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Abstract

Security proof methods for quantum key distribution, QKD, that are based on the nu-
merical key rate calculation problem, are powerful in principle. However, the practicality
of the methods are limited by computational resources and the efficiency and accuracy of
the underlying algorithms for convex optimization. We derive a stable reformulation of the
convex nonlinear semidefinite programming, SDP, model for the key rate calculation prob-
lems. We use this to develop an efficient, accurate algorithm. The reformulation is based
on novel forms of facial reduction, FR, for both the linear constraints and nonlinear relative
entropy objective function. This allows for a Gauss-Newton type interior-point approach that
avoids the need for perturbations to obtain strict feasibility, a technique currently used in the
literature. The result is high accuracy solutions with theoretically proven lower bounds for
the original QKD from the FR stable reformulation. This provides novel contributions for
FR for general SDP.

We report on empirical results that dramatically improve on speed and accuracy, as well
as solving previously intractable problems.
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1 Introduction

We derive a stable reformulation of the convex semidefinite programming, SDP, model for the key
rate calculation for quantum key distribution, QKD, problems. We use this to derive efficient,
accurate, algorithms for the problem, in particular, for finding provable lower bounds for the
problem. The reformulation is based on a novel facial reduction, FR, approach. We exploit the
Kronecker structure and do FR first for the linear constraints to guarantee a positive definite,
strictly feasible solution. Second we exploit the properties of the completely positive maps
and do FR on the nonlinear, quantum relative entropy objective function, to guarantee positive
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definiteness of its arguments. This allows for a Gauss-Newton type interior-point approach that
avoids the need for perturbations to obtain positive definiteness, a technique currently used in
the literature. The result is high accuracy solutions with provable lower (and upper) bounds for
the convex minimization problem. We note that the convex minimization problem is designed to
provide a lower bound for the key rate.

Quantum key distribution, QKD [25, 30], is the art of distributing a secret key between two
honest parties, traditionally known as Alice and Bob. A secret key rate1 calculation is at the
core of a security proof for any QKD protocol. It has been formulated as a convex optimization
problem for both asymptotic [7,29] and finite-size regimes [16]. We note that finite-size key rate
problems involve a variation of the asymptotic key rate formulation. In this paper we consider
the specific problem setup for the asymptotic key rate calculation [29]:

minρ D(G(ρ)‖Z(G(ρ)))
s.t. Γ(ρ) = γ,

ρ � 0.
(1.1)

Here: the objective function D(δ‖σ) =f(δ, σ) = Tr (δ(log δ − log σ)) is the quantum relative
entropy; Γ : Hn → Rm is a linear map defined by Γ(ρ) = (Tr(Γiρ)); Hn is the linear space of
Hermitian matrices over the reals; and γ ∈ Rm . In this problem, {Γi} is a set of Hermitian matri-
ces corresponding to physical observables. The data pairs Γi, γi are known observation statistics
that include the Tr(ρ) = 1 constraint. The maps G and Z are linear, completely positive maps
that are specified according to the description of a QKD protocol. In general, G is trace-non-
increasing, while Z is trace-preserving and its Kraus operators are a resolution of identity. The
maps are usually represented via the so-called operator-sum (or Kraus operator) representation.
(More details on these representation are given below as needed; see also Definition 3.1.)

Without loss of generality we can assume that the feasible set, a spectrahedron, is nonempty.
This is because our problem is related to a physical scenario, and we can trivially set the key
rate to be zero when the feasible set is empty. Note that the Hermitian (positive semidefinite,
density) matrix ρ is the only variable in the above (1.1) optimization problem. Motivated by
the fact that the mappings G,Z ◦G are positive semidefinite preserving but possibly not positive
definite preserving, we rewrite (1.1) as follows:2

minρ,σ,δ Tr(δ(log δ − log σ))
s.t. Γ(ρ) = γ

σ = Z(δ)
δ = G(ρ)
ρ, σ, δ � 0.

(1.2)

The asymptotic key rate is obtained by getting a reliable lower bound of this problem and
then removing the cost of error correction. The latter is determined experimentally or directly es-
timated from the observation statistics. In principle, any (device-dependent) QKD protocol can
be analyzed in this framework given in (1.2). This includes measurement-device-independent,
and both discrete-variable and continuous-variable protocols. This is typically done after in-
troducing suitable tools to reduce dimension, e.g., the squashing models [31], or the dimension
reduction method [27]. In reality, the success of this security proof method is often limited by
computational resources, as well as the efficiency and accuracy of underlying algorithms.

The work in [29] provides a reliable framework to compute the key rate using a two-step
routine. In the first step, one tries to efficiently find a near optimal, feasible point, of the

1the number of bits of secret key obtained per exchange of quantum signal
2This allows us to regularize below using facial reduction, FR.
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optimization problem (1.1). In the second step, one then obtains a reliable lower bound from
this feasible point by a linearization and duality argument. In terms of numerical computation,
the bottleneck of this approach for large-size QKD problems comes from the first step, as it
involves semidefinite optimization with a nonlinear objective function. In particular, the work
in [29] proposes an algorithm based on the Frank-Wolfe method to solve the first step. However
hthis can converge slowly in practice. We note that Faybusovich and Zhou [14] also attempted to
provide a more efficient algorithm based on the long-step path-following interior-point method for
QKD key rate calculation problem. However, their discussions were restricted to real symmetric
matrices, while for QKD key rate calculation, it is important to handle Hermitian matrices.
Although it might be possible to extend the algorithm in [14] to deal with Hermitian matrices,
currently the extension was not done and thus, we cannot directly compare our algorithms with
theirs. In addition, the problem formulation used in [14] does not guarantee positive definiteness
of the matrices involved in the objective function. Therefore, they perturb the solution by adding
a small identity matrix. This perturbation is not required in our new method in this paper due
to the regularization using facial reduction, FR.

Due to the structure of the linear mapping G, the matrix δ is often singular in (1.2). There-
fore strict feasibility fails in (1.2). This indicates that the objective function, the relative entropy
function is evaluated on singular matrices in both (1.1) and (1.2), creating theoretical and nu-
merical difficulties. In fact, the domain of the problem that guarantees finiteness for the objective
function, requires restrictions on the ranges of the linear mappings. By moving back and forth
between equivalent formulations of the types in (1.1) and (1.2), we derive a regularized model
that simplifies type (1.1), and where positive definiteness is preserved. In particular, the reg-
ularization allows for an efficient interior point method even though the objective function is
not differentiable on the boundary of the semidefinite cone. This allows for efficient algorithmic
developments. In addition, this enables us to accurately solve previously intractable problems.

1.1 Outline and Main Results

In Section 2 we present the preliminary notations and convex analysis tools that we need. In
particular, we include details about the linear maps and adjoints and basic facial reduction, FR,
needed for our algorithms; see Sections 2.3 and 2.4.

The details and need for facial reduction, FR, is discussed in Section 3. This is due to the loss
of strict feasiblity for the linear constraints for some classes of instances, as well as the loss of rank
in the linear map G in the nonlinear objective function. The FR guarantees that the objective
function f is well defined for all positive definite density matrices. Therefore, the domain of f
is not implicitly defined by conditions that guarantee finiteness in (1.1). Equivalently, we have
that strict feasibility holds in (1.2). A partial FR is based on singularity sometimes encountered
from the reduced density operator constraint, Section 3.3.1. A second type of FR is done on the
completely positive mappings of the objective function, Section 3.3.2. Both of these are based
on spectral decompositions and rotations and are therefore very accurate. The result is a much
simplified problem (3.22) where strict feasibility holds and the objective function arguments
preserve positive definiteness. In addition, we discuss the differentiability, both first and second
order, in Corollary 3.7.

In Section 4 we begin with the optimality conditions and a projected Gauss-Newton, GN,
interior point method. This uses the modified objective function that is well defined for positive
definite density matrices, ρ � 0. We use the stable GN search direction for the primal-dual
interior-point, p-d i-p, method. This avoids unstable backsolve steps for the search direction.
We also use a sparse preserving nullspace representation for the primal feasibility in Section 4.5.2.
This provides for exact primal feasibility steps during the algorithm. Optimal diagonal precon-
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dition for the linear system is presented in Section 4.5.3.
Our upper and lower bounding techniques are give in Section 4.6. In particular, we provide

novel theoretical based lower bounding techniques for the FR and original problem in Corollar-
ies 4.7 and 4.9, respectively.3

Applications to the security analysis of some selected QKD protocols are given in Section 5.
This includes comparisons with other codes as well as solutions of problems that could not be
solved previously. We include the lower bounds and illustrate its strength by including the relative
gaps between lower and upper bounds; and we compare with the abalytical optimal values when
it is possible to do so.

We provide concluding remarks in Section 6. Technical proofs, further references and results,
appear in Appendices A and B. The details for six protocol examples used in our tests are given
in Appendix C.

2 Preliminaries

We now present the notations and convex analysis background.
The asymptotic key rate R∞ is given by the Devetak-Winter formula [11] that can be written

in the following form [29]:

R∞ = min
ρ
D(G(ρ)‖Z(G(ρ)))− ppassδEC, (2.1)

where the first term is the quantum relative entropy function from (1.1), ppass is the probability
that a given signal is used for the key generation rounds, and δEC is the cost of error correction
per round. The last two parameters are directly determined by observed data. Thus, the essential
part of the quantum key distribution rate computation is to solve the following nonlinear convex
semidefinite program as in (1.1):

min{f(ρ) : Γ(ρ) = γ, ρ � 0}, (2.2)

where the objective function f is the quantum relative entropy function as shown in (2.1), and
the constraint set is a spectrahedron, i.e., the intersection of an affine manifold and the positive
semidefinite cone. The affine manifold is defined using the linear map for the linear equality
constraints in (2.2):

Γ(ρ) = (Tr(Γiρ)) , i = 1, . . . ,m, Γ : Hn → Rm .

These are divided into two sets: the observational and reduced density operator constraint sets,
i.e., SR ∩ SO.

The set of state ρ satisfying the observational constraints is given by

SO =
{
ρ � 0 : 〈PAs ⊗ PBt , ρ〉 = pst, ∀st

}
, (2.3)

where we let nA, nB be the sizes PAs ∈ HnA , PBt ∈ HnB , respectively; and we denote the Kronecker
product, ⊗. We set n = nAnB which is the size of ρ.

The set of state ρ satisfying the constraints with respect to the reduced density operator, ρA,
is

SR = {ρ � 0 : TrB(ρ) = ρA}
= {ρ � 0 : 〈Θj ⊗ 1B, ρ〉 = θj , ∀j = 1, . . . ,mR} ,

(2.4)

3This appears to be a novel contribution for general nonlinear convex SDP optimization.
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where θj = 〈Θj , ρA〉 and {Θj} forms an orthonormal basis for the real vector space of Hermitian
matrices on system A. This implicitly defines the linear map and constraint in TrB(ρ) = ρA.
Here we denote the identity matrix 1B ∈ HnB .

Here, we may assume that Γ1 = I and γ1 = 1 to guarantee that we restrict our variables to
density matrices, i.e., semidefinite and unit trace. (See [22, Theorem 2.5].)

We now continue with the terminology and preliminary background for the paper.

2.1 Notations

We use Cn×n to denote the space of n-by-n complex matrices, and Hn to denote the subset of n-
by-n Hermitian matrices; we use H when the dimension is clear. We use Sn,S for the subspaces of
Hn of real symmetric matrices. Given a matrix X ∈ Cn×n, we use <(X) and =(X) to denote the
real and the imaginary parts of X, respectively. We use Hn

+,Sn+ (Hn
++, Sn++, resp) to denote the

positive semidefinite cone (the positive definite cone, resp); and again we leave out the dimension
when it is clear. We use the partial order notations X � 0, X � 0 for semidefinite and definite,
respectively. We let Rn denote the usual vector space of real n-coordinates; PC(X) denotes the
projection of X onto the closed convex set C. For a matrix X, we use range(X) and null(X) to
denote the range and the nullspace of X, respectively. We let BlkDiag(A1, A2, . . . , Ak) denote
the block diagonal matrix with diagonal blocks Ai.

2.2 Real Inner Product Space Cn×n

In general, Hn is not a subspace of Cn×n unless we treat both as vector spaces over R. To do
this we define a real inner product in Cn×n that takes the standard inner products of the real
and imaginary parts:

〈Y,X〉 = 〈<(Y ),<(X)〉+ 〈=(Y ),=(X)〉
= Tr

(
<(Y )T<(X)

)
+ Tr

(
=(Y )T =(X)

)
= <(Tr

(
Y †X

)
).

(2.5)

We note that

<(〈Y,X〉) = 〈<(Y ),<(X)〉+ 〈=(Y ),=(X)〉, =(〈Y,X〉) = −〈<(Y ),=(X)〉+ 〈=(Y ),<(X)〉.

Over the reals, dim(Hn) = n2, dim(Cn×n) = 2n2. The induced norm is the Frobenius norm
‖X‖2F = 〈X,X〉 = Tr

(
X†X

)
, where we denote the conjugate transpose, ·†.

2.3 Linear Transformations and Adjoints

Given a linear map L : D → R, we call the unique linear map L† : R → D the adjoint of L, if it
satisfies

〈L(X), Y 〉 =
〈
X,L†(Y )

〉
, ∀X ∈ D, Y ∈ R.

Often in our study, we use vectorized computations instead of using complex matrices directly.
In order to relieve the computational burden, we use isomorphic and isometric realizations of
matrices by ignoring the redundant entries. We consider Hn as a vector space of dimension n2

over the reals. We define Hvec(H) ∈ Rn2
by stacking diag(H) followed by

√
2 times the strict

upper triangular parts of <(H) and =(H), both columnwise:

Hvec(H) =

 diag(H)√
2<(upper(H))√
2=(upper(H))

 ∈ Rn
2
, HMat = Hvec−1 = Hvec† .
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We note that for the real symmetric matrices Sn, we can use the first triangular number, t(n) =
n(n+ 1)/2 of elements in Hvec, and we denote this by svec(S) ∈ Rt(n), with adjoint sMat.

We use various linear maps in a SDP framework. For given Γi ∈ Hn, i = 1, . . . ,m, define

Γ : Hn → Rm by Γ(H) = (〈Γi, H〉)i ∈ Rm .

The adjoint satisfies

〈Γ(H), y〉 =
∑
i

yi Tr(ΓiH) = Tr

(
H

(∑
i

yiΓi

))
=
〈
H,Γ†(y)

〉
.

The matrix representation A of Γ is found from

(AHvec(H))i = (Γ(H))i = 〈Γi, H〉 = 〈Hvec(Γi),Hvec(H)〉 ,

i.e., for gi = Hvec(Γi), ∀i and h = Hvec(H),

Γ(H) ≡ A(h), where A =

g
T
1
...
gTm

 .
2.3.1 Adjoints for Matrix Multiplication

Adjoints are essential for our interior point algorithm when using matrix-free methods. We define
the symmetrization linear map, S, as S(M) = (M + M †)/2. The skew-symmetrization linear
map, SK, is SK(M) = (M −M †)/2.

Lemma 2.1 (adjoint of W(R) := WR). Let W ∈ Cn×n be a given square complex matrix, and
define the (left matrix multiplication) linear map W : Cn×n → Cn×n by W(R) = WR. Then the
adjoint W† : Cn×n → Cn×n is defined by

W†(M) = <(W )T<(M) + =(W )T =(M) + i
(
<(W )T =(M)−=(W )T<(M)

)
. (2.6)

If W ∈ Hn and W : Hn → Cn×n, then the adjoint W† : Cn×n → Hn is defined by

W†(M) = S [<(W )<(M)−=(W )=(M)] + iSK [=(W )<(M) + <(W )=(M)] . (2.7)

Proof. See Appendix A.1.

Lemma 2.2 (adjoint of ρ(S) = Sρ). Let ρ ∈ Cn×n be a given square complex matrix, and define
the (right matrix multiplication) linear map ρ : Cn×n → Cn×n by ρ(S) = Sρ. Then the adjoint
ρ† : Cn×n → Cn×n is defined by

ρ†(M) = S
[
<(M)<(ρ) + =(M)=(ρ)T

]
+ iSK

[
−<(M)=(ρ)T + =(M)<(ρ)

]
. (2.8)

If ρ ∈ Hn and ρ : Hn → Cn×n, then the adjoint ρ† : Cn×n → Hn is defined by

ρ†(M) = S [<(M)<(ρ)−=(M)=(ρ)] + iSK [<(M)=(ρ) + =(M)<(ρ)] . (2.9)

Proof. See Appendix A.2
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2.4 Cones, Faces, and Facial Reduction, FR

The facial structure of the semidefinite cone is well understood. We outline some of the concepts
we need for facial reduction and exposing vectors, see e.g., [12]. We recall that a convex cone K
is defined by: λK ⊆ K,∀λ ≥ 0, K +K ⊂ K, i.e., it is a cone and so contains all rays, and it is a
convex set. For a set S ⊆ H we denote the dual cone, S† = {φ ∈ H : 〈φ, s〉 ≥ 0, ∀s ∈ S}.

Definition 2.3 (face). A convex cone F is a face of a convex cone K, denoted F �K, if

x, y ∈ K,x+ y ∈ F =⇒ x, y ∈ F.

Equivalently, for a general convex set K and convex subset F ⊆ K, we have F �K, if

[x, y] ⊂ K, z ∈ relint[x, y], z ∈ F =⇒ [x, y] ⊂ F,

where [x, y] denote the line segment joining x, y.

Faces of the positive semidefinite cone are characterized by the range or nullspace of any
element in the relative interior of the faces.

Lemma 2.4. Let F a convex subset of Hn
+ with X ∈ relintF . Let

X =
[
P Q

] [D 0
0 0

] [
P Q

]†
be the orthogonal spectral decomposition with D ∈ Hr

++. Then the following are equivalent:

1. F �Hn
+;

2. F = {Y ∈ Hn
+ : range(Y ) ⊂ range(X)} = {Y ∈ Hn

+ : null(Y ) ⊃ null(X)};

3. F = PHr
+P
†;

4. F = Hn
+ ∩ (QQ†)⊥.

The matrix QQ†, in Item 4 of Lemma 2.4, is called an exposing vector for the face F . Exposing
vectors come into play throughout Section 3.

Definition 2.5 (minimal face). Let K be a closed convex cone and let X ∈ K. Then face(X)�K
is the minimal face, the intersection of all faces of K that contain X.

Facial reduction is a process of identifying the minimal face of Hn
+ containing the affine

subspace {ρ : Γ(ρ) = γ}. Lemma 2.6 plays an important role in the heart of facial reduction
process. Essentially, either there exists a ρ � 0 that satisfies the constraints, or the alternative
that there exists a linear combination of the Γi that is positive semidefinite but has a zero
expectation.

Lemma 2.6 (theorem of the alternative, [12, Theorem 3.1.3]). For the feasible constraint system
in (2.2), exactly one of the following statements holds:

1. there exists ρ � 0 such that Γ(ρ) = γ;

2. there exists y such that
0 6= Γ†(y) � 0 , 〈γ, y〉 = 0. (2.10)

In Lemma 2.6, the matrix Γ†(y) is an exposing vector for the face containing the constraint
set in (2.2).
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3 Problem Formulations and Facial Reduction

We now present the details on various formulations of QKD from (1.1) and (1.2). We show that
facial reduction allows for regularization of both the constraints and the objective function. We
include results about FR for positive transformations and show that highly accurate FR can be
done in these cases.

3.1 Properties of Objective Function and Mappings G,Z

The quantum relative entropy function D : Hn
+ × Hn

+ → R+ ∪ {+∞} is denoted by D(δ||σ), and
is defined as

D(δ||σ) =

{
Tr(δ log δ)− Tr(δ log σ) if range(δ) ∩ null(σ) = ∅
∞ otherwise.

(3.1)

That the quantum relative entropy D is finite if range(δ) ⊆ range(σ) is shown by extending the
matrix log function to be 0 on the nullspaces of δ, σ. (See [28, Definition 5.18].) It is known that
D is nonnegative, equal to 0 if, and only if, ρ = σ, and is jointly convex in both δ and σ, see
[22, Section 11.3].

Definition 3.1. The linear map G : Hn → Hk is defined as a sum of matrix products (Kraus
representation)

G(ρ) :=
∑̀
j=1

KjρK
†
j , (3.2)

where Kj ∈ Ck×n and
∑`

j=1K
†
jKj � I. The adjoint is G†(δ) :=

∑`
j=1K

†
j δKj.

Typically we have k > n with k being a multiple of n; and thus we can have G(ρ) rank
deficient for all ρ � 0.

Definition 3.2. The self-adjoint (projection) linear map Z : Hk → Hk is defined as the sum

Z(δ) :=
N∑
j=1

ZjδZj , (3.3)

where Zj = Z2
j = Z†j ∈ Hk

+ and
∑N

j=1 Zj = Ik.

Since
∑N

j=1 Zj = Ik, the set {Zi}Nj=1 is a spectral resolution of I, Proposition 3.3 below states
some interesting properties of the operator Z; see also [6, Appendix C, (C1)].

Proposition 3.3. The linear map Z in Definition 3.2 is an orthogonal projection on Hk. More-
over,

Tr(δ) ≤ 1, δ � 0 =⇒
{

Tr (δ logZ(δ)) = Tr (Z(δ) logZ(δ))
}
. (3.4)

Proof. First we show that the matrices of Z satisfy

ZiZj = 0, ∀ i 6= j. (3.5)

For i, j ∈ {1, . . . , N}, we have by Definition 3.2 that

Zi

(∑N
s=1 Zs

)
Zi = ZiIkZi = Zi =⇒ 0 =

∑
s 6=i ZiZsZi =

∑
s 6=i(ZsZi)

†(ZsZi)

=⇒ ZjZi = 0, ∀j 6= i.
(3.6)

We now have Z = Z2 = Z1/2 = Z†. Thus, Z is an orthogonal projection. Finally, we use the
series expansion of the log function and the properties of the Zj seen in (3.6) to prove (3.4); see
Lemma A.1 for details.
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Using (3.1), Lemma 3.4 below shows that the objective value of the model (1.1) is finite on
the feasible set. This also provides insight on the usefulness of FR on the variable σ done below.

Lemma 3.4. Let X � 0. Then range(X) ⊆ range(Z(X)).

Proof. See Appendix A.4.

Remark 3.5. In general, the mapping G in (3.2) does not preserve positive definiteness. There-
fore the objective function f(ρ), see (3.7) below, may need to evaluate Tr(δ log δ) and Tr(δ log σ)
with both δ = G(ρ) and σ = ZG(ρ) always singular. Although the objective function f is well-
defined at singular points δ, σ, the gradient of f at singular points δ, σ is not well-defined. Our
approach using FRwithin an interior point method avoids these numerical difficulties.4

3.2 Derivatives for Quantum Relative Entropy under Positive Definite As-
sumptions

We can reformulate the quantum relative entropy function defined in the key rate optimization
(1.1) as

f(ρ) = D(G(ρ)‖Z(G(ρ)))
= Tr (G(ρ) log G(ρ))− Tr(G(ρ) logZ(G(ρ)))
= Tr (G(ρ) log G(ρ))− Tr(Z(G(ρ)) logZ(G(ρ)))

(3.7)

Here, the linear map Z is added to the second term in (3.7) above, and the equality follows
from Proposition 3.3.

In this section, we review the gradient (Frechét derivative), and the image of the Hessian,
for the reformulated relative entropy function f defined in (3.7). We obtain the derivatives of f
under the assumption that the matrix-log is acting on positive definite matrices. This assumption
is needed for differentiability. Note that the difficulty arising from the singularity is handled by
using perturbations in [14,29]. This emphasizes the need for the regularization below as otherwise
f in (3.7) is never differentiable. We avoid using perturbations in this paper by applying FR in
the sections below.

We now use the chain rule and derive the first and the second order derivatives of the com-
position of a linear and entropy function.

Lemma 3.6. Let H : Hn → Hk be a linear map that preserves positive semidefiniteness. Assume
that H(ρ) ∈ Hk

++. Define the composite function g : Hk
+ → R by

g(ρ) = Tr (H(ρ) log(H(ρ))) .

Then the gradient of g at ρ is

∇g(ρ) = H†(log[H(ρ)]) +H†(I),

and the Hessian of g at ρ acting on ∆ρ is

∇2g(ρ)(∆ρ) = H†
(
log′H(ρ)(H(∆ρ))

)
,

where log′ denotes the Fréchet derivative.

Under the assumption that G(ρ) � 0, we can use Lemma 3.4 and show that Z(G(ρ)) � 0.
Using Lemma 3.6 and (3.4), we obtain the first and the second order derivatives of the objective
function f in (3.7).

4For objective value computations without using the MATLAB built-in function logm, see Appendix B.1.
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Corollary 3.7. Suppose that ρ ∈ Hn
+ and G(ρ) � 0. Then the gradient of f at ρ is

∇f(ρ) = G†
(

log[G(ρ)]
)
− (Z ◦ G)†

(
log[(Z ◦ G)(ρ)]

)
. (3.8)

The Hessian at ρ ∈ Hn
+ acting on the direction ∆ρ ∈ Hn is

∇2f(ρ)(∆ρ) = G†
(

[log′ G(ρ)(G∆ρ)]
)
− (Z ◦ G)†

(
[log′(Z ◦ G)(ρ)((Z ◦ G)(∆ρ))

)
. (3.9)

3.3 Reformulation via Facial Reduction (FR)

Using Proposition 3.3, we can now reformulate the objective function in the key rate optimization
problem (1.2) to obtain the following equivalent model:

minρ,σ,δ Tr(δ log δ)− Tr(σ log σ)
s.t. Γ(ρ) = γ

σ −Z(δ) = 0
δ − G(ρ) = 0
ρ ∈ Hn

+, σ ∈ Hk
+, δ ∈ Hk

+.

(3.10)

The new objective function is the key in our analysis, as it simplifies the expressions for gradient
and Hessian. Next, we derive facial reduction based on the constraints in (3.10).

3.3.1 Partial FR on the Reduced Density Operator Constraint

Consider the spectrahedron SR defined by the reduced density operator constraint in (2.4). We
now simplify the problem via FR by using only (2.4) in the case that ρA ∈ HnA is singular. We
now see in Theorem 3.8 that we can do this explicitly using the spectral decomposition of ρA; see
also [15, Sec. II]). Therefore, this step is extremely accurate. Using the structure arising from the
reduced density operator constraint, we obtain partial FR on the constraint set in Theorem 3.8.

Theorem 3.8. Let range(P ) = range(ρA) ( HnA , P †P = 1r, and let V = P ⊗ 1B. Then the
spectrahedron SR in (2.4) has the property that

ρ ∈ SR =⇒ ρ = V RV †, for some R ∈ Hr·nB
+ . (3.11)

Proof. Let
[
P Q

]
be a unitary matrix such that range(P ) = range(ρA) and range(Q) = null(ρA).

Let W = QQT � 0. Recall that the adjoint Tr†B(W ) = W ⊗ 1B. Then ρ ∈ SR implies that

〈W ⊗ 1B, ρ〉 = 〈W,TrB(ρ)〉 = 〈W,ρA〉 = 0, (3.12)

where 1B ∈ HnB is the identity matrix of size nB, and we use (2.4) to guarantee that TrB(ρ) = ρA.
Therefore, W ⊗ 1B � 0 is an exposing vector for the spectrahedron SR in (2.4). And we can
write ρ = V RV † with V = P ⊗ 1B for any ρ ∈ SR. This yields an equivalent representation
(3.11) with a smaller positive semidefinite constraint.5

We emphasize that facial reduction is not only powerful in reducing the variable dimension,
but also in reducing the number of constraints. Indeed, if ρA is not full-rank, then at least one
of the constraints in (2.4) becomes redundant and can be discarded, see [2,26]. In this case, it is
equivalent to the matrix ρA becoming smaller in dimension. (Our empirical observations show
that many of the other observational constraints Γi(ρ) = γi also become redundant and can be
discarded.)

5We provide a self-contained alternate proof in Appendix A.6.
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3.3.2 FR on the Constraints Originating from G,Z

Our motivation is that the domain of the objective function may be restricted to the boundary
of the semidefinite cone, i.e., the matrices G(ρ),Z(G(ρ)) are singular by the definition of G. We
would like to guarantee that we have a well-formulated problem with strictly feasible points in the
domain of the objective function so that the derivatives are well-defined. This guarantees basic
numerical stability. This is done by considering the constraints in the equivalent formulation
in (1.2).

We first note the useful equivalent form for the entropy function.

Lemma 3.9. Let Y = V RV † ∈ H+, R � 0 be the compact spectral decomposition of Y with
V †V = I. Then

Tr(Y log Y ) = Tr(R logR).

Proof. We obtain a unitary matrix U =
[
V P

]
by completing the basis. Then Y = UDU †,

where D = BlkDiag(R, 0). We conclude, with 0 · log 0 = 0, that TrY log Y = TrD logD =
TrR logR.

We use the following simple result to obtain the exposing vectors of the minimal face in the
problem analytically.

Lemma 3.10. Let C ⊆ Hn
+ be a given closed convex set with nonempty interior. Let Qi ∈

Hk×n, i = 1, . . . , t, be given matrices. Define the linear map A : Hn → Hk and matrix V by

A(X) =
t∑
i

QiXQ
†
i , range(V ) = range

(
t∑
i=1

QiQ
†
i

)
.

Then the minimal face,
face(A(C)) = VHr

+V
†.

Proof. First, note that properties of the mapping implies that A(C) ⊂ Hk
+. Nontrivial exposing

vectors 0 6= W ∈ Hn
+ of A(C) can be characterized by the null space of the adjoint operator A†:

0 6= W ∈ Hn
+, 〈W,A(C)〉 = 0 ⇐⇒ 0 6= W � 0, 〈W,Y 〉 = 0, ∀ Y ∈ A(C)

⇐⇒ 0 6= W � 0, 〈A†(W ), X〉 = 0, ∀ X ∈ C
⇐⇒ 0 6= W � 0, W ∈ null(A†)
⇐⇒ 0 6= W � 0, Q†iWQi = 0, ∀i,
⇐⇒ 0 6= range(W ) ⊆ null

(∑
iQiQ

†
i

)
,

where the third equivalence follows from int (C) 6= ∅; and the fourth equivalence follows from the
properties of the sum of mappings of a semidefinite matrix.

The choice of V follows from choosing a maximal rank exposing vector and constructing V
using Lemma 2.4:

range(V ) = null(W ) = range

(∑
i

QiQ
†
i

)
.

We emphasize that the minimal face in Lemma 3.10 means that V has a minimum number
of columns, as without loss of generality, we choose it to be full column rank. In other words,
this is the greatest reduction in the dimension of the image.
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The exposing vectors of A(C) are characterized by the positive semidefinite matrices in the
null space of A†. This also implies the strong conclusion that the singularity degree of A(C)
is one, i.e., FR can be done in one step. This is an important conclusion for stability, [5, 12].
Moreover, we can now conclude that after FR for the initial linear equality constraints Γ(ρ) = γ,
our main problem also has singularity degree one.

Corollary 3.11. Let A be as defined in Lemma 3.10 and

F :=

{
(X,Y ) ∈ Hn

+ × Hk
+ :
[
A −I

](X
Y

)
= 0

}
.

then the singularity degree of F is one.

Proof. According to Lemma 2.6, the singularity degree of F is one if 0 6= (WX ,WY ) ∈ (Hn
+, Hk

+)
is an exposing vector of the minimal face, faceF , such that

WX = A†(−WY ) ∈ Hk
+ and WY ∈ Hk

+. (3.13)

Let W ∈ Hk
+ be such that range(W ) = null

(∑
iQiQ

†
i

)
as in Lemma 3.10. Then WX = 0 and

WY = W form an exposing vector of the minimal face for F and they satisfy (3.13).

Remark 3.12. The maximum rank exposing vector W can also be found by solving the following
feasibility system min{ 0 : A†(W ) = 0, Tr(W ) = 1, W � 0} using the interior point method.

We describe how to apply Lemma 3.10 to obtain Vρ, Vδ, Vσ of the minimal face of (Hn
+, Hk

+, Hk
+)

containing the feasible region of (3.10). By Lemma 2.4, we may write

ρ = VρRρV
†
ρ ∈ Hn

+, Rρ ∈ Hnρ
+

δ = VδRδV
†
δ ∈ Hk

+, Rδ ∈ Hkδ
+

σ = VσRσV
†
σ ∈ Hk

+, Rσ ∈ Hkσ
+ .

Define the linear maps

ΓV : Hnρ
+ → Rm by ΓV (Rρ) = Γ(VρRρV

†
ρ ),

GV : Hnρ
+ → Hk

+ by GV (Rρ) = G(VρRρV
†
ρ ),

ZV : Hkδ
+ → Hk

+ by ZV (Rδ) = Z(VδRδV
†
δ ).

The matrices Vρ, Vδ, Vσ are obtained as follows.

1. We apply FR to {ρ ∈ Hn
+ : Γ(ρ) = γ} to find Vρ for the minimal face, face(Hn

+, ρ).

2. Define
Rρ := {Rρ ∈ Hnρ

+ : ΓV (Rρ) = γ}.

Note that int(Rρ) 6= ∅. Applying Lemma 3.10 to {GV (Rρ) ∈ Hk
+ : Rρ ∈ Rρ}, the matrix

Vδ yields the minimal face, face(Hk
+, δ) if we choose

range(Vδ) = range (GV (I)) . (3.14)

3. Define
Rδ := {Rδ ∈ Hkδ

+ : VδRδV
†
δ = GV (Rρ), Rρ ∈ Rρ}.

We again note that int(Rδ) 6= ∅. Applying Lemma 3.10 to {ZV (Rδ) ∈ Hk
+ : Rδ ∈ Rδ},

we find the matrix Vσ representing the minimal face face(Hk
+, σ). Thus, we choose Vσ

satisfying
range(Vσ) = range (ZV (I)) . (3.15)
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As above, this also can be seen by looking at the image of I and the relative interior of the range
of ZV . We note, by Lemma 3.4, that range(Vσ) ⊇ range(Vδ). Note that we have assumed the
exposing vector of maximal rank for the original constraint set on ρ in the first step is obtained.
Without loss of generality, we can assume that the columns in Vρ, Vδ, Vσ are orthonormal. This
makes the subsequent computation easier.

Assumption 3.13. Without loss of generality, we assume V †MVM = I for M = ρ, δ, σ.

Define Vδ(Rδ) := VδRδV
†
δ and Vσ(Rσ) := VσRσV

†
σ . Applying Lemma 3.9 and substituting for

ρ, δ, σ to (3.10), we obtain the equivalent formulation (3.16).

min Tr(Rδ log(Rδ))− Tr
(
Rσ log(Rσ)

)
s.t. ΓV (Rρ) = γ

Vσ(Rσ)−ZV (Rδ) = 0
Vδ(Rδ)− GV (Rρ) = 0
Rρ, Rσ, Rδ � 0.

(3.16)

After facial reduction, many of the linear equality constraints in (3.16) end up being redundant.
We may delete redundant constraints and keep a well-conditioned equality constraints. In the
next section, we show that the removal of the redundant constraints can be performed by rotating
the constraints.

3.3.3 Reduction on the Constraints

Recall that our primal problem after FR is given in (3.16). Moreover, by the work above we can
assume that ΓV is surjective. In Theorem 3.14 and Theorem 3.15 below, we show that we can
simplify the last two equality constraints in (3.16) by an appropriate rotation.

Theorem 3.14. Let Rρ ∈ Hnρ
+ and Rδ ∈ Hkδ

+ . It holds that

Vδ(Rδ) = GV (Rρ) ⇐⇒ Rδ = GUV (Rρ), (3.17)

where GUV (·) := V †δ GV (·)Vδ.

Proof. Let P be such that U =
[
Vδ P

]
is unitary. Rotating the first equality in (3.17) using

the unitary matrix U yields an equivalent equality U †Vδ(Rδ)U = U †GV (Rρ)U . Applying the
orthogonality of Vδ, the left-hand side above becomes

U †Vδ(Rδ)U =

[
Rδ 0
0 0

]
. (3.18)

From facial reduction, it holds that range(Vδ) = range(GV ) and thus P †GV = 0. Therefore, the
right hand-side becomes

U †GV (Rρ)U =

[
V †δ
P †

]
GV (Rρ)

[
Vδ P

]
=

[
V †δ GV (Rρ)Vδ 0

0 0

]
. (3.19)

Theorem 3.15. Let Rσ ∈ Hkσ
+ and Rδ ∈ Hkδ

+ . It holds that

Vσ(Rσ) = ZV (Rδ) ⇐⇒ Rσ = ZUV (Rδ), (3.20)

where ZUV (·) := V †σZV (·)Vσ.
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Proof. Using the unitary matrix U =
[
Vσ P

]
in the proof of Theorem 3.14, we obtain the

statement.

With Theorems 3.14 and 3.15, we reduce the number of linear constraints in (3.16) as below.

min Tr(Rδ log(Rδ))− Tr
(
Rσ log(Rσ)

)
s.t. ΓV (Rρ) = γ

Rσ −ZUV (Rδ) = 0
Rδ − GUV (Rρ) = 0

Rρ ∈ Hnρ
+ , Rσ ∈ Hkσ

+ , Rδ ∈ Hkδ
+ .

(3.21)

We emphasize that the images of ZV and GV in (3.16) are both in Hk but the images of ZUV
and GUV in (3.21) are in Hkσ and Hkδ , respectively, and kδ ≤ kσ ≤ k.

Remark 3.16. The mapping GUV satisfies the properties for G in (3.2). However, the properties
in (3.3) do not hold for the mapping ZUV .

3.4 Final Model for (QKD ) and Derivatives

In this section we have a main result, i.e., the main model that we work on and the derivatives.
We eliminate some of variables in the model (3.21) to obtain a simplified formulation. Define
Ẑ := ZUV ◦GUV and Ĝ := GUV . We substitute Rσ = Ẑ(Rρ) and Rδ = Ĝ(Rρ) back in the objective
function in (3.21). For simplification, and by abuse of notation, we set

ρ← Rρ, σ ← Rσ, δ ← Rδ.

We obtain the final model (QKD):

p∗ = min f(ρ) = Tr
(
Ĝ(ρ)(log Ĝ(ρ))

)
− Tr

(
Ẑ(ρ) log Ẑ(ρ)

)
s.t. ΓV (ρ) = γV

ρ ∈ Hnρ
+ ,

(3.22)

where γV ∈ RmV for some mV ≤ m. The final model is essentially in the same form as the
original model (1.1), see also Proposition 3.3.

Note that the final model now has smaller number of variables compared to the original
problem (1.1). Moreover, the objective function f , with the modified linear maps Ĝ, Ẑ, is well-
defined and analytic on ρ ∈ Hnρ

++, i.e., we have

ρ � 0 =⇒ Ĝ(ρ) � 0 =⇒ Ẑ(ρ) � 0.6 (3.23)

We conclude this section by presenting the derivative formulae for gradient and hessian. The
simple formulae in Theorem 3.17 are a direct application of Lemma 3.6. Throughout Section 4
we work with these derivatives.

Theorem 3.17 (derivatives of regularized objective). Let ρ � 0. The gradient of f in (3.22) is

∇f(ρ) = Ĝ†(log[Ĝ(ρ)]) + Ĝ†(I) − Ẑ†(log[Ẑ(ρ)]) + Ẑ†(I) .

The Hessian in the direction ∆ρ is then

∇2f(ρ)(∆ρ) = Ĝ†(log′[Ĝ(ρ)](Ĝ(∆ρ)) − Ẑ†(log′[Ẑ(ρ)](Ẑ(∆ρ)) .

6This follows from [24, Theorem 6.6], i.e., from relint(AC) = A relint(C), where C is a conex set and A : En →
Em is a linear map.
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Theorem 3.18. Let f be as defined in (3.22) and let {ρi}i ⊆ Hnρ
++ with ρi → ρ̄. If we have the

convergence limi∇f(ρi) = φ, then
φ ∈ ∂f(ρ̄).

Proof. The result follows from the characterization of the subgradient as containing the convex
hull of all limits of gradients, e.g., [24, Theorem 25.6].

4 Optimality Conditions, Bounding, GN Interior Point Method

In this section we apply a Gauss-Newton interior point approach to solve the model (3.22). We
begin by presenting optimality conditions for the model (3.22) and then present the algorithm.
We finish this section with some implementation heuristics followed by bounding strategies.

4.1 Optimality Conditions and Duality

We first obtain perturbed optimality conditions for (3.22) with positive barrier parameters. This
is most often done by using a barrier function and adding terms such as µρ log det(ρ) to the
Lagrangian. After differentiation we obtain µρρ

−1 that we equate with the dual variable Zρ. After
multiplying through by ρ we obtain the perturbed complementarity equations e.g., Zρρ−µρI = 0.

Theorem 4.1. Let L be the Lagrangian for (3.22), i.e.,

L(ρ, y) = f(ρ) + 〈y,ΓV (ρ)− γV 〉, y ∈ RmV .

The following holds for problem (3.22).

1.
p∗ = max

y
min
ρ�0

L(ρ, y).

2. The Lagrangian dual of (3.22) is

d∗ = max
Z�0,y

(
min
ρ

(L(ρ, y)− 〈Z, ρ〉)
)
,

and strong duality holds for (3.22), i.e., d∗ = p∗ and d∗ is attained for some (y, Z) ∈
RmV ×Hnρ

+ .

3. The primal-dual pair (ρ, (y, Z)), with ∂f(ρ) 6= ∅, is optimal if, and only if,

0 ∈ ∂f(ρ) + Γ†V (y)− Z (dual feasibility)
0 = ΓV (ρ)− γV (linear primal feasibility)
0 = 〈ρ, Z〉 (complementary slackness)
0 � ρ, Z (semidefiniteness primal feasibility).

(4.1)

Moreover, Γ†V (y) � 0, 〈y, γV 〉 < 0, for some y, implies that the primal (3.22) is infeasible.

4. Let NΓV
be injective with range(NΓV

) = null(ΓV ). Let ρ, y, Z satisfy the optimality condi-
tions (4.1). Then the second order optimality condition for uniqueness at ρ is that

N †ΓV∇
2f(ρ)NΓV

� 0.
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Proof. The dual in Item 2 is obtained from from standard min-max argument; See [3, Chapter
5].

d∗ = max
y

min
ρ∈Hnρ+

L(ρ, y) = max
y

{
L(ρ, y) : Z ∈ ∂f(ρ) + Γ†V (y), Z ∈ (Hnρ

+ − ρ)†
}

= max
y,Z�0

min
ρ∈Hnρ+

L(ρ, y)− 〈Z, ρ〉.

That strong duality holds comes from our regularization process, i.e., the existence of a Slater
point; see [21, Chapter 8].

Item 3 is the standard optimality conditions for convex programming, where the dual feasi-
bility 0 ∈ ∂f(ρ) + Γ†V (y)−Z holds from Theorem 3.18. The second-order sufficient conditions in
Item 4 are standard; see [23, Chapter 12].

4.1.1 Perturbed Optimality Conditions

Many interior-point based algorithms try to solve the optimality conditions (3.22) by solving a
sequence of perturbed problems while driving the perturbation parameter µ ↓ 0. The parameter
µ gives a measure of the duality gap. In this section, we present the perturbed optimality
conditions for (QKD).

Theorem 4.2. The barrier function for (3.22) with barrier parameter µ > 0 is

Bµ(ρ, y) = f(ρ) + 〈y,ΓV (ρ)− γV 〉 − µ log det(ρ).

With Z = µρ−1 scaled to Zρ − µI = 0, we obtain the perturbed optimality conditions for (3.22)
at ρ, Z � 0, y:

dual feasibility (∇Bρ = 0) : F dµ = ∇ρf(ρ) + Γ†V (y)− Z = 0

primal feasibility (∇By = 0) : F pµ = ΓV (ρ)− γV = 0
perturbed complementary slackness : F cµ = Zρ− µI = 0.

(4.2)

In fact, for each µ > 0 there is a unique primal-dual solution ρµ, yµ, Zµ satisfying (4.2). This
defines the central path as µ ↓ 0. Moreover,

(ρµ, yµ, Zµ) →
µ↓0

(ρ, y, Z) satisfying (4.1).

Proof. The optimality condition (4.2) follows from the necessary and sufficient optimality condi-
tions of convex problem

min
ρ
{f(ρ)− µ log det(ρ) : ΓV (ρ) = γV }

and setting Z = µρ−1. Note that Bµ is the Lagrangian function of this convex problem. For
each µ > 0 there exists a unique solution to (4.2) due to the strict convexity of the barrier
term −µ log det(ρ) and boundedness of the level set of the objective. The standard log barrier
argument [17,23] and Theorem 3.18 together give the last claim.

Theorem 4.2 above provides an interior point path following method, i.e., for each µ ↓ 0 we
solve the pertubed optimality conditions

Fµ(ρ, y, Z) =

∇ρf(ρ) + Γ†V (y)− Z
ΓV (ρ)− γV
Zρ− µI

 = 0, ρ, Z � 0. (4.3)
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The question is how to do this efficiently. The nonlinear system is overdetermined as

Fµ : Hnρ × RmV ×Hnρ → Hnρ × RmV × Cnρ×nρ .

Therefore we cannot apply Newton’s method directly because the linearization does not yield a
square system.

4.2 Gauss-Newton Search Direction

To solve the optimality conditions (4.3), we consider the equivalent nonlinear least squares prob-
lem

min
ρ,Z�0,y

g(ρ, y, Z) :=
1

2
‖Fµ(ρ, y, Z)‖2 =

1

2
‖F dµ (ρ, y, Z)‖2F +

1

2
‖F pµ(ρ)‖2 +

1

2
‖F cµ(ρ, Z)‖2F .

The Gauss-Newton method is a popular method for solving nonlinear least squares problems.
The Gauss-Newton direction, dGN , is the least squares solution of the linearization

F ′µ(ρ, y, Z)dGN = −Fµ(ρ, y, Z),

where F ′µ denotes the Jacobian of Fµ.

Lemma 4.3. Under a full rank assumption of F ′µ(ρ, y, Z), we get

dGN = −((F ′µ)(ρ, y, Z)†F ′µ(ρ, y, Z))−1(F ′µ(ρ, y, Z))†Fµ(ρ, y, Z).

Moreover, if ∇g(ρ, y, Z) 6= 0, then dGN is a descent direction for g.

Proof. The gradient of g is, omitting the variables,

∇g = (F ′µ)†(Fµ);

and the Gauss-Newton direction is the least squares solution of the linearization F ′µdGN = −Fµ,
i.e., under a full rank assumption, we get the solution from the normal equations as

dGN = −((F ′µ)†F ′µ)−1(F ′µ)†Fµ.

We see that the inner product with the gradient is indeed negative, hence a descent direction.

We now give an explicit representation of the linearized system for (4.3). We define the
(right/left matrix multiplication) linear maps

MZ , Mρ : Hnρ → Cnρ×nρ , MZ(∆X) = Z∆X,Mρ(∆X) = ∆Xρ.

Then the linearization of (4.3) is

F ′µdGN =

∇2f(ρ)∆ρ+ Γ†V (∆y)−∆Z
ΓV (∆ρ)

Z∆ρ+ ∆Zρ

 =

∇2f(ρ) Γ†V −I
ΓV
MZ Mρ

∆ρ
∆y
∆Z

 ≈ −Fµ. (4.4)

We emphasize that the last term is in Cnρ×nρ and the system is overdetermined. The adjoints of
MZ ,Mρ are discussed in Section 2.3, Lemmas 2.1 and 2.2. Solving the system (4.4), we obtain
the GN -direction, dGN∈ Hnρ × RmV ×Hnρ .

19



4.3 Projected Gauss-Newton Directions

The GN direction in (4.4) solves a relatively large overdetermined linear least squares system
and does not explicitly exploit the zero blocks. We now proceed to take advantage of the special
structure of the linear system.

4.3.1 First Projected Gauss-Newton Direction

Given the system (4.4), we can make a substitution for ∆Z using the first block equation

∆Z = F dµ +∇2f(ρ)∆ρ+ Γ†V (∆y). (4.5)

This leaves the two blocks of equations

(F pcµ )
′
(

∆ρ
∆y

)
=

[
ΓV (∆ρ)

Z∆ρ+
(
∇2f(ρ)∆ρ+ Γ†V (∆y)

)
ρ

]

=

[
ΓV

MZ +Mρ∇2f(ρ) MρΓ
†
V

](
∆ρ
∆y

)
≈ −

[
F pµ

F cµ + F dµρ

]
,

where the superscript in F pcµ stands for the primal and complementary slackness constraints.
The adjoint equation follows:[(

F pcµ
)′]†(rp

Rc

)
=

[
Γ†V MZ

† +∇2f(ρ)Mρ
†

0 ΓVMρ
†

](
rp
Rc

)
.

In addition, we can evaluate the condition number of the system using
(

(F pcµ )
′
)†

(F pcµ )
′
. Note

that we include the adjoints as they are needed for matrix free methods that exploit sparsity.

4.3.2 Second Projected Gauss-Newton Direction

We can further reduce the size of the linear system by making further variable substitutions.
Recall that in Section 4.3.1 we solve the system with a variable in Hnρ × RmV , i.e., n2

ρ + mV

number of unknowns. In this section, we make an additional substitution using the second block
equation in (4.4) and reduce the number of the unknowns to n2

ρ.

Theorem 4.4. Let ρ̂ ∈ Hnρ be a feasible point for ΓV (·) = γV . Let N † : Rn2
ρ−mV → Hnρ be an

injective linear map in adjoint form so that, again by abuse of notation and redefining the primal
residual, we have the nullspace representation:

F pµ = ΓV (ρ)− γV ⇐⇒ F pµ = N †(v) + ρ̂− ρ, for some v.

Then the second projected GN direction, dGN =

(
∆v
∆y

)
, is found from the least squares solution

of

[
ZN †(∆v) +∇2f(ρ)N †(∆v)ρ

]
+
[
Γ†V (∆y)ρ

]
= −F cµ − ZF

p
µ −

(
F dµ +∇2f(ρ)F pµ

)
ρ. (4.6)
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Proof. Using the new primal feasibility representation, the perturbed optimality conditions in (4.3)
become:

Fµ(ρ, v, y, Z) =

F dµF pµ
F cµ

 =

∇ρf(ρ) + Γ†V (y)− Z
N †(v) + ρ̂− ρ
Zρ− µI

 = 0, ρ, Z � 0. (4.7)

After linearizing the system (4.7) we use the following to find the GN search direction:

F ′µdGN =

∇2f(ρ)∆ρ+ Γ†V (∆y)−∆Z
N †(∆v)−∆ρ
Z∆ρ+ ∆Zρ

 ≈ −Fµ.
From the first block equation we have

∆Z = F dµ +∇2f(ρ)∆ρ+ Γ†V (∆y)

= F dµ +∇2f(ρ)(F pµ +N †(∆v)) + Γ†V (∆y).

From the second block equation, we have

∆ρ = F pµ +N †(∆v).

Substituting ∆Z and ∆ρ into Z∆ρ+ ∆Zρ gives

Z∆ρ+ ∆Zρ = Z(F pµ +N †(∆v)) +
[
F dµ +∇2f(ρ)(F pµ +N †(∆v)) + Γ†V (∆y)

]
ρ

=
[
ZN †(∆v) +∇2f(ρ)N †(∆v)ρ

]
+
[
Γ†V (∆y)ρ

]
+ ZF pµ +

(
F dµ +∇2f(ρ)F pµ

)
ρ.

Rearranging the terms, the third block equation becomes

F c′µ

(
∆v
∆y

)
=

[
ZN †(∆v) +∇2f(ρ)N †(∆v)ρ

]
+
[
Γ†V (∆y)ρ

]
= −F cµ − ZF

p
µ −

(
F dµ +∇2f(ρ)F pµ

)
ρ.

The matrix representation of (4.6) is presented in Appendix B.3. It is easy to see that the
adjoint satisfying 〈F c′µ (dGN), Rc〉 = 〈dGN , (F c′µ )†(Rc)〉 now follows:

(F c′µ )†(Rc) =

[
N HvecMZ

† +N∇2f(ρ) HvecMρ
†

ΓVMρ
†

]
(Rc).

After solving the system (4.6), we make back substitutions to recover the original variables. In
other words, once we get (∆v,∆y) from solving (4.6), we obtain (∆ρ,∆y,∆Z) using the original
system:

∆ρ = F pµ +N †(∆v), ∆Z = F dµ +∇2f(ρ)(F pµ +N †(∆v)) + Γ†V (∆y).

Theorem 4.5 below illustrates cases where we maintain the exact primal feasibility.

Theorem 4.5. Let α be a steplength and consider the update

ρ+ ← ρ+ α∆ρ = ρ+ F pµ + αN †(∆v).

1. If a steplength one is taken (α = 1), then the new primal residual is exact, i.e.,

F pµ = N †(v+) + ρ̂− ρ+ = 0.
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2. Suppose that the exact primal feasibility is achieved. Then the primal residual is 0 through-
out the iterations regardless of the steplength.

Proof. If a steplength one is taken for updating

ρ+ ← ρ+ ∆ρ = ρ+ F pµ +N †(∆v),

then the new primal residual

(F pµ)+ = N †(v+) + ρ̂− ρ+

= N †(v + ∆v) + ρ̂− ρ− F pµ −N †(∆v)
= N †(v) + ρ̂− ρ−N †(v)− ρ̂+ ρ
= 0.

In other words, as for Newton’s method, a step length of one implies that the new residuals are
zero for linear equations.

We can now change the line search to maintain ρ+ = N †(v + α∆v) − ρ̂ � 0 and preserve
exact primal feasibility. Assume that F pµ = 0.

ρ+ ← ρ+ α∆ρ = ρ+ α(F pµ +N †(∆v)) = ρ+ αN †(∆v)

Now, we see that
ΓV (ρ+) = ΓV (ρ+ αN †(∆v)) = ΓV (ρ) = γ,

where the last equality follows from the exactly feasibility assumption.

4.4 Projected Gauss-Newton Primal-Dual Interior Point Algorithm

We now present the pseudocode for the Gauss-Newton primal-dual interior point method. Algo-
rithm 1 is summarized as follow; it is a series of solving the over-determined linear system (4.6)
while decreasing the perturbation parameter µ ↓ 0 and maintaining the positive definiteness of
ρ, Z.

Algorithm 1 Projected Gauss-Newton Interior Point Algorithm for (QKD)

Require: ρ̂ � 0, µ ∈ R++, η ∈ (0, 1)
while stopping criteria is not met do

solve (4.6) for (∆v,∆y)
∆ρ = F pµ +N †(∆v)

∆Z = F dµ +∇2f(ρ)(F pµ +N †(∆v)) + Γ†V (∆y)
choose steplength α
(ρ, y, Z)← (ρ, y, Z) + α(∆ρ,∆y,∆Z)
µ← 〈ρ, Z〉/nρ; µ← ηµ

end while

4.5 Implementation Heuristics

We now discuss the implementation details. This involves preprocessing for a nullspace repre-
sentation and preconditioning. The details follow.
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4.5.1 Stopping Criteria

We terminate the algorithm when the optimality condition (4.3) is approximately satisfied. De-
note the residual in Theorem 4.4 by

RHS = −F cµ − ZF pµ −
(
F dµ +∇2f(ρ)F pµ

)
ρ,

and the denominator term by

denom = 1 +
1

2
min { ‖ρ‖+ ‖Z‖ , |bestub|+ |bestlb| } .

Then

relstopgap =
1

denom
max { bestub− bestlb , ‖RHS‖ } . (4.8)

In other words, for a pre-defined tolerance ε, we terminate the algorithm when the relstopgap< ε.
If the algorithm computes lower and upper bounds of the optimal value throughout its execution,
we may terminate the algorithm when the gap between lower and upper bounds is within ε.
Finally, a common way to terminate an algorithm is to impose restrictions on the running time,
e.g., setting an upper bound on the number of iterations or the physical running time.

4.5.2 GN Direction using Sparse Nullspace Representation

We let r = Hvec(ρ), and construct a matrix representation H for the Hessian, and a matrix
representation M for the linear constraints that includes a permutation of rows and columns
rp, cp with inverse column permutation icp, so that

r = Hvec(ρ) : r(cp) = Pcpr, r = Picpr(cp), PcpPicp = PicpPcp = I, Picp = P Tcp.

We can ignore the row permutations. We have

ΓV (ρ) = (ΓV HMat) Hvec(ρ)
= (ΓV HMat)PicpPcp Hvec(ρ)
= (Pcp(ΓV HMat)T )TPcp Hvec(ρ)
= Mr(cp)
= MPcp Hvec(ρ).

We now get the nullspace representation:

r̂ = Hvec(ρ̂); ΓV (ρ̂) = Mr̂(cp) = γV , M =
[
B E

]
, N † =

[
B−1E
−I

]
;

r = Hvec(ρ) : ΓV (ρ) = γV ⇐⇒ MΓV
Pcpr = γV ⇐⇒ r = r̂ + PicpN

†(w), for some w. (4.9)

The permutation of rows and colums are done in order to obtain a simple, near triangular, well
conditioned B so that B−1E can be done simply and maintain sparsity if possible. The permu-
tation of the rows does not affect the problem and we can ignore it. However the permutation
of the columns cannot be ignored. We get the following

N †(v) = HMat
(
PicpN

†(v)
)
, Γ†V (∆y) = PicpM(∆y), ∇2f(ρ)N †(∆v) = HMat

(
HPicpN

†(∆v)
)
.

By abuse of notation, the Gauss-Newton direction dGN ∈ Rn2
ρ can now be found from:

F c′µ dGN = Z HMat
(
PicpN

†(∆v)
)

+
(

HMat
(
∇2f(ρ)(PicpN

†(∆v))
)

+ Γ†V (∆y)
)
ρ

=
[
MZ

(
HMat

(
PicpN

†•
))

+Mρ

(
HMat

(
∇2f(ρ)PicpN

†•
))
MρΓ

†
V
•

](∆v
∆y

)
= −(F cµ + F dµρ+ ZF pµ)−

(
∇2f(ρ)(F pµ)

)
ρ.

(4.10)
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4.5.3 Preconditioning

The overdetermined linear system in (4.10) can be ill-conditioned. We use diagonal precondi-
tioning, i.e., we let di = ‖F c′µ (ei)‖, for unit vectors ei and then column precondition using

F c′µ ← F c′µ Diag(d)−1.7

This diagonal preconditioning has been shown to be the optimal diagonal preconditioning for the
so-called Ω-condition number, [10]. It performs exceptionally well in our tests below.

4.5.4 Step Lengths

The GN method is based on a linearization that suggests a steplength of one. However, long step
methods are known to be more efficient in practice for interior point methods for linear SDPs.
Typically steplengths are found using backtracking to ensure primal-dual positive definiteness of
ρ, Z.

In our case we do not have a linear objective and we typically experience Maratos type
situations, i.e., we get fast convergence for primal feasibility but slow and no convergence for
dual feasibility. However, we do have the gradient and Hessian of the objective function and
therefore can minimize the quadratic model for the objective function in the search direction ∆ρ

min
α
f(ρ) + α〈∇f(ρ),∆ρ〉+

1

2
α2〈∆ρ∇2f(ρ),∆ρ〉, α∗ = −〈∇f(ρ),∆ρ〉/〈∆ρ,∇2f(ρ)∆ρ〉.

Therefore, we begin the backtracking with this step.
Moreover, we take a steplength of one as soon as possible, and only after this do we allow

steplengths larger than one. This means that exact primal feasibility holds for all further steps.
This happens relatively early for our numerical tests.

4.6 Dual and Bounding

We first look at upper bounds8 found from feasible solutions in Proposition 4.6. Then we use the
dual program to provide provable lower bounds for the FR problem (1.1) thus providing lower
bounds for the original problem with the accuracy of FR.

4.6.1 Upper Bounds

A trivial upper bound is obtained as soon as we have a primal feasible solution ρ̂ by evaluating the
objective function. Our algorithm is a primal-dual infeasible interior point approach. Therefore
we typically have approximate linear feasibility ΓV (ρ̂) ≈ γV ; though we do maintain positive
definiteness ρ̂ � 0 throughout the iterations. Therefore, once we are close to feasibility we
can project onto the affine manifold and hopefully maintain positive definiteness, i.e., we apply
iterative refinement by finding the projection

min
ρ

{
1

2
‖ρ− ρ̂‖2 : ΓV (ρ) = γV

}
.

7The MATLAB command is: dGN = ((F c′µ /Diag(d))\RHS)./d.
8Our discussion about upper bounds here is about upper bounds for the given optimization problem, which are

not necessarily key rate upper bounds of the QKD protocol under study. This is because the constraints that one
feeds into the algorithm might not use all the information available to constrain Eve’s attacks.

24



Proposition 4.6. Let ρ̂ � 0, F pµ = ΓV (ρ̂)− γV . Then

ρ = ρ̂− ΓV
−1F pµ = argmin

ρ

{
1

2
‖ρ− ρ̂‖2 : ΓV (ρ) = γV

}
,

where we denote ΓV
−1, generalized inverse. If ρ � 0, then p∗ ≤ f(ρ).

In our numerical experiments below we see that we obtain valid upper bounds starting in
the early iterations and, as we use a Newton type method, we maintain exact primal feasibility
throughout the iterations resulting in a zero primal residual, and no further need for the projec-
tion. As discussed above, we take a step length of one as soon as possible. This means that exact
primal feasibility holds for the remaining iterations and we keep improving the upper bound at
each iteration.

4.6.2 Lower Bounds for FR Problem

Facial reduction for the affine constraint means that the corresponding feasible set of the original
problem lies within the minimal face VρH

nρ
+ V †ρ of the semidefinite cone. Since we maintain positive

definiteness for ρ, Z during the iterations, we can obtain a lower bound using weak duality. Note
that ρ � 0 implies that the gradient ∇f(ρ) exists.

Corollary 4.7 (lower bound for FR (3.22)). Consider the problem (3.22). Let ρ̂, ŷ be a primal-
dual iterate with ρ̂ � 0. Let

Z̄ = ∇f(ρ̂) + Γ†V (ŷ).

If Z̄ � 0, then a lower bound for problem (3.22) is

p∗ ≥ f(ρ̂) + 〈ŷ,ΓV (ρ̂)− γV 〉 − 〈ρ̂, Z̄〉.

Proof. Consider the dual problem

d∗ = max
y,Z�0

min
ρ∈Hnρ

L(ρ, y)− 〈Z, ρ〉.

We now have dual feasibility

Z̄ � 0, ∇f(ρ̂) + Γ†V (ŷ)− Z̄ = 0 =⇒ ρ̂ ∈ argmin
ρ

L(ρ, ŷ)− 〈Z̄, ρ〉.

Since we have dual feasibility, weak duality in Theorem 4.1, Item 2 as stated in the dual problem
above yields the result.

Remark 4.8. We note that the lower bound in Corollary 4.7 is a simplification of the approach
in [29], where after a near optimal solution is found, a dual problem of a linearized problem is
solved using CVX in MATLAB. Then a strong duality theorem is assumed to hold and is applied
along with a linearization of the objective function. Here we do not assume strong duality,
though it holds for the facially reduced problem. And we apply weak duality to get a theoretically
guaranteed lower bound.

We emphasize that this holds within the margin of error of the FR. Recall that we started
with the problem in (2.2). If we only apply the accurate FR based on spectral decompositions,
then the lower bound from Corollary 4.7 is accurate and theoretically valid up to the accuracy of
the spectral decompositions.9 In fact, in our numerics, we can obtain tiny gaps of order 10−13

9Note that the condition number of the spectral decomposition of Hermitian matrices is 1; see e.g., [9].
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when requested; and we have never encountered a case where the lower bound is greater than the
upper bound. Thus the bound applies to our original problem as well. Greater care must be taken
if we had to apply FR to the entire constraint Γ(ρ) = γ. The complexity of SDP feasibility is
still not known. Therefore, the user should be aware of the difficulties if the full FR is done.

A corresponding result for a lower bound for the original problem is given in Corollary 4.9.

4.6.3 Lower Bounds for the Original Problem

We can also obtain a lower bound for the case where FR is performed with some error. Recall
that we assume that the original problem (2.2) is feasible. We follow the same arguments as
in Section 4.6.2 but apply it to the original problem. All that changes is that we have to add
a small perturbation to the optimum VρR̂V

†
ρ from the FR problem in order to ensure a positive

definite ρ for differentiability. The exposing vector from FR process presents an intuitive choice
for the perturbation.

Corollary 4.9. Consider the original problem (2.2) and the results from the theorem of the
alternative, Lemma 2.6, for fixed y:

0 6= W = Γ†(y) � 0, γ†y = εγ , εγ ≥ 0. (4.11)

Let the orthogonal spectral decomposition be

W =
[
V N

] [Dδ 0
0 D>

] [
V N

]†
, D> ∈ Sr++.

Let 0 � η ≈ W be the (approximate) exposing vector obtained as the nearest rank r positive
semidefinite matrix to W,

W = ND>N
† + V DδV

† = η + V DδV
†.

Let R̂, ŷ be a primal-dual iterate for the FR problem, with R̂ � 0. Add a small perturbation
matrix Φ � 0 to guarantee that the approximate optimal solution

ρ̂φ = V R̂V † +NΦN † � 0.

Without loss of generality, let ŷ be a dual variable for (2.2), adding zeros to extend the given
vector if needed. Set

Z̄φ = ∇f(ρ̂φ) + Γ†(ŷ). (4.12)

If Z̄φ � 0, then a lower bound for the original problem (2.2) is

p∗ ≥ f(ρ̂φ) + 〈ŷ,Γ(ρ̂φ)− γ〉 − 〈ρ̂φ, Z̄φ〉. (4.13)

Proof. By abuse of notation, we let f, L be the objective function and Lagrangian for (2.2).
Consider the dual problem

d∗ = max
y,Z�0

min
ρ∈Hn

(
L(ρ, y)− 〈Z, ρ〉

)
.

We now have dual feasibility

Z̄φ � 0, ∇f(ρ̂φ) + Γ†(ŷ)− Z̄φ = 0 =⇒ ρ̂φ ∈ argmin
ρ

(
L(ρ, ŷ)− 〈Z̄φ, ρ〉

)
.

Since we have dual feasibility, weak duality in Theorem 4.1, Item 2 as stated in the dual problem
above yields the result.
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Remark 4.10. We note that (4.12) with Z̄φ is dual feasiblity (stationarity of the Lagrangian)
for an optimal ρ̂φ. Therefore, under continuity arguments, we expect Z̄φ � 0 to hold as well.

In addition, for implementation we need to be able to evaluate ∇f(ρ̂φ). Therefore, we need to

form the positive definite preserving maps Ĝ, Ẑ, but without performing FR on the feasible set.
That we can do this accurately using a spectral decomposition follows from Lemma 3.10.

5 Numerical Testing

We compare our algorithm to other algorithms by considering six QKD protocols including four
variants of the Bennett-Brassard 1984 (BB84) protocol, twin-field QKD and discrete-modulated
continuous-variable QKD. In Appendix C we include the descriptions of protocol examples that
we use to generate instances for the numerical tests.

We continue with the tests in Sections 5.1 to 5.3. This includes security analysis of some se-
lected QKD protocols and comparative performances among different algorithms. In particular,
in Section 5.1, we compare the results obtained by our algorithm with the analytical results for
selected test examples where tight analytical results can be obtained. In Section 5.2, we present
results where it is quite challenging for the previous method in [29] to produce tight lower bounds.
In particular, we consider the discrete-modulated continuous-variable QKD protocol and com-
pare results obtained in [18]. In Section 5.3, we compare performances among different algorithms
in terms of accuracy and running time.

5.1 Comparison between the Algorithmic Lower Bound and the Theoretical
Key Rate

We compare results from instances for which there exist tight analytical key rate expressions to
demonstrate that our Gauss-Newton method can achieve high accuracy with respect to the ana-
lytical key rates. There are known analytical expressions for entanglement-based BB84, prepare-
and-measure BB84 as well as measurement-device-independent BB84 variants mentioned in Ap-
pendix C. We take the measurement-device-independent BB84 as an example since it involves
the largest problem size among these three examples and therefore more numerically challenging.
In Figure 5.1, we present instances with different choices of parameters for data generation. The
instances are tested with a desktop compter that runs with the operating system Ubuntu 18.04.4
LTS, MATLAB version 2019a, Intel Xeon CPU E5-2630 v3 @ 2.40GHz × 32 and 125.8 Gigabyte
memory. We set the tolerance ε = 10−12 for the Gauss-Newton method.

In Figure 5.1, the numerical lower bounds from the Gauss-Newton method are close to the
analytical results to at least 12 decimals and in many cases they agree up to 15 decimals.

As noted in Appendix C.5, analytical results are also known when the channel noise param-
eter ξ is set to zero since in this case, one may argue the optimal eavesdropping attack is the
generalized beam splitting attack. This means the feasible set contains essentially a single ρ up
to unitaries. Since our objective function is unitary invariant, one can analytically evaluate the
key rate expression. In Figure 5.2, we compare the results from the Gauss-Newton method with
the analytical key rate expressions for different choices of distances L (See Appendix C.5 for
the description about instances of this protocol example). These instances were run in the same
machine as in Figure 5.1. We set the tolerance ε = 10−9 for the Gauss-Newton method.

5.2 Solving Numerically Challenging Instances

We show results where the Frank-Wolfe method without FR has difficulties in providing tight
lower bounds in certain instances. In Figure 5.2, we plot results obtained previously in [18, Figure
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Figure 5.1: Comparisons of key rate for measurement-device-independent BB84 (Appendix C.3)
between our Gauss-Newton method and the known analytical key rate.

2(b)] by the Frank-Wolfe method without FR. In particular, results from Frank-Wolfe method
have visible differences from the analytical results starting from distance L = 60 km. In addition
the lower bounds are quite loose once the distance reaches 150 km. In fact, there are points like
the one around 180 km where the Frank-Wolfe method cannot produce nontrivial (nonzero) lower
bounds. On the other hand, the Gauss-Newton method provides much tighter lower bounds.
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Figure 5.2: Comparison of key rate for discrete-modulated continuous-variable
QKD (Appendix C.5) among our Gauss-Newton method, the Frank-Wolfe method and
analytical key rate for the noise ξ = 0 case.

In Figure 5.3, we show another example to demonstrate the advantages of our method. These
instances were run in the same machine as in Figure 5.2. For this discrete-phase-randomzied BB84
protocol with 5 discrete global phases (see Appendix C.6 for more descriptions), the previous
Frank-Wolfe method was unable to find nontrivial lower bounds. This is because the previous
method can only achieve an accuracy around 10−3 for this problem due to the problem size. This
is insufficient to produce nontrivial lower bounds for many instances since the key rates are on
the order of 10−3 or lower as shown in Figure 5.3. On the other hand, due to high accuracy of our
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method, we can obtain meaningful key rates. The advantage of high accuracy achieved by our
method enables us to perform security analysis for protocols that involve previously numerically
challenging problems. Like the discrete-phase-randomized BB84 protocol, these protocols involve
more signal states, which lead to higher-dimensional problems.
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Figure 5.3: Key rate for discrete-phase-randomized BB84 (Appendix C.6) with the number of
discrete global phases c = 5. In this plot, the coherent state amplitude is optimized for each
distance by a simple coarse-grained search over the parameter regime.

5.3 Comparative Performance

In this section we examine the comparative performance among three algorithms; the Gauss-
Newton method, the Frank-Wolfe method and cvxquad. The Gauss-Newton method refers to
the algorithm developed throughout this paper. The Frank-Wolfe method refers to the algo-
rithm developed in [29] and cvxquad is developed in [13]. We use Table 5.1 to present detailed
reports on some selected instances. More numerics are reported throughout Tables C.1 to C.6 in
Appendix C.7.

The instances are tested with MATLAB version 2020a using Dell PowerEdge R640 Two Intel
Xeon Gold 6244 8-core 3.6 GHz (Cascade Lake) with 192 Gigabyte memory. For the instances
corresponds to the DMCV protocol, we used the tolerance ε = 10−9 and the tolerance ε = 10−12

was used for the remaining instances. The maximum number of iteration was set to 80.

Problem Data Gauss-Newton Frank-Wolfe with FR Frank-Wolfe w/o FR cvxquad with FR
protocol parameter size gap time gap time gap time gap time
ebBB84 (0.50,0.05) (4,16) 5.98e-13 0.63 1.01e-04 84.39 1.17e-04 94.71 5.46e-01 216.37
ebBB84 (0.90,0.07) (4,16) 2.33e-13 0.25 2.32e-04 85.09 2.54e-04 113.20 7.39e-01 647.60
pmBB84 (0.50,0.05) (8,32) 5.51e-13 0.24 3.13e-05 1.85 6.47e-04 1.47 5.26e-01 170.12
pmBB84 (0.90,0.07) (8,32) 1.01e-12 0.17 7.31e-05 1.04 6.25e-04 31.77 6.84e-01 235.89
mdiBB84 (0.50,0.05) (48,96) 7.86e-13 1.08 9.62e-05 1.54 5.39e-04 134.79 1.82e-01 588.71
mdiBB84 (0.90,0.07) (48,96) 2.96e-13 1.12 1.51e-04 101.84 3.48e-03 408.26 4.57e-01 574.31
TFQKD (0.80,100,0.70) (12,24) 7.67e-13 1.20 1.98e-04 96.08 1.55e-03 179.57 3.98e-03 990.92
TFQKD (0.90,200,0.70) (12,24) 3.42e-12 0.96 1.92e-05 2.07 1.65e-04 2.15 2.26e-04 875.44
DMCV (10,60,0.05,0.35) (44,176) 2.74e-09 510.66 2.44e-06 1015.14 3.36e-06 1709.65 ?? 0.86
DMCV (11,120,0.05,0.35) (48,192) 3.23e-09 720.61 2.60e-06 348.81 1.98e-06 628.25 ?? 1.24

dprBB84 (1,0.08,30) (12,48) 4.92e-13 0.93 3.79e-06 77.86 9.38e-05 108.50 ?? 119.20
dprBB84 (2,0.14,30) (24,96) 1.04e-12 10.07 6.19e-06 15.61 3.62e-06 27.79 ?? 105.40
dprBB84 (3,0.10,30) (36,144) 4.96e-13 61.32 6.48e-04 7.89 2.08e-02 28.46 ?? 614.71
dprBB84 (4,0.12,30) (48,192) 1.13e-12 272.09 4.41e-05 15.28 9.79e-04 184.42 ?? 3397.34

Table 5.1: Numerical Report from Three Algorithms
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In Table 5.1 Problem Data refers to the data used to generate the instances. Gauss-
Newton refers to the Gauss-Newton method. Frank-Wolfe refers to the Frank-Wolfe algo-
rithm used in [29] and we use ‘with FR (w/o FR, resp)’ to indicate the model is solved with
FR (without FR, resp). The header cvxquad with FR refers to the algorithm provided by [13]
with FR reformulation. If a certain algorithm fails to give a reasonable answer within a reason-
able amount of time, we give a ‘??’ flag in the gap followed by the time taken to obtain the error
message.

The following provides details for the remaining headers in Table 5.1.

1. protocol: the protocol name; refer to Appendix C;

2. parameter: the parameters used for testing; see Appendix C.1 - Appendix C.6 for the
ordering of the parameters;

3. size: the size (n, k) of original problem; n, k are defined in (3.2);

4. gap: the relative gap between the bestub and bestlb;

bestub - bestlb

1 + |bestub|+|bestlb|
2

. (5.1)

5. time: time taken in seconds.

We make some discussions on the formula (5.1). The best upper bound from Gauss-Newton
algorithm is used for all instances for ‘bestub’ in (5.1). The Gauss-Newton algorithm computes
the lower bounds as presented in Corollary 4.7. The Frank-Wolfe algorithm presented in [29]
obtains the lower bound by a linearization technique near the optimal. cvxquad presented in [13]
uses the semidefinite approximations of the matrix logarithm. The lower bounds from cvxquad
is often larger than the theoretical optimal values. This indicates that the lower bounds from
cvxquad is not reliable. Therefore we adopt the lower bound strategy used in [29] for cvxquad.

We now discuss the results in Table 5.1. Comparing the two columns gap and time among
the different methods, we see that the Gauss-Newton method outperforms other algorithms in
both the accuracy and the running time. For example, comparing Gauss-Newton and Frank-
Wolfe with FR, the gaps and running times from Gauss-Newton are competitive. There
are three instances that Gauss-Newton took longer time. We emphasize that the gaps from
Gauss-Newton are obtained with much higher accuracy.

We now illustrate that the reformulation strategy via FR contributes to superior algorithmic
performances. For the columns Frank-Wolfe with FR and Frank-Wolfe w/o FR in Table 5.1,
the FR reformulation contributes to not only giving tighter gaps but also reducing the running
time significantly. We now consider the column corresponding to cvxquad with FR in Table 5.1.
We see that the algorithm starts to fail (marked with ‘??’) as the problem sizes increase. In fact
cvxquad consistently fails due to the memory shortage when FR reformulation was not used.

6 Conclusion

6.1 Summary

In this paper we have used preprocessing and novel facial reduction, FR, for the QKD problem
in (1.1), to derive a regularized and simplified equivalent problem (3.22). FR was applied to
both the linear constraints, as well as to the nonlinear convex objective function. These steps
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used spectral decompositions, and thus they provided a very accurate equivalent facially reduced
problem. This allowed for a stable, projected Gauss-Newton, primal-dual interior-point approach.

Our empirical evidence illustrates significant improvements in solution time and accuracy of
solutions. In particular, we solve problems to machine accuracy and provide theoretical provable
accurate lower bounds. In fact, we obtain lower bounds within 10−15 relative accuracy when
desired.

Summary of the Model Reformulation We have reformulated the model (QKD) through
the sequence

(1.1)
(1)−−→ (1.2)

(2)−−→ (3.10)
(3)−−→ (3.16)

(4)−−→ (3.21)
(5)−−→ (3.22),

via (1) variable substitutions; (2) property of Z from Proposition 3.3; (3) facial reduction on
ρ, δ, σ; (4) rotation of the constraints; (5) substituting the constraints back to the objective.

6.2 Future Plans

There are still many improvements that can be made. Exact primal feasibility was quickly ob-
tained and maintained throughout the iterations. However, accurate dual feasibility was difficult
to maintain. This is most likely due to the finite difference approximation of the Hessian. This
approximation can be improved by including a quasi-Newton approach, as we have accurate gra-
dient evaluations. We maintain high accuracy results even in the cases where the Jacobian was
not full rank at the optimum. This appears to be due to the special data structures and more
theoretical analysis at the optimum can be done.
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A Proofs

A.1 Lemma 2.1

Proof. We have

WR = (<(W ) + i=(W ))(<(R) + i=(R))
= <(W )<(R)−=(W )=(R) + i<(W )=(R) + i=(W )<(R).

Hence,

<(WR) = <(W )<(R)−=(W )=(R), =(WR) = <(W )=(R) + =(W )<(R).

Then the inner product, (2.5), yields

〈W(R),M〉 = 〈WR,M〉
= 〈<(WR),<(M)〉+ 〈=(WR),=(M)〉
= 〈<(W )<(R)−=(W )=(R),<(M)〉+ 〈<(W )=(R) + =(W )<(R),=(M)〉.

We first focus on the first term.

〈<(WR),<(M)〉 = Tr(<(WR)T<(M))
= Tr

(
[<(W )<(R)−=(W )=(R)]T<(M)

)
= Tr

(
[<(W )<(R)]T<(M)

)
− Tr

(
[=(W )=(R)]T<(M)

)
= Tr

(
<(R)T<(W )T<(M)

)
− Tr

(
=(R)T =(W )T<(M)

)
=

〈
<(R),<(W )T<(M)

〉
−
〈
=(R),=(W )T<(M)

〉
We now focus on the second term.

〈=(WR),=(M)〉 = Tr(=(WR)T =(M))
= Tr

(
[<(W )=(R) + =(W )<(R)]T =(M)

)
= Tr

(
[<(W )=(R)]T =(M)

)
+ Tr

(
[=(W )<(R)]T =(M)

)
= Tr

(
=(R)T<(W )T =(M)

)
+ Tr

(
<(R)T =(W )T =(M)

)
=

〈
=(R),<(W )T =(M)

〉
+
〈
<(R),=(W )T =(M)

〉
Therefore,

〈W(R),M〉 =
〈
<(R),<(W )T<(M)

〉
−
〈
=(R),=(W )T<(M)

〉
+
〈
=(R),<(W )T =(M)

〉
+
〈
<(R),=(W )T =(M)

〉
=

〈
<(R),<(W )T<(M) + =(W )T =(M)

〉
+
〈
=(R),<(W )T =(M)−=(W )T<(M)

〉
= 〈R,W†(M)〉.

(A.1)

This proves the first general adjoint expression.
Now, suppose that W Hermitian is given, and consider W : Hn → Cn×n, i.e., a mapping

from Hn. Then (A.1) becomes

〈W(R),M〉 =
〈
<(R),<(W )T<(M) + =(W )T =(M)

〉
+
〈
=(R),<(W )T =(M)−=(W )T<(M)

〉
= 〈<(R),<(W )<(M)−=(W )=(M)〉

+
〈
=(R),<(W )=(M) + =(W )T<(M)

〉
= 〈<(R),S(<(W )<(M)−=(W )=(M))〉

+
〈
=(R),S(<(W )=(M) + =(W )T<(M))

〉
.

(A.2)

This yields the second term in (2.7).
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A.2 Lemma 2.2

Proof.
Sρ = (<(S) + i=(S))(<(ρ) + i=(ρ))

= <(S)<(ρ)−=(S)=(ρ) + i<(S)=(ρ) + i=(S)<(ρ).

Using (2.5),
〈Sρ,M〉 = 〈<(Sρ),<(M)〉+ 〈=(Sρ),=(M)〉

= Tr
(
<(Sρ)T<(M)

)
+ Tr

(
=(Sρ)T =(M)

)
.

We focus on the first term.

Tr
(
<(Sρ)T<(M)

)
= Tr

(
[<(S)<(ρ)−=(S)=(ρ)]T<(M)

)
= Tr

(
[<(S)<(ρ)]T<(M)

)
− Tr

(
[=(S)=(ρ)]T<(M)

)
= Tr

(
<(ρ)T<(S)T<(M)

)
− Tr

(
=(ρ)T =(S)T<(M)

)
= Tr

(
<(S)T<(M)<(ρ)T

)
− Tr

(
=(S)T<(M)=(ρ)T

)
=

〈
<(S),<(M)<(ρ)T

〉
−
〈
=(S),<(M)=(ρ)T

〉 (A.3)

We now look at the second term.

Tr
(
=(Sρ)T =(M)

)
= Tr

(
[<(S)=(ρ) + =(S)<(ρ)]T =(M)

)
= Tr

(
[<(S)=(ρ)]T =(M)

)
+ Tr

(
[=(S)<(ρ)]T =(M)

)
= Tr

(
=(ρ)T<(S)T =(M)

)
+ Tr

(
<(ρ)T =(S)T =(M)

)
= Tr

(
<(S)T =(M)=(ρ)T

)
+ Tr

(
=(S)T =(M)<(ρ)T

)
=

〈
<(S),=(M)=(ρ)T

〉
+
〈
=(S),=(M)<(ρ)T

〉 (A.4)

Then we have

〈S, ρ†(M)〉 =
〈
<(S),<(M)<(ρ) + =(M)=(ρ)T

〉
+
〈
=(S),−<(M)=(ρ)T + =(M)<(ρ)

〉
. (A.5)

Since S ∈ Hn, the adjoint ρ† is given as in (2.8). In particular, if ρ ∈ Hn, then we have
=(ρ)T = −=(ρ) and this yields (2.9).

Additionally, if we assume that ρ is Hermitian. Then (A.3) becomes

〈<(S),<(M)<(ρ)〉+ 〈=(S),<(M)=(ρ)〉

and (A.4) becomes
〈<(S),−=(M)=(ρ)〉+ 〈=(S),=(M)<(ρ)〉 .

Hence we obtain

〈S, ρ†(M)〉 = 〈<(S),<(M)<(ρ)−=(M)=(ρ)〉+ 〈=(S),<(M)=(ρ) + =(M)<(ρ)〉 .

A.3 Proposition 3.3

Lemma A.1. Let X ∈ Hk
+. For Z defined in (3.3), we have

Z(log(Z(X)) = log(Z(X)),

where the ‖I −Z(X)‖2 < 1.
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Proof. The matrix log has the series expansion

log(Z(X)) =
∞∑
i=1

(−1)k+1 (Z(X)− I)k

k
.

Expanding the series, we note that every term in the expansion is of the form (Z(X))k, for k ∈ N,
with some constant multiple. For k = 2, we see that

(Z(X))2 =

∑
j

ZjXZj

(∑
i

ZiXZi

)
=

∑
j

ZjXZjXZj

 ,

where the equality holds due to the property ZiZj = 0, for i 6= j (See (3.5) in the proof of
Proposition 3.3.). Then, by (3.5) again, we see that Z((Z(X))2) = (Z(X))2. For k > 2, it is
easy to see that Z((Z(X))k) = (Z(X))k. With the series expansion, this implies that

Z(log(Z(X)) = log(Z(X)).

A.4 Lemma 3.4

Proof. Recall that

A,B � 0 =⇒ range(A+B) = range(A) + range(B). (A.6)

Let X be a positive semidefinite matrix with rank r and spectral decomposition

X =

r∑
i=1

λiuiu
†
i .

We only focus on the first term λ1u1u
†
1. Then

Z(λ1u1u
†
1) =

n∑
j=1

Zj(λ1u1u
†
1)Zj =

n∑
j=1

λ1(Zju1)(Zju1)†.

We note, from (A.6), that

range(Z(λ1u1u
†
1)) = range(λ1(Z1u1)(Z1u1)† + λ1(Z2u1)(Z2u1)† + · · ·+ λ1(Znu1)(Znu1)†)

= range(Z1u1) + · · ·+ range(Znu1).

We also note that

u1 = Iu1 =

 n∑
j=1

Zj

u1 =

n∑
j=1

Zju1 ∈ range(Z1u1) + · · ·+ range(Znu1).

Hence,

range(λ1u1u
†
1) = range(u1) ⊆ range(Z1u1) + · · ·+ range(Znu1) = range(Z(λ1u1u

†
1)).

We now consider the first two terms in X, λ1u1u
†
1 + λ2u2u

†
2. Similarly,

range(λ1u1u
†
1) ⊆ range(Z(λ1u1u

†
1)) and range(λ2u2u

†
2) ⊆ range(Z(λ2u2u

†
2)). (A.7)

34



Then

range(λ1u1u
†
1 + λ2u2u

†
2) = range(λ1u1u

†
1) + range(λ2u2u

†
2) by (A.6)

⊆ range(Z(λ1u1u
†
1)) + range(Z(λ2u2u

†
2)) by (A.7)

= range(Z(λ1u1u
†
1) + Z(λ2u2u

†
2)) by (A.6)

= range(Z(λ1u1u
†
1 + λ2u2u

†
2)) by linearity of Z.

This completes the proof (The induction steps are clear.).

A.5 Lemma 3.6

Proof. We first work on the first-order derivative.

〈∇g(ρ),∆ρ〉 =
〈 d
dρ

Tr (H(ρ) log(H(ρ))) ,∆ρ
〉

= Tr
( d
dρ

(H(ρ) log(H(ρ))) (∆ρ)
)

= Tr

(
d

dρ

(
H(ρ)

)
(∆ρ) log(H(ρ)) +H(ρ)

d

dρ

(
log(H(ρ))

)
(∆ρ)

)
=
〈 d
dρ

(
H(ρ)

)
∆ρ, log(H(ρ))

〉
+
〈
H(ρ),

d

dρ

(
log(H(ρ))

)
∆ρ
〉

=
〈

∆ρ,H†
(

log(H(ρ))
)〉

+

〈(
d

dρ
log(H(ρ))

)†
H(ρ),∆ρ

〉

=
〈

∆ρ,H†
(

log[H(ρ)]
)〉

+

〈
dH(ρ)

dρ

†
(I),∆ρ

〉
=
〈
H†
(

log[H(ρ)]
)
,∆ρ

〉
+
〈
H†(I),∆ρ

〉
.

(A.8)

Note that we used the fact that the directional derivative of matrix-log at ρ in the direction ρ is:

log′(δ)(δ) = log′(δ; δ) = I.

Similarly, the Hessian g at ρ acting on ∆ρ can be obtained as follows.

∇2g(ρ)(∆ρ) = ∂
∂ρH

†
(

[logH(ρ)]
)

= H† ∂∂ρ
(

[logH(ρ)]
)

= H†
(

[log′H(ρ)(H∆ρ)]
)
. (A.9)

A.6 Theorem 3.8

We provide an alternative, self-contained proof. We note that the key is finding an exposing
vector for SR, i.e., ZΓ � 0 such that 〈ZΓ, ρ〉 = 0, ∀ρ ∈ SR. See e.g., [12]. The standard theorem
of the alternative for strict feasibility, Lemma 2.6, yields the following equalities for ZΓ:

0 6= ZΓ =
∑
j

yjΓj =
∑
j

yj (Θj ⊗ 1B) =

∑
j

yjΘj

⊗ 1B � 0; yT θ = 0.

It is equivalent to look at the smaller problem and find y so that

0 6= ZΘ =
∑
j

yjΘj � 0; yT θ = 0.
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Since the reduced density operator constraint requires that θj = Tr ρAΘj , we get

0 =
∑
j

yjθj = Tr

ρA∑
j

yjΘj

 ⇐⇒ ρA

∑
j

yjΘj

 = ρAZΘ = 0,

i.e., the exposing vector ZΘ = QRΘQ
†, for some RΘ. Conversely, we can set ZΘ = QQ†, RΘ = I,

by the basis property of the Θi, i.e., the basis property means we can always find an appropriate
y so that

∑
j yjΘj = QQ†. We get that rankZΘ = nA − r. Therefore, ZΓ = ZΘ ⊗ 1B, with

rankZΘ = nB(nA − r), is an exposing vector as desired, i.e., we have

SR ⊂ {ρ � 0 : 〈ZΘ ⊗ 1B, ρ〉 = 0} .

Thus we get the conclusion that ρ = V RV †, as desired.

B Implementation Details

In this section we look at simplifications for evaluations of the objective function and its deriva-
tives.

B.1 Evaluation of Objective Function

We show how to compute the objective value without using logm in MATLAB stable and ef-
ficiently. The computation is motivated by [28]. The objective function can be computed as
follows. Let

δ = UδDδUδ =
r∑
j=1

λj(δ)xjx
†
j , σ = UσDσU

†
σ =

s∑
j=1

λj(σ)yjy
†
j

be the compact spectral decomposition. It is clear that Tr(δ log δ) =
∑r

j=1 λj(δ) log (λj(δ)).
From [28, equation (5.86)], we have

Tr(δ log σ) =
∑r

j=1

∑s
k=1 λj(δ) log λk(σ)|〈xj , yk〉|2. (B.1)

Define U := U †δUσ =

x
†
1y1 · · · x†1ys
...

. . .
...

x†ry1 · · · x†rys

, as well as

Ū := <(U) ◦ <(U) + =(U) ◦ =(U), and Λ = diag(λ(δ)) diag(λ(σ))T ,

where ◦ is the element-wise matrix product. Then (B.1) is exactly∑
i,j

(Λ ◦ Ū)i,j ,

B.2 Matrix Representations of Derivatives

We now include a matrix representation for the derivatives. This is useful for finite difference
evaluations of derivatives. Let A,B,C be given compatible matrices. If X is Hermitian, then
the linear system AXB = C can be written as(

(B†)T ⊗A
)

vec(X) = vec(C).
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Note that MT is the transpose of M , i.e., without conjugation.
Let g : R→ R be a continuously differentiable function. The first divided difference h[1](λ, µ)

of g at λ, µ ∈ R is defined as

h[1](λ, µ) =

{
g(λ)−g(µ)
λ−µ if λ 6= µ

g′(λ) if λ = µ
(B.2)

If D is a diagonal matrix with diagonal entries λ1, . . . , λn, then we define h[1](D) to be the
symmetric n× n matrix given by h[1](diag(D)).

Lemma B.1. Let A : Hs → Ht be a linear map, ρ,∆ρ ∈ Hs,A(ρ) ∈ Ht
++, and f(ρ) =

Tr(A(ρ) logA(ρ)). Let A(ρ) = UDUT be the spectral decomposition of f at ρ, and the Hes-
sian of f at ρ in the direction ∆ρ are given by

∇f(ρ) = A†(logA(ρ)) +A†(I),

and
(Hf (ρ)) (4ρ) = A†

(
U(h[1](D) ◦ UTA(4ρ)U)U †

)
,

where h[1](D) is the first divided difference of the logarithm function g(x) = lnx, see (B.2) and
the paragraph below.

In the actual computation, it is more convenient to express the gradient and Hessian in matrix
form. Let A be the matrix representation of A. The Hessian in matrix form is

Hf (ρ) = A†(UT ⊗ U) Diag(h1(D))((U †)T ⊗ U †)A.

B.3 Matrix Representation of the Second Projected Gauss-Newton System

We present the matrix representation of (4.6). Let Ni be a basis element of null(ΓV ). Then
N †(w) has the representation

∑
iwiNi. Then the LHS of (4.6) becomes[

ZN †(∆v) +∇2f(ρ)[N †(∆v)] ρ
]

+
[
Γ†V (∆y)ρ

]
= Z

∑
iNi∆vi +∇2f(ρ)[

∑
iNi∆vi] ρ+ Γ†V (∆y)ρ

=
∑

i ZNi∆vi +
∑

i∇2f(ρ)Niρ∆vi +
∑

i Γiρ∆yi.

(B.3)

Applying Cvec to the terms related to ∆v, we have the following matrix representation:

[
Cvec

(
ZN1 +∇2f(ρ)N1ρ

)
· · · Cvec

(
ZNn2

ρ−mV +∇2f(ρ)Nn2
ρ−mV ρ

)] ∆v1
...

∆vn2
ρ−mV

 .
Similarly, applying Cvec on the terms related to ∆y, we have the following matrix representation:

[
Cvec (Γ1ρ) · · · Cvec (Γmρ)

]  ∆y1
...

∆ym.


The RHS of (4.6) becomes Cvec

(
F cµ + ZF pµ +

(
F dµ +∇2f(ρ)F pµ

)
ρ
)
. Thus, dGN is obtained be

solving the system[[
Cvec

(
ZNi +∇2f(ρ)Niρ

)]
i=1,...,n2

ρ−mV
[Cvec (Γjρ)]j=1,...,mV

] [∆v
∆y

]
= Cvec

(
F cµ + ZF pµ +

(
F dµ +∇2f(ρ)F pµ

)
ρ
)
.
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C Descriptions and Further Numerics of the Protocols

We briefly describe six QKD protocols where we compare our algorithm to other algorithms.
We also describe how the data (γ in (1.1)) is generated. In addition, we remark on the level of
numerical difficulty for each example. We consider four variants of the Bennett-Brassard 1984
(BB84) protocol [1] including single-photon based variants: entanglement-based (Appendix C.1),
prepare-and-measure (Appendix C.2), measurement-device-independent [19] (Appendix C.3) and
a coherent-state based variant with discrete global phase randomization [4] (Appendix C.6). We
also consider the single-photon version of the twin-field QKD [20] (Appendix C.4). Another in-
teresting protocol in our numerical tests is the quadrature-phase-shift keying scheme of discrete-
modulated continuous-variable QKD with heterodyne detection (Appendix C.5), see [18, Pro-
tocol 2]. These protocols correspond to numerical problems with the level of difficulty ranging
from easy to difficult. In the descriptions below, we use the Dirac notation for quantum states
which are vectors in the underlying Hilbert space. We skip the description about some common
classical postprocessing steps in a QKD protocol like error correction and privacy amplification
since they are unimportant for our discussions here. We note that the description of linear maps
G and Z directly follow from the protocol description by following the simplication procedure ex-
plained in [18, Appendix A]. We omit those detailed descriptions here and note that the explicit
expressions for some of protocols can also be found in [16, Appendix D].

C.1 Entanglement-Based BB84

We consider this protocol with a single-photon source and restrict our discussions to the qubit
space. In the quantum communication phase, Alice and Bob each receive one half of a bipartite
state. This is supposed to be a two-qubit maximally entangled state before Eve’s tampering.
And the measure in the Z basis is with probability pz, or in X basis with a probability 1−pz. In
the classical communication phase, they announce their basis choices for each round and perform
sifting to keep those rounds where they both chose the same basis. In the end, they generate
keys from both Z and X bases.

In the simulation, we assume both bases have the same error rate ez = ex = Q. In particular,
Γ (in (1.1)) contains the Z-basis error rate, X-basis error rate constraints as well as one coarse-
grained constraint for each mismatched basis choice scenario. This is to ensure that Alice and Bob
get completely uncorrelated outcomes in that case. In other words, the data γ are determined by
Q. This test example is supposed to be numerically easy, since it involves the smallest possible
size of ρ for QKD , i.e., four. Moreover, there is no reduced density operator ρA constraint
for this example. In Table 5.1, instances of this test example are labeled as ebBB84(pz, Q) for
different values of pz and Q.

C.2 Prepare-and-Measure BB84

Another protocol example in our numerical tests is the prepare-and-measure version of BB84
with a single-photon source. In the quantum communication phase, Alice chooses the Z basis
with a probability pz or the X basis with a probability 1 − pz. When she chooses the Z basis,
she sends either |0〉 or |1〉 at random, where |0〉 and |1〉 are eigenstates of the Pauli σZ operator.
When she chooses the X basis, she sends either |+〉 or |−〉 at random, where |±〉 = 1√

2
(|0〉± |1〉).

After Alice sends the state of her choice to Bob, Bob chooses to measure in the Z basis with a
probability pz or the X basis with a probability 1−pz. The rest of the protocol is exactly the same
as the entanglement-based BB84 protocol described in Appendix C.1. We call {|0〉, |1〉, |+〉, |−〉}
as stated in BB84.

38



For the security analysis, we use the source-replacement scheme [15] to convert it to its
equivalent entanglement-based scheme. Therefore, the main differences between this example
and the one in Appendix C.1 are: (1) the dimension of Alice’s system for this example is four
due to the source-replacement scheme, while it is two for the entanglement-based BB84; (2)
there is the reduced density operator constraint ρA which is of size 4 and translated to 16 linear
constraints. In this test example, the size of ρ is 8 and the size of G(ρ) is 32 before FR.

The data simulation is done in a similar way as that in the entanglement-based BB84 protocol,
i.e., ex = ez = Q. In Table 5.1, instances of this test example are labeled as pmBB84(pz, Q).

C.3 Measurement-Device-Independent BB84

In the measurement-device-independent variant of BB84 with single-photon sources, Alice and
Bob each prepare one of four BB84 states (with the probability of choosing the Z basis as pz).
Then they both send this to an untrusted third-party Charlie for measurements. He ideally
then performs the Bell-state measurements and announces the outcomes. We consider a setup
where Charlie only uses linear optics, and thus can only measure two out of four Bell states.
In this protocol, Charlie announces either a successful Bell-state measurement or a failure. If a
successful measurement, Charlie then also announces the Bell state. Therefore, there are three
possible announcement outcomes. After the announcement, Alice and Bob perform the basis
sifting, as well as discard rounds that are linked to unsuccessful events. They then generate
keys from rounds where they both chose the Z basis and Charlie’s announcement is one of the
successful events.

We now consider the measurement-device-independent type of protocols. As described in [7],
the optimization variable ρ involves three parties as ρABC . Here, registers AB together serve the
role of A in the reduced density operator constraint set (2.4). The dimension of Alice’s system is
4 and so is Bob’s dimension. The register C is a classical register that stores the announcement
outcome. Thus it is three-dimensional with three possible announcement outcomes. In the data
simulation, we assume that each qubit sent to Charlie goes through a depolarizing channel, with
the depolarizing probability p.

In the numerical tests, we label instances of this protocol example as mdiBB84(pz, p). The
size of ρ is 48 and that of G(ρ) is 96 before FR.

C.4 Twin-Field QKD

As above, this protocol also uses the measurement-device-independent setup. The exact protocol
description can be found in [8, Protocol 1]. In this protocol, Alice and Bob each prepare a
state |φq〉Aa =

√
q|0〉A|0〉a +

√
1− q|1〉A|1〉a (|φq〉Bb) with 0 ≤ q ≤ 1, where the register A is a

qubit system and the register a is an optical mode with the vacuum state |0〉a and the single-
photon state |1〉a. After they send states to the intermediate station, Charlie at the intermediate
station is supposed to perform the single-photon interference of these two signal pulses and then
announces the measurement outcome for each of two detectors: click or no-click. Then Alice
and Bob each perform the X-basis measurement on their local qubits with a probability px or
the Z-basis measurement with a probability 1− px. They generate keys from rounds where they
both choose the X basis and where Charlie announces a successful measurement outcome, that
is, having exactly one of two detectors click.

In the simulation, we consider a lossy channel, with the transmittance 10−0.02L, for the
distance L in kilometers between Alice and Bob. We consider the symmetric scenario where
Charlie is at an equal distance away from Alice and Bob. We also consider detector imperfections:
each detector at Charlie’s side has detector efficiency ηd = 14.5% and dark count probability

39



pd = 10−8. In instances of this protocol, data is generated as a function of: q that appears
in the states |φq〉Aa and |φq〉Bb; the total distance L in kilometers between Alice and Bob;
and the probability of choosing X basis px. The instances of this test example are labeled as
TFQKD(q, L, px).

C.5 Discrete-Modulated Continuous-Variable QKD

The exact protocol description can be found in [18, Protocol 2]. We use the same simulation
method described in [18, Equation (30)] to generate the data γ. In this protocol, Alice sends
Bob one of four coherent states |αeiθj 〉, where θj = jπ

2 for j = 0, 1, 2, 3. And Bob performs
the heterodyne measurement, i.e., measuring both X- and P -quadratures after splitting the
signal into two halves by a 50/50 beamsplitter. The first and second moments of X- and P -
quadratures are used to constrain ρ. The data simulation uses a phase-invariant Gaussian channel
with transmittance ηt and excess noise ξ to generate those values. We use the same photon-
number cutoff assumption used there to truncate the infinite-dimensional Hilbert space. For the
calculation, it is typically sufficient to choose Nc ≥ 10 to minimize the effects of errors due to
the truncation. For simplicity, we assume the detector at Bob’s side is an ideal detector. The
channel transmittance, ηt, is related to the transmission distance L between Alice and Bob, by
ηt = 10−0.02L.

Let Nc be an integer that represents the cutoff photon number. Before FR, the sizes of ρ and
G(ρ) are 4(Nc + 1) and 16(Nc + 1), respectively. In Table 5.1, we label instances of this example
as DMCV(Nc, L, ξ, α).

When the noise ξ = 0, this problem can be solved analytically via physical arguments. The
detailed instructions for analytical calculation can be found in [18, Appendix C]. We use this
special case to demonstrate that our interior-point method can reproduce the analytical results
to high precision.

C.6 Discrete-Phase-Randomized BB84

We consider the phase-encoding BB84 protocol with c (a parameter) discrete global phases evenly
spaced between [0, 2π] [4]. A detailed protocol description can also be found in [16, Sec. IV D]. In
particular, each of four BB84 states is realized by a two-mode coherent state |αeiθ〉r|αei(θ+φA)〉s,
where the first mode is the phase reference mode and the second mode encodes the private
information. In particular, the θ is a global phase that involves discrete phase randomization,
i.e., θ ∈ {2π`

c : ` = 0, . . . , c − 1}. The relative phase for encoding is φA ∈ { jπ2 : j = 0, 1, 2, 3},
where {0, π} correspond to the Z basis and {π2 ,

3π
2 } correspond to the X basis.

Data simulation is done in exactly the same way as in [16, Section IV D], where we consider
detector imperfections and a lossy channel with a misalignment error due to phase drift.

We remark that the instances of this test example become more challenging as one increases
the number of discrete phases c, since the size of ρ is 12c and the size of G(ρ) is 48c before FR.
In all instances of this protocol, we choose pz = 0.5 and the data are simulated with detector
efficiency ηd = 0.045, dark count probability pd = 8.5 × 10−7 and relative phase drift of 11◦.
The final key rate values are presented by taking the error correction efficiency as 1.16. In the
numerical tests, we label instances of this protocol as dprBB84(c, α, L).

C.7 Additional Numerical Report
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Problem Data Gauss-Newton Frank-Wolfe with FR Frank-Wolfe w/o FR cvxquad with FR
protocol parameter size gap time gap time gap time gap time
ebBB84 (0.50,0.01) (4,16) 1.14e-12 0.62 5.96e-05 162.63 5.89e-05 187.55 6.37e-01 232.68
ebBB84 (0.50,0.03) (4,16) 8.35e-13 0.35 6.37e-05 160.30 6.24e-05 202.10 5.88e-01 479.06
ebBB84 (0.50,0.05) (4,16) 5.98e-13 0.41 1.01e-04 159.34 1.17e-04 202.08 5.46e-01 300.15
ebBB84 (0.50,0.07) (4,16) 1.05e-12 0.25 1.39e-04 164.30 1.70e-04 203.59 5.07e-01 298.94
ebBB84 (0.50,0.09) (4,16) 1.35e-12 0.30 1.39e-04 165.52 2.56e-04 237.52 4.70e-01 246.81
ebBB84 (0.70,0.01) (4,16) 9.59e-13 0.30 7.73e-05 157.91 7.73e-05 214.94 7.06e-01 3597.33
ebBB84 (0.70,0.03) (4,16) 3.49e-13 0.32 9.15e-05 157.70 9.73e-05 230.28 6.59e-01 3209.85
ebBB84 (0.70,0.05) (4,16) 6.23e-13 0.38 1.22e-04 161.84 9.80e-05 242.61 6.14e-01 3016.97
ebBB84 (0.70,0.07) (4,16) 1.06e-12 0.25 1.58e-04 161.53 2.22e-04 244.22 5.70e-01 2894.74
ebBB84 (0.70,0.09) (4,16) 1.25e-12 0.21 2.26e-04 165.64 2.45e-04 247.21 5.26e-01 2689.53
ebBB84 (0.90,0.01) (4,16) 1.43e-13 0.27 1.02e-04 154.25 1.02e-04 214.67 8.73e-01 733.12
ebBB84 (0.90,0.03) (4,16) 4.22e-13 0.23 1.61e-04 163.30 1.21e-04 229.85 8.27e-01 795.67
ebBB84 (0.90,0.05) (4,16) 5.30e-13 0.20 1.33e-04 161.67 1.77e-04 239.13 7.83e-01 826.22
ebBB84 (0.90,0.07) (4,16) 2.33e-13 0.27 2.32e-04 166.18 2.54e-04 243.65 7.39e-01 737.34
ebBB84 (0.90,0.09) (4,16) 1.66e-12 0.45 4.44e-04 170.14 5.10e-04 267.54 6.94e-01 729.44

Table C.1: Numerical Report for ebBB84 Instances

Problem Data Gauss-Newton Frank-Wolfe with FR Frank-Wolfe w/o FR cvxquad with FR
protocol parameter size gap time gap time gap time gap time
pmBB84 (0.50,0.01) (8,32) 5.96e-13 0.47 6.19e-06 2.28 4.64e-04 35.14 6.30e-01 221.58
pmBB84 (0.50,0.03) (8,32) 1.01e-12 0.27 6.75e-05 1.77 6.54e-04 124.67 5.74e-01 206.76
pmBB84 (0.50,0.05) (8,32) 5.51e-13 0.37 3.13e-05 1.85 6.47e-04 2.53 5.26e-01 185.68
pmBB84 (0.50,0.07) (8,32) 8.88e-14 0.32 1.61e-04 1.55 8.77e-04 2.46 4.81e-01 188.45
pmBB84 (0.50,0.09) (8,32) 9.38e-13 0.23 6.71e-05 2.04 9.04e-04 2.26 4.40e-01 246.90
pmBB84 (0.70,0.01) (8,32) 7.69e-13 0.29 5.69e-06 1.87 2.39e-04 181.06 7.03e-01 254.28
pmBB84 (0.70,0.03) (8,32) 4.75e-13 0.26 1.91e-05 1.57 2.68e-04 187.20 6.51e-01 323.28
pmBB84 (0.70,0.05) (8,32) 6.16e-13 0.18 3.52e-05 1.72 3.37e-04 183.52 6.04e-01 322.36
pmBB84 (0.70,0.07) (8,32) 6.30e-13 0.23 5.46e-05 1.56 3.04e-04 192.42 5.60e-01 363.40
pmBB84 (0.70,0.09) (8,32) 8.47e-13 0.19 9.21e-05 1.49 3.55e-04 10.04 5.18e-01 339.48
pmBB84 (0.90,0.01) (8,32) 7.66e-13 0.22 7.08e-06 1.78 3.27e-04 6.55 8.60e-01 299.91
pmBB84 (0.90,0.03) (8,32) 2.47e-13 0.23 2.44e-05 1.61 5.43e-04 187.06 7.96e-01 256.07
pmBB84 (0.90,0.05) (8,32) 1.36e-12 0.21 4.62e-05 1.77 5.96e-04 94.26 7.38e-01 244.79
pmBB84 (0.90,0.07) (8,32) 1.01e-12 0.17 7.31e-05 1.66 6.25e-04 52.59 6.84e-01 255.25
pmBB84 (0.90,0.09) (8,32) 4.70e-13 0.19 1.06e-04 1.66 7.39e-04 191.42 6.32e-01 254.52

Table C.2: Numerical Report for pmBB84 Instances

Problem Data Gauss-Newton Frank-Wolfe with FR Frank-Wolfe w/o FR cvxquad with FR
protocol parameter size gap time gap time gap time gap time
mdiBB84 (0.50,0.01) (48,96) 1.30e-12 3.63 1.17e-05 133.41 3.47e-04 147.28 2.11e-01 739.50
mdiBB84 (0.50,0.03) (48,96) 8.74e-13 3.58 2.56e-05 2.27 4.04e-04 946.39 1.95e-01 650.15
mdiBB84 (0.50,0.05) (48,96) 7.86e-13 3.80 9.62e-05 2.05 5.39e-04 139.30 1.82e-01 608.11
mdiBB84 (0.50,0.07) (48,96) 1.25e-12 2.47 5.92e-05 131.39 4.55e-04 894.54 1.71e-01 616.02
mdiBB84 (0.50,0.09) (48,96) 1.22e-12 2.86 7.94e-05 130.78 4.88e-04 831.83 1.60e-01 585.90
mdiBB84 (0.70,0.01) (48,96) 1.20e-12 2.58 1.19e-05 2.03 6.07e-04 946.35 3.79e-01 742.79
mdiBB84 (0.70,0.03) (48,96) 4.24e-13 3.51 7.54e-05 131.79 1.02e-03 142.39 3.55e-01 683.04
mdiBB84 (0.70,0.05) (48,96) 1.06e-12 2.81 9.43e-05 129.37 1.82e-03 129.59 3.31e-01 663.75
mdiBB84 (0.70,0.07) (48,96) 5.71e-13 3.38 1.47e-04 126.94 1.72e-03 891.99 3.09e-01 619.96
mdiBB84 (0.70,0.09) (48,96) 1.57e-13 2.93 1.45e-04 125.94 1.05e-03 887.30 2.88e-01 625.62
mdiBB84 (0.90,0.01) (48,96) 8.44e-13 2.72 5.99e-05 2.21 3.60e-03 1005.11 5.53e-01 731.58
mdiBB84 (0.90,0.03) (48,96) 1.39e-12 3.10 7.24e-05 1.98 6.04e-03 726.72 5.16e-01 682.02
mdiBB84 (0.90,0.05) (48,96) 9.88e-13 2.83 2.03e-04 121.38 4.24e-03 918.14 4.85e-01 653.90
mdiBB84 (0.90,0.07) (48,96) 2.96e-13 3.42 1.51e-04 122.00 3.48e-03 675.43 4.57e-01 590.82
mdiBB84 (0.90,0.09) (48,96) 5.21e-13 2.92 2.48e-04 122.77 4.48e-03 958.06 4.31e-01 618.35

Table C.3: Numerical Report for mdiBB84 Instances

Problem Data Gauss-Newton Frank-Wolfe with FR Frank-Wolfe w/o FR cvxquad with FR
protocol parameter size gap time gap time gap time gap time
TFQKD (0.75,50,0.7) (12,24) 5.99e-13 2.04 2.72e-09 3.17 1.83e-03 720.08 ?? 0.40
TFQKD (0.75,100,0.7) (12,24) 5.07e-13 2.94 3.75e-09 1.53 1.53e-03 702.68 ?? 0.09
TFQKD (0.75,150,0.7) (12,24) 5.12e-13 1.81 2.82e-09 1.80 7.82e-04 703.04 ?? 0.06
TFQKD (0.75,200,0.7) (12,24) 9.90e-14 1.29 3.98e-09 1.59 7.19e-04 700.82 ?? 0.11
TFQKD (0.75,250,0.7) (12,24) 4.21e-13 1.27 3.04e-09 1.62 3.14e-04 744.11 ?? 0.09
TFQKD (0.80,50,0.7) (12,24) 4.70e-13 1.52 2.82e-09 1.76 1.52e-03 678.55 ?? 0.11
TFQKD (0.80,100,0.7) (12,24) 5.89e-13 1.56 2.59e-09 1.77 1.57e-03 710.53 ?? 0.11
TFQKD (0.80,150,0.7) (12,24) 9.74e-13 1.42 2.97e-09 1.70 8.30e-04 699.80 ?? 0.06
TFQKD (0.80,200,0.7) (12,24) 1.25e-12 1.51 3.76e-09 1.64 5.60e-04 710.42 ?? 0.11
TFQKD (0.80,250,0.7) (12,24) 1.59e-13 1.21 2.22e-09 1.44 1.99e-04 707.96 ?? 0.11
TFQKD (0.90,50,0.7) (12,24) 2.60e-13 1.42 4.30e-09 1.56 1.55e-03 703.66 ?? 0.08
TFQKD (0.90,100,0.7) (12,24) 1.12e-12 1.05 2.32e-09 1.42 1.43e-03 692.61 ?? 0.10
TFQKD (0.90,150,0.7) (12,24) 1.31e-12 1.47 2.85e-09 1.68 6.02e-04 696.58 ?? 0.11
TFQKD (0.90,200,0.7) (12,24) 3.22e-13 1.29 3.98e-09 1.72 1.68e-04 6.35 ?? 0.13
TFQKD (0.90,250,0.7) (12,24) 3.37e-12 4.39 1.08e-06 2.30 9.10e-06 4.14 7.08e-05 1142.93
TFQKD (0.95,50,0.7) (12,24) 1.09e-12 1.54 4.00e-09 1.51 1.38e-03 702.00 ?? 0.07
TFQKD (0.95,100,0.7) (12,24) 0.00e+00 0.22 6.62e-15 1.48 1.23e-04 696.53 ?? 0.06
TFQKD (0.95,150,0.7) (12,24) 0.00e+00 0.19 2.52e-09 1.84 6.41e-04 718.55 ?? 0.08
TFQKD (0.95,200,0.7) (12,24) 4.18e-13 5.66 9.44e-05 133.56 3.11e-04 706.50 1.24e-04 1101.29
TFQKD (0.95,250,0.7) (12,24) 1.66e-12 5.58 9.79e-07 2.15 4.72e-06 4.14 3.99e-05 1012.27

Table C.4: Numerical Report for TFQKD Instances
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Problem Data Gauss-Newton Frank-Wolfe with FR Frank-Wolfe without FR
protocol parameter size gap time gap time gap time
DMCV (10,60,0.05,0.35) (44,176) 2.74e-09 1763.96 2.44e-06 2025.55 3.36e-06 4110.00
DMCV (10,120,0.05,0.35) (44,176) 2.72e-09 1781.39 1.28e-06 690.59 2.47e-06 1077.31
DMCV (10,180,0.05,0.35) (44,176) 1.77e-09 1500.34 1.89e-07 49.04 1.34e-07 84.43
DMCV (11,60,0.05,0.35) (48,192) 3.09e-09 1505.31 2.66e-06 2938.22 5.07e-06 3973.05
DMCV (11,120,0.05,0.35) (48,192) 3.23e-09 1597.97 2.60e-06 824.34 1.98e-06 1230.97
DMCV (11,180,0.05,0.35) (48,192) 3.25e-09 2240.51 2.52e-07 63.80 1.64e-07 76.59
DMCV (10,150,0.02,0.70) (44,176) 2.07e-09 1165.73 2.02e-06 247.03 1.74e-06 286.47
DMCV (10,200,0.02,0.70) (44,176) 2.18e-09 1194.21 7.40e-07 46.87 7.04e-07 72.29
DMCV (10,150,0.02,0.80) (44,176) 1.78e-09 1193.60 1.15e-06 270.17 1.32e-06 533.12
DMCV (10,200,0.02,0.80) (44,176) 1.63e-09 1144.97 3.20e-07 48.49 2.89e-07 82.08
DMCV (11,150,0.02,0.70) (48,192) 3.14e-09 1729.59 1.34e-06 278.49 1.71e-06 630.41
DMCV (11,200,0.02,0.70) (48,192) 2.25e-09 1639.13 7.10e-07 61.65 6.70e-07 104.19
DMCV (11,150,0.02,0.80) (48,192) 3.40e-09 1668.11 1.56e-06 363.73 1.42e-06 640.60
DMCV (11,200,0.02,0.80) (48,192) 3.38e-09 1703.92 3.38e-07 55.74 3.00e-07 92.63

Table C.5: Numerical Report for DMCV Instances

Problem Data Gauss-Newton Frank-Wolfe with FR Frank-Wolfe without FR
protocol parameter size gap time gap time gap time
dprBB84 (1,0.08,15) (12,48) 9.42e-13 9.17 3.85e-06 144.32 1.04e-04 522.47
dprBB84 (1,0.08,30) (12,48) 4.92e-13 9.52 3.79e-06 144.09 9.38e-05 511.94
dprBB84 (1,0.14,15) (12,48) 2.96e-13 7.22 3.63e-04 139.71 1.16e-02 521.77
dprBB84 (1,0.14,30) (12,48) 5.21e-13 6.84 2.60e-04 2.47 8.31e-03 4.01
dprBB84 (2,0.08,15) (24,96) 1.10e-12 61.58 9.47e-05 50.41 9.44e-06 692.76
dprBB84 (2,0.08,30) (24,96) 9.58e-13 53.00 1.17e-04 33.56 7.47e-06 415.58
dprBB84 (2,0.14,15) (24,96) 1.35e-12 59.61 1.89e-05 8.63 5.10e-04 40.71
dprBB84 (2,0.14,30) (24,96) 1.04e-12 63.32 6.19e-06 26.82 3.62e-06 126.80
dprBB84 (2,0.14,30) (24,96) 1.04e-12 57.29 6.19e-06 24.11 3.62e-06 127.95
dprBB84 (3,0.08,15) (36,144) 1.38e-12 462.49 2.36e-04 22.44 7.41e-03 48.43
dprBB84 (3,0.08,30) (36,144) 6.33e-13 469.17 2.26e-04 18.39 7.04e-03 55.91
dprBB84 (3,0.14,15) (36,144) 1.30e-12 440.82 4.33e-05 79.96 1.16e-04 117.41
dprBB84 (3,0.14,30) (36,144) 3.32e-13 442.06 6.32e-06 18.72 5.11e-06 65.95
dprBB84 (4,0.08,15) (48,192) 7.63e-09 3280.36 2.88e-04 163.30 8.10e-03 416.57
dprBB84 (4,0.08,30) (48,192) 2.36e-09 2593.41 2.97e-04 52.59 8.45e-03 372.93
dprBB84 (4,0.14,15) (48,192) 2.97e-12 1519.28 1.29e-04 49.94 3.85e-03 243.37
dprBB84 (4,0.14,30) (48,192) 9.35e-13 2208.05 1.28e-04 58.07 3.73e-03 276.42

Table C.6: Numerical Report for dprBB84 Instances
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Index

F ′µ, Jacobian of Fµ, 19

S†, dual cone, 9
SO, observational constraints, 6
SR, reduced density operator constraint, 6, 12
Vδ, 14
Vρ, 14
Vσ, 14
X � 0, 7
X � 0, 7
[x, y], line segment, 9
BlkDiag, 7
BlkDiag(A1, A2), block diagonal matrix with

diagonal blocks A1, A2, 7
Hn, set of n-by-n Hermitian matrices, 4
Hn

+, positive semidefinite cone of n-by-n Her-
mitian matrices, 7

Hn
++, positive definite cone of n-by-n Hermi-

tian matrices, 7
Rn, vector space of real n-coordinates, 7
Sn, set of real symmetric n-by-n matrices, 7
Sn+, positive semidefinite cone of n-by-n real

symmetric matrices, 7
Sn++, positive definite cone of n-by-n real sym-

metric matrices, 7
L†, adjoint of L, 8
Rδ, 14
Rρ, 14
Z : Hk → Hk, 10
·†, conjugate transpose, 7
dGN , GN -direction, 19, 20
δ ∈ Hk

+, 12
δEC, 6
face(X), minimal face, 9
=(X), imaginary part of X, 7
log′, Fréchet derivative of log, 11
1B ∈ HnB , 7, 12
Z : Hk → Hk, 10
PC(X), projection of X onto C, 7
mV , number of linear constraints after FR , 16
null(X), nullspace of X, 7
⊗, Kronecker product, 6
range(X), range of X, 7
<(X), real part of X, 7
ρ ∈ Hn

+, 12
ρ ∈ Hnρ

+ , 16
ρ, state, 6

sMat, 8
σ ∈ Hk

+, 12
SK, skew-symmetrization linear map, 8
svec, 8
S, symmetrization linear map, 8
TrB(ρ) = ρA, 7
f(δ, σ) = Tr (δ(log δ − log σ)), 4
g(ρ, y, Z), nonlinear least square function, 19
kδ, kσ, 16
m, number of linear constraints, 4
n = nAnB which is the size of ρ, 6
nA, nB, 6
ppass, 6
r = Picpr(cp), 23
r(cp) = Pcpr, 23
t(n) = n(n+ 1)/2, triangular number, 8
ΓV
−1, generalized inverse, 25

G : Hn → Hk, 10
N † : Rn2

ρ−mV → Hnρ , 20
MZ(∆X) = Z∆X, 19
Mρ(∆X) = ∆Xρ, 19
GN -direction, dGN , 20
QKD, quantum key distribution, 4
GN -direction, dGN , 19

adjoint, 7
adjoint of L, L†, 8
algorithm, GN interior point for QKD, 22

conjugate transpose, ·†, 7
constraint sets, 6

observational, SO, 6
reduced density operator, SR, 6

convex cone, 9

density matrices, 7
dual QKD , 17
dual cone, 9
dual cone, S†, 9

exposing vector, 9, 14, 35

face, 9
facially reduced reduced density operator con-

straint, 12
Fréchet derivative of log, log′, 11

Gauss-Newton direction, dGN , 19
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generalized inverse, ΓV
−1, 25

gradient of f , 12

Hessian at ρ ∈ Hn
+ acting on the direction ∆ρ ∈

Hn, 12

imaginary part of X, =(X), 7

Jacobian of Fµ, F ′µ, 19

Kraus representation, 10
Kronecker product, ⊗, 6

Lagrangian dual, 17
line segment, [x, y], 9

minimal face, face(X), 9

nonlinear least square function, g(ρ, y, Z), 19
nullspace, 7

observational constraints, 6

perturbed complementarity equations, 17
positive definite cone of n-by-n real symmetric

matrices, Sn++, 7
positive definite cone of n-by-n Hermitian ma-

trices, Hn
++, 7

positive semidefinite cone of n-by-n Hermitian
matrices, Hn

+, 7
positive semidefinite cone of n-by-n real sym-

metric matrices, Sn+, 7

Quantum key distribution, QKD, 4
quantum relative entropy function, 10

range, 7
real inner product in Cn×n, 7
real part of X, <(X), 7
reduced density operator constraint, SR, 6, 12
relative entropy function, 5

set of n-by-n Hermitian matrices, Hn, 4
set of real symmetric n-by-n matrices, Sn, 7
singularity degree, 14
size of ρ, n = nAnB, 6
skew-symmetrization linear map, SK, 8
spectral resolution of I, 10
state, 6
symmetrization linear map, S, 8

triangular number, t(n) = n(n+ 1)/2, 8

vector space of real n-coordinates, Rn, 7
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The security of practical quantum key distribution. Rev. Mod. Phys., 81:1301, 2009. 4

[26] S. Sremac, H.J. Woerdeman, and H. Wolkowicz. Error bounds and singularity degree in
semidefinite programming. SIAM J. Optim., accepted Dec. 20, 2020, 2020. submitted Aug.
14, 2019, 24 pages. 12

[27] T. Upadhyaya, T. van Himbeeck, J. Lin, and N. Lütkenhaus. Dimension reduction in quan-
tum key distribution for continuous- and discrete-variable protocols. arXiv:2101.05799, 2021.
4

[28] J. Watrous. The Theory of Quantum Information. Cambridge University Press, 2018. 10,
36

[29] A. Winick, N. Lütkenhaus, and P.J. Coles. Reliable numerical key rates for quantum key
distribution. Quantum, 2:77, Jul 2018. 4, 5, 6, 11, 25, 27, 29, 30

[30] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan. Secure quantum key distribution with
realistic devices. Rev. Mod. Phys., 92(2):025002, 2020. 4

[31] Y. Zhang, P. J. Coles, A. Winick, J. Lin, and N. Lütkenhaus. Security proof of practical
quantum key distribution with detection-efficiency mismatch. Phys. Rev. Research, 3:013076,
2021. 4

46


	Introduction
	Outline and Main Results

	Preliminaries
	Notations
	Real Inner Product Space Cnn
	Linear Transformations and Adjoints
	Adjoints for Matrix Multiplication

	Cones, Faces, and Facial Reduction, FR

	Problem Formulations and Facial Reduction
	Properties of Objective Function and Mappings G ,Z 
	Derivatives for Quantum Relative Entropy under Positive Definite Assumptions
	Reformulation via Facial Reduction (FR)
	Partial FRon the Reduced Density Operator Constraint
	FRon the Constraints Originating from G ,Z 
	Reduction on the Constraints

	Final Model for (QKD) and Derivatives

	Optimality Conditions, Bounding, GNInterior Point Method
	Optimality Conditions and Duality
	Perturbed Optimality Conditions 

	Gauss-Newton Search Direction
	Projected Gauss-Newton Directions
	First Projected Gauss-Newton Direction
	Second Projected Gauss-Newton Direction

	Projected Gauss-Newton Primal-Dual Interior Point Algorithm
	Implementation Heuristics
	Stopping Criteria
	GNDirection using Sparse Nullspace Representation
	Preconditioning
	Step Lengths

	Dual and Bounding
	Upper Bounds
	Lower Bounds for FRProblem
	Lower Bounds for the Original Problem


	Numerical Testing
	Comparison between the Algorithmic Lower Bound and the Theoretical Key Rate
	Solving Numerically Challenging Instances
	Comparative Performance

	Conclusion
	Summary
	Future Plans

	Acknowledgements
	Proofs
	lem:WRadj 
	lem:Srho 
	prop:Zopprops 
	lemma:rangeZrelation 
	lem:gradfromchainrule 
	thm:FRonObserv

	Implementation Details
	Evaluation of Objective Function
	Matrix Representations of Derivatives
	Matrix Representation of the Second Projected Gauss-Newton System 

	Descriptions and Further Numerics of the Protocols
	Entanglement-Based BB84
	Prepare-and-Measure BB84
	Measurement-Device-Independent BB84
	Twin-Field QKD
	Discrete-Modulated Continuous-Variable QKD
	Discrete-Phase-Randomized BB84
	Additional Numerical Report

	Index
	Bibliography

