
manuscript No.
(will be inserted by the editor)

A Nonmonontone Accelerated Proximal Gradient Method with Variable

Stepsize Strategy for Nonsmooth and Nonconvex Minimization Problems

Hongwei Liu1 · Ting Wang1 ·

Received: date / Accepted: date

Abstract We propose a new nonmonontone accelerated proximal gradient method with variable stepsize

strategy for minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting. In

this algorithm, the objective function value be allowed to increase discontinuously, but is decreasing from

the overall point of view. The variable stepsize strategy don’t need a line search or to know the Lipschitz

constant, which makes the algorithm easier to implement. Every sequence of iterates generated by the

algorithm converges to a critical point of the objective function. Further, under the assumption that the

objective function satisfies the Kurdyka- Lojasiewicz inequality, we prove the convergence rates of the

objective function value and the iterates. Moreover, numerical results on both convex and nonconvex

problems are reported to demonstrate the effectiveness and superiority of the proposed methods and

stepsize strategy.

Keywords Nonconvex, Nonsmooth, Accelerated proximal gradient method, variable stepsize strategy,

Kurdyka- Lojasiewicz property, Convergence

Mathematics Subject Classification (2000) 94A12 · 65K10 · 94A08 · 90C25 ·

1 Introduction

Triggered by practical problems in signal processing, image processing, and machine learning [24,28,47,

48], there has been an increased interest in so-called composite objective functions:

(P) min
x
F (x) = f (x) + g (x) ,

where f is a smooth (possibly nonconvex) function with Lipschitz continuous gradient and g is a proper

Ting Wang ())

E-mail: wangting 7640@163.com

Hongwei Liu

E-mail: hwliuxidian@163.com

1 School of Mathematics and Statistics, Xidian University, Xi’an 710126, China

2

lower semicontinuous (possibly nonconvex and nonsmooth) function. Furthermore, we require F to be

coercive, i.e., ‖x‖2 →∞ implies that F (x)→∞ and bounded from below by some value inf F > −∞.

In convex optimization, the property that one of the function is smooth and another is convex

makes the proximal gradient (PG) method [46] well defined and be a benchmark approach for solving

the problem (P). The concrete iterative scheme of this method can be read as:

xk+1 ∈ proxλkg (xk − λk∇f (xk)) , (1)

where λk > 0 denotes the stepsize and the proximal mapping of λg is defined by

proxλg (u) := arg min
x∈Rn

{
g (x) +

1

2λ
‖x− u‖2

}
. (2)

Algorithm (1) is a descent scheme provided that 0 < λk ≤ 1
Lf

and the sequence generated by it converges

(weakly in an infinite-dimensional space) to the minimizer; and the convergence rate of objective function

values is o
(

1
k

)
[16,23,46]. In such convex setting, the well-known iterative shrinkage and soft-thresholding

algorithm (ISTA) [14,27] and projected gradient method [39] are also special cases of this method with

proximal operator derived by l1-norm and indicator function of certain convex set, respectively.

Some accelerated proximal gradient (APG) algorithms be proposed in order to accelerate the con-

vergence rate and enhance the numerical performance of the PG method by incorporating an inertial

term, which is computed by the difference of the two preceding iterations, i.e.,

yk+1 = xk + γk (xk − xk−1) with γk ∈ [0, 1) (3)

xk+1 ∈ proxλk+1g (yk+1 − λk+1∇f (yk+1)) .

This seminal work proposed by Nestorev [41], who showed the O
(

1
k2

)
convergence rate with γk = tk−1

tk+1
,

where tk+1 =
1+
√

1+4t2k
2 and t0 = 1 for smooth setting and several extensions have been made in the non-

smooth and convex setting, for example, [4,6,8,9,12,13,26,29,33,35,36,49]. In the case of nonconvex, the

inertial optimization algorithm has the ability to detect multiple critical points of nonconvex functions

via an appropriate control of the ineritial parameter, while, non-inertial methods lack this property [20].

However, since that the proximal operator is not anymore single-valued [18], the convergence analysis

for the inertial algorithm becomes more complex. A common method is to assume that the functions

in the objective have the Kurdyka-Lojasiewicz property [34], which is almost always satisfied from a

practical point of view of image processing, computer vision, or machine learning. Under the assumption

that the nonsmooth part of the objective function is convex, while the smooth counterpart is allowed

to be nonconvex, Ochs et al. [42] proposed an inertial proximal algorithm for nonconvex optimization

(ipiano) and obtained convergence result based on the Kurdyka- Lojasiewicz inequality; Wenbo & Chen

[53] proved the R−linear convergence for the APG with a extrapolation coefficient, which has an upper

bound less than 1, under the error bound condition [50] (Bolte in [18] showed that there has a quantitative

relationship between the error bound (EB) condition and the Kurdyka- Lojasiewicz property); Wu & Li

[54] considered a general inertial proximal gradient method with two different extrapolation coefficients,

3

and the local linear convergence also can be established for the proposed method by using the EB

condition.

With the growing use of non-convex objective function in applied fields like image processing and

machine learning, the needs of numerical methods for the fully nonconvex setting increased significantly.

However, it is difficult to extend the results directly from convex setting to nonconvex setting. A class

of Bregman proximal gradient methods [57,43], which can be seen as a further developments on PG,

be used for solving the fully nonconvex settting. The Bregman proximal gradient methods replaces the

proximal mapping in (2) by

proxhλg (u, v) := arg min
x∈Rn

{g (x) + 〈x, v〉+Dh (x, u)} , (4)

where Dh (x, u) , called Bregman distance, be defined as Dh (x, u) := h (x) − (h (u) + 〈∇h (u) , x− u〉)

with a strong convex function h. Easy to observe that (4) can reduce to (2) if taking h := 1
2‖·‖

2. More

on the property of the Bregman distance can refer to [10] and the detailed theoretical analysis for

convex scheme can be found in [21,44,51]. Recently, several efforts on using Bregman proximal gradient

methods incorporated inertial term to solve the nonconvex case of problem (P). Bolte [19] proposed a

Bregman PG method for nonconvex setting, that is:

xk+1 ∈ proxhλkg (xk, λk∇f (xk)− γk (xk − xk−1))

and showed that every sequence of iterates generated by this algorithm converges to a critical point

of the objective function provided an appropriate regularization of the objective satisfies the Kurdyka-

 Lojasiewicz inequality. This algoirthm can be reduced to the one proposed by Ochs [42] if taking h :=

1
2‖·‖

2. Further, taking βk = 0, the algorithm can be reduced to the one in [17]. Wu&Li [54] proposed an

inertial Bregman proximal gradient method, that is

xk+1 ∈ proxhλkg (xk, λk∇f (zk)− γk (xk − xk−1)) ,

where zk = xk + αk (xk − xk−1) , and show that the sequence converges to the stationary point of

objective function and linear convergence rate under Kurdyka- Lojasiewicz framework. More efforts on

Bregman proximal gradient methods for solving nonconvex scheme can be found in [7,22,38,40,32,52].

Here, we foucus on the algorithm proposed in [37]. The author based on the idea of Beck and

Teboulle’s monotone FISTA [13], proposed a monotone APG for fully nonconvex setting. In this method,

a proximal gradient step be using as the monitor to make the sufficient descent condition F (xk+1) ≤

F (xk)− δ‖vk+1 − xk‖2 satisfies, and the convergence rate of function value can be obtained under the

assumption that objective function F has the Kurdyka- Lojasiewicz property. Meanwhile, the author

extended it to a nonmonotone scheme by relaxing the sufficient descent condition as F (xk+1) ≤ ck −

δ‖vk+1 − xk‖2, where ck is a relaxation of F (xk) , but can not obtain the corresponding convergence

4

result. The concrete iterative scheme is :

(nmAPG)



yk+1 = xk + tk−1

tk
(zk − xk) + tk−1−1

tk
(xk − xk−1)

zk+1 = proxλg (yk+1 − λ∇f (yk+1))

if F (zk+1) ≤ ck − ρ‖zk+1 − yk‖2

xk+1 = zk+1

else

vk+1 = proxλg (xk − λ∇f (xk))

xk+1 =

 zk+1, if F (zk+1) ≤ F (vk+1) ,

vk+1, otherwise.

qk+1 = ηqk + 1, ck+1 = (ηqkck + F (xk+1)) /qk+1

Inspired by the algorithms in [37], we similarly combining the proximal gradient step to the inertial

proximal gradient method to propose a new accelerated proximal gradient method with variable stepsize

strategy (newAPG vs) for solving the fully nonconvex and nonsmooth problem (P) in this paper. The

newAPG vs algorithm is nonmonotone, which allows function value increasing but the rising value no

more than the drop-out value at the previous iteration such that the algorithm is declining on the whole.

Although the constant stepsize is feasible, we still propose a variable stepsize strategy to speed up the

convergence of algorithm from the numerical point of view. We can show that every accumulation point

is a critical point. Then, under the assumption that objective function F have the K L property, we can

obtain the convergence rates of function value and iterates.

The reminder of this paper is organized as follows. In Section 2, we provide our algorithm and show

that any accumulation point of generated iterates converges to critical point. In Section 3, we suppose

that objective function satisfies the K L inequality and show the convergence rates of function values

and iterates. Numerical results are reported in Section 4.

2 A New Nonmonontone Accelerated Proximal Gradient Method with Variable Stepsize

Strategy

In the following Algorithm 1, we give the concrete scheme of the new nonmonotone accelerated proximal

gradient method with variable stepsize strategy (newAPG vs). Easy to see that if the last iteration

satisfies the sufficient descent condition, we introduce a trial step x̂ generated by inertial proximal

gradient method, which be accepted if function value at this trial point nonincreasing or increasing but

the rising function value is less than δ times of the drop value of the previous step, where δ ∈ (0, 1) ;

Otherwise, we use the proximal gradient method. If the sufficient descent condition can not be satisfied

at the last iteration, we directly use the proximal gradient method to generate the iterates. Hence, the

iterates generated by Algorithm 1 can be divided into two cases. Note that

Tλg (y) : = proxλg (y − λ∇f (y)) .

5

Case 1. The trial step be accepted, i.e., xk+1 = Tλk+1
(yk+1) where yk+1 = xk + γk (xk − xk−1) , which

be called InertialStep and satisfies the sufficient descent condition ‖xk − xk−1‖2 ≤ c (F (xk)− F (xk−1))

and F (xk+1) ≤ F (xk) + min (Qk, δ (F (xk−1)− F (xk))) , which means that we allow the function value

at present iteration to increase appropriately, but the increasing value cannot exceed δ times of the

decrease of previous iteration. Meanwhile, we can deduce that

F (xk−1)− F (xk+1) = F (xk−1)− F (xk) + F (xk)− F (xk+1) (5)

≥ (1− δ) (F (xk−1)− F (xk))

≥
(

1− δ
c

)
‖xk − xk−1‖2.

Case 2. The trial step not be accepted, i.e., xk+1 = Tλk+1
(yk+1) where yk+1 = xk, which be called

ZeroStep since the inertial term equals to 0. Lemma 2.3 will show that the function value is decreasing

if using the ZeroStep.

Algorithm 1 A New Nonmonontone Accelerated Proximal Gradient Method with Variable Stepsize

Strategy (newAPG vs)

Step 0. Take x0 ∈ Rn, λ1 > 0, x1 = pλ1g (x0) , 0 < µ1 < µ0 < 1. δ ∈ (0, 1) and c is a large sufficiently positive

constant.

Let
∞∑
k=1

Qk and
∞∑
k=1

E (k) are two convergent positive series. Set 0 < µ1 < µ0 < 1 and γk ∈ [0, 1) .

Step k. If 2 |f (xk)− f (yk)− 〈∇f (xk) , xk − yk〉| > µ0
λk
‖xk − yk‖2 holds, set

λk+1 =
µ1 · ‖xk − yk‖2

2 |f (xk)− f (yk)− 〈∇f (xk) , xk − yk〉|
(6)

otherwise, set

λk+1 = λk + min {1, λk}E (k) . (7)

end

If ‖xk − xk−1‖2 ≤ c (F (xk−1)− F (xk))

compute ŷ = xk + γk (xk − xk−1) and x̂ = Tλk+1
(ŷ)

If F (x̂) ≤ F (xk) + min (Qk, δ (F (xk−1)− F (xk)))

yk+1 = ŷ and xk+1 = x̂ (8)

else

xk+1 = Tλk+1
(yk+1) where yk+1 = xk (9)

end

else

xk+1 = Tλk+1
(yk+1) where yk+1 = xk (10)

end

The variable stepsize strategy in Algorithm 1 is also nonmonotonic. It uses the condition

2 |f (xk)− f (yk)− 〈∇f (xk) , xk − yk〉| ≤
µ0

λk
‖xk − yk‖2 (11)

6

to control the increase or decrease of the stepsize. When the condition (11) does not holds, the stepsize

λk+1 is determined by (6), which implies that λk+1 < λk. Conversely, λk+1 ≥ λk. And
∞∑
k=1

E (k), which

is called control series, is used for controlling the growth rate of stepsize. To analyze the convergence of

Algorithm 1, we start from some significant properties of the stepsize {λk} generated by Algorithm 2.

Lemma 2.1 Let {λk} be the sequence generated by Algorithm 2. We have that the sequence {λk} is conver-

gent. And for all k,

λk ≥ λmin = min

{
λ1,

µ1

Lf

}
. (12)

Proof See the detailed proof in the Appendix A.

Lemma 2.2 For the sequence {λk} generated by Algorithm 2, there exists a k̂ ≥ 1, for every k > k̂, condition

(11) holds constantly.

Proof The proof of this Lemma is developed in the Appendix B.

The Lemma 2.2 proved that the stepsize {λk} generated by the variable stepsize strategy is non-

monotone at previous finite steps k̂, and after k̂ step, it will increase monotonically.

Corollary 2.1 For the sequence {λk} generated by the variable stepsize strategy in Algorithm 1, denote

lim
k→∞

λk = λ∗. Then, for any k > k̂, we have λk ≤ λ∗. And, there exists λmax = max
(
λ∗, λ0, · · · , λk̂

)
such

that λk ≤ λmax for all k.

Remark 1 The Algorithm 1 with a constant stepsize can still be well defined if we set λ < 1
Lf
.

Now we begin to analyze the convergence of Algorithm 1 by proving some important properties in

the following lemmas.

Lemma 2.3 For µ0 ∈]0, 1] , if {xk+1} and {yk+1} satisfy the condition (11), then, for any z ∈ Rn,

F (xk+1) +

(
1− µ0

2λk+1

)
‖xk+1 − yk+1‖2 ≤ F (z) +

(
1

2λk+1
+
Lf
2

)
‖z − yk+1‖2, ∀k > k̂. (13)

Proof. By the iterative scheme

xk+1 = Tλk+1
(yk+1) = arg min

z

{
〈∇f (yk+1) , z − yk+1〉+

1

2λk+1
‖z − yk+1‖2 + g (z)

}
, (14)

we can deduce that

g (xk+1) + 〈∇f (yk+1) , xk+1 − yk+1〉+
1

2λk+1
‖xk+1 − yk+1‖2

≤ g (z) + 〈∇f (yk+1) , z − yk+1〉+
1

2λk+1
‖z − yk+1‖2. (15)

Using the fact that −∇f is Lipschitz continuous, we have for any y, z ∈ Rn

f (z) ≥ f (y) + 〈∇f (y) , z − y〉 −
Lf
2
‖z − y‖2 (16)

and recall the condition (11) that

f (xk+1)− f (yk+1)− 〈∇f (xk+1) , xk+1 − yk+1〉 ≤
µ0

2λk+1
‖xk+1 − yk+1‖2, ∀k > k̂. (17)

Adding both side of (15) by f (xk+1), the conclusion (13) follows from (16) with y := yk+1 and (17).

7

Lemma 2.4 For {xk} generated by the Algorithm 1, we have both of F (xk) and
∞∑
k=1

|F (xk)− F (xk−1)| are

convergent.

Proof. Based on the scheme of Algorithm 1, we know that for the InertialStep, i.e., xk+1 = Tλk+1
(yk+1)

where yk+1 = xk + γk (xk − xk−1) , it satisfied that F (xk+1)− F (xk) ≤ Qk, which means that

(F (xk+1)− F (xk))+ ≤ Qk. (18)

For the ZeroStep, i.e., xk+1 = Tλk+1
(yk+1) where yk+1 = xk, using (13) with z := xk, we have

(F (xk+1)− F (xk))+ = 0 ≤ Qk. (19)

Then, combining (18) and (19), we have
∞∑
k=1

(F (xk+1)− F (xk))+ is convergent since that
∞∑
k=1

Qk is a

convergent positive series. Next, we show that
∞∑
k=1

(F (xk+1)− F (xk))− is convergent. We know that

F (xk+1)− F (xk) = (F (xk+1)− F (xk))+ − (F (xk+1)− F (xk))−

and

∞∑
k=1

F (xk+1)− F (xk) =
∞∑
k=1

(F (xk+1)− F (xk))+ −
∞∑
k=1

(F (xk+1)− F (xk))−. (20)

Assume to the contrary that
∞∑
k=1

(F (xk+1)− F (xk))− = +∞, then following from (20) that F (xk) →

−∞, which contradicts the fact that {F (xk)} is bounded below. Hence, we have
∞∑
k=1

(F (xk+1)− F (xk))−

is convergent. Then {F (xk)} is convergent following from (20). Further,
∞∑
k=1

|F (xk+1)− F (xk)| is con-

vergent since that
∞∑
k=1

|F (xk+1)− F (xk)| =
∞∑
k=1

(F (xk+1)− F (xk))+ +
∞∑
k=1

(F (xk+1)− F (xk))−.

Lemma 2.5 For {xk} , {yk} generated by the Algorithm 1. Then
∞∑
k=1

‖xk − yk‖2 is convergent.

Proof. Using (13) with z := xk, we have(
1− µ0

2λk+1

)
‖xk+1 − yk+1‖2 ≤ F (xk)− F (xk+1) +

(
1

2λk+1
+
Lf
2

)
‖xk − yk+1‖2 (21)

≤ |F (xk+1)− F (xk)|+
(

1

2λk+1
+
Lf
2

)
‖xk − yk+1‖2.

For the InertialStep, we have(
1− µ0

2λk+1

)
‖xk+1 − yk+1‖2 (22)

≤ |F (xk+1)− F (xk)|+
(

1

2λk+1
+
Lf
2

)
γ2
k‖xk − xk−1‖2

≤ |F (xk+1)− F (xk)|+
(

1

2λk+1
+
Lf
2

)
c (F (xk−1)− F (xk))

≤ |F (xk+1)− F (xk)|+
(

1

2λk+1
+
Lf
2

)
c |F (xk−1)− F (xk)| .

8

For the ZeroStep, i.e. yk+1 = xk, we can deduce (21) to(
1− µ0

2λk+1

)
‖xk+1 − yk+1‖2 ≤ |F (xk+1)− F (xk)| (23)

≤ |F (xk+1)− F (xk)|+
(

1

2λk+1
+
Lf
2

)
c |F (xk−1)− F (xk)| .

Combining (22), (23) with Lemma 2.4 and Lemma 2.1, we can deduce that
∞∑
k=1

‖xk+1 − yk+1‖2 is

convergent.

Lemma 2.6 For {xk} generated by the Algorithm 1. We have
∞∑
k=1

‖xk+1 − xk‖2 is convergent.

Proof. For the InertialStep, we have

‖xk+1 − xk‖2 ≤ 2‖xk+1 − yk+1‖2 + 2‖yk+1 − xk‖2 (24)

≤ 2‖xk+1 − yk+1‖2 + 2‖xk − xk−1‖2

≤ 2‖xk+1 − yk+1‖2 + 2c (F (xk−1)− F (xk))

≤ 2‖xk+1 − yk+1‖2 + 2c|F (xk−1)− F (xk)|.

For the ZeroStep, obviously,

‖xk+1 − xk‖2 = ‖xk+1 − yk+1‖2 ≤ 2‖xk+1 − yk+1‖2 + 2c|F (xk−1)− F (xk)|. (25)

Combining (24), (25), the conclusion that
∞∑
k=1

‖xk+1 − xk‖2 is convergent follows from Lemma 2.4 and

Lemma 2.5.

Lemma 2.7 [17] Let (xk, uk) be a sequence such that xk → x, uk → u, F (xk)→ F (x) and uk ∈ ∂F (xk) ,

then u ∈ ∂F (x) .

Theorem 2.1 Let {xk} generated by Algorithm 1. Then, all the accumulation point of the {xk} belongs to

critF := {x ∈ Rn : 0 ∈ ∂F (x)} .

Proof. We can easy to show that {xk} is bounded by the fact that {F (xk)} is coercive. Suppose that{
xkj
}

is a convergent subsequence of {xk} and lim
j→∞

xkj = x̂. Following from (14), we have

∇f (xk+1)−∇f (yk+1)− 1

λk+1
(xk+1 − yk+1) ∈ ∂F (xk+1) . (26)

Since the fact that ∇f is Lipschitz continuous gradient and Lemma 2.5, we obtain that∥∥∥∥∇f (xk+1)−∇f (yk+1)− 1

λk+1
(xk+1 − yk+1)

∥∥∥∥ ≤ (Lf +
1

λk+1

)
‖xk+1 − yk+1‖ → 0. (27)

In addition, from (15) with z := x̂, k + 1 := kj + 1, we have

〈
∇f
(
ykj+1

)
, xkj+1 − ykj+1

〉
+

1

2λkj+1

∥∥xkj+1 − ykj+1

∥∥2
+ g

(
xkj+1

)
≤
〈
∇f
(
ykj+1

)
, x̂− ykj+1

〉
+

1

2λkj+1

∥∥x̂− ykj+1

∥∥2
+ g (x̂) , (28)

9

which means that lim sup
j→∞

g
(
xkj+1

)
≤ g (x̂) . Combining with lim inf

j→∞
g
(
xkj+1

)
≥ g (x̂) from the defini-

tion of lower semicontinuous of g, we have lim
j→∞

g
(
xkj+1

)
= g (x̂) . Moreover, since f is continuously

differentiable, we have lim
j→∞

f
(
xkj+1

)
= f (x̂) . Hence,

lim
j→∞

F
(
xkj+1

)
= F (x̂) . (29)

Combining lim
j→∞

xkj = x̂, (26), (27) and (29), using Lemma 2.7, we have 0 ∈ ∂F (x̂) .

Theorem 2.2 Denote ω (xk) is the set of all accumulation points of {xk} generated by Algorithm 2. For

F ∗ = lim
k→∞

F (xk) , we have F (ω (xk)) ≡ F ∗.

Proof. For any x̂ ∈ ω (xk) , there exists a
{
xkj
}

such that lim
j→∞

xkj = x̂. It follows that

F (x̂) ≤ lim inf
j→∞

F
(
xkj
)

= lim
k→∞

F (xk) = F ∗ (30)

from the fact that F is lower semicontinuous. In addition, recalling (13) and set x = x̂, we have

F
(
xkj+1

)
+

(
1− µ0

2λkj+1

)∥∥xkj+1 − ykj+1

∥∥2 ≤ F (x̂) +

(
1

2λkj+1
+
Lf
2

)∥∥x̂− ykj+1

∥∥2
. (31)

Following from lim
j→∞

∥∥xkj+1 − ykj+1

∥∥2
= 0, lim

j→∞

∥∥x̂− ykj+1

∥∥2
= 0 and lim

j→∞
λkj+1 = λ∗, we have

F ∗ = lim
k→∞

F (xk) = lim sup
j→∞

F
(
xkj+1

)
≤ F (x̂) . (32)

Combining (30) and (32), we have

F ∗ = lim
k→∞

F (xk) = F (x̂) .

Hence, the conclusion follows from the arbitrariness of x̂.

3 convergence rate of the function values.

In order to continue our analysis for the convergence rates of the function values and iterates, a slightly

more assumption to the objective, namely that it satisfies the Kurdyka- Lojasiewicz inequality be in

common use.

We state the definition of the Kurdyka- Lojasiewicz property: For η ∈ (0,+∞] , we denote by Θη the

class of concave and continuous functions ϕ : [0, η) → [0,+∞) such that ϕ (0) = 0, ϕ is continuously

differentiable on (0, η) , continuous at 0 and ϕ′ (s) > 0 for all s ∈ (0, η) .

Definition 3.1 (Kurdyka- Lojasiewicz property) [17] Let F : Rm → R be a differentiable function. We

say that F satisfies the Krudyka-Lojasiewica (KL) property at x̄ ∈ Rm if there exists η ∈ (0,+∞] , a

neighborhood U of x̄ and a function ϕ ∈ Θη such that for all x in the intersection

U ∩
{
x ∈ Rm : F (x̄) < F (x) < F (x̄) + η

}
the following, so called K L inequality, holds

ϕ′ (F (x)− F (x̄)) dist (0, ∂F (x)) ≥ 1.

If F satisfies the K L property at each point in Rm, then F is called a K L function.

10

Following uniformized K L property given in [17] plays an important role in our convergence analysis.

Lemma 3.1 [17] Let X ⊆ Rn be a compact set and let F : Rn → (−∞,+∞] be a proper and lower semicon-

tinuous function. Assume that F is constant on X and F satisfies the K L property at each point of X. Then,

there exist ε, η > 0 and ε, η > 0, ϕ ∈ Θη such that for all x̄ ∈ X and for all x in the intersection

{
x ∈ Rn : dist (x,X) < ε

}
∩
{
x ∈ Rn : F (x̄) < F (x) < F (x̄) + η

}
,

the following inequality holds

ϕ′ (F (x)− F (x̄)) dist (0, ∂F (x)) ≥ 1.

A remarkable aspect of K L functions is that they are ubiquitous in applications, for example,

semi-algebraic, subanalytic and log-exp. To the class of K L functions belong real sub-analytic, semi-

convex,uniformly convex and convex functions satisfying a growing condition, we refer the reader to

[1,2,3,5,11,15] and the references therein for more details regarding all the classed mentioned above

and illustrating examples. Further, based on the K L property, an abstract convergence theorem for de-

scent methods with certain properties is proved in [1,2,3,25,31]. Obviously, our algorithm not a descent

method, therefore this abstract convergence theorem is not applicable to ours. To obtain the convergence

rate of function value and iterates of our algorithm, we define two sets as follows:

Ω̄ = {i|F (xi−1) > F (xi) andF (xi+1) ≥ F (xi)}

and

Ω = {1, 2, · · ·} \Ω̄.

The following two lemmas show the properties of the set Ω, which is crucial for the later proofs.

Lemma 3.2 For any i ∈ Ω, we have i+ 1 ∈ Ω or i+ 2 ∈ Ω.

Proof It is obviously if i + 1 ∈ Ω. Otherwise, we have i + 1 ∈ Ω̄, i.e., F (xi) > F (xi+1) and F (xi+2) ≥

F (xi+1) , which means that the point xi+2 is produced by the InertialStep and the function value from

xi+1 to xi+2 is nondecreasing, hence, the sufficient descent condition not holds. Then, the next step

must be the ZeroStep, which means that F (xi+3) < F (xi+2) , i.e., i+ 2 ∈ Ω.

Lemma 3.3 For any ij , ij+1 ∈ Ω, we have F
(
xij+1

)
< F

(
xij
)
.

Proof From Lemma 3.2, there must be ij+1 = ij + 1 or ij+1 = ij + 2. Assume to the contrary that there

exists a subscript īj ∈ Ω such that F
(
xīj+1

)
≥ F

(
xīj

)
.

(I) Considering the case that ij+1 = ij+1. Since that F
(
xīj+1

)
= F

(
xīj+1

)
≥ F

(
xīj

)
, the function

value from xīj to xīj+1 is nondecreasing, the point xīj+1 must be generated by the InertialStep and the

previous iteration xīj−1 must satisfies the sufficient descent condition, then, F
(
xīj−1

)
> F

(
xīj

)
and

F
(
xīj+1

)
≥ F

(
xīj

)
, i.e., īj ∈ Ω̄, which contradicts the fact that īj ∈ Ω.

11

(II) Considering the case that īj+1 = īj + 2, which implies that īj + 1 ∈ Ω̄, i.e., F
(
xīj

)
> F

(
xīj+1

)
and F

(
xīj+2

)
≥ F

(
xīj+1

)
, which means that the iteration xīj+2 generated by the InertialStep, then,

from (5), we can obtain that

F
(
xīj

)
− F

(
xīj+2

)
≥ 1− δ

ck

∥∥∥xīj+1 − xīj
∥∥∥2

> 0,

which contradicts the fact that F
(
xīj+2

)
= F

(
xīj+1

)
≥ F

(
xīj

)
.

In the following theorems we provide convergence rates for objective function value and iterates gen-

erated by Algorithm 1 by assuming that the objective function F satisfies the K L property with a

desingularizing function ϕ (t) := C
θ t
θ.

Theorem 3.1 (Convergence rate of objective function values) Assume that F satisfy the K L property at each

point of crit F , and the desingularising function has the form of ϕ (t) = C
θ t
θ for some C > 0, θ ∈ (0, 1] .

Then,

(1) If θ = 1, F (xk) converges in finite steps.

(2) If θ ∈
[

1
2 , 1
)
, there exists Q ∈ (0, 1) such that

∣∣F (xk)− F ∗
∣∣ = O

(
Qk
)
.

(3) If θ ∈
(
0, 1

2

)
, ∣∣F (xk)− F ∗

∣∣ = O
(
k−

1
1−2θ

)
.

Proof Define rk = F (xk)− F ∗.

Step 1. Considering the subsequence
{
kj
}
⊆ Ω. From the Lemma 3.3, we can obtain that for any

kj ∈ Ω,
{
F
(
xkj
)}

is monotonically decreasing. Then, F
(
xkj
)
> F ∗ and F

(
xkj
)
→ F ∗ as j → +∞, i.e.,

rkj > 0 and rkj → 0 as j → +∞. In addition, from Theorem 2.1, we know that w
(
xkj
)
⊂ w (xk) ⊂ cirt F.

Since the assumption that F is coercive, we have w
(
xkj
)

is bounded. Also, it is compact. Hence, following

from Lemma 3.1 with X := w
(
xkj
)
, there exist ε > 0, η ∈ (0,+∞] , a concave function ϕ (t) := C

θ t
θ and

j1 such that for all j > j1,

xkj ∈
{
x|dist (x,w (x)) ≤ ε ∩ F ∗ < F (x) < F ∗ + η

}
such that

ϕ′
(
F
(
xkj
)
− F ∗

)
dist

(
0, ∂F

(
xkj
))
≥ 1. (33)

Recalling (13) and set z := xkj−1, and k + 1 := kj , we have that

∥∥xkj − ykj∥∥2 ≤
(

2λkj
1− µ0

)(
F
(
xkj−1

)
− F

(
xkj
)

+

(
1

2λkj
+
Lf
2

)∥∥xkj−1 − ykj
∥∥2
)

(34)

≤M1

(
F
(
xkj−1

)
− F

(
xkj
)

+M2

∥∥xkj−1 − ykj
∥∥2
)
, ∀j > ĵ,

12

where ĵ such that kĵ = k̂, M1 = 2λmax
1−µ0

and M2 = 1
2λmin

+
Lf
2 .

(I) For the case that xkj be generated by ZeroStep, we have F
(
xkj−1

)
> F

(
xkj
)
, which means that

kj − 1 ∈ Ω, i.e., kj − 1 = kj−1. Then, (34) becomes

∥∥xkj − ykj∥∥2 ≤M1

(
F
(
xkj−1

)
− F

(
xkj
))

= M1

(
F
(
xkj−1

)
− F

(
xkj
))
≤M1

(
F
(
xkj−2

)
− F

(
xkj
))

(35)

where the last inequality follows from Lemma 3.3.

(II) For the case that xkj be generated by InertialStep, by the scheme of Algorithm 1, we know that

xkj−1 must satisfies the sufficient descent condition, then F
(
xkj−2

)
> F

(
xkj−1

)
, then, (34) becomes

∥∥xkj − ykj∥∥2 ≤M1

(
F
(
xkj−1

)
− F

(
xkj
)

+M2

∥∥xkj−1 − xkj−2

∥∥2
)

(36)

(5) ≤M1

(
F
(
xkj−1

)
− F

(
xkj
)

+M2

(
c

1− δ

) (
F
(
xkj−2

)
− F

(
xkj
)))

< M3

(
F
(
xkj−2

)
− F

(
xkj
))
.

where M3 = M1

(
1 +M2

(
c

1−δ
))
.

(i) If F
(
xkj−1

)
> F

(
xkj
)
, we have F

(
xkj−2

)
> F

(
xkj−1

)
> F

(
xkj
)
, which means that kj −1 = kj−1 ∈

Ω and kj − 2 = kj−2 ∈ Ω. Hence, by Lemma 3.3, (36) becomes that

∥∥xkj − ykj∥∥2
< M3

(
F
(
xkj−2

)
− F

(
xkj
))
, (37)

(ii) If F
(
xkj−1

)
≤ F

(
xkj
)
, combining with F

(
xkj−2

)
> F

(
xkj−1

)
, we have kj − 1 ∈ Ω̄ and kj − 2 =

kj−1 ∈ Ω. Hence, (36) becomes that

∥∥xkj − ykj∥∥2
< M3

(
F
(
xkj−1

)
− F

(
xkj
))
≤M3

(
F
(
xkj−2

)
− F

(
xkj
))
. (38)

From (35), (37) and (38), we obtain that for any kj ∈ Ω,

∥∥xkj − ykj∥∥2 ≤M3

(
F
(
xkj−2

)
− F

(
xkj
))

= M3

(
rkj−2

− rkj
)
∀j > ĵ. (39)

Since (33) with ϕ (t) = C
θ t
θ, ϕ′ (t) = Ctθ−1, we have that for any j > j0 = max

(
j1, ĵ

)
such that

1 ≤
(
ϕ′
(
F
(
xkj
)
− F ∗

)
dist

(
0, ∂F

(
xkj
)))2

(40)

(27) ≤
(
ϕ′
(
rkj
))2(1

λkj
+ Lf

)2∥∥xkj − ykj∥∥2

(39) ≤M3

(
1

λkj
+ Lf

)2(
ϕ′
(
rkj
))2∥∥rkj−2

− rkj
∥∥2

= M̃
(
rkj
)2θ−2 (

rkj−2
− rkj

)
where M̃ = C2M3

(
1

λmin
+ Lf

)2

.

Case 1. θ = 1. Then, (40) becomes that 1 ≤ M̃
(
rkj−2

− rkj
)
, which against the fact that rkj → 0.

Hence, there exists j̄ such that for any j > j̄, rkj = 0, i.e., there exists k̄ ∈ Ω such that

rk = 0, ∀k > k̄ and k ∈ Ω. (41)

13

Case 2. θ ∈
[

1
2 , 1
)
. Since that rkj → 0 and 0 < 2− 2θ ≤ 1, there exists j2 such that

(
rkj
)2−2θ ≥ rkj

for all j > j2. Hence, there exists j̃ > max (j0, j2) such that for all j > j̃, (40) becomes

F
(
xkj
)
− F ∗ = rkj ≤

M̃

1 + M̃
rkj−2

≤ · · · ≤
(

M̃

1 + M̃

) j−j0
2

rkj0 . (42)

Case 3. θ ∈
(
0, 1

2

)
. We can easily obtain that 2θ − 2 ∈ (−2,−1) and 2θ − 1 ∈ (−1, 0) . Then, since

rkj−2
> rkj , we have

(
rkj−2

)2θ−2
<
(
rkj
)2θ−2

and (rk0)2θ−1
< · · · <

(
rkj−2

)2θ−1
<
(
rkj
)2θ−1

.

Define φ (t) = 1
1−2θ t

2θ−1, then, φ′ (t) = −t2θ−2.

(i) If
(
rkj
)2θ−2 ≤ 2

(
rkj−2

)2θ−2
, then, for any j > j0,

φ
(
rkj
)
− φ

(
rkj−2

)
=

∫ rkj

rkj−2

φ′ (t)dt =

∫ rkj−2

rkj

t2θ−2dt (43)

≥
(
rkj−2

− rkj
) (
rkj−2

)2θ−2

≥ 1

2

(
rkj − rkj−2

) (
rkj
)2θ−2

(40) ≥ 1

2M̃
.

(ii) If
(
rkj
)2θ−2

> 2
(
rkj−2

)2θ−2
, then,

(
rkj
)2θ−1 ≥ 2(2θ−1

2θ−2)(rkj−2

)2θ−1
.

φ
(
rkj
)
− φ

(
rkj−2

)
=

1

1− 2θ

((
rkj
)2θ−1 −

(
rkj−2

)2θ−1
)

(44)

≥ 1

1− 2θ

(
2(2θ−1

2θ−2) − 1
) (
rkj−2

)2θ−1

≥ 1

1− 2θ

(
2(2θ−1

2θ−2) − 1
)

(rk0)2θ−1
.

Hence, by (43) and (44), we obtain that for any j > j0,

φ
(
rkj
)
− φ

(
rkj−2

)
≥ D,

where D = min
(

1

2M̃
, 1

1−2θ

(
2(2θ−1

2θ−2) − 1
)

(rk0)2θ−1
)
. Then, for j > j0,

φ
(
rkj
)
≥
(
φ
(
rkj
)
− φ

(
rkj−2

))
+
(
φ
(
rkj−2

)
− φ

(
rkj−4

))
+ · · ·+

(
φ
(
rkj0+2

)
− φ

(
rkj0

))
(45)

≥
(
j − j0

2

)
D,

i.e., (
rkj
)2θ−1 ≥ (1− 2θ)

(
j − j0

2

)
D,

and

F
(
xkj
)
− F ∗ = rkj ≤

(
2

D (1− 2θ) (j − j0)

) 1
1−2θ

.

Hence, for any k ∈ Ω, there exists k̃ = kj̃ ∈ Ω such that for any k > k̃,

∣∣F (xk)− F ∗
∣∣ = rk ≤

(
M̃

1 + M̃

) k−k̃
2

rk̃ for θ ∈
[

1

2
, 1

)
, (46)

and

∣∣F (xk)− F ∗
∣∣ = rk ≤

(
2

D (1− 2θ)
(
k − k̃

)) 1
1−2θ

, for θ ∈
(

0,
1

2

)
. (47)

14

Step 2. Consider the case that k ∈ Ω̄.

In this case, k − 1, k + 1 ∈ Ω, F (xk+1) ≥ F (xk), then, the iteration xk+1 must be generated by the

InertialStep and F ∗ < F (xk+1) < F (xk−1). If F (xk) > F ∗, then,

∣∣F (xk)− F ∗
∣∣ = F (xk)− F ∗ ≤ F (xk+1)− F ∗. (48)

Otherwise, F (xk) ≤ F ∗, then,

∣∣F (xk)− F ∗
∣∣ = F ∗ − F (xk) ≤ F (xk+1)− F (xk) ≤ δ (F (xk−1)− F (xk)) .

Since F (xk−1)−F (xk+1) = F (xk−1)−F (xk)+F (xk)−F (xk+1) ≥ (1− δ) (F (xk−1)− F (xk)) , we have

∣∣F (xk)− F ∗
∣∣ ≤ (δ

1− δ

)
(F (xk−1)− F (xk+1)) (49)

≤
(

δ

1− δ

)(
F (xk−1)− F ∗

)
.

Since that k − 1, k + 1 ∈ Ω, and δ ∈ (0, 1) , we can deduce by (48) and (49) that

∣∣F (xk)− F ∗
∣∣ ≤ max

(
1,

δ

1− δ

)(
F (xk−1)− F ∗

)
.

Combining with (41), (46) and (47), we have that for any k ∈ Ω̄,

∣∣F (xk)− F ∗
∣∣ = 0, for θ = 1, (50)

∣∣F (xk)− F ∗
∣∣ ≤ (M̃

1 + M̃

) k−1−k̃
2

rk0 , for θ ∈
[

1

2
, 1

)
, (51)

and

∣∣F (xk)− F ∗
∣∣ ≤ (2M

D (1− 2θ)
(
k − 1− k̃

)) 1
1−2θ

, for θ ∈
(

0,
1

2

)
. (52)

Hence, the proof be completed by (50), (51) and (52).

Theorem 3.2 (Convergence rate of iterates) Assume that F satisfy the K L property at each point of crit F ,

and the desingularising function has the form of ϕ (t) = C
θ t
θ for some C > 0, θ ∈

(
1
4 , 1
]
. Then,

(1) If θ = 1, {xk} converges in finite steps.

(2) If θ ∈
[

1
2 , 1
)
, then, {xk} R-linearly converges to its limit point.

(3) If θ ∈
(

1
4 ,

1
2

)
, then, {xk} converges to its limit point with O

(
k
− 4θ−1

2(1−2θ)

)
convergence rate.

Proof From (13) with z := xk−1, k + 1 := k, we have(
1− µ0

2λk

)
‖xk − yk‖2 ≤ F (xk−1)− F (xk) +

(
1

2λk
+
Lf
2

)
‖xk−1 − yk‖2, ∀k > k̂. (53)

If the iteration xk be generated by the ZeroStep, then, yk = xk−1, which means that

‖xk − xk−1‖2 ≤
(

2λk
1− µ0

)
(F (xk−1)− F (xk)) ≤

(
2λmax

1− µ0

)(∣∣F (xk−1)− F ∗
∣∣+ ∣∣F (xk)− F ∗

∣∣) . (54)

15

Otherwise, the iteration xk be generated by the InertialStep, then,

‖xk − xk−1‖2 ≤ 2‖xk − yk‖2 + 2‖yk − xk−1‖2 (55)

≤ 2‖xk − yk‖2 + 2‖xk−1 − xk−2‖2

≤ 2‖xk − yk‖2 + 2c (F (xk−2)− F (xk−1)) .

By (53), we have

‖xk − yk‖2 ≤
(

2λk
1− µ0

)(
F (xk−1)− F (xk) +

(
1

2λk
+
Lf
2

)
c (F (xk−2)− F (xk−1))

)
, (56)

we have

‖xk − xk−1‖2 (57)

≤
(

4λk
1− µ0

)(
F (xk−1)− F (xk) +

(
1

2λk
+
Lf
2

)
c (F (xk−2)− F (xk−1))

)
+ 2c (F (xk−2)− F (xk−1))

≤M4 (F (xk−1)− F (xk) + F (xk−2)− F (xk−1)) = M4 (F (xk−2)− F (xk))

≤M4

(∣∣F (xk−2)− F ∗
∣∣+ ∣∣F (xk)− F ∗

∣∣)
where M4 = max

((
4λmax
1−µ0

)
,
(

4cλmax
1−µ0

)(
1

2λk
+

Lf
2

)
+ 2c

)
. Combining with (54) and (57), we have

‖xk − xk−1‖2 ≤ 2M4 ·max
(∣∣F (xk−2)− F ∗

∣∣ , ∣∣F (xk−1)− F ∗
∣∣ , ∣∣F (xk)− F ∗

∣∣) . (58)

Then, by the results of Theorem 3.1, we can obtain that

(1) for θ = 1, {xk} converges in finite steps.

(2) for θ ∈
[

1
2 , 1
)
, there exists constant C1 > 0 such that

‖xk − xk−1‖ ≤
√

2C1M4rk0Q
k
2 . (59)

Hence, for any p > 0,∥∥xk+p − xk
∥∥ ≤∑k+p

i=k+1
‖xi − xi−1‖ ≤

√
2C1M4rk0

∫ k+p

k

Q
x
2 dx (60)

= −
√

2C1M5rk0
|lnQ|

(
Q
x
2

)∣∣∣k+p

k
≤
√

2C1M5rk0
|lnQ|

(√
Q
)k
,

i.e., {xk} is Cauchy sequence. Let lim
k→∞

xk = x̄. As p→∞, we have

‖xk − x̄‖ ≤
√

2C1M4rk0
|lnQ|

(√
Q
)k
.

(3) For θ ∈
(

1
4 ,

1
2

)
, there exists constant C2 > 0 such that

‖xk − xk−1‖ ≤
√

2C2M4k
− 1

2(1−2θ) .

Hence, for any p > 0,∥∥xk+p − xk
∥∥ ≤∑k+p

i=k+1
‖xi − xi−1‖ ≤

√
2C2M4

∫ k+p

k

x
− 1

2(1−2θ) dx (61)

= −
√

2C2M4
2 (1− 2θ)

4θ − 1
x

1−4θ
2(1−2θ)

∣∣∣k+p

k
≤
√

2C2M4
2 (1− 2θ)

4θ − 1
k

1−4θ
2(1−2θ) ,

i.e., {xk} is Cauchy sequence. Let lim
k→∞

xk = x̄. As p→∞, we have

‖xk − x̄‖ ≤
√

2C2M4
2 (1− 2θ)

4θ − 1
k
− 4θ−1

2(1−2θ) .

The proof is completed.

16

4 Numerical Results

In this section, we conduct numerical experiments to illustrate the effectiveness of Algorithm 1 by

considering three different types of problems: “convex + convex”; “convex + nonconvex”; “nonconvex

+ nonconvex”. We consider four different algorithms for each class of problems: newAPG (Algorithm

1 with fixed stepsize); FISTA with fixed stepsize [12]; nmAPG with fixed stepsize (See Section 1) and

newAPG vs (Algorithm 1). Note that FISTA is not necessarily convergent for nonconvex optimization

theoretically. We take λ ≡ 0.98
Lf

for the first three algorithms and for the newAPG vs, we set the initial

stepsize λ0 as local Lipschitz constant between initial point x0 and x0 + 10−5. In the experiment, all

algorithms use the same inertia term: γk = tk−1
tk+1

, where tk+1 =
1+
√

1+4t2k
2 and t1 = 1. And for nmAPG,

taking η = 0.8 for ck and ρ = 10−4. For the Algorithm 1, taking δ = 0.8, c = 104, Qk = 0.99k,

Ek = 1
/
k1.1, µ0 = 0.99 and µ1 = 0.95.

The computational results are presented in following figures and tables. In each figure, we plot

‖ψk‖ against the CPU time, where ∂F (xk) 3 ψk = ∇f (xk) − ∇f (yk) − 1
λk

(xk − yk) . We also use the

‖ψk‖ ≤ TOL with TOL = 10−5 to terminate algorithms. The number of iterations and CPU time for

different settings of test problem be listed in tables.

4.1 “Convex + Convex”

In this subsection, we consider the LASSO:

min
x∈Rn

1

2
‖Ax− b‖2 + µ‖x‖1. (62)

We observe that (62) is in the form of probelm (P) withf (x) = 1
2‖Ax− b‖

2 and g (x) = µ‖x‖1. It is

clear that f has a Lipschitz continuous gradient with Lf = λmax

(
ATA

)
. In order to investigate the

stability and efficiency of the algorithms, we test 3 scenarios with different n and m. We generated an

n×m matrix A with i.i.d. standard Gaussian entries. Taking x0 = [0, 0, · · · , 0]T . The vector b ∈ Rn then

generated as b = Ax̂ + 0.01ε, where x̂ is an s-sparse random vector and ε has standard i.i.d. Gaussian

entries. The computational results are presented in Fig. 1 and Table 1.

Table 1: Numerical comparisons of different algorithms for solving LASSO

n=300,m=3000 n=500,m=5000 n=800,m=8000

s=30,µ = 0.25 s=50,µ = 0.01 s=80,µ = 0.1

Iter CPUs Iter CPUs Iter CPUs

FISTA 3038 2.3488 16496 107.7547 11819 213.0590

nmAPG 2739 2.1701 14260 97.1115 10838 201.1279

newAPG 799 0.6488 6072 39.9542 2389 43.6238

newAPG vs 485 0.4780 4642 36.3045 1625 36.7511

17

0 0.5 1 1.5 2 2.5

CPU

10-6

10-4

10-2

100

102

104

106
LASSO

FISTA

nmAPG

newAPG

newAPG_vs

0 20 40 60 80 100 120

CPU

10-6

10-4

10-2

100

102

104

106
LASSO

FISTA

nmAPG

newAPG

newAPG_vs

0 50 100 150 200 250

CPU

10-6

10-4

10-2

100

102

104

106
LASSO

FISTA

nmAPG

newAPG

newAPG_vs

Fig. 1: Evolutions of ‖ψk‖ with respect to the CPU time for solving LASSO. Left: Example with

(n,m, s)=(300,3000,30) and µ = 0.25; Middle: Example with (n,m, s)=(500,5000,50) and µ = 0.01;

Right: Example with (n,m, s)=(800,8000,80) and µ = 0.1.

We can observe that the newAPG (Algorithm 1 with fixed stepsize) better than FISTA and nmAPG.

In addition, newAPG vs faster than newAPG, which means that the variable stepsize strategy can speed

up the convergence of algorithm further.

4.2 “Convex + Nonconvex”

In this section, we provide a series of simulations to demonstrate the high performance of our algorithm.

The numerical experiments are conducted by applying algorithm nmAPG vs to nonconvex penalty

model with L1/2 and SCAD penalties. The concrete problems can be read as:

min
x∈Rm

1

2
‖Ax− b‖2 + µ ‖x‖1/2

1/2
, (63)

where ‖x‖1/2
1/2

=
∑n
i=1 |xi|

1/2; and

min
x∈Rm

1

2
‖Ax− b‖2 + µ

∑n

i=1
gκ (|xi|), (64)

where

gκ (|xi|) :=


κ |xi| , |xi| ≤ κ
−|xi|2+2cκ|xi|−κ2

2(c−1) , κ < |xi| ≤ cκ
(c+1)κ2

2 , |xi| > cκ,

(c > 2, κ > 0) .

The proximal mapping of L1/2 and SCAD penalties can be found in [55] and [30,58] separately.

Note that in [30] the values of the parameters c and κ were suggested to be chosen pairwise over

a two-dimensional grids using some criteria such as the cross-validation; and c = 3.7 was suggested

therein. And We set κ = 0.1
√

2 log (m) inspired by [30]. Similar with the Subsection 4.1, we generate

the matrix A ∈ Rn×m for (n,m, s)=(100,1000,20), (300,3000,30) and (500,5000,50) and vector b ∈ Rn.

Taking x0 = [0, 0, · · · , 0]T .

In Fig. 2, 3 and Table 2, we can see that, as in the previous subsection, the algorithm newAPG

better than FISTA and nmAPG; and newAPG vs is always the fastest algorithm.

18

0 0.2 0.4 0.6 0.8 1 1.2 1.4

CPU

10-6

10-4

10-2

100

102

104

FISTA

nmAPG

newAPG

newAPG_vs

0 5 10 15 20 25 30

CPU

10-6

10-4

10-2

100

102

104

FISTA

nmAPG

newAPG

newAPG_vs

0 5 10 15 20 25 30 35 40 45

CPU

10-6

10-4

10-2

100

102

104

FISTA

nmAPG

newAPG

newAPG_vs

Fig. 2: Evolutions of ‖ψk‖ with respect to the CPU time for L 1
2

penalty problem. Left: Example with

(n,m, s)=(100,1000,20) and µ = 1; Middle: Example with (n,m, s)=(300,3000,30) and µ = 0.1; Right:

Example with (n,m, s)=(500,5000,50) and µ = 0.25.

0 1 2 3 4 5 6

CPU

10-6

10-4

10-2

100

102

104
SCAD penalty

FISTA

nmAPG

newAPG

newAPG_vs

0 20 40 60 80 100 120 140 160 180 200

CPU

10-6

10-4

10-2

100

102

104
SCAD penalty

FISTA

nmAPG

newAPG

newAPG_vs

0 50 100 150 200 250 300 350 400

CPU

10-6

10-4

10-2

100

102

104
SCAD penalty

FISTA

nmAPG

newAPG

newAPG_vs

Fig. 3: Evolutions of ‖ψk‖ with respect to the CPU time for SCAD penalty. Left: Example with

(n,m, s)=(100,1000,20) and µ = 0.25; Middle: Example with (n,m, s)=(300,3000,30) and µ = 0.25;

Right: Example with (n,m, s)=(500,5000,50) and µ = 0.25.

Table 2: Numerical comparisons of different algorithms for solving the L 1
2

and SCAD penalty problems

n=300,m=3000,s=30 n=500,m=5000,s=50 n=800,m=8000,s=80

L 1
2

SCAD L 1
2

SCAD L 1
2

SCAD

Iter CPUs Iter CPUs Iter CPUs Iter CPUs Iter CPUs Iter CPUs

FISTA 1160 1.2887 5365 5.9869 3364 25.9288 23752 184.4883 1969 44.2255 18726 394.2484

nmAPG 1031 1.2101 4415 5.1376 2835 22.2703 17737 149.8109 1678 39.2621 15380 333.6720

newAPG 379 0.4901 1192 1.3888 2540 19.4692 9148 73.5371 899 20.0315 3520 74.3744

newAPG vs 186 0.2605 786 1.0065 1435 12.8670 6947 66.0125 483 12.1949 2659 68.8939

4.3 “Nonconvex + Nonconvex”

In this subsection, we look at problems of the following form:

min
x∈∆ur

1

2
xTAx− bT x, (65)

where ∆ur :=
{
x ∈ Rm :

∑n
i=1 xi = s, ‖x‖0 ≤ r, 0 ≤ xi ≤ u, i = 1, · · · ,m

}
. Notice that one can rewrite

(65) in the form of problem (P) by defining f (x) = 1
2x
TAx− bT x and g (x) = δS (x) , where S = ∆ur . It

is clear that f has a Lipschitz continuous gradient and g is nonconvex. The projection on S we refer the

reader to [56]. For each m = 500, 1000, 2000, we generate matrix A := BT +B to make f is nonconvex,

19

where B ∈ Rm×m be generated with i.i.d. standard Gaussian entries. Taking b = randn (m, 1) , s =

max {1, 10t} where t is chosen uniformly at random from [0, 1] , r =
⌊
m

100

⌋
and u = max {10, s} . Taking

x0 = [s, 0, · · · , 0]T .

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

CPU

10-8

10-6

10-4

10-2

100

102

FISTA

nmAPG

newAPG

newAPG_vs

0 0.05 0.1 0.15 0.2 0.25 0.3

Iteration

10-15

10-10

10-5

100

105

FISTA

nmAPG

newAPG

newAPG_vs

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

CPU

10-6

10-4

10-2

100

102

FISTA

nmAPG

newAPG

newAPG_vs

Fig. 4: Evolutions of ‖ψk‖ with respect to the CPU time for nonconvex constraint problem. Left:

Example with m = 500; Middle: Example with m = 1000; Right: Example with m = 2000.

Table 3: Numerical comparisons of different algorithms for solving the nonconvex constraint problem

m=500 m=1000 m=2000

Iter CPUs Iter CPUs Iter CPUs

FISTA 407 0.0647 346 0.2580 708 4.6253

nmAPG 302 0.0506 235 0.1975 466 3.4013

newAPG 141 0.0200 82 0.0623 270 1.9216

newAPG vs 46 0.0083 23 0.0321 37 0.3456

The computational results are presented in Fig. 4 and Table 3. From the numerical results, we see

that same as the previous subsections, our algorithm newAPG better that FISTA and nmAPG based

on same fixed stepsize strategy; and newAPG with the variable stepsize strategy can speed up the

convergence of algorithm further. Moreover, these three types of test problems show that our algorithm

is effective for both convex and nonconvex problems.

A Proof of Lemma 2.1

Proof By the adaptive non-monotone stepsize strategy, we have for any i ≥ 1

λi+1 − λi ≤ E (i) . (66)

Denote that

λi+1 − λi = (λi+1 − λi)+ − (λi+1 − λi)−,where(·)+ = max{0, ·}, (·)− = −min{0, ·}, (67)

we have

(λi+1 − λi)+ ≤ E (i) , ∀i = 1, 2, · · · , (68)

20

which implies that
∞∑
i=1

(λi+1 − λi)+ is convergent from the fact that
∞∑
i=1

E (i) is a convergent positive series.

The convergence of
∞∑
i=1

(λi+1 − λi)− also can be proved as follows.

Assume by contradiction that
∞∑
i=1

(λi+1 − λi)−= +∞. Based on the convergence of
∞∑
i=1

(λi+1 − λi)+ and the equality

λk+1 − λ1=

k∑
i=1

(λi+1 − λi) =

k∑
i=1

(λi+1 − λi)+ −
k∑
i=1

(λi+1 − λi)−. (69)

We can easily deduce lim
k→∞

λk = −∞, which is a contradiction with λk > 0, ∀k ≥ 1. Therefore,
∞∑
i=1

(λi+1 − λi)− is a

convergent series. Then, in view of (69), we obtain the sequence {λk} is convergent.

We can easily to prove that ∀k ≥ 1, λk ≥ min
{
λ1,

µ1
Lf

}
holds by induction.

B Proof of Lemma 2.2

Proof Suppose that the conclusion is not true, there exists a {kj} and kj →∞ such that

2
(
f
(
xkj

)
− f

(
ykj

)
−
〈
∇f

(
xkj

)
, xkj − ykj

〉)
>

µ0

λkj

∥∥∥xkj − ykj∥∥∥2
(70)

holds. Then, based on the scheme of adaptive nonmonotone stepsize, we have

λkj+1 =
µ1 ·

∥∥∥xkj − ykj∥∥∥2

2
∣∣∣f (xkj)− f (ykj)− 〈∇f (xkj) , xkj − ykj〉∣∣∣ . (71)

From the above two formulas, easy to obtain∥∥∥xkj − ykj∥∥∥2
<

2λkj

µ0

∣∣∣f (xkj)− f (ykj)− 〈∇f (xkj) , xkj − ykj〉∣∣∣ =
µ1λkj

µ0λkj+1

∥∥∥xkj − ykj∥∥∥2
(72)

There have a contradiction because of

µ1λkj

µ0λkj+1
→

µ1

µ0
< 1. (73)

Therefore, (11) will holds constantly after a finite step k̂.

References

1. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic

features. Math. Program. Ser. B 116(1-2), 5-16 (2009)

2. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projectionmethods for

non-convex problems: an approach based on the Kurdyka??ojasiewicz inequality. Math. Oper. Res. 35(2), 438-457

(2010)

3. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems:

proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program. 137(1-

2), 91-129 (2013)

4. Attouch, H., Peypouquet, J.: The rate of convergence of Nesterov’s accelerated forward backward method is

actually faster than 1
k2

. SIAM J. Optim. 26, 1824-1834 (2016)

5. Bolte, J., Nguyen, T.P., Peypouquet, J., Suter, B.W.: From error bounds to the complexity of first-order descent

methods for convex functions. Math. Program. 165(2), 471-507 (2017)

6. Attouch, H., Cabot, A.: Convergence rates of inertial forward-backward algorithms. SIAM J. Optim. 28, 849-874

(2018)

21

7. Ahookhosh, M., Themelis, A., Patrinos, P.: A Bregman forward-backward linesearch algorithm for nonconvex

composite optimization: superlinear convergence to nonisolated local minima (2019). arXiv:1905.11904

8. Apidopoulos, V., Aujol, J., Dossal, C.: Convergence rate of inertial Forward-Backward algorithm beyond Nesterov’s

rule. Math. Program. 180, 137-156 (2020)

9. Apidopoulos, V., Aujol, J., Dossal, C. et al.: Convergence rates of an inertial gradient descent algorithm under

growth and flatness conditions. Math. Program. (2020). https://doi.org/10.1007/s10107-020-01476-3

10. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the

solution of problems in convex programming. U.S.S.R. Computational Mathematics and Mathematical Physics.

7, 200-217 (1967)

11. Bolte, J., Daniilidis, A., Lewis, A.: The Lojasiewicz inequality for nonsmooth subanalytic functions with applica-

tions to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205-1223 (2006)

12. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J.

Imaging Sci. 2, 183-202 (2009)

13. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and de-

blurring problems.in IEEE Transactions on Image Processing. 18, 2419-2434 (2009)

14. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J.

Imaging Sci. 2(1), 183-202 (2009)

15. Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of Lojasiewicz inequalities: subgradient flows, talweg,

convexity. Trans. Am. Math. Soc. 362(6), 3319-3363 (2010)

16. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer,

Berlin (2011)

17. Bolte, J., Sabach, S., Teboulle. M.: Proximal alternating linearized minimization for nonconvex and nonsmooth

problems. Math. Program. 146(1-2), 459-494 (2014)

18. Bolte, J., Nguyen, T.P., Peypouquet, J., Suter, B.W.: From error bounds to the complexity of first-order descent

methods for convex functions. Math. Program. 165, 1-37 (2015)

19. Bot, R.I., Csetnek, E.R., Lszl, S.C.: An inertial forward-backward algorithm for the minimization of the sum of

two nonconvex functions. EURO J. Comput. Optim. 4, 3-25 (2016)

20. Bot, R.I., Csetnek, E.R., Lszl, S.C.: Approaching nonsmooth non-convex minimization through second-order

proximal-gradient dynamical systems. J. Evol. Equ. 18(3), 1291-1318 (2018)

21. Bolte, J., Sabach, S., Teboulle, M., Vaisbourd, Y.: First-order methods beyond convexity and Lipschitz gradient

continuity with applications to quadratic inverse problems. SIAM J. Optim. 28, 2131-2151 (2018)

22. Bauschke, H.H., Bolte, J., Chen, J., Teboulle, M., Wang, X.: On linear convergence of non-Euclidean gradient

methods without strong convexity and Lipschitz gradient continuity. J. Optim. Theory Appl. 182, 1068-1087

(2019)

23. Chen, G.H.G., Rockafellar, R.T.: Convergence rates in forward-backward splitting. SIAM J. Optim. 7(2), 421-444

(1997)

24. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik,

R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-point Algorithms for Inverse Problems

in Science and Engineering, pp.185-212. Springer (2011)

25. Chouzenoux, E., Pesquet, J.C., Repetti, A.: Variable metric forward-backward algorithmfor minimizing the sum

of a differentiable function and a convex function, J. Optim. Theory Appl. App. (2013)

26. Chambolle, A., Dossal, C.: On the convergence of the iterates of the “fast iterative shrinkage-thresholding algo-

rithm”. J. Optim. Theory Appl. 166, 968-982 (2015)

27. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a

sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413-1457 (2004)

28. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(44), 1289-1306 (2006)

22

29. Donghwan, K., Jeffrey, A.F.: Another look at the fast iterative shrinkage/thresholding algorithm (FISTA). SIAM

J. Optim. 28, 223-250 (2018)

30. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc.

96, 1348-1360 (2001)

31. Frankel, P., Garrigos, G., Eypouquet. J.P.: Splitting methods with variable metric for Kurdyka- Lojasiewicz func-

tions and general convergence rates. J. Optim. Theory Appl. 165, 874-900 (2014)

32. Hien, L.T.K., Gillis, N., Patrinos, P.: Inertial block mirror descent method for non-convex non-smooth optimization

(2019). arXiv:1903.01818

33. Johnstone, P.R., Moulin, P.: Local and global convergence of a general inertial proximal splitting scheme for

minimizing composite functions. Comput. Optim. Appl. 67, 259-292 (2017)

34. Kurdyka, K.: On gradients of functions definable in o-minimal structures. Ann. I. Fourier. 48(3), 769-783 (1998)

35. Liu, H.W., Wang, T., Liu, Z.X.: Convergence rate of inertial forward-backward algorithms based on the local error

bound condition. http://arxiv.org/pdf/2007.07432

36. Liu, H.W., Wang, T., Liu, Z.X.: Some modified fast iteration shrinkage thresholding algorithms with a new

adaptive non-monotone stepsize strategy for nonsmooth and convex minimization problems. Optimization online.

http://www.optimization-online.org/DB HTML/2020/12/8169.html

37. Li, H., Lin, Z.: Accelerated proximal gradient methods for nonconvex programming. In: Proceedings of NeurIPS,

379-387 (2015)

38. Lu, H., Freund, R.M., Nesterov, Y.: Relatively smooth convex optimization by first-order methods, and applica-

tions. SIAM J. Optim. 28, 333-354 (2018)

39. Maingé, P.E., Gobinddass, M.: Convergence of one-step projected gradient methods for variational inequalities.

J. Optim. Theory Appl. 171(1), 146-168 (2016)

40. Mukkamala, M.C., Ochs, P., Pock, T., Sabach, S.: Convex-concave backtracking for inertial Bregman proximal

gradient algorithms in non-convex optimization (2019). arXiv:1904.03537

41. Nesterov, Y.: A method for solving the convex programming problem with convergence rate O
(

1
k2

)
. Dokl. Akad.

Nauk SSSR. 269, 543-547 (1983)

42. Ochs, P., Chen, Y., Brox, T., Pock, T.: Inertial proximal algorithm for nonconvex optimization. SIAM J. Imaging

Sci. 7(2), 1388-1419 (2014)

43. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variationbased

image restoration. Multiscale Model. Simul. 4, 460-489 (2005)

44. Ochs, P., Fadili, J., Brox, T.: Non-smooth non-convex Bregman minimization: unification and new algorithms. J.

Optim. Theory Appl. 181, 244-278 (2019)

45. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127-239 (2014)

46. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127-239 (2014)

47. Palomar, D.P., Eldar, Y.C.: Convex Optimization in Signal Processing and Communications. Cambridge Univer-

sity Press, Cambridge (2010)

48. Sra, S., Nowozin, S., Wright, S.J.: Optimization for Machine Learning. MIT Press, Cambridge (2012)

49. Su, W., Boyd, S., Candes, E.J.: A differential equation for modeling Nesterov’s accelerated gradient method:

Theory and insights. J. Mach. Learn. Res. 17, 1-43 (2016)

50. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Program.

117, 387-423 (2009)

51. Teboulle, M.: A simplified view of first order methods for optimization. Math. Program. 170, 67-96 (2018)

52. Themelis, A., Stella, L., Patrinos, P.: Forward-backward envelope for the sum of two nonconvex functions: further

properties and nonmonotone linesearch algorithms. SIAM J. Optim. 28, 2274-2303 (2018)

53. Wen, B., Chen, X.J., Pong, T.K.: Linear convergence of proximal gradient algorithm with extrapolation for a class

of nonconvex nonsmooth minimization problems. SIAM J. Optim. 27, 124-145 (2017)

23

54. Wu, Z.M., Li, C.S., Li, M., Lim, A.: Inertial proximal gradient methods with Bregman regularization for a class

of nonconvex optimization problems. J. Global. Optim. https://doi.org/10.1007/s10898-020-00943-7

55. Xu, Z., Chang, X.Y., Xu, F.M., Zhang, H.: L1/2 Regularization: A Thresholding Representation Theory and a

Fast Solver. IEEE Trans. Neural Netw. Learn. Syst. 23(7), 1013-1027 (2012)

56. Xu, F.M., Lu, Z.S., Xu, Z.B.: An efficient optimization approach for a cardinality-constrained index tracking

problem. Optim. Method. Softw. 31(2), 258-271 (2016)

57. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for l-minimization with applications

to compressed sensing. SIAM J. Imaging Sci. 1, 143-168 (2008)

58. Zeng L.M., Xie. J.: Group variable selection via SCAD-l2. Statistics. 48, 49-66 (2014)

	1 Introduction
	2 A New Nonmonontone Accelerated Proximal Gradient Method with Variable Stepsize Strategy
	3 convergence rate of the function values.
	4 Numerical Results
	A Proof of Lemma 2.1
	B Proof of Lemma 2.2

