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Abstract

We consider the problem of laying out several objects in an equal number of pre-

defined positions. Objects are allowed finitely many orientations, can overlap

each other, and must be arranged contiguously. We are particularly interested in

the case when the evaluation of the dimensions of the objects requires computa-

tional or physical effort. We develop a notion of an arrangement of objects that

achieves these requirements. Then, we provide two optimization models that

further determine particular notions of the arrangement. The first optimiza-

tion model is an exact formulation, however it requires an exponentially many

inputs. In the second model, we employ classical Boole-Bonferroni inequalities

to approximate the lengths of objects. This model requires only quadratically

many inputs. We explore the connection of our problem to other combinatoric

problems, such as the traveling salesman problem and the bin-packing problem.

Finally, we describe how our model generalizes a mathematical puzzle that was

recently proposed in the literature.

Keywords: Boole-Bonferroni, packing problem, combinatorics, arrangements,

binary optimization, approximations

1. Background

We study the problem of determining an “optimal” layout of physical objects

in a plane. Objects can be oriented in different ways. This problem is related
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to fundamental combinatorial optimization problems involving arrangement of

finitely many items. These include the assignment problem, cutting stock prob-5

lem, and the bin-packing problem; see, e.g., [1]. The problem finds application

in a wide breadth of research in specific settings as well, e.g., optimal layouts

of furniture [2], development of patterning exercises for childhood education [3],

layout-planning for construction site facilities [4], arrangement of boxes in a

visual space [5], and several layout problems in the chemical industry [6].10

Specifically of interest to us is the situation when the dimensions of the

objects in a layout are not known apriori; thus, evaluations are required for

determining these measurements. As we quantify later in this work, performing

such measurements to determine layouts involves an astronomical number of

evaluations even for a handful of objects. Our aim is to determine a minimum-15

length arrangement of items, a term we make precise below. We develop two

optimization models in this regard.

Our first model provides an exact formulation that achieves this notion of a

minimum-length arrangement. However, this model requires both an exponen-

tial number of decision variables as well as evaluations to determine the dimen-20

sions of the objects. Next, motivated by the use of classical Boole-Bonferroni

styled inequalities, we approximately determine the dimensions of objects in a

layout. Then, we develop a second optimization model that uses these approxi-

mate dimensions to further determine an approximation to the minimum-length

arrangement. The latter model employs decision variables that are several or-25

ders of magnitudes fewer than the exact formulation and even fewer evaluations

to determine the approximate dimensions.

Boole-Bonferroni styled inequalities are frequently studied to determine ap-

proximations to the union of events. This is especially the case when the union

involves a considerable number of events and cannot be precisely determined.30

For an introduction, as well as an extensive survey of such inequalities, see,

e.g., [7]. Our work is inspired from these ideas. Such Boole-Bonferroni in-

equalities have also been used in a similar vein in approximating joint chance-

constrained stochastic optimization models; see, e.g., [8, 9]. In these works,
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first an approximation to the joint chance-constraint using these classical in-35

equalities is constructed. This approximation is then used to bound the chance-

constrained optimization model. Instead of a single binary decision variable

that determines whether a joint chance-constraint is satisfied at all times, the

approximating models employ separate binary decision variables for each of the

times. The corresponding optimization models that approximate the true prob-40

lem have more decision variables, however they may benefit from lower compu-

tational effort; see, e.g., [9, 10, 11]. Our work is in a similar spirit, except our

approximating models also benefit from significantly fewer decision variables.

We provide a detailed discussion of this issue in Section 3.

The structure of this article is as follows. In Section 2, we present some45

mathematical definitions that describe our problem. In Section 3, we present

the two optimization models and provide a discussion on the computational

effort. In Section 4 we provide an application of our models in a specific setting.

In Section 5, we present some concluding remarks.

2. Definitions50

We consider a set of objects, i ∈ I, that require fitting in a set of pre-defined

positions, k ∈ K. Each object occupies a single position. The meaning of a

position is subtle, and we explain this via an example. Consider three objects

to be fit in a rectangle-shaped box of sufficient width. We say an object is in

position k1, k2, or k3 when it occupies the left, center, or right positions in the55

box, respectively. If |I| < |K|, empty spaces are allowed between the objects;

while, if |I| > |K|, then some positions occupy multiple objects. Throughout

this work, we consider the |I| = |K| case. We also assume position is filled

by only one object that ensures all objects touch each other. Further, we do

not consider the heights of the objects; i.e., the fitting does not require a lid.60

Thus, we are reduced to a problem of positioning objects in a two-dimensional

plane. Then, this problem is similar to the cutting and packing optimization

problem with irregular shaped objects; the latter problem is known to be NP-
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complete [12, 13].

There are infinitely many possibilities of orienting a single object, by rotating65

it, on a plane. Previous works consider rotations by 90° [14, 15], 120° [16],

continuous rotations [17], or no rotations [18]. To this end, we consider object i

at location k can be oriented in finitely many ways given by the set j ∈ J . The

following definition summarizes this discussion.

Definition 1. We define an Arrangement as a linear ordering of objects, where70

object i is allowed j = 1, . . . |J | orientations, occupies length bij, and two ad-

joining objects i, i′; i 6= i′ in orientations j, j′ occupy a total length of no more

than bij + bi,j,i′,j′ .

Corollary 1. There are a total of |J ||I|−1 × |I|! Arrangements.

Proof. With |I| = |K| objects and positions, and |J | orientations, there are75

|J ||I| × |I|! possible Arrangements. However, |J | of these are repeated as we

can view the container from different sides. Hence, the result follows.

Intuitively, Definition 1 restricts an Arrangement to a positioning of objects

with no spacing in between them. In other words, adjoining objects have (non-

negative) amounts of overlap; e.g., two L-shaped objects in an Arrangement can80

overlap nearly completely or not at all in different orientations. This motivates

the definition of the length of several adjoining objects.

Definition 2. We define the length of r, r ≤ |I| objects, i = 1, . . . , ir, in an

Arrangement where object ip is in orientation jip at position kp, p = 1, . . . , r,

as Lr(i1, ji1 ; i2, ji2 ; . . . ; ir, jir
).85

For brevity, we let l ∈ L denote an Arrangement of |I| objects and lenl denote

its corresponding length; i.e., L|I|(i1, ji1 ; i2, ji2 ; . . . ; i|I|, ji|I|) = lenl. Further,

we have L1(i, j) = bij and L2(i, j; i′, j′) = di,j,i′,j′ . Irregularly shaped objects in

an Arrangement require an exponential number of measurements to determine

all the possible lengths. The following corollary to Definition 2 quantifies this90

exponential growth.
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Corollary 2. Determining all values of Lr(i1, ji1 ; i2, ji2 ; . . . ; ir, jir ) requires
|I|Pr|J |r−1 evaluations; here nPk = n!

(n−k)! .

Proof. The proof is similar to that of Corollary 1. The exponent of r− 1 arises

since |J | arrangements are mirror images.95

Definition 3. We define an Optimal Arrangement as an Arrangement that

minimizes L|I|(i1, ji1 ; i2, ji2 ; . . . ; i|I|, ji|I|).

Corollary 2 leads to Corollary 1 when |I| = r. Then, it follows from Definition 3

that determining the minimum length of all the objects in an Arrangement

requires |J ||I|−1 × |I|! measurements; and, we search for the minimum of these.100

In Section 3.2, we present an optimization model to this end.

The main goal of this work is to exploit Boole-Bonferroni inequalities to de-

termine approximate lengths of arrangements. Instead of performing the astro-

nomical number of evaluations required to determine the length of an arrange-

ment, lenl, we seek to determine lengths of only one or two adjoining objects. In105

other words, we approximate lenl using L1(i1, ji1) and L2(i1, ji1 ; i2, ji2) alone.

Our proposal finds merit in at least two situations:

(i) First, if |I| is large, determining lenl requires an exponential number of

measurements; see, Corollary 1. This issue is similar to that we discuss

in Section 1 on the calculation of a union of a large number of events;110

see, e.g., [8]. Further, each of these measurements requires significant re-

peated effort — first, laying objects in arrangements by a human or a

machine, and then measuring them. Such repeated experiments also re-

sult in measurement errors; see, e.g., [19]. Determining L1(i1, ji1) and

L2(i1, ji1 ; i2, ji2) requires only a linear and quadratic number of evalua-115

tions with respect to the number of objects, respectively; see, Corollary 2.

(ii) Second, if the objects have large lengths, positioning them to determine

lenl requires large amounts of space that might not be physically avail-

able. Also, the errors in such measurements of large dimensions can be

substantial; see, e.g., [20].120
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To this end, we first use the Boole-Bonferroni inequalities with the inclusion-

exclusion principle and relate the true length of an Arrangement with that

of its elements; see, Theorem 1. Then, in Section 3.2 we present our second

optimization model that uses this approximate length as an input.

Theorem 1. L|I|(i1, ji1 ; i2, ji2 ; . . . ; i|I|, ji|I|) ≈
|I|−1∑
p=1

L2(ip, jip
; ip+1, jip+1)−

|I|−1∑
p=2

L1(ip, jip
)125

=
|I|−1∑
p=1

dip,jip ,ip+1,jip+1
−
|I|−1∑
p=2

bip,jip
.

Proof. The proof follows directly from the inclusion-exclusion principle of the

classical Boole-Bonferroni inequalities for the union of sets; see, e.g., [21]. For

sets At, t ∈ T , we have P(
⋃

t∈T At) = S1 − S2 + · · · (−1)T−1ST , where, Sk =∑
1≤n1<···<nk≤|T | P(An1 ∩ · · · ∩Ank

).130

3. Optimization Models

3.1. Notation

Indices / Sets

i ∈ I set of objects

j ∈ J set of orientations

k ∈ K set of positions

l ∈ L set of Arrangements

Data

bi,j length of object i in orientation j

di,j,i′,j′ combined length of object i in orientation j next to object i′ in

orientation j′, i 6= i′

lenl total length of an Arrangement

Decision Variables

zl =1 if Arrangement l is an Optimal Arrangement; else 0

xi,j,k =1 if object i is in orientation j at position k; else 0
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yi,j,k,i′,j′,k+1 =1 if objects i and i′ are in orientation j and j′ at position k

and k + 1, respectively; else 0

3.2. Optimization Models

We define a decision variable, zl, that takes value 0 or 1; a value of 1 indi-

cates arrangement l is an Optimal Arrangement. Then, we have the following135

optimization model:

zEXACT = min
z

∑
l∈L

lenlzl (1a)∑
l∈L

zl = 1 (1b)

zl ∈ {0, 1},∀l ∈ L. (1c)

We denote the optimization model (1) as EXACT. The objective function of EXACT

determines an Optimal Arrangement, while equations (1b) and (1c) ensure a

single arrangement is chosen. EXACT is a trivial optimization model — given the

input data, lenl, it simply determines l∗ = argmin{lenl}. However, as shown in140

Corollary 1, EXACT requires as input an exponential number of inputs for the

|L| values of lenl.

This phenomena of simple mathematical programs relying on an exponential

number of data inputs is well-known in combinatorial optimization. For exam-

ple, a traveling salesman problem determines the minimum tour length over all145

possible tours; however there are an exponential number of tours to begin with.

Another example is the cutting stock problem where patterns are cut from a roll

of paper to minimize wastage; again there are an exponential number of pat-

terns to begin with, however given the patterns the solution is easy. In general,

given all the exponential number of extreme points of an integer program the150

minimum is quickly determined in linear time; see, e.g., [1] for more examples.

Using the approximation in Theorem 1, we now present an optimization

model that provides an approximation for EXACT. To this end, let xi,j,k be
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a binary variable that takes value 1 if object i is present in orientation j at

position k. Then, we have the following optimization model:155

zAPPROX = min
x,y

∑
i,i′∈I,j,j′∈J,k∈K;

i 6=i′,k 6=|K|

di,j,i′,j′yi,j,k,i′,j′,k+1 −
∑

i∈I,j∈J,k∈K;
1<k<|K|

bi,jxi,j,k(2a)

s.t.
∑

i∈I,j∈J

xi,j,k = 1, ∀k ∈ K (2b)

∑
j∈J,k∈K

xi,j,k = 1, ∀i ∈ I (2c)

∀i, i′ : i 6= i′ ∈ I, j, j′ ∈ J, k : k 6= |K| ∈ K

yi,j,k,i′,j′,k+1 ≤ xi,j,k (2d)

yi,j,k,i′,j′,k+1 ≤ xi′,j′,k+1 (2e)

yi,j,k,i′,j′,k+1 ≥ xi,j,k + xi′,j′,k+1 − 1 (2f)

xi,j,k ∈ {0, 1}, ∀i ∈ I, j ∈ J, k ∈ K (2g)

yi,j,k,i′,j′,k+1 ∈ {0, 1}, ∀i, i′ ∈ I, j, j′ ∈ J, k, k′ ∈ K. (2h)

We denote the optimization model (2) as APPROX. The first term in the objective

function (2a) denotes the quantity di,j,i′,j′xi,j,kxi′,j′,k+1. Constraints (2d)-(2f)

linearize the term xi,j,kxi′,j′,k+1, by introducing the binary variable yi,j,k,i′,j′,k+1,

with its Mccormick envelope [22]; i.e., y is 1 if an only if both the x are 1. Thus,

yi,j,k,i′,j′,k+1 takes value 1 if and only if objects i and i′ are present in orientations160

j and j′ at positions k and k + 1, respectively. Then, the objective function

follows from Theorem 1 and seeks to determine the x and y corresponding to

the arrangement of minimum length. Constraints (2b) and (2c) ensure that at

each position only one (object, orientation) pair is placed and each object is

placed at only one (position, orientation) pair, respectively. Constraints (2g)165

and (2h) enforce the binary restrictions on x and y, respectively.

Next, we discuss the size of the optimization models and the effort required in

determining the parameters. Recall that |I| = |K|. EXACT requires |J ||I|−1 · |I|!

decision variables and the same number of measurements. APPROX requires

|I|2 ·|J |+|I|2 ·(|I|−1)2 ·|J |2 decision variables, but only |I|·|J |+|I|·(|I|−1)·|J |2170
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measurements. As demonstrated in Table 1, the computational effort required to

set up EXACT scales quickly to astronomical numbers even for a modest number

of objects and orientations. The number of measurements required for APPROX

are always fewer than those required for EXACT. The number of binary variables

required by EXACT far outgrows those required by APPROX, except for very small175

numbers of objects and orientations. Specifically, the number of variables in

APPROX is more than EXACT only if: (i) there is just one allowed orientation and

at most six objects, or (ii) there are at most six orientations and at most four

objects.

Objects Orientations Variables Measurements

|I| |J | EXACT APPROX EXACT APPROX

4 2 1.92E+02 6.08E+02 1.92E+02 5.60E+01

5 2 1.92E+03 1.65E+03 1.92E+03 9.00E+01

10 2 1.86E+09 3.26E+04 1.86E+09 3.80E+02

20 2 1.28E+24 5.78E+05 1.28E+24 1.56E+03

50 2 1.71E+79 2.40E+07 1.71E+79 9.90E+03

4 5 3.00E+03 3.68E+03 3.00E+03 3.20E+02

5 5 7.50E+04 1.01E+04 7.50E+04 5.25E+02

10 5 7.09E+12 2.03E+05 7.09E+12 2.30E+03

20 5 4.64E+31 3.61E+06 4.64E+31 9.60E+03

50 5 5.40E+98 1.50E+08 5.40E+98 6.15E+04

Table 1: Comparison of computational requirements for EXACT and APPROX. For details, see

Section 3.2.

4. A Motivating Example180

The research in this work was motivated by a mathematical puzzle proposed

by Ninjbat in a recent work [23]. In this work, Ninjbat presents a game called

“The Four Strongest” that requires toys of four Mongolian legendary animals —
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Dragon (D), Tiger (T ), Lion (L), and Garuda (G) — fit in a wooden container.

Each of the four toys are allowed two orientations; we denote these orientations185

as ↑ and ↓, respectively. After some simplifications, Ninjbat solves this game

with an exhaustive enumeration of all the possibilities. To this end, Ninjbat

manually arranges all the four toys in two orientations each and checks whether

they fit in the container. Then, he concludes that only one of the several com-

binations provides an arrangement with a “comfortable” placing of the toys; for190

details, see [23]. We refer to this puzzle as Ninjbat’s Puzzle.

Ninjbat’s Puzzle is a special case of the problem we present in Section 3.2

with |I| = 4, |J | = 2. The first row of Table 1 presents the dimensions of

Ninjbat’s Puzzle. The original toys used in Ninjbat’s Puzzle are housed at the

National Museum of Mongolia, and we do not have the exact measurements.195

However, we gratefully received images of the projected bases of the toys via

private communication [24]; these help us with ballpark measurements of the

toys. In the Appendix, we provide details on how we measure the toys, as well

as images of the projected bases of the toys. As we mention in Table 1, we

conduct 56 evaluations to determine the inputs while Ninjbat conducts 192 [23].200

We use the modeling language GAMS with CPLEX 34.3.0 to solve Ninjbat’s

Puzzle using model (2). We obtain an optimal solution of T, D, L, G in orienta-

tions ↑, ↑, ↑, ↓, respectively, that provides a total length of 29.08 cms. Ninjbat

claims a different solution as optimal — D, L, T, G in orientations ↓, ↑, ↓, ↑,

respectively; this solution provides a slightly worse length of 31.54 cms with our205

measurements.

5. Conclusion

We study the problem of determining an optimal layout of objects in a plane.

This problem is related to several well-studied problems in combinatorics. Even

when objects are allowed only one orientation, the general version of this prob-210

lem is known to be hard. We propose two models to solve this problem. The

first model relies on an exponential number of inputs, but, given the inputs, is
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trivial to solve. The second model relies on the well-known Boole-Bonferroni

approximations in set theory, and employs inputs that are several orders of

magnitude fewer than the first model. The bounds on the errors in such ap-215

proximations of the union of events is an open question in probability theory.

Future research could also explore connections of the approximations we present

within existing methods to solve packing and arrangement problems. Finally, we

demonstrate how our model generalizes a previously studied traditional puzzle.

Several popular puzzles — such as Sokoban and Sudoku — can be formulated220

as mathematical problems; see, e.g., [25]. In this regard, we also seek to ful-

fill a philosophical goal: the development of a traditional game into a binary

optimization program.
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[7] A. Prékopa, Stochastic Programming, Springer, Dordrecht, 1995. doi:

10.1007/978-94-017-3087-7.
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