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Abstract
Inspired by the recently introduced branch-and-bound method for continuous mul-
tiobjective optimization problems from G. Eichfelder, P. Kirst, L. Meng, O. Stein,
A general branch-and-bound framework for continuous global multiobjective opti-
mization, Journal of Global Optimization, 80 (2021) 195-227, we study for a general
class of branch-and-bound methods in which sense the generated terminal enclosure
and the terminal provisional nondominated set approximate the nondominated set
when the termination accuracy is driven to zero. Our convergence analysis of the en-
closures relies on constructions from the above paper, but is self-contained and also
covers the mixed-integer case. The analysis for the provisional nondominated set is
based on general convergence properties of the epsilon-nondominated set, and hence
it is also applicable to other algorithms which generate such points. Furthermore,
we discuss post processing steps for the terminal enclosure and provide numerical
illustrations for the cases of two and three objective functions.

KEYWORDS
Enclosure, nondominated set, approximation, mixed-integer optimization,
branch-and-bound, truncation

1. Introduction

In this paper we study the approximation properties of a class of solution algorithms
for multiobjective optimization problems of the form

min f(x) s.t. g(x) ≤ 0, x ∈ X (MOP )

with a continuous vector-valued objective function f : Rn → Rm, a continuous vec-
tor-valued inequality constraint function g : Rn → Rk, and an n-dimensional box
X = [x, x] with x, x ∈ Rn, x ≤ x. The inequality ≤ as well as < between vectors is
always understood componentwise. For the most part of this paper we will consider the
continuous problemMOP , but shall subsequently extend our results to the mixed-inte-
ger setting. We do not impose any convexity assumptions on the component functions of
f or g so that, in particular, the set of feasible pointsM = M(X) = {x ∈ X | g(x) ≤ 0}
of MOP is not necessarily convex. However, the compactness of M and the continuity
of f yield a compact image set Y := f(M).



The recently introduced branch-and-bound framework for the continuous problem
MOP from [4] either identifies the case of an empty feasible set or, otherwise, aims to
approximate the nondominated set

YN = {yN ∈ Y | @ y ∈ Y : y ≤ yN , y 6= yN}

of Y by two simultaneous constructions. The first is a sequence of finite subsets of
Y , namely the provisional nondominated sets F . The second construction yields box
enclosures

E(LB,UB) = (LB + Rm+ ) ∩ (UB − Rm+ ) =
⋃

(`b,ub)∈LB×UB

`b≤ub

[`b, ub] (1)

of YN ∪ F with sequences of finite sets LB and UB. We recall the main properties of
these lower and upper bounding sets in Section 2. The idea of using lower and upper
bounding sets for multiobjective branch-and-bound methods goes back to [3,16] where
such ideas have been developed for multi-objective integer linear optimization.

In [4, Alg. 1] the sequence of lower and upper bounding sets is constructed in such a
way that some width w(LB,UB) of the enclosures E(LB,UB) (cf. Section 2) tends to
zero. The algorithm terminates for w(LB,UB) < ε with a prescribed tolerance ε > 0.
This yields not only a terminal enclosure E(LB,UB) of YN with width below ε, but the
terminal provisional nondominated set F also forms a subset of the ε-nondominated
set

Y ε
N = {yεN ∈ Y | @ y ∈ Y : y ≤ yεN − εe, y 6= yεN − εe}

of Y [4]. The latter result is in line with the approaches from [15,18] and, partly, [5,6]. It
also indicates that the width w(LB,UB) of the box enclosure E(LB,UB) is a natural
generalization of the gap in single-objective branch-and-bound.

The aim of this article is to study in which sense for ε descreasing to zero the terminal
enclosure E(LB,UB) (Section 3.1) and the terminal provisional nondominated set F
(Section 3.2) approximate the nondominated set YN . We will show that the enclosure
converges to the boundary of the upper image set Y +Rm+ , restricted to some basic box.
Also the elements of F converge to this boundary, where we can show linear speed of
this convergence, while they may only converge arbitrarily slowly to the set of so-called
weakly nondominated points of Y .

While our convergence analysis is motivated by the constructions from [4], we
will use a set of general assumptions which also cover other branch-and-bound ap-
proaches for MOP . The analysis for F is based on general convergence properties of
the ε-nondominated set Y ε

N . Thus it is also applicable to other algorithms that generate
points in Y ε

N . In Section 4 we discuss how certain ‘superfluous parts’ of the terminal
enclosure may be removed.

As the presented approximation analysis does not rely on the continuity of the deci-
sion variables x, it also applies to mixed-integer multi-objective optimization problems.
Section 5 provides details and states the extended results explicitly, before Section 6
concludes the article with some final remarks.
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2. Preliminaries

To ensure the enclosing property of a set E(LB,UB) for the nondominated set YN of
the (nonempty compact) set Y = f(M) one needs to construct finite sets LB and UB
such that the inclusion YN ⊆ E(LB,UB) = (LB + Rm+ ) ∩ (UB − Rm+ ) holds.

For the construction of an appropriate set UB, in each iteration of [4, Alg. 1] a
provisional nondominated set F is available, that is, a finite and stable subset of Y .
Stability means that F does not contain any two points y1, y2 with y1 ≤ y2. For the
following construction let Z = [z, z] denote a sufficiently large box with f(X) ⊆ int(Z).
Such a box exists by the compactness of X and the continuity of f . It allows to define
the search region

S(F) = {z ∈ int(Z) | ∀q ∈ F : q 6≤ z} = (F + Rm+ )c ∩ int(Z)

of all points in int(Z) \ F which are not dominated by any point from F . With the
finite set of local upper bounds lub(F) ⊆ Z [12] the search region may be written as

S(F) =
⋃

p∈lub(F)

{z ∈ int(Z) | z < p} = (lub(F)− int(Rm+ )) ∩ int(Z),

so that the choice UB := lub(F) guarantees YN ⊆ S(F) ∪ F ⊆ (UB −Rm+ ) ∩ Z. Note
that the set lub(F) depends on the choice of the box Z, and that UB ⊆ Z implies

UB ⊆ z − Rm+ . (2)

For completeness, we provide a formal definition of local upper bounds, cf. [12].

Definition 2.1. Let F be a finite and stable subset of f(M). A set lub(F) ⊆ Z is
called local upper bound set (with respect to F) if

(i) ∀z ∈ S(F) : ∃p ∈ lub(F) : z < p
(ii) ∀z ∈ (int(Z)) \ S(F) : ∀p ∈ lub(F) : z ≮ p
(iii) ∀p1, p2 ∈ lub(F) : p1 � p2 or p1 = p2

We remark that, for the definition of the search region, int(Z) actually only needs to
contain the set f(M(X)), while in the next step we shall also use the stronger inclusion
f(X) ⊆ int(Z).

In [4] it is shown how lower bounding sets LB can be constructed in a
branch-and-bound framework, such that (together with appropriate updates of UB)
the width w(LB,UB) of E(LB,UB) (cf. the forthcoming equation (5)) tends to zero.
By the construction from [4] each `b ∈ LB is generated as an ideal point underestimator
of Ŷ ′ +Rm+ for a relaxation Ŷ ′ +Rm+ of some partial upper image set f(M(X ′)) +Rm+
with a subbox X ′ ⊆ X (recall that for a set Ŷ ′ + Rm+ ⊆ Rm the point α ∈ Rm with
entries αj := min{yj | y ∈ Ŷ ′ + Rm+} is called ideal point of Ŷ ′ + Rm+ ).

In [4] (Ŷ ′+Rm+ )∩ f(X ′) 6= ∅ holds independently of the consistency of M(X ′). This
yields `b ≤ f(x) for some x ∈ X ′ ⊆ X and hence

LB ⊆ ω − Rm+ , (3)
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where we call the point ω ∈ Rm with entries

ωj := max
y∈f(X)

yj

anti-ideal point of f(X). In view of f(X) ⊆ int(Z) it satisfies ω < z. See Figure 1 for
an illustration of such an anti-ideal point.

We emphasize that the latter construction would not be possible with the set
f(M(X)) in place of f(X), because in the branch-and-bound framework from [4] lower
bounds `b ∈ LB can appear which are related to empty sets M(X ′) whose relaxations
are yet too coarse to verify their emptiness. Such lower bounds may not lie in the set
ω − Rm+ if ω denoted the anti-ideal point of f(M(X)), rather than that of f(X).

While (3) implies LB ⊆ z − Rm+ , the inclusion LB ⊆ z + Rm+ does not necessarily
hold in the construction from [4], that is, LB ⊆ Z may fail. However, in case of
`b 6∈ Z, replacing `b by the componentwise maximum max(`b, z) ≥ z yields improved
lower bounds for the partial upper image sets f(M(X ′))+Rm+ and may be used instead.
Moreover, as the lower bounds from [4] converge to f(X) and thus lie in Z anyway after
sufficiently many branch-and-bound steps, in the sequel we will assume LB ⊆ z +Rm+
without loss of generality. In view of (2) this entails particularly

E(LB,UB) = (LB + Rm+ ) ∩ (UB − Rm+ ) ⊆ (z + Rm+ ) ∩ (z − Rm+ ) = Z

for any of our choices LB and UB. Together with (3) it also yields LB ⊆ [z, ω] ⊆ Z.
Figure 1 illustrates the construction.

f(X)

f(M)

ω

z

z

Figure 1.: Enclosure. The bold lines mark YN , the dots mark the points from LB∪UB

From the lower bounding property YN ⊆ LB+Rm+ we obtain YN +Rm+ ⊆ LB+Rm+ .
As external stability is satisfied by [19, Th. 3.2.9], the inclusions Y ⊆ YN + Rm+ and
hence

Y + Rm+ ⊆ YN + Rm+ ⊆ LB + Rm+ ⊆ z + Rm+ (4)

hold.
Finally, let us specify how in [4] the width of an enclosure E(LB,UB) is measured.

From a geometrical point of view it is defined as

w(LB,UB) = max{‖(y + te)− y‖2/
√
m | t ≥ 0, y, y + te ∈ E(LB,UB)}, (5)
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but an algorithmically more tractable expression is

w(LB,UB) = max{s(`b, ub) | (`b, ub) ∈ LB × UB, `b ≤ ub},

where

s(`b, ub) := min
j=1,...,m

(ubj − `bj)

denotes the length of a shortest edge of the box [`b, ub].
At the end of this section we collect the properties of the construction from [4] which

are needed in the subsequent convergence analysis. The results of the present article
thus hold for the class of all branch-and-bound algorithms satisfying Assumptions 1–4.

Assumption 1. For the nondominated set YN of Y = f(M) and for a finite stable
set F ⊆ Y let the finite sets LB,UB ⊆ Rm possess the enclosing property

YN ∪ F ⊆ E(LB,UB) = (LB + Rm+ ) ∩ (UB − Rm+ ).

For ε > 0 and a width w(LB,UB) < ε of E(LB,UB) we have as a consequence
F ⊆ Y ε

N .

Assumption 2. For a box Z = [z, z] with f(X) ⊆ int(Z) and for a finite stable set
F ⊆ Y the upper bounding set UB is defined as the set lub(F) of local upper bounds
induced by F on Z.

Assumption 2 implies (2).

Assumption 3. For the box Z = [z, z] from Assumption 2 and for the anti-ideal point
ω < z of f(X), the lower bounding set satisfies LB ⊆ [z, ω].

Assumption 3 entails (3) and, due to external stability, Assumptions 1 and 3 imply
(4).

Assumption 4. For each ε > 0 there are sets LB and UB satisfying Assumptions 1–3
and w(LB,UB) < ε.

3. Approximation properties

This section studies if and how under Assumptions 1–4 enclosures E(UB,LB) and
provisional nondominated sets F approximate the nondominated set YN of Y for ε
descreasing to zero. Observe that YN is known to be a subset of the boundary of
the image set Y = f(M) [2] so that, if Y is a topological manifold with boundary,
the dimension of YN can be at most m − 1. At the same time, for w(LB,UB) →
0 all boxes [`b, ub] in (1) ‘become flat at least in one direction’ and thus at most
(m− 1)-dimensional. This fits well to the expected dimension of YN , so that one may
expect that the enclosures E(LB,UB) converge to YN in, for example, the Hausdorff
metric.

However, Examples like [4, Test problems 9.2, 9.3] show that in general the enclosures
E(LB,UB) do not converge to YN for w(LB,UB) → 0, but rather to some proper
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superset of YN . In Section 3.1 we will identify this superset and prove the asserted
convergence.

Regarding provisional nondominated sets F recall that under Assumption 1 for
ε > 0 and w(LB,UB) < ε they form subsets of the sets of ε-nondominated points Y ε

N .
Approximation properties of points from Y ε

N for the set of nondominated points YN
have, to the best of our knowledge, not been discussed in the literature so far for the
present concept of ε-nondominated points. The discussion in Section 3.2 contributes
to closing this gap.

3.1. The limit set of the enclosures

This section shows that under Assumptions 1–4 the enclosures E(LB,UB) actually
approximate the set B ∩ Z, where

B := bd(Y + Rm+ )

denotes the boundary of the upper image set Y + Rm+ with Y = f(M), cf. Figure 2.
Recall that, under our assumption of a compact set M and a continuous function f ,
the image set Y is compact and the upper image set is closed.

f(M)

ω

z

z

B ∩ Z

Figure 2.: Enclosure and the set B ∩ Z

For the following it will be crucial that the set B coincides with the set of weakly
nondominated points of the upper image set Y + Rm+ ,

ŶwN := {ŷ ∈ Y + Rm+ | @ y ∈ Y + Rm+ : y < ŷ}.

This is related to more general results in [10, L. 4.13] and [14, Cor. 1.48], but for
completeness we provide an elementary proof. Since the image set property of Y =
f(M) is not relevant for this proof, we consider a general set Y ⊆ Rm.

Lemma 3.1. For any nonempty compact set Y ⊆ Rm the sets B = bd(Y + Rm+ ) and
ŶwN coincide.

Proof. To see the inclusion⊆ first note that the compactness of Y impliesB ⊆ Y +Rm+ .
Furthermore, if for any ȳ in B there is some y ∈ Y +Rm+ with y < ȳ, then some z ∈ Y
satisfies z ≤ y < ȳ. This implies that all ỹ from some neighborhood U of ȳ fulfill z ≤ ỹ,
so that U is a subset of Y + Rm+ . The latter contradicts the assumption that ȳ is a
boundary point of Y + Rm+ .
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For the proof of ⊇ assume that some ŷ ∈ ŶwN is an interior point of Y +Rm+ . Then,
sufficiently close to ŷ, there exists some y ∈ Y + Rm+ with y < ŷ, in contradiction to
the definition of ŶwN . Due to ŷ ∈ Y + Rm+ the point ŷ must thus lie in B.

Since for Y = f(M) all attainable points in ŶwN satisfy

ŶwN ∩ f(M) = {ŷ ∈ f(M) | @ y ∈ f(M) + Rm+ : y < ŷ}
= {ŷ ∈ f(M) | @ y ∈ f(M) : y < ŷ} = YwN

and are, thus, weakly nondominated points of Y , Lemma 3.1 yields YN ⊆ YwN ⊆
ŶwN = B. Under Assumptions 1–4 we need to consider these inclusions relative to the
superset Z of f(X), that is,

YN ⊆ YwN ⊆ B ∩ Z.

Figure 1 and Figure 2 illustrate that the sets YwN and B∩Z do not necessarily coincide
(see also [4, Test problems 9.2, 9.3]). As announced we shall see that the enclosures
E(LB,UB) converge to B ∩ Z, rather than to its possibly proper subsets YN or YwN .

In the following lemma the set Y can be chosen to be Y = f(M) from Assumption 1
and Z to be the box with f(X) ⊆ int(Z) from Assumption 2. The assumptions of the
lemma can thus be satisfied for MOP with M(X) 6= ∅ under Assumptions 1–3.

Lemma 3.2. Let Y ⊆ Rm be nonempty and compact, let Z= [z, z] be a box with
Y ⊆ int(Z), let LB ⊆ Z be a lower bounding set for YN , let F be a finite stable subset
of Y , and define UB = lub(F) with the corresponding set of local upper bounds. Then
the set B = bd(Y + Rm+ ) satisfies

B ∩ Z ⊆ E(LB,UB).

Proof. The inclusion B ⊆ Y + Rm+ and (4) entail

B ⊆ LB + Rm+ . (6)

Moreover, in view of F ⊆ Y we have F + Rm+ ⊆ Y + Rm+ and therefore

(Y + Rm+ )c ∩ int(Z) ⊆ (F + Rm+ )c ∩ int(Z) = S(F) ⊆ (UB − Rm+ ) ∩ Z.

The closedness of (UB − Rm+ ) ∩ Z thus implies

cl
(
(Y + Rm+ )c ∩ int(Z)

)
⊆ (UB − Rm+ ) ∩ Z. (7)

In the remainder of the proof we shall show the inclusion

cl
(
(Y + Rm+ )c

)
∩ Z ⊆ cl

(
(Y + Rm+ )c ∩ int(Z)

)
, (8)

because from (7), (8) and from the identity B = bd
(
(Y + Rm+ )c

)
we then obtain

B ∩ Z ⊆ (UB − Rm+ ) ∩ Z.
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Together with (6) this yields B ∩Z ⊆ (LB +Rm+ )∩ (UB −Rm+ )∩Z = E(LB,UB), so
that the assertion is shown.

For the proof of (8) choose any y ∈ cl
(
(Y + Rm+ )c

)
∩Z. Then there exists a sequence

(yk) ⊆ (Y +Rm+ )c with limk y
k = y ∈ Z. As (yk) does not necessarily lie in Z, in a first

step we modify (yk) to a sequence

(pk) ⊆ (Y + Rm+ )c ∩ Z (9)

with

lim
k
pk = y. (10)

In a second step we will further change (pk) to a sequence (zk) ⊆ (Y + Rm+ )c ∩ int(Z)

with limk z
k = y, so that (8) is shown.

Step 1: The construction of (pk).

For each k ∈ N let pk be the orthogonal projection of yk to z − Rm+ . We need to
show (9) and (10).

In view of Z ⊆ z − Rm+ , any yk ∈ Z satisfies pk = yk ∈ (Y + Rm+ )c ∩ Z, so that for
the proof of (9) it remains to verify pk ∈ (Y + Rm+ )c ∩ Z for any yk ∈ Zc.

Thus let yk ∈ Zc. For the purpose of contradiction let us assume pk ∈ (Y +Rm+ )∪Zc.
By construction we have pk ∈ z − Rm+ , and (4) implies pk ∈ z + Rm+ , so that we arrive
at pk ∈ Z and, hence, pk ∈ Y + Rm+ . Since the orthogonal projection of yk to z − Rm+
can easily be calculated to coincide with the componentwise minimum min(yk, z), this
yields yk ≥ min(yk, z) = pk ∈ Y +Rm+ and, thus, yk ∈ Y +Rm+ . The latter contradicts
the choice of yk so that (9) is shown.

For the proof of (10) observe that pk minimizes the function ‖p−yk‖2 over p ∈ z−Rm+ .
Due to y ∈ Z this entails ‖pk − yk‖2 ≤ ‖y − yk‖2 and

‖pk − y‖2 ≤ ‖pk − yk‖2 + ‖yk − y‖2 ≤ 2‖yk − y‖2.

The convergence of (yk) to y thus implies (10).

Step 2: The construction of (zk).

As seen in Step 1, for each k ∈ N the point pk satisfies (9). In view of the compactness
of Y the set (Y + Rm+ )c is open, so that for each k ∈ N there exists some εk ∈
(0, 1/k] such that the ball B(pk, εk) is contained in (Y +Rm+ )c. Since Z can be written
as cl(intZ), each such ball must also contain a point zk ∈ (Y + Rm+ )c ∩ int(Z). By
‖zk − pk‖2 ≤ εk ≤ 1/k and

‖zk − y‖2 ≤ ‖zk − pk‖2 + ‖pk − y‖2 ≤ 1/k + ‖pk − y‖2

the convergence of (pk) to y implies the convergence of (zk) to y. This completes the
proof.

Due to Lemma 3.2, the Hausdorff distance of B ∩ Z and E(LB,UB) collapses to
the excess

ex(E(LB,UB), B ∩ Z) = sup
y∈E(LB,UB)

dist(y,B ∩ Z),
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of E(LB,UB) over B ∩ Z, where dist(y,B ∩ Z) = infb∈B∩Z ‖b − y‖2 denotes the
distance of y from B ∩ Z. The subsequent Theorem 3.4 hence addresses a property of
the Hausdorff distance.

Its proof relies on properties of the infimum ϕA(a) of

min
t∈R

t s.t. a+ te ∈ A+ Rm+ (D(a,A))

for a nonempty compact set A ⊆ Rm and a point a ∈ Rm, where e denotes the all
ones vector. The optimal value function ϕA is known as Tammer-Weidner functional
[7]. Its following properties are consequences of more general results in [8, Prop. 2.3.4,
Th. 2.3.1].

Lemma 3.3. Let A ⊆ Rm be a nonempty compact set. Then the following assertions
hold:

a) For each a ∈ Rm the problem D(a,A) is solvable with optimal point as well as
optimal value ϕA(a).

b) The function ϕA is continuous.
c) The identity {a ∈ Rm | ϕA(a) ≤ 0} = A+ Rm+ holds.
d) The identity {a ∈ Rm | ϕA(a) = λ} = −λe+ bd(A+ Rm+ ) holds for any λ ∈ R.

As a final preparation for Theorem 3.4, recall that the anti-ideal point ω of f(X)
from Assumption 3 satisfies ω < z. We call any ω̃ ∈ Rm with ω ≤ ω̃ an anti-ideal
point overestimator for f(X). It may be chosen such that ω ≤ ω̃ < z holds, so that
the number

δ := min
j=1,...,m

(zj − ω̃j) (11)

is positive. Assumption 4 then allows to choose LB and UB with w(LB,UB) ≤ δ/3,
as the subsequent theorem will presume. Note that (3) implies LB ⊆ ω−Rm+ ⊆ ω̃−Rm+
for each lower bounding set LB satisfying Assumption 3.

Theorem 3.4. Let the feasible set M(X) of MOP be nonempty and let Assump-
tions 1–3 hold with sets Y , F , Z = [z, z], LB and UB. Furthermore, let Assumption 4
hold, and for some anti-ideal point overestimator ω̃ for f(X) with ω̃ < z, let LB and
UB be chosen such that w(LB,UB) ≤ δ/3 holds with δ from (11). Then the excess of
E(LB,UB) over B ∩ Z satisfies

ex(E(LB,UB), B ∩ Z) ≤ 3
√
mw(LB,UB),

i.e., the Hausdorff distance of B ∩ Z and E(LB,UB) is bounded from above by
3
√
mw(LB,UB).

Proof. Choose any y ∈ E(LB,UB). We will show the assertion by constructing some
point ỹ ∈ B ∩ Z with

‖y − ỹ‖2 ≤ 3
√
mw(LB,UB), (12)

since this implies

dist(y,B ∩ Z) ≤ ‖y − ỹ‖2 ≤ 3
√
mw(LB,UB)
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and, thus, supy∈E(LB,UB) dist(y,B ∩ Z) ≤ 3
√
mw(LB,UB).

For the construction of ỹ we shall prove that (under some additional assumption,
giving rise to the distinction of two cases) the set

T := {t ∈ R | y + te ∈ E(LB,UB)}

contains some t̃ with ỹ := y + t̃e ∈ B ∩ Z and (12). We split the details of this proof
into four steps.

Step 1: T is a closed interval.

The closedness of T is clear. Moreover, for any two scalars t0, t1 ∈ T with t0 ≤ t1
the points y0 := y + t0e and y1 := y + t1e are elements of E(LB,UB), so that
there are some `b0 ∈ LB and ub1 ∈ UB with `b0 ≤ y0 and y1 ≤ ub1. Hence, for
any λ ∈ (0, 1) and the scalar tλ := (1 − λ)t0 + λt1 the point yλ := y + tλe satisfies
`b0 ≤ y0 ≤ yλ ≤ y1 ≤ ub1. This means yλ ∈ [`b0, ub1] with (`b0, ub1) ∈ LB × UB,
`b0 ≤ ub1 and, thus, yλ ∈ E(LB,UB). This yields tλ ∈ T , so that T is convex and
may be written as the closed interval [t, t].

Note that y ∈ E(LB,UB) yields 0 ∈ T and, thus, t ≤ 0 ≤ t, and that the closedness
of [t, t] implies that the points

y := y + te and y := y + te

are elements of E(LB,UB). For later use also observe that for every t ∈ T (5) entails

√
m |t| = ‖(y + te)− y‖2 ≤

√
mw(LB,UB). (13)

Step 2: y ∈ (Y + Rm+ )c ∪B holds.

Since t is a boundary point of T , also y is a boundary point of E(LB,UB). More
precisely, we have y ∈ E(LB,UB) and

y + te 6∈ E(LB,UB) = (LB + Rm+ ) ∩ (UB − Rm+ )

for all t < t. Due to y + te ∈ UB − Rm+ for all t < t the point y actually lies in
bd(LB + Rm+ ).

In view of (4) we have int(Y +Rm+ ) ⊆ int(LB+Rm+ ). Consequently y ∈ bd(LB+Rm+ )
implies

y ∈
(
int(LB + Rm+ )

)c ⊆ (int(Y + Rm+ )
)c

= (Y + Rm+ )c ∪B.

Step 3: y < z implies y ∈ Y + Rm+ .

Similarly as in Step 2, since t is a boundary point of T , the point y lies on the
boundary of E(LB,UB) and, in particular, on bd(UB−Rm+ ). We recall the definition
and characterization of the search region

S(F) = (F + Rm+ )c ∩ int(Z) = (UB − int(Rm+ )) ∩ int(Z).
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It is not hard see that this identity of (F +Rm+ )c and UB − int(Rm+ ) relative to int(Z)
carries over to an identity relative to z − int(Rm+ ) (but not relative to z − Rm+ ). Thus,
also the sets bd

(
(F + Rm+ )c

)
and bd(UB − int(Rm+ )) coincide relative to z − int(Rm+ ),

so that, under our assumption y < z,

y ∈ bd(UB − Rm+ ) ∩ (z − int(Rm+ )) = bd(UB − int(Rm+ )) ∩ (z − int(Rm+ ))

= bd
(
(F + Rm+ )c

)
∩ (z − int(Rm+ )) = bd(F + Rm+ ) ∩ (z − int(Rm+ ))

holds. Hence the closedness of F + Rm+ and F ⊆ Y yield y ∈ F + Rm+ ⊆ Y + Rm+ .

Step 4: There exists some ỹ ∈ B ∩ Z with (12).

We consider two subcases.

Case 4.1: y < z − w(LB,UB)e.

In view of (13) and t ≥ 0 we have t ≤ w(LB,UB), so that y = y + te implies
y ≤ y + w(LB,UB)e < z, and Step 3 entails y ∈ Y + Rm+ . The latter observation,
Step 2 and Lemma 3.3c),d) yield ϕY (y) ≥ 0 and ϕY (y) ≤ 0 for the Tammer-Weidner
functional ϕY . Since ϕY is continuous by Lemma 3.3b), also the function

σ(λ) := ϕY
(
(1− λ)y + λy

)
is continuous. Due to σ(0) = ϕY (y) ≥ 0 and σ(1) = ϕY (y) ≤ 0 the intermediate value
theorem thus guarantees the existence of some λ̃ ∈ [0, 1] with σ(λ̃) = 0. The latter
means that the point ỹ := (1 − λ̃)y + λ̃y fulfills ϕY (ỹ) = 0. By Lemma 3.3d) this is
equivalent to ỹ ∈ bd(Y +Rm+ ) = B. In addition, y, y ∈ Z and the convexity of Z imply
ỹ ∈ Z.

It is not hard to see that ỹ = y + t̃e holds with t̃ := (1− λ̃)t+ λ̃t ∈ T , so that (13)
yields

‖y − ỹ‖2 = ‖t̃e‖2 =
√
m |t̃| ≤

√
mw(LB,UB). (14)

Hence the assertion of Step 4 is shown in this case. Figure 3 illustrates the construction.

z

y
y

y

ỹ

Figure 3.: Construction in Case 4.1. The bold line marks B

Case 4.2: y 6< z − w(LB,UB)e.

Figure 4 shows that, unlike in Case 4.1, under the current assumption we may have
y ∈ bd(z−Rm+ ) and the line segment between y and y may not contain any ỹ ∈ B∩Z.

11



y′

`b

δ

y

yy

z

y′ y′

ω̃

Figure 4.: Construction in Case 4.2

As a remedy, we shift the point y ‘away from bd(z − Rm+ )’ to some y′ ∈ E(LB,UB),
such that the existence of some corresponding ỹ ∈ B ∩ Z and (12) are guaranteed.

In fact, we define the index sets J< := {j | yj < zj − w(LB,UB)} and J≥ :=
{j | yj ≥ zj − w(LB,UB)} and consider the point y′ with y′j = yj , j ∈ J<, and
y′j = yj − 2w(LB,UB), j ∈ J≥. Then it holds

y′ < z − w(LB,UB)e. (15)

Moreover, y′ lies in E(LB,UB) since it actually lies in the same boxes as y. In fact,
let y ∈ [`b, ub] with (`b, ub) ∈ LB×UB, `b ≤ ub. This implies y′ ≤ y ≤ ub. In addition
to that, for each j ∈ J< it holds y′j = yj ≥ `bj , and due to w(LB,UB) ≤ δ/3 each
j ∈ J≥ satisfies

y′j = yj − 2w(LB,UB) ≥ zj − 3w(LB,UB) ≥ zj − δ
= (zj − ω̃j)− min

i=1,...,m
(zi − ω̃i) + ω̃j ≥ ω̃j ≥ ωj ≥ `bj ,

where the last inequality holds by (3).
We may thus proceed as in Case 4.1: we define the set T ′ := {t ∈ R | y′ + te ∈

E(LB,UB)} and deduce from Step 1 that it is a closed interval [t′, t
′
]. The point y′ :=

y′+ t′e lies in (Y +Rm+ )c∪B by Step 2. From (13) and (15) we obtain y′ := y′+ t
′
e < z,

so that Step 3 yields y′ ∈ Y + Rm+ . By the intermediate value theorem for ϕY this
implies the existence of some ỹ ∈ B ∩ Z on the connecting line segment of y′ and y′,
cf. Figure 4.

The distance of ỹ from y satisfies

‖y − ỹ‖2 ≤ ‖y − y′‖2 + ‖y′ − ỹ‖2

with

‖y − y′‖22 =
∑
j∈J≥

(yj − y′j)2 =
∑
j∈J≥

(2w(LB,UB))2 ≤ 4mw(LB,UB)2

and, like in (14),

‖y′ − ỹ‖2 ≤
√
mw(LB,UB).

This results in (12) and completes the proof.

12



The main consequence of Theorem 3.4 for branch-and-bound methods meeting As-
sumptions 1–4 is that for sequences (LBk) and (UBk) of lower and upper bounding
sets with limk w(LBk, UBk) = 0 the enclosing sets E(LBk, UBk) of the nondominated
set YN converge to B ∩ Z in the Hausdorff metric (at linear speed in w(LBk, UBk)).

At first glance it may seem that this is a purely qualitative result, since the anti-ideal
point ω of f(X), its overestimators ω̃ and, thus, δ from (11) are not explicitly known.
For some prescribed termination tolerance ε with w(LBk, UBk) < ε it is then unclear
if ε ≤ δ/3 and its consequence ex(E(LBk, UBk), B ∩ Z) < 3

√
mε from Theorem 3.4

hold.
This, however, can easily be fixed by choosing the box Z = [z, z] appropriately,

as described in the following corollary. It does without the explicit knowledge of the
anti-ideal point ω of f(X) or of a general overestimator ω̃ in the computation of
δ from (11). Note that, on the other hand, the appearance of ω in Assumption 3
is not restrictive. Furthermore, in practical applications the vector f often possesses
factorable entries, so that a box Z ′ with f(X) ⊆ int(Z ′) can be constructed by interval
arithmetic.

Corollary 3.5. Let the feasible set M(X) of MOP be nonempty, let Z ′ = [z′, z′]
be a box with f(X) ⊆ int(Z ′), for some ε̄ > 0 define Z := [z′, z′ + 3ε̄e] and let
Assumptions 1–3 hold with sets Y , F , Z, LB and UB. Furthermore, let Assumption 4
be satisfied, and for any ε ∈ (0, ε̄] let LB and UB be chosen such that w(LB,UB) ≤ ε
holds. Then the excess of E(LB,UB) over B ∩ Z satisfies

ex(E(LB,UB), B ∩ Z) ≤ 3
√
mε.

Proof. We will show that ω̃ := z′ is an anti-ideal point overestimator for f(X) sat-
isfying the assumptions of Theorem 3.4. In fact, the box Z = [z, z] with z := z′ and
z := z′ + 3ε̄e clearly satisfies f(X) ⊆ int(Z), in view of f(X) ⊆ int(Z ′) the point
ω̃ = z′ is an anti-ideal point overestimator for f(X), and we have z − ω̃ = 3ε̄e > 0.
Moreover, in view of

δ = min
j=1,...,m

(zj − ω̃j) = 3ε̄

all ε ∈ (0, ε̄] fulfill ε ≤ ε̄ ≤ δ/3, so that w(LB,UB) ≤ ε implies w(LB,UB) ≤ δ/3.
Theorem 3.4 thus entails ex(E(LB,UB), B ∩ Z) ≤ 3

√
mw(LB,UB) ≤ 3

√
mε.

3.2. Convergence of ε-nondominated points

This section treats approximation properties of the ε-nondominated set. As under
Assumption 1 for w(E(LB,UB)) < ε the provisional nondominated set F is a subset
of the ε-nondominated set, the results imply insights into its convergence behaviour, but
our results are also applicable to study the results of other algorithms which generate
ε-nondominated points.

As a first observation, Figure 5 illustrates that even for a convex set Y = f(M)
one must not expect points from Y ε

N to converge to the nondominated set YN for ε
decreasing to zero, but only to the weakly nondominated set YwN . In fact, we shall
show that for any nonempty compact set Y ⊆ Rm and ε decreasing to zero the sets Y ε

N
converge to YwN in the Hausdorff metric. As for any ε > 0 the inclusion YwN ⊆ Y ε

N is

13



y2

YN

f(M)

y1

Y ε
N

Figure 5.: ε-nondominated points

easy to see, the Hausdorff distance reduces to the excess

ex(Y ε
N , YwN ) = sup

yεN∈Y ε
N

dist(yεN , YwN )

of Y ε
N over YwN .

We would like to note that it is possible to show convergence to the nondominated
set YN , rather than to the weakly nondominated set YwN only, if one employs a def-
inition for ε-nondominated points in which the fixed direction e is replaced by the
union over arbitrary directions in Rm+ \ {0}, see [20]. In [9] convergence for various
concepts of ε-nondominance is examined. Only for those concepts being defined by
strictly monotone functionals, convergence to the nondominated set is obtained. For a
notion of ε-nondominated points which is slightly stronger than the present one, results
concerning their convergence to the weakly nondominated set are given in [9, Sec. 3.1],
but for completeness we also provide a proof using our slightly weaker notion.

Proposition 3.6. For any nonempty compact set Y ⊆ Rm we have

lim
ε↘0

ex(Y ε
N , YwN ) = 0.

Proof. Since for any 0 < ε1 ≤ ε2 the inclusion Y ε1
N ⊆ Y ε2

N holds, each monoton-
ically decreasing zero sequence (εk) leads to a monotonically decreasing sequence
(ex(Y εk

N , YwN )). As the latter sequence is also bounded from below by zero, it con-
verges to some nonnegative limit.

Assume that we have limk ex(Y εk
N , YwN ) = c > 0 for some monotonically decreas-

ing zero sequence (εk). Then, for each k ∈ N there exists some yk ∈ Y εk
N with

dist(yk, YwN ) ≥ c/2. As the sequence (yk) lies in the compact set Y , without loss
of generality we may assume that it converges to some ȳ ∈ Y . Due to, e.g., [17], the
distance function dist(·, YwN ) is continuous for the nonempty closed set YwN , so that
we arrive at dist(ȳ, YwN ) ≥ c/2 > 0 and, in particular, ȳ does not lie in YwN .

In view of ȳ ∈ Y , there exists some y ∈ Y with y < ȳ. As also the sequence (yk−εke)
converges to ȳ, for some sufficiently large k we find y < yk − εke, in contradiction to
the choice yk ∈ Y εk

N . Therefore, for each monotonically decreasing zero sequence (εk)
we obtain limk ex(Y εk

N , YwN ) = 0, and the assertion is shown.

Since the terminal provisional nondominated set F for w(E(LB,UB)) < ε forms a
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subset of Y ε
N under Assumption 1, Proposition 3.6 ensures that the maximal distance

of its elements from YwN tends to zero for ε descreasing to zero. On the other hand,
while the set YwN is a subset of Y ε

N , it is of course not a subset of F , so that we do
not obtain a result about the Hausdorff distance of F from YwN . In particular, it is
possible that the elements of F only approximate a small part of YwN .

Despite the positive convergence result from Proposition 3.6, Figure 5 also indicates
that the approximation of YwN by points in Y ε

N may be arbitrarily slow in ε, even for
convex sets Y = f(M). On the other hand, next we show that there is a potentially
fruitful relation between the sets Y ε

N and B = bd(Y + Rm+ ), as for the approximation
of B by points from Y ε

N we can establish a linear rate of convergence.

Proposition 3.7. For any nonempty compact set Y ⊆ Rm and for each ε > 0 we have

ex(Y ε
N , B) ≤

√
mε.

Proof. By Lemma 3.3a), for any yεN ∈ Y ε
N the problem D(yεN , Y ) possesses the unique

optimal point t̂ := ϕY (yεN ). Lemma 3.3c) and yεN ∈ Y yield t̂ ≤ 0. Furthermore, the
definition of Y ε

N rules out that any t < −ε is a feasible point of D(yεN , Y ) so that we
obtain t̂ ∈ [−ε, 0]. With Lemma 3.3d) for λ = t̂ we obtain ŷ := yεN + t̂e ∈ B. The
identity ‖ŷ − yεN‖ =

√
m |t̂| ≤

√
mε then implies dist(yεN , B) ≤

√
mε and, thus, the

assertion.

Note that neither B nor B ∩ Z are subsets of Y ε
N , so that Proposition 3.7 does

not address the Hausdorff distance, and potentially not all elements of B are approxi-
mated. Still, the application of Proposition 3.7 to the output of any algorithm satisfying
Assumptions 1–4 yields that for ε decreasing to zero the elements of the provisional
nondominated set F ⊆ Y ε

N converge to B at linear speed. If upon termination a point
from F turns out to be close to some ŷ ∈ B ∩ (f(M))c, one may try to design a post
processing step to move it to some point in YN or in YwN .

4. Postprocessing steps for the terminal enclosure

Algorithms meeting Assumptions 1–4 like Algorithm 1 from [4] provide the terminal
provisional nondominated set F and the terminal enclosure E(LB,UB) as two simulta-
neous approximations of the nondominated set YN . While Proposition 3.6 makes sure
that the maximal distance of elements in F from YwN tends to zero, it is not clear how
well the shape of YwN may be (approximately) recovered from the shape of F . Since by
Lemma 3.2 the terminal enclosure contains YwN , one may hope that the information
from E(LB,UB) regarding the shape of YwN complements the information from F .
On the other hand, the terminal enclosure even contains the superset B ∩ Z of YwN
which may be significantly larger than YwN , so that information about the shape of
YwN may be hard to retrieve from E(LB,UB).

For example, for the bicriteria problem

DEB2DK : min

(
r(x) sin(x1π/2)
r(x) cos(x1π/2)

)
s.t. 0 ≤ x1, x2 ≤ 1

with r(x) = (5+10(x1−0.5)2+cos(4πx1))(1+9x2) from [1] in its modified form from [4],
Figure 6 shows the terminal provisional nondominated set and the terminal enclosure
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generated by [4, Alg. 1] for ε = 0.1. It illustrates that, as expected, the approximation

(a) Terminal provisional nondominated set F (b) Terminal enclosure E(LB,UB)

Figure 6.: Solution of DEB2DK with ε = 0.1

of B ∩ Z by the terminal enclosure can lead to a significantly larger set than the
approximation of YwN by the terminal provisional nondominated set. In Figure 6b this
appears to be mainly due to ‘lengthy’ boxes which extend along the coordinate axes
from the nondominated set to the boundary of the computed box Z = [0, 85]2, and
some more lengthy boxes which ‘fill the gap’ between the two connected components
of the nondominated set. As a consequence, in Figure 6b the details of the enclosure
of the actual nondominated set are barely recognizable.

Figure 7 shows the corresponding output for the three criteria problem

V FM : min


0.5(x21 + x22)

2 + sin(x21 + x22)

(3x1−2x2+4)2

8 + (x1−x2+1)2

27 + 15

1
x2
1+x

2
2+1 − 1.1 exp(−x21 − x22)

 s.t. − 3 ≤ x1, x2 ≤ 3

from [21].

(a) Terminal provisional nondominated set F (b) Terminal enclosure E(LB,UB)

Figure 7.: Solution of VFM with ε = 0.05

Also in Figure 7b the details of the enclosure of the actual nondominated set are
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barely visible, since lengthy boxes extend from the nondominated set to the boundary
of the box Z = [(−1, 15,−1.05)>, (10, 61.9, 1)>].

In both of the above examples, it seems to make sense to delete or at least to
truncate lengthy boxes. In fact, in the examples boxes seem to be lengthy since their
upper boundary vectors ub are located far away from YN , for example on the boundary
of Z. Recall that `b is generated as an ideal point underestimator of Ŷ ′ + Rm+ for a
relaxation Ŷ ′ + Rm+ of some partial upper image set f(M(X ′)) + Rm+ with a subbox
X ′ ⊆ X. Therefore, if a lengthy box [`b, ub] contains image points from Y at all, they
may rather be expected to lie close to `b than to ub. Following this observation it makes
sense to truncate [`b, ub] by replacing ub with a vector ub′ ≤ ub, ub′ 6= ub.

In Section 4.1, we suggest a truncation algorithm for the bicriteria case. Unfortu-
nately its ideas cannot be extended straightforwardly to the case m ≥ 3, which we
explain in Section 4.2. We formulate a heuristic procedure instead. Section 4.3 comple-
ments these considerations by a rescaling technique for the objective values.

4.1. A box truncation algorithm for bicriteria problems

In this section we consider the bicriteria case m = 2. Given lower and upper bounding
sets LB and UB with w(LB,UB) < ε for some ε > 0, let [`b, ub] with `b ∈ LB,
ub ∈ UB and `b ≤ ub be some box from the terminal enclosure E(LB,UB). Then at
least one of the two edge lengths of [`b, ub] lies below ε. We consider [`b, ub] ‘lengthy’
if one of the edge lengths exceeds c̄ε for some parameter c̄ � 1. We will comment on
the choice of c̄ below. Let `, s ∈ {1, 2} denote the indices of the long and short edge,
respectively, so that ub`− `b` ≥ c̄ε and ubs− `bs < ε hold. We suggest to truncate such
lengthy boxes [`b, ub] to [`b, ub′] with ub′s := ubs and ub′` < ub`.

To avoid the deletion of points from YN ∩ [`b, ub] in this truncation step, one may try
to compute the value ymax

` of the largest y`-component of points in Y ∩ [`b, ub] and put
ub′` := ymax

` . This would, however, involve the global solution of a possibly nonconvex
optimization problem for each lengthy box, which we wish to avoid in view of its large
algorithmic effort.

Instead, in the following we suggest an algorithmically feasible procedure for a suf-
ficiently deep truncation which, at the same time, guarantees that the deleted part
[`b, ub]\ [`b, ub′] of a lengthy box at least does not contain any ‘relevant’ nondominated
points in the following sense. Recall that a nondominated point ȳ of Y ⊆ Rm is called
Geoffrion properly nondominated for Y if there exists some constant K > 0 such that
for all j ∈ {1, . . . ,m} and all y ∈ Y with yj < ȳj there exists some i ∈ {1, . . . ,m} with
yi > ȳi and the trade-off bound

ȳj − yj
yi − ȳi

≤ K.

For m = 2 we will show that ub′` can be chosen such that [`b, ub] \ [`b, ub′] may only
contain Geoffrion properly nondominated points ȳ with a large trade-off bound K. In
view of this large trade-off, these ȳ may be irrelevant for practical applications.

Indeed, we put ub′` := `b` + c′ε for some cut-off parameter 1 ≤ c′ < c̄ (Fig. 8).
The lower bound for c′ avoids a truncation which is so deep that the new edge length
ub′` − `b` falls below ε. The construction of c′ involves the solution of an auxiliary
optimization problem which aims at a point y? ∈ Y ∩ [`b, ub] with y?s = ubs and
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Figure 8.: Truncation for m = 2, ` = 1, and s = 2

minimal y`-component:

min
y

y` s.t. y ∈ Y ∩ [`b, ub], ys = ubs, y` ≤ `b` + (c̄/2)ε. (P`)

Note that also P` is in general nonconvex. However, here the global solution of P` is not
necessary, but any of its feasible points y? will subsequently lead to some statement
about Geoffrion properly nondominated points. This statement, though, is strongest
possible if y? is a minimal point of P`. We choose the upper bound determined by c̄/2 to
guarantee a sufficient truncation in the subsequent construction from Proposition 4.1.

The problem P` is solvable if and only if its feasible set is nonempty. In case of an
empty feasible set one may check if already Y ∩ [`b, ub] is empty and then delete the
whole box [`b, ub]. If Y ∩ [`b, ub] is nonempty while P` does not possess feasible points,
we do not truncate this box. An alternative option would be to increase the factor c̄/2
in the last constraint of P` to an appropriate value close to c̄ and to replace ubs in
the subsequent discussion by the maximal ys-value of points in Y ∩ [`b, ub]. The latter,
however, would again require the global solution of a possibly nonconvex optimization
problem which we wish to avoid in the present construction.

Proposition 4.1. Let y? be a minimal point of P`, define c? := (y?` − `b`)/ε, choose
cK ∈ (max{0, 1−c?}, c̄−c?), and put c′ := c?+cK , ub′` := `b`+c

′ε as well as ub′s := ubs.
Then [`b, ub′] is a proper subset of [`b, ub] with ub′` − `b` ≥ ε, and [`b, ub] \ [`b, ub′]
does not contain any Geoffrion proper nondominated point of Y with trade-off bound
K ≤ cK .

Proof. By the definition of P` and of c? we have 0 ≤ c? ≤ c̄/2 so that c̄−c? is positive.
Due to c̄ > 1 we also have c̄− c? > 1− c? which implies that the choice of cK from the
required interval is possible. The relation

ub′` = `b` + (c? + cK)ε < `b` + c̄ε ≤ ub`

proves that [`b, ub′] is a proper subset of [`b, ub]. Furthermore, we have

ub′` = `b` + (c? + cK)ε ≥ `b` + max{c?, 1}ε

which implies ub′` − `b` ≥ ε.
Let ȳ ∈ [`b, ub]\[`b, ub′] be a Geoffrion proper nondominated point of Y with trade-off

bound K. Next we show that y?` < ȳ` and y?s > ȳs hold. In fact, cK > 0 implies

y?` = `b` + c?ε < `b` + (c? + cK)ε = ub′` < ȳ`,

and equality in the relation ȳs ≤ ubs = y?s would lead to the contradiction that y?
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dominates ȳ. With the choices y := y?, j := ` and i := s in the definition of Geoffrion
proper nondominance this yields

K ≥
ȳ` − y?`
y?s − ȳs

>
ub′` − y?`

ε
= cK

which shows the assertion.

Proposition 4.1 allows two approaches for the choice of the parameter cK . Firstly,
one may be interested in truncating [`b, ub] ‘cautiously’, such that for a given K > 0
the deleted part [`b, ub] \ [`b, ub′] does not contain any Geoffrion proper nondominated
point with trade-off bound up to K. By Proposition 4.1 this is possible for any K ∈
(max{0, 1− c?}, c̄− c?) with the choice cK := K. In particular, if one expects a small
value of c? (i.e., y?` is expected to lie close to `b`), c̄ should be chosen slightly larger than
K. In any case, this construction results in a truncation with ub′` = `b` + (c? +K)ε, so
that for K close to c̄−c? the truncation is not deep but, on the contrary, the remaining
part of the box is ‘close to lengthy’.

Figure 9a shows the result of a cautious truncation for the problem DEB2DK with
ε = 0.1 and c̄ = 10. From the 1,674 boxes in the terminal enclosure 22 are identified
as lengthy. All corresponding problems P` are solvable, and for each box and its value
c? we chose a value cK slightly below 10− c?. This resulted in a trade-off bound of at
least K = 9.66 in each box, and a cut-off value of at least c′ = 9.91. As expected the
latter is close to c̄ = 10 so that the truncated boxes are ‘close to lengthy’.

(a) cautious (b) deep

Figure 9.: Truncated enclosures of DEB2DK with ε = 0.1 and c̄ = 10

Secondly, one may be interested in a ‘deep’ truncation of the box [`b, ub] with c′

close to 1, say c′ = c? + cK ≤ 1 + δ with some small δ ∈ (0, c̄ − 1). The choice
cK > max{0, 1−c?} then requires δ > c?−1, and only trade-off bounds K ≤ 1+δ−c?
can be ruled out for Geoffrion proper nondominated points in the deleted part of the
box. Even in the most favorable case y?` = `b` only values K ≤ 1 + δ are possible.

For the above setting of DEB2DK with ε = 0.1 and c̄ = 10 we chose cK close
to max{0, 1 − c?} for each of the 22 lengthy boxes, resulting in cut-off values of at
most c′ = 1.09 and trade-off bounds as low as K = 0.84. Figure 9b illustrates the
corresponding truncated enclosure.

While the approximations of YN by the provisional nondominated set from Figure 6a
and by the deeply truncated enclosure from Figure 9b show a close resemblance, we
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emphasize that our previous discussion does not rule out that some elements of YN
may lie, for example, in the additional enclosure parts from Figure 9a.

4.2. A box truncation heuristic for more than two objectives

As in the previous section let w(LB,UB) < ε for some ε > 0 and let [`b, ub] with
`b ∈ LB, ub ∈ UB and `b ≤ ub be some box from the terminal enclosure E(LB,UB).
While the shortest edge length of [`b, ub] still lies below ε, Figure 7b illustrates that
in the presence of more than two objective functions lengthy boxes may not only
extend in a single dimension. Therefore we define the index set of all such directions,
J`(`b, ub) := {j | ubj − `bj ≥ c̄ε} with some c̄� 1.

In generalization of our approach for the case m = 2 we suggest to truncate all boxes
[`b, ub] with J`(`b, ub) 6= ∅ along all directions with index in j ∈ J`(`b, ub) by replacing
ubj with ub′j := `bj + c′ε for some 1 ≤ c′ < c̄. For j 6∈ J`(`b, ub) we put ub′j := ubj and
obtain the truncated box [`b, ub′].

Unfortunately our assessment of the ‘quality’ of nondominated points ȳ which possi-
bly lie in the deleted part [`b, ub] \ [`b, ub′] of a lengthy box does not carry over to this
construction for the case m > 2. The main reason is that for points ȳ ∈ [`b, ub]\ [`b, ub′]
not all, but only some indices j ∈ J`(`b, ub) may satisfy ȳj > ub′j . Thus a straightfor-
ward generalization of our discussion from the case m = 2 would require the concept
of a substantially nondominated point from [13] (which is identical to the concept of
a strongly proper nondominated point introduced later in [11]): a nondominated point
ȳ of Y is called substantially nondominated for Y if there exists some constant K > 0
such that for all i, j ∈ {1, . . . ,m} and all y ∈ Y with yj < ȳj and yi > ȳi the trade-off
satisfies

ȳj − yj
yi − ȳi

≤ K.

Substantial nondominance strengthens the notion of Geoffrion proper nondominance,
where not for all pairs of i and j the trade-off needs to be bounded, but only for each
j there must exist some i with this property. For bicriteria problems both notions
obviously coincide. In [13] it is shown, however, that for m > 2 substantially nondomi-
nated points rarely exist, so that this concept does not seem to be suitable for practical
applications.

In addition, even if we used this concept and if we were able to determine a point
y? ∈ Y ∩ [`b, ub] with y?s = ubs for the index s of some edge with ubs − `bs < ε (e.g.,
a shortest edge), a point ȳ ∈ [`b, ub] \ [`b, ub′] with ȳs = ubs would not necessarily be
dominated by y?, so that not even the relation ȳs < y?s can be deduced along the lines
of the case m = 2.

Therefore, in the case m > 2 we suggest to choose constants 1 ≤ c′ ≤ c̄ with c′ ≈ 1
and c̄ � 1 heuristically. For the case m = 3 their choice may take the effect of their
sizes on the graphical output into account. Figure 10 shows the postprocessed version
of the box enclosure from Figure 7b with the parameter choices c′ = 2 and c̄ = 10. This
results in the identification and truncation of 6,569 out of the 9,813 boxes forming the
terminal enclosure.
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Figure 10.: Truncated enclosure of VFM with c′ = 2 and c̄ = 10

4.3. Rescaling the objective functions

In Figure 10 another undesirable effect appears, as the lengthy boxes in direction of the
objective function f3 are not satisfactorily truncated. The reason for this effect is the
significantly different scaling of the f3 axis compared to the f1 and f2 axes, resulting
in truncated boxes which appear to be stretched in f3-direction.

As usual in parts of the literature on multi-objective optimization, the algorithmic
approach from [4] uses the all ones vector e as an interior direction of the ordering
cone Rm+ for discarding tests, for the definition of ε-nondominated points as well as for
the geometric definition (5) of the enclosure’s width w(LB,UB). This choice of the
direction vector, as opposed to a vector with different positive entries, assumes that the
objective functions generate values on similar scales. While the algorithmic approach
also works if this implicit assumption is violated, difficulties may arise in the geometric
interpretation of its output, as in Figure 10.

In such cases we suggest to rescale the objective functions. Appropriate scaling fac-
tors may either be obtained a-priori or a-posteriori. The a-priori option uses information
from the box Z = [z, z] with f(X) ⊆ int(Z) which is computed at the beginning of
the underlying branch-and-bound method. If the ratio maxj(zj − zj)/minj(zj − zj) is
sufficiently large, it replaces each objective function fj by (fj − zj)/(zj − zj), so that
the rescaled objective function vector maps to the unit cube. In problem VFM with
z = (−1.1, 14.5,−1)> and z = (10.1, 62.4, 1)> the above ratio is about 24 and indicates
that a-priori rescaling may be useful. Figure 11a shows the result for ε = 0.005. All
but 31 of the 21,783 boxes in the terminal enclosure are truncated.

If the approximation of f(X) by Z is too coarse or if the nondominated set still
appears to exhibit different scales along different image space coordinate directions, an
a-posteriori and, thus, more elaborate option is to run the branch-and-bound method
for a first time with the original function vector f , determine the smallest enclosing box
P = [p, p] of the generated provisional nondominated set and, if the ratio maxj(pj −
p
j
)/minj(pj − pj) is sufficiently large, run the algorithm a second time for the scaled

functions (fj − pj)/(pj − pj). The points p and p may be interpreted as a provisional
ideal point and a provisional nadir point of MOP . The provisional nondominated set
of the rescaled problem then lies approximately in the unit cube. In problem VFM the
box P corresponding to Figure 7a possesses the vertices p = (0.016, 15,−0.1)> and
p = (4.51, 16.7, 0.18)>, resulting in a ratio between longest and shortest edge length of
about 16. Thus also a-posteriori scaling may make sense. Figure 11b shows the result
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for ε = 0.05, where 28,105 out of 28,508 boxes have been truncated. While qualitatively
both approximations in Figure 11 look similar, as expected the a-posteriori rescaling
leads to less distortion in the f3-direction.

(a) a-priori (b) a-posteriori

Figure 11.: Truncated enclosures for rescalings of VFM with c′ = 2 and c̄ = 10

5. Extension to the mixed-integer setting

While Assumptions 1–4 and the resulting convergence analysis in Section 3 are mo-
tivated by [4, Alg. 1] for the continuous problem MOP , the continuity of the variables
is not necessary for the validity of the main results of the present paper.

In fact, consider a multiobjective mixed-integer optimization problem of the form

min f(x) s.t. g(x) ≤ 0, x ∈ X, xi ∈ Z, i ∈ I (MOMIP)

where, in addition to the assumptions on the problem MOP , we denote by I ⊆
{1, . . . , n} an index set of integer variables. The feasible set of MOMIP is

M = M(X) = {x ∈ X | xi ∈ Z, i ∈ I, g(x) ≤ 0},

and in the case I = ∅ the problem MOMIP collapses to the problem MOP .
The two main reasons for the extendability of the convergence results from Section 3

to the mixed-integer case are that we did not impose any convexity assumptions on
the problem MOP , and that all required notions as well as the results are formulated
exclusively in the image space.

To be more precise, the image set Y = f(M(X)) is also compact for MOMIP , its
nondominated set YN can be approximated by box enclosures E(LB,UB) with finite
sets LB, UB, and by provisional nondominated sets F . No changes are required in
the definitions of the search region S(F) and of the set of local upper bounds lub(F).
Hence, Assumptions 1–4 can be formulated for MOMIP . Note that (4) still follows
from Assumptions 1 and 3 since external stability is guaranteed by the compactness
of Y .
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As a consequence, the class of branch-and-bound methods for MOMIP satisfying As-
sumptions 1–4 possesses the approximation properties from Section 3. For the purpose
of easier reference we explicitly state the main results.

Theorem 5.1. Let the feasible set M(X) of MOMIP be nonempty and let Assump-
tions 1–3 hold with sets Y , F , Z = [z, z], LB and UB.Furthermore, let Assumption 4
hold, and for some anti-ideal point overestimator ω̃ for f(X) with ω̃ < z, let LB and
UB be chosen such that w(LB,UB) ≤ δ/3 holds with δ from (11). Then the excess of
E(LB,UB) over B ∩ Z satisfies

ex(E(LB,UB), B ∩ Z) ≤ 3
√
mw(LB,UB).

Corollary 5.2. Let the feasible set M(X) of MOMIP be nonempty, let Z ′ = [z′, z′]
be a box with f(X) ⊆ int(Z ′), for some ε̄ > 0 define Z := [z′, z′ + 3ε̄e] and let
Assumptions 1–3 hold with sets Y , F , Z, LB and UB. Furthermore, let Assumption 4
be satisfied, and for any ε ∈ (0, ε̄] let LB and UB be chosen such that w(LB,UB) ≤ ε
holds. Then the excess of E(LB,UB) over B ∩ Z satisfies

ex(E(LB,UB), B ∩ Z) ≤ 3
√
mε.

Furthermore, Proposition 3.6 ensures that the maximal distance of the terminal
provisional nondominated set F from YwN tends to zero for ε descreasing to zero.
While this convergence may be arbitrarily slow in ε, Proposition 3.7 implies that the
maximal distance of the terminal provisional nondominated set F from B tends to zero
for ε descreasing to zero at linear speed.

6. Final remarks

In this paper we have studied approximation properties of the terminal enclosure and of
the terminal provisional nondominated set for branch-and-bound algorithms satisfying
Assumptions 1–4 and termination accuracies tending to zero. Our analysis applies to
continuous as well as to mixed-integer multi-objective optimization problems. For the
boundary B of the upper image set of Y = f(M) and a box container Z of Y , we
have seen that the terminal enclosure converges in the Hausdorff metric to B ∩Z, and
that the maximal distance of elements in the terminal provisional nondominated set to
the weakly nondominated set of Y tends to zero. While the latter convergence may be
arbitrarily slow, we established linear convergence of these distances to the set B ∩Z.
This illustrates the central role of the upper image set’s boundary for our convergence
proofs, which may also turn out to be useful in other approximation considerations in
multiobjective optimization.

All concepts and results from this paper make use of the componentwise structure
of the natural ordering in the image space Rm. It would be of interest to extend the
concept of an enclosure and the ideas behind the examined class of algorithms to more
general partial orderings defined by, for instance, polyhedral ordering cones. For doing
so an extension of the definition of local upper bound sets is required, and, what is
more, algorithms for calculating these sets.
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