

• E(x(2,3,1,4,5))− E(x(2,5,1,4,3))− E(x(4,3,1,2,5)) + E(x(4,5,1,2,3)) :
β1223 = −f(x(2,3,1,4,5)) + f(x(2,5,1,4,3)) + f(x(4,3,1,2,5))− f(x(4,5,1,2,3))

+ β1423 + β2342

• E(x(1,3,2,4,5))− E(x(1,3,5,4,2))− E(x(4,3,2,1,5)) + E(x(4,3,5,1,2)) :
β1132 = −f(x(1,3,2,4,5)) + f(x(1,3,5,4,2)) + f(x(4,3,2,1,5))− f(x(4,3,5,1,2))

+ β1432 + β3241

• E(x(1,3,4,2,5))− E(x(1,3,4,5,2))− E(x(4,3,1,2,5)) + E(x(4,3,1,5,2)) :
β1142 = −f(x(1,3,4,2,5)) + f(x(1,3,4,5,2)) + f(x(4,3,1,2,5))− f(x(4,3,1,5,2))

+ β1442 − β3442

• E(x(2,3,1,5,4))− E(x(2,3,4,5,1))− E(x(5,3,1,2,4)) + E(x(5,3,4,2,1)) :
β1231 = −f(x(2,3,1,5,4)) + f(x(2,3,4,5,1)) + f(x(5,3,1,2,4))− f(x(5,3,4,2,1))

+ β1234 − β3442

• E(x(2,3,5,1,4))− E(x(2,3,5,4,1))− E(x(5,3,2,1,4)) + E(x(5,3,2,4,1)) :
β1241 = −f(x(2,3,5,1,4)) + f(x(2,3,5,4,1)) + f(x(5,3,2,1,4))− f(x(5,3,2,4,1))

+ β1244 + β3241

• E(x(3,1,2,5,4))− E(x(3,4,2,5,1))− E(x(5,1,2,3,4)) + E(x(5,4,2,3,1)) :
β1321 = −f(x(3,1,2,5,4)) + f(x(3,4,2,5,1)) + f(x(5,1,2,3,4))− f(x(5,4,2,3,1))

+ β2143 − β2443

21



Characterizing Linearizable QAPs by the Level-1 RLT

• E(x(3,1,2,4,5))− E(x(3,5,2,4,1))− E(x(4,1,2,3,5)) + E(x(4,5,2,3,1)) :
β1421 = f(x(3,1,2,4,5))− f(x(3,5,2,4,1))− f(x(4,1,2,3,5)) + f(x(4,5,2,3,1))

+ β1321 − β2143 + β2144

• E(x(1,3,2,4,5))− E(x(1,5,2,4,3))− E(x(4,3,2,1,5)) + E(x(4,5,2,1,3)) :
β1123 = −f(x(1,3,2,4,5)) + f(x(1,5,2,4,3)) + f(x(4,3,2,1,5))− f(x(4,5,2,1,3))

+ β1423 + β2341

• E(x(1,4,2,3,5))− E(x(1,5,2,3,4))− E(x(3,4,2,1,5)) + E(x(3,5,2,1,4)) :
β1124 = −f(x(1,4,2,3,5)) + f(x(1,5,2,3,4)) + f(x(3,4,2,1,5))− f(x(3,5,2,1,4))

+ β2441 − β2443

• E(x(1,2,3,4,5))− E(x(1,5,3,4,2))− E(x(4,2,3,1,5)) + E(x(4,5,3,1,2)) :
β1122 = −f(x(1,2,3,4,5)) + f(x(1,5,3,4,2)) + f(x(4,2,3,1,5))− f(x(4,5,3,1,2))

+ β1422 + β2241 − β2244

• E(x(2,1,3,5,4))− E(x(2,4,3,5,1))− E(x(5,1,3,2,4)) + E(x(5,4,3,2,1)) :
β1221 = −f(x(2,1,3,5,4)) + f(x(2,4,3,5,1)) + f(x(5,1,3,2,4))− f(x(5,4,3,2,1))

+ β1224 + β2142 − β2442

This completes the n = 5 base case.
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