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Abstract

The current pandemic of COVID-19 has caused significant strain on medical center resources, which are
the main places to provide the rapid response to COVID-19 through the adoption of telemedicine. Thus
it is crucial for healthcare managers to make an effective assignment plan for the patients and telemedical
doctors when providing telemedicine services. Motivated by this, we present the first comprehensive study
of a two-stage robust telemedicine assignment problem when three different sources of uncertainty are
incorporated, including uncertain service duration, no-show behaviours of both patients and telemedical
doctors. From an algorithmic viewpoint, we propose an efficient nested column-and-constraint generation
(C&CG) solution scheme that decomposes the model into an outer level problem and an inner level
problem. Our results show that we can solve the problems of realistic sizes within a reasonable time (e.g.,
up to 100 patients, 10 telemedical doctors, and 200 scenarios within two hours). On the empirical side,
we demonstrate how the hyper-parameters make a balance between cost management and the coverage
level of the served patients in the presence of three different sources of uncertainty. Our comparison with
a two-stage stochastic programming model implies that our model is not overly conservative and seems
to provide a relatively cheaper modeling alternative that requires much less information support when
hedging against three different sources of uncertainty under a worst-case situation.
Key words: Telemedicine assignment, two-stage robust optimization, mixed-integer linear program,
nested column-and-constraint generation, uncertain service duration, no-show behaviours.

1 Introduction
Telemedicine can be defined as the use of technology by medical professionals to deliver healthcare services
(e.g., consulting, remote diagnosis, treatment, monitoring, and related follow-ups) for a remote location
(Myers, 2003), which in some sense can provide rapid access to specialists who are not immediately available
in person. The rise of the Internet Age brought with its profound changes in the practice of telemedicine.
The proliferation of smart devices, capable of high-quality video transmission, opened up the possibility
of delivering remote healthcare to patients in their homes, workplaces, or assisted living facilities as an
alternative to in-person visits for both primary and specialty care. Telemedicine can be integrated into the
healthcare system as an approach to maximize the efficiency of healthcare delivery. As we all know, the
current pandemic of coronavirus disease 2019 (COVID-19) has caused significant strain on medical center
resources. These hospitals can provide the necessary response to COVID-19 through the rapid adoption of
digital tools and technologies such as telemedicine. Thus telemedicine/telehealth is contributing significantly
to healthcare delivery during the COVID-19 crisis to meet patients’ needs, reduce the transmission of the
virus, and protect medical practitioners from infection while minimizing their exposure to the public and in-
person visits. It is also considered as the doctors’ first line of defense to control the spread of the coronavirus,
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keeping social distancing and providing services by phone or videoconferencing (e.g., Zhai et al., 2020; Jnr,
2020; Hollander and Carr, 2020).

Recently, National Telemedicine Center of China (NTCC) has explored various forms of collaborative
services with provincial hospitals (called tertiary hospitals) and 120 regional cooperative hospitals (called
primary hospitals). Compared with the provincial hospitals, regional cooperative hospitals are relatively
small, as well as having less skilled doctors and less advanced medical equipment. In 2020, the number of
telemedicine services is up to nearly 150 cases per day. Once both primary doctors and patients apply for
the telemedicine service, NTCC will assign the doctors from tertiary hospitals to patients and schedule a
teleconsultation service according to the available resources and needs in tertiary hospitals. Thus, similar
to the classical healthcare assignment problems (e.g., Denton et al., 2010; Zhang et al., 2018a, 2020; Wang
et al., 2021a,b), from a strategic/tactical level of viewpoint, our work will specifically focus on identifying the
optimal assignment for the telemedical doctors and the patients within a fixed period under a highly uncertain
decision-making environment, given that there are different sources of uncertainty from both telemedical
doctors’ and patients’ sides, which in some sense makes the decision-making process more challenging. For
instance, patients with scheduled appointments may not show up for their services for some reasons, such
as referral, sudden death, equipment failure, and so on. Furthermore, most telemedical doctors in tertiary
hospitals still provide the traditional outpatient medical services at the same time during the weekday, so
they might not show up to provide the telemedicine service in the case of some emergency events that have a
higher priority. This is one of the important features in telemedical healthcare resources allocation problems.
Such cases regularly occur in practice, based on our field survey in several Chinese tertiary hospitals. We
finally remark that it will be very interesting to incorporate the actual scheduling decisions and downstream
resources constraints in the model, and we leave this for future research.

In the past decades, healthcare resource allocation problem under uncertainty has been widely studied
in the literature (e.g., see review papers by Cardoen et al., 2010; Ferrand et al., 2014; Zhu et al., 2019).
However, in terms of telemedicine operations management, there are very limited papers on this topic in the
literature. Unlike the existing studies, we study a two-stage robust telemedicine assignment problem between
telemedical doctors and patients while simultaneously incorporating three different sources of uncertainty in
our mathematical model, including the no-show behaviours of both telemedical doctors and patients, as well
as uncertain service duration. Our proposed model aims to minimize the weighted total cost of the normal
case and worst case where some telemedical doctors do not show up due to unexpected requests. We aim to
explore the optimal assignment of the telemedical doctors and patients in the first stage (normal case without
telemedical doctor no-show). Once the information of the telemedical doctor no-show is realized, we then
expect to re-schedule the assignment of the patients in the second stage.

Perhaps, the closest related studies in the literature consist in Erdogan et al. (2018) and Ji et al. (2020).
Erdogan et al. (2018) study the telemedicine appointment problem that are quite different from our optimiza-
tion model and beyond the scope of our research, while Ji et al. (2020) study a two-stage chance-constrained
telemedicine assignment model with uncertain service duration and telemedical doctor no-show. Our work
can be considered as an extension of Ji et al. (2020) in terms of the modeling framework and solution algorithm
for the problems of a more realistic size.

To summarize, this paper addresses the resolution of a novel two-stage robust telemedicine assignment
problem when taking into account different sources of uncertainty. We expect that this research could provide
a solution tool for healthcare managers to better schedule the telemedicine services, especially during the
Covid-19 pandemic. Although we address three different sources of uncertainty in a telemedical environment,
these uncertainties do exist in a regular in-person doctor visit environment. We believe our proposed model
and solution scheme can also be directly extended to the traditional doctor-patient assignment problems.
Specifically, our contributions are summarized as follows:

• From a modeling viewpoint, we study a telemedicine assignment problem for the telemedical doctors
and patients under three different sources of uncertainty, including patient no-show, uncertain service
duration and no-show behaviour of the telemedical doctors. To our best knowledge, we are the first to
study the robust telemedicine assignment problem with three sources of uncertainty.

• Methodologically speaking, we propose a two-stage robust telemedicine assignment model that mini-
mizes the weighted total cost of the normal case and worst case when hedging against three different
sources of uncertainty. In particular, we employ a “budgeted” uncertainty set to capture the no-show
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behaviour of the telemedical doctors, and a finite number scenarios to describe the no-show behaviour
and service duration of the patients.

• From an algorithmic viewpoint, we develop an efficient nested C&CG method with symmetry-breaking
constraints to solve our model. Specifically, we decompose the problem into two levels, i.e., outer level
(first-stage problem) and inner level (recourse problem). We employ the C&CG to solve the recourse
problem to identify the worst-case scenarios of the no-show behaviour of the telemedical doctors. We
explore two approaches to solve the inner level problem, namely, Karush Kuhn Tucker (KKT) condition
and strong duality. The numerical results show that our improved C&CG method can efficiently solve
the problems (i.e., up to 100 patients, 10 telemedical doctors, and 200 scenarios) within two hours.

• Empirically speaking, we conduct an extensive numerical study to verify our proposed modeling frame-
work. Our analyses imply that: 1) when the patient no-show rate is high, we might allow a limited
number of telemedical doctors who show up to serve as many patients as possible while having a rela-
tively cheaper expected total cost; 2) the higher patient no-show rates result in a decrease in the total
expected cost, and the total expected cost will significantly increase when the number of telemedicine
doctors who fail to show up exceeds a relatively high proportion (e.g., 60% in our numerical study);
3) our model is not overly conservative and seems to provide a relatively cheaper modeling alternative
that requires much less information support when hedging against three different sources of uncertainty
under a worst-case situation.

The remainder of the paper is organized as follows: Section 2 provides a brief review of relevant literature.
Section 3 presents the modeling framework for a two-stage robust telemedicine assignment problem under
three sources of uncertainty. Section 4 presents a nested C&CG solution scheme. We present the numerical
results in Section 5 and give some concluding remarks in Section 6. Finally, we leave the supplementary
materials in the appendix.

2 Literature Review
In this section, we briefly review two classes of literature that are closely related to our research, including
the classical ORs assignment, surgery allocation problems that consider different sources of uncertainty (i.e.,
service duration, no-show behaviours, etc.) in Section 2.1, and the existing studies about telemedicine
operations management in Section 2.2.

2.1 Literature on ORs Assignment and Surgery Allocation under Uncertainty
The telemedicine patients assignment problem is closely related to well-studied ORs allocation and scheduling
problem. Recently, Cardoen et al. (2010), Ferrand et al. (2014) and Zhu et al. (2019) provide a comprehensive
survey of research on ORs assignment and scheduling, as well as surgery allocation problems under uncer-
tainty. We also remark that, since our work does not consider the appointment scheduling and sequencing
decisions of the patients, we might not pay much attention to this streamline of literature in this section.
Generally speaking, most of existing studies employ stochastic programming (SP) and robust optimization
(RO) paradigms to model the inherent nature of uncertainty, e.g., uncertain surgery duration.

As one of the powerful tools to deal with uncertainty, SP (Kleywegt et al., 2002; Birge and Louveaux,
2011) has been widely used to model surgery allocation problems (e.g., Denton et al., 2010; Min and Yih,
2010; Batun et al., 2011; Gul et al., 2015; Kamran et al., 2018; Najjarbashi and Lim, 2019). For SP models,
probability distributions are assumed to be known exactly in advance, which are generally estimated by the
historical data. Methodologically speaking, this might give rise to two important practical issues in practice.
First, the resolution of SP-based models can constitute a real computational challenge especially when the
outcome space is continuous, necessitating the use of sample average approximation (SAA) schemes (Kleywegt
et al., 2002). Second, it is usually impossible for the decision-makers to exactly know the true distribution of
random variables. Instead, it is more common to only have very limited historical observations in practice.

Fortunately, these difficulties can in some sense be alleviated by using the RO paradigm (e.g., Bertsimas
and Sim, 2004; Ben-Tal et al., 2009), where the uncertain parameters are modeled as belonging to uncertainty
sets without assuming any distributional information. We refer the interested readers to a recent survey by
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Gorissen et al. (2015) for more advances about RO. Therefore, there is also a line of studies about ORs
allocation and scheduling using the RO tool to address the uncertainty (Addis et al., 2015), e.g., surgery
duration. Denton et al. (2010) propose a two-stage robust formulation for the daily decisions of ORs opening
and surgeries assignment with uncertain surgical durations. Their numerical experiments show that the
robust method is computationally much faster than the stochastic method on average. Following Denton
et al. (2010), Rath et al. (2017) propose a novel RO model with the decisions of simultaneous allocating and
sequencing of surgeries, where the uncertainty set of surgical duration is constituted by the nominal value and
maximum deviation. Addis et al. (2014) study a robust surgical case assignment problem when taking into
account the variability on patient surgery duration. Holte and Mannino (2013) model both the uncertain and
the cyclic allocation problems as an adjustable robust scheduling problem which can be solved by a row and
column generation algorithm. Neyshabouri and Berg (2017) propose a two-stage RO model to address the
existing uncertainty in surgery duration and length-of-stay in the surgical intensive care unit. More recently,
Breuer et al. (2020) develop a robust model that combines staffing and scheduling decisions to minimize
the impact of foreseeable variation in surgery durations, staff availability, and urgent or emergency arrivals.
Bandi and Gupta (2020) study the ORs staffing and scheduling problem, and propose a new criterion (called
“robust competitive ratio”) for designing online algorithms.

However, the optimal solutions of classical RO models are always over-conservative. To bridge the gap
between the conservatism of RO and the requirement of exact distribution in stochastic programming, dis-
tributionally robust optimization (e.g., Delage and Ye, 2010; Wiesemann et al., 2014) can seek the solution
that performs best under the worst-case distribution within an ambiguity set that contains a family of prob-
ability distributions. We refer the interested readers for more details to a recent review by Rahimian and
Mehrotra (2019). Such solutions are both robust to estimation error and converge to the true optimum as
more distribution information is obtained. Therefore, there are also many distributionally robust models for
ORs assignment and surgery allocation when the distribution of surgery duration is unknown but resides
in an ambiguity set (e.g., Wang et al., 2019; Shehadeh and Padman, 2021). More recently, distributionally
robust chance-constrained models are widely developed in literature while addressing that the probability of
overtime for ORs is no more than a targeted risk level (e.g., Wang et al., 2017; Zhang et al., 2018a,b, 2020;
Wang et al., 2021a,b; Wang and Mehrotra, 2021).

Finally, it is worth noting that, besides the uncertain service duration, our study is also related to the
literature that addresses the no-show behaviours, which is also widely studied for the outpatient appointment
scheduling problem. We refer the interested readers to Gupta and Denton (2008); Ahmadi-Javid et al. (2017);
Dantas et al. (2018) for a more comprehensive study of appointment scheduling problems with no-show
behaviours. Besides considering patient no-show, our study focuses on the telemedicine assignment problem,
which further enables us to incorporate the no-show behaviour of the telemedical doctors, using a “budgeted”
uncertainty set.

2.2 Literature on Telemedicine Operations Management
The existing studies on telemedicine mainly focuses on the technology (e.g., Baker and Stanley, 2018; Bahl
et al., 2020), feasibility analysis of telemedicine (e.g., Jetty et al., 2018; Sun et al., 2020), as well as analysis
on prevention and control of COVID-19 (e.g., Hollander and Carr, 2020; Jnr, 2020). The introduction of
telemedicine is effective in reducing patients waiting time, improving social welfare, preventing unnecessary
hospital access, and saving costs for the health system, especially in rural areas that lack medical resources
(Zanaboni et al., 2009). More recently, the researchers show its great potential as an emerging technology
with rich opportunities to model the healthcare operations management problems and further improve the
quality of medical services (Dai and Tayur, 2020; KC et al., 2020).

From an operations management perspective, this streamline of research seems to be very rare. We briefly
summarize the existing studies in Table 1. More specifically, Qiao et al. (2020) establish a queuing simulation
system to search for the most reasonable resource allocation combination of telemedical doctors, while Wang
et al. (2020) adopt a mixed duopoly game to obtain the optimal price as well as capacity decisions of the non-
profit general hospital and the for-profit telemedicine firm. In order to improve triage decisions in telemedical
physician triage, Saghafian et al. (2018) develop a novel optimization model of agent knowledge and deploy
it in a partially observable Markov decision process (MDP) model to describe the optimal policy for deciding
which cases (patients) to refer to the second level for further evaluation. Similarly, ? also propose a MDP
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Table 1: A summary of the existing studies on telemedicine operations management from OR/MS perspec-
tive in terms of problem descriptions, modeling techniques and solution methods.

Existing Study Problem Description Modeling Technique Solution Method

Erdogan et al. (2018)
optimal appointments of telemedicine
patients considering random service
duration and patient no-show behaviour

two-stage
stochastic
linear program

GUROBI
solver

?
assessing the overall costs and
benefits of teletriage in health-care
demand management

Markov decision
process model

analytical
solution

Saghafian et al. (2018)

the optimal policy for deciding
which cases (patients) should be
assigned to the telemedical physician for
further evaluation

Markov decision
process model

analytical
solution

Wang et al. (2020)
optimal price and capacity decisions
of non-profit general hospital and
the for-profit telemedicine firm

mixed duopoly
game model

analytical
solution

Qiao et al. (2020) the optimization of teleconsultation
resources allocation queuing model discrete-event

simulation

Rajan et al. (2019) investigating the effect of
telemedicine on chronic care

utility model using
queue system

analytical
solution

Ji et al. (2020)
telemedicine assignment with uncertain
service duration and no-show
behaviour of the doctors

two-stage
chance-constrained
model

enumeration
C&CG

Our work
telemedicine assignment with uncertain
service duration and no-show behaviours
for both patients and telemedical doctors

two-stage robust
optimization model nested C&CG

model to determine in which cases teletriage is efficient and effective. Rajan et al. (2019) investigate the
effect of telemedicine on chronic care and derive the analytical solution using a queue system based utility
model.

The most relevant work to our study are Erdogan et al. (2018) and Ji et al. (2020). Specifically, Erdogan
et al. (2018) present a two-stage stochastic linear program to derive optimal scheduling of telemedicine
patients by considering cleaning of procedure devices and patient no-show behaviour. They employ a set of
finite scenarios to capture the uncertain service duration and patient no-show behaviour. More recently, Ji
et al. (2020) propose a two-stage chance-constrained model to study the telemedicine assignment between
the patients and telemedical specialists by considering the doctors no-show behaviour and uncertain service
duration. They develop an enumeration-based C&CG method to solve the resulting problem. By contrast,
our work presents a two-stage RO model to address the telemedicine assignment problem, and employ a
“budgeted” uncertainty set to capture the no-show behaviour of the telemedical doctors as well as a finite
number scenarios to capture the random service duration and patient no-show. Moreover, we also design a
more efficient C&CG method to solve the problem of realistic sizes.

3 Model Formulation
In this section, we first present all the notations for our model in Section 3.1, and we then propose a two-
stage robust telemedicine assignment model with three different sources of uncertainty in Section 3.2. We
are interested in exploring the optimal robust telemedicine assignment in a highly uncertain environment,
especially when some telemedical doctors fail to show up due to the emergency events or requests.
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Table 2: Notations

Sets
I the set of patients, i ∈ I
J the set of telemedical doctors, j ∈ J
Ω the set of scenarios, ω ∈ Ω

Parameters
T the length for a given time block
cij assignment cost for telemedical doctor j who is assigned to serve patient i
hj working cost for telemedical doctor j in a time block of length T
K the maximum number of assigned telemedical doctors
bj unit cost of overtime for the telemedical doctor j
ri penalty cost for patient i who can not be assigned at a time block
ρ the weight for the total cost of normal case (without telemedical doctor no-show) and

the worst case when telemedical doctor no-show is considered, ρ ∈ [0, 1]

dωi the service duration for patient i under scenario ω
vj the maximum tolerable overtime for the doctor j
pω the probability that scenario ω occurrs
Decision Variables
xωij binary variables, xij = 1 if patient i is assigned to telemedical doctor j under scenario ω,

and otherwise 0
yj binary variables, yj = 1 if doctor j is assigned to provide telemedicine service, and otherwise 0
qωij binary variables, qωij = 1 if patient i is re-assigned to telemedical doctor j under scenario ω,

and otherwise 0
uωi binary variables, uωi = 1 if patient i is unassigned under scenario ω, and otherwise 0
oωj continuous variables, the overtime of telemedical doctor j under scenario ω

3.1 Notations
We aim to explore the optimal assignment decisions between the telemedical doctors and patients for a given
time block. During the time block with a fixed length, a set of patients are assigned to a set of telemedical
doctors to obtain the telemedicine services. We describe all the notations that are used throughout the rest
of the paper in Table 2. Like Soltani et al. (2019), Zacharias and Pinedo (2017), and Zheng et al. (2015), we
assume multiple-provider systems with identical providers. There is no difference among different providers
in terms of the quality of care and the service time. Thus the random service durations dωi are server-
independent. For our study, the assignment cost cij between patient i and doctor j refers to the related costs
that are involved in preparing, operating, and managing the telemedicine assignment by the medical center
(e.g., NTCC) in practice, which seems to be commonly used in the classical healthcare assignment literature
(e.g., Zhang et al., 2018a; Wang et al., 2021a; Min and Yih, 2010; Neyshabouri and Berg, 2017). We also
note that the assignment cost cij might also be dependent on the priority score that is given to a patient,
different specialties, the knowledge of the doctors, and so on.

3.2 Two-Stage Robust Optimization Model
As we know, telemedical doctors are one of the most important healthcare resources in the operations of
providing telemedicine services. Despite the rapid development of telemedicine in recent years, telemedical
resources (e.g., doctors) are still very scarce for most developing countries (e.g., China). However, in practice
some of the telemedical doctors fail to show up before performing the telemedicine service (e.g., the remote
consultation), because of an emergency event (e.g., urgent surgery) or a scheduling conflict. Based on
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our investigation in our collaborative healthcare providers, such cases regularly occur in the real world.
Given the scarce resources, it seems to be not practical to find another doctor to fully replace the no-show
telemedical doctor’s job. This further motivates us to propose a novel optimization model to explore the
optimal telemedicine assignment after considering the no-show behaviour of the telemedical doctors. In our
study, it is reasonable to assume that if a doctor fails to show up due to some unexpected cases, he/she will
not provide the telemedical service during a given time block (e.g., 3 hours).

Leveraging the recent advances in robust optimization, we propose a two-stage robust optimization model,
which minimizes the weighted total cost of the normal case and the worst case. Specifically, in the first stage
we want to explore the optimal assignment decisions of telemedical doctors and patients in the normal case
when considering uncertain service duration and patient no-show. Once the realizations of the no-show
behaviour of the telemedical doctors are realized, we need to re-schedule the assignment of the patients over
the worst-case scenarios in the second stage, in which the overtime of the telemedical doctors is allowed in
order to serve as many patients.

We assume the uncertain service duration d with a distribution that is finitely known with N histor-
ical scenarios, namely, {dω}ω∈Ω where Ω = {1, 2, · · · , N}. Each scenario with probability pω, such that∑
ω∈Ω pω = 1. In order to capture the uncertainty of patient no-show, we introduce δωi , a random vector of

indicators for the patient who shows up i (δωi = 1) and who does not (δωi = 0) under scenario ω, which occurs
with probability 1− pno, and where pno denotes the probability of no-show. One can easily realize that the
service duration for the patients who are no-shows can be considered as zero under scenario ω, given that it
can be represented as δωi dωi .

As we know that it is nearly impossible to exactly describe the distribution of the telemedical doctor no-
show in practice, even for the limited distributional information. Therefore, we employ a cardinality constraint
set (also called a “budgeted” uncertainty set with binary variables) to capture the no-show behaviour of the
telemedical doctors for our two-stage robust optimization model. Specifically, our uncertainty set is explicitly
represented as

Z := {z ∈ {0, 1}|J |,
∑
j∈J

zj ≤ Γ},

where zj = 1 if telemedical doctor j does not show up, and zj = 0 otherwise. Parameter Γ can be considered
as the budget of uncertainty for telemedical doctor no-show, which controls the maximum number of the
telemedical doctors with no-show behaviour. It is easy to know that Γ is integer-valued within the interval
[0,K]. The uncertainty set adjusts the robustness against the conservation level of the solutions by sizing Γ.
Note that, if Γ = 0, all the telemedical doctors show up, i.e., zj = 0 for all j ∈ J (see Ramark 1 below). On
the other hand, if Γ = K, it indicates that all K assigned the telemedical doctors in the normal case do not
show up, which however rarely to happens in practice.

Therefore, the two-stage robust optimization model can be represented as follows:

[2RO] : minimize
x,y

ρ

∑
ω∈Ω

pω
∑
i∈I

∑
j∈J

cijx
ω
ij +

∑
j∈J

hjyj


+ (1− ρ)S(y) (1a)

subject to xωij ≤ yj ∀i ∈ I, j ∈ J , ω ∈ Ω (1b)∑
j∈J

xωij = δωi ∀i ∈ I, ω ∈ Ω (1c)

∑
j∈J

yj ≤ K (1d)

∑
i∈I

dωi x
ω
ij ≤ Tyj ∀j ∈ J , ω ∈ Ω (1e)

xωij ∈ {0, 1}, yj ∈ {0, 1} ∀i ∈ I, j ∈ J , ω ∈ Ω, (1f)

where

S(y) = maximize
z∈Z

minimize
q,u,o

∑
ω∈Ω

pω

∑
i∈I

∑
j∈J

cijq
ω
ij(z) +

∑
j∈J

bjo
ω
j (z)


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+
∑
ω∈Ω

pω
∑
i∈I

riu
ω
i (z) (1g)

subject to
∑
j∈J

qωij(z) + uωi (z) = δωi ∀i ∈ I, ω ∈ Ω (1h)

∑
i∈I

dωi q
ω
ij(z) ≤ Tyj(1− zj) + oωj (z) ∀j ∈ J , ω ∈ Ω (1i)

oωj (z) ≤ vjyj(1− zj) ∀j ∈ J , ω ∈ Ω (1j)

qωij(z) ∈ {0, 1}, uωi (z) ∈ {0, 1}, oωj (z) ≥ 0 ∀i ∈ I, j ∈ J , ω ∈ Ω. (1k)

The objective function (1a) is to minimize the weighted sum of the total expected cost for the normal
case and worst case when the no-show behaviour of the telemedical doctors is realized, including the total
expected assignment cost and the working cost of the telemedical doctors in the first stage, as well as the
total expected re-assignment cost and penalty cost incurred by the unserved patients in the second stage (i.e.,
S(y)). Parameter ρ indicates the decision-makers risk preference towards the total expected re-assignment
cost in the worst case. The smaller ρ is, the more risk-averse and conservative the model is. Constraints
(1b) and (1c) restrict that all the patients who show up must be assigned under scenario ω and only the
telemedical doctor who is assigned to work can provide the telemedical services. Constraint (1d) restricts
that the number of assigned telemedical doctor is no more than K (K ≤ |J |). Constraint (1e) ensures that
the total working time for telemedical doctor j can not exceed the fixed length of each block. Constraint (1f)
enforces all the variables to be binaries.

For the second-stage problem S(y), given the assigned telemedical doctors (i.e., yj), the objective function
(1g) is to minimize the total expected cost in the worst case (i.e., including the expected re-assignment cost,
overtime cost, and penalty cost for the unserved patients) when telemedical doctor no-shows are considered,
in order to determine the optimal decisions of the re-assignment, overtime, and the unassigned patients.
Constraint (1h) shows that patient i would be re-assigned to the telemedical doctor j who shows up under
scenario ω, and otherwise will be unserved due to the shortage of the telemedical doctors. Here we include a
large penalty cost for the unserved patients in (1g). Constraint (1i) calculates the overtime of the telemedical
doctor j, which is based on the fixed length T of each block, the realizations of service duration, as well
as no-show behaviours of the patients and telemedical doctors. Constraint (1j) indicates that a telemedical
doctor j can provide the telemedicine service during the overtime if and only if he/she does show up or is
assigned in the first-stage problem (namely, yj = 1 and zj = 0), and the overtime of telemedical doctor j
should not exceed vj . Finally, constraint (1k) ensures the non-negativity of o(z) and integer on q(z) and
u(z) in the second-stage problem.

Remark 1. For our model (1), we remark that, if Γ = 0, it implies that all the telemedical doctors do show
up (i.e., zj = 0,∀j ∈ J ). Then all patients can be served in the first stage. For such a case, there is no need
to re-schedule patients in the second stage. Therefore, ρ is set to 0 if Γ = 0.

Remark 2. Note that, the second-stage decisions qωij(z),uωi (z), oωj (z) are made, once the uncertainty of the
telemedical doctor no-show is realized. For the ease of exposition, we use a simple set of alternative notation
(i.e., qωij, uωi , and oωj ) for the rest of the paper.

In order to illustrate the no-show behaviour of the telemedical doctors in our optimization model, we
give the following example under a very simple setting while we assume that all the patients will show up.
Example 1 highlights the importance and necessity to take the no-show behaviour of the telemedical doctors
into account to hedge against the high penalty cost.

Example 1. As is illustrated in Figure 1, suppose that one plans to assign four patients to two telemedical
doctors. The assignment cost of patients are symmetric, namely, c11 = c12 = c21 = c22 = c31 = c32 = 2. The
overtime cost is set to bj = 2, the working cost hj is 20, and the penalty cost ri for the unserved patients
to 60. We set the weight ρ = 0.5, the length of time block T = 20, and we also assume the telemedical
doctors can work overtime unlimitedly. We consider two empirical scenarios with equal probability. For the
1st scenario, the service durations for the patients are d1

1 = 10, d1
2 = 7, d1

3 = 8, and d1
4 = 8, while for the 2nd

scenario, the service durations are d2
1 = 9, d2

2 = 7, d2
3 = 6, and d2

4 = 8. As is assumed without considering
the no-show behaviour of doctors, one of the optimal assignment decisions is as shown in Figure 1(a) and
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the total cost is 48. Nevertheless, suppose Γ = 1, which means that at most a telemedical doctor fails to show
up, thus two patients have to suffer from the risk of being unserved due to the lack of doctors, which leads to
a high penalty cost (i.e. 120). In this regard, under the worst-case scenario, we re-assign all patients to one
telemedical doctor and the total cost is 52 in Figure 1(b). Although the total cost is increased by 8.33%, we
could mitigate the high risk of having a very expensive worst-case cost by re-assigning patients when observing
the no-show behaviour of the telemedical doctors.

Figure 1: A simple illustrative example

We note that our model (1) can be considered as a tri-level optimization problem with mixed-integer
variables, which specifically takes the form of minx,y-supz∈Z -minq,u,o. For any given assignment decisions
(x, y) generated by the first-stage problem, the second-stage problem seems to be always feasible, given the
fact that we penalize the unassigned patients in the objective function. Thus the relatively complete recourse
condition is satisfied for our problem. Nevertheless, it is still computationally challenging for the problems of
a more realistic size. The strong duality can not be directly applied to the recourse problem, due to a max-min
optimization problem with mixed-integer variables (i.e. q ∈ {0, 1}, u ∈ {0, 1}). This restriction also prevents
us using the standard decomposition methods (e.g., Benders decomposition (Benders, 1962; Rahmaniani
et al., 2017; Peng et al., 2020), L-shaped method (Laporte and Louveaux, 1993; Kim and Mehrotra, 2015),
classical C&CG method (Zeng and Zhao, 2013)) to solve our model (1). Finally, the state-of-art solvers (e.g.,
CPLEX, GUROBI) can not be directly used to solve model (1).

We emphasize that Ji et al. (2020) propose an enumeration-based C&CG algorithm to solve their two-
stage chance-constrained SP model with mixed-integer decisions, which seems to be used to solve our model
(1). However, it appears to be computationally challenging for large-size problems. This further motivates
us to develop an efficient solution scheme for solving model (1) of realistic sizes within a reasonable time,
which will be discussed in Section 4.

4 A Nested Column-and-Constraint Generation Solution Scheme
While we know that two-stage robust optimization problems are generally computationally intractable and
NP-hard (Ben-Tal et al., 2004), a method known as C&CG, firstly introduced by (Zhao and Zeng, 2012; Zeng
and Zhao, 2013), has achieved good numerical performance under mild conditions and has been recently
applied in various applications in the past. The main idea of the C&CG is similar to Benders decomposition
approach (Benders, 1962), which is also implemented in a master-subproblem framework. Since the uncer-
tainty set is polyhedral with a finite number of extreme points, C&CG converges to the true optimal value
within a finite number of iterations.

However, as we discussed before, our proposed two-stage robust model is involved with binary recourse
variables q and u, which makes the problem non-convex and the strong duality theorem infeasible. In this
regard, the classical C&CG method can not be directly employed to solve our two-stage robust model. By
exploiting the special structure of our two-stage robust optimization model (1), the recourse problem can also
be treated as a two-stage max-min optimization problem. Therefore, in the following we propose an adapted
version of C&CG method (called nested C&CG) to solve our two-stage robust formulation.

9



In this section, we discuss how to use the nested C&CG to solve our two-stage robust telemedicine
assignment problem efficiently, in which the whole problem can be decomposed into the outer level problem
in Section 4.1 and inner level problem in Section 4.2, both of which can be solved by C&CG algorithm.
Specifically, the outer level problem determines the assignment by solving the first-stage problem with the
worst-case scenarios that are identified by the sub-problem. The inner level problem will try to iteratively
solve the second-stage problem to find the worst-case scenarios for the given assignment policy (i.e., y) from
the outer level problem. In order to speed up our algorithm, we also propose a set of symmetry-breaking
constraints in Section 4.3.

4.1 Outer Level C&CG Solution Framework
The outer level of our nested C&CG algorithmic framework actually is a standard C&CG implementation
procedure that consists of a master-subproblem iterative process. The main idea is that the two-stage robust
model comprises a Master Problem (denoted by MP) and a Sub-Problem (denoted by SP) that takes the
form of max-min optimization problem with binary decision variables. The MP and SP are presented by
model (2) and model (3), respectively.

We now briefly show how the outer level C&CG solution algorithm works. The algorithm first solves the
MP (2) to obtain the optimal solutions of x̂ and ŷ, as well as the optimal objective value that provides a
lower bound. Then given the x̂ and ŷ, one needs to solve the SP (3) to obtain the optimal objective value
that returns an upper bound, and the worst-case scenarios z. After obtaining the worst-case scenarios and
upper bound from SP, the algorithm will terminate if either the sub-optimality gap is no more than the
predefined tolerance or the solution time reaches the time limit, and otherwise, a set of extra variables qωij ,
uωi , oωj are generated and a number of constraints (2b)-(2f) is added to the MP in order to obtain a better
solution and further improve the lower bound. Since the relatively complete recourse holds for our problem,
so we do not generate the feasibility cuts. Let LB and UB represent the lower bound and upper bound of
the outer level solution algorithm, respectively. Let m be the running index of iterations, and ` represent
the running index of the set of extreme points (worst-case scenarios) that are derived by the SP . We use
ql, ul, and ol to represent the new variables that are associated with the `-th scenario (` ∈ {1, · · · ,m}), and
zl to represent the worst-case scenarios of the telemedical doctors under the `-th scenario (i.e., show-up or
no-show). Finally, the procedures of our outer level C&CG solution framework are summarized in Algorithm
1. Given that the extreme points of the feasible region are finite, Algorithm 1 will converge within a finite
number of iterations.

[MP] : minimize
x,y

ρ
∑
ω∈Ω

pω

∑
i∈I

∑
j∈J

cijx
ω
ij +

∑
j∈J

hjyj


+ (1− ρ)η (2a)

subject to (1b)− (1d)∑
j∈J

qω`ij + uω`i = δωi ∀i ∈ I, ω ∈ Ω, ` ≤ m (2b)

∑
i∈I

dωi q
ω`
ij ≤ Tyj(1− ẑj) + oω`j ∀j ∈ J , ω ∈ Ω, ` ≤ m (2c)

oω`j ≤ vjyj(1− ẑj) ∀j ∈ J , ω ∈ Ω, ` ≤ m (2d)

η ≥
∑
ω∈Ω

pω

∑
i∈I

∑
j∈J

cijq
ω`
ij +

∑
j∈J

bjo
ω`
j


+
∑
ω∈Ω

pω
∑
i∈I

riu
ω`
i ∀` ≤ m (2e)

xωij ∈ {0, 1}, yj ∈ {0, 1}, η ∈ R ∀i ∈ I, j ∈ J , ω ∈ Ω

qωij ∈ {0, 1}, uωi ∈ {0, 1}, oωj ≥ 0 (2f)
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[SP] : maximize
z∈Z

minimize
q,u,o

∑
ω∈Ω

pω

∑
i∈I

∑
j∈J

cijq
ω
ij +

∑
j∈J

bjo
ω
j +

∑
i∈I

riu
ω
i

 (3a)

subject to
∑
j∈J

qωij + uωi = δωi ∀i ∈ I, ω ∈ Ω (3b)

∑
i∈I

dωi q
ω
ij ≤ T ŷj(1− zj) + oωj ∀j ∈ J , ω ∈ Ω (3c)

oωj ≤ vj ŷj(1− zj) ∀j ∈ J , ω ∈ Ω (3d)

qωij ∈ {0, 1}, uωi ∈ {0, 1} ∀i ∈ I, j ∈ J , ω ∈ Ω (3e)

oωj ≥ 0 ∀j ∈ J , ω ∈ Ω (3f)

Algorithm 1 The Outer Level Implementation of the Nested C&CG Algorithmic Framework
1: Initialize A tolerance ε ≥ 0 and maximum run time stoptime.
2: Initialize m = 0,LB = −∞,UB = +∞.
3: while (runtime ≤ stoptime and |UB−LB

UB | > ε) do
4: Solve the MP (2).
5: Record optimal solution (xm,ym, ηm) and optimal objective lobjm.
6: Update LB := lobjm.
7: Fix y := ym, and solve the SP (3).
8: Obtain the worst-case cost Qm with the selected scenario zm.

9: Update UB: =min

{
UB, ρmin

x,y

∑
ω∈Ω

pω

(∑
i∈I

∑
j∈J

cijx
ω
ij +

∑
j∈J

hjyj

)
+ (1− ρ)Qm

}
.

10: Create new integer variables qm+1, um+1 and add constraints (2b)-(2f) to the MP .
11: Set m := m+ 1.
12: end while
13: return UB and corresponding optimal solution (x∗,y∗) for which obj∗ = UB.

4.2 Inner Level C&CG Solution Framework
In this section, we show how to solve the inner level problem that takes the form of a max-min mixed-integer
linear program. A key step is to identify the worst-case scenarios. Based on the structure of the inner
level problem (i.e., SP), we can rewrite the SP as a tri-level equivalent formulation that takes the form of
max-min-min, as follows:

maximize
z∈Z

minimize
q,u∈Q

∑
ω∈Ω

pω

∑
i∈I

∑
j∈J

cijq
ω
ij +

∑
i∈I

riu
ω
i

+ minimize
o∈O(y,q,u,d,z)

∑
ω∈Ω

∑
j∈J

pωbjo
ω
j ,

where Q := {(q,u) | (3b), (3e)} and O(y, q,u,d, z) := {o | (3c), (3d), (3f)}. Moreover, we observe that it is
derived by separating the integer variables (i.e., q, u) and continuous variables (i.e., o). This motivates us
to employ a C&CG method to solve the inner level problem. If the binary decision variables are given, one
can reformulate the subproblem (3) as a maximization problem by using KKT condition or strong duality.

Based on these thoughts, the SP can also be implemented by C&CG within a master-subproblem frame-
work. Specifically, one can first solve the master problem (denoted by MPS) to obtain the optimal solutions
of q and u which also returns the upper bound of the inner level problem, given the max-min structure.
Then for the given binary variables q and u, one can solve the MPS to identify the worst scenarios and pass
them to the subproblem (denoted by SPS). Then one can further solve the SPS and obtain the lower bound
of the inner level problem. This process is repeatedly implemented until the convergence. Let m′ be the
index of iteration, LBS and UBS represent the upper bound and upper bound of the inner level problem.
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Here we let `′ represent the running index of the set of extreme points (worst-case scenarios) that is derived
by the SPS. We summarize the detailed procedures of the inner level C&CG implementation in Algorithm
2. In the following, we present two methods (namely, the KKT condition in Section 4.2.1 and the strong
duality in Section 4.2.2) to solve the inner level problem. Finally, we summarize an overview of the proposed
algorithmic solution framework in Figure 2, where Gap1 and Gap2 denote the relative optimality gap of the
outer level and inner level problem, respectively.

Figure 2: The framework of our nested C&CG solution scheme

4.2.1 KKT Condition based Inner Level Method

In this section, we use the KKT condition to derive the MPS if the first-stage decision ŷ is given. For the
given values of q̂ and û, let αωj and βωj be the dual variables in terms of constraints (3c) and (3d), respectively.
Then, for the `′-th iteration of our nested C&CG algorithm, we rewrite the objective function (3a) as its
epigraph form (i.e., constraint (4b)), then we derive the KKT condition, which gives rise to the following
maximization-based MILP problem (4).

maximize ρ θ (4a)

subject to θ ≤
∑
ω∈Ω

∑
i∈I

∑
j∈J

pωcij q̂
ω
ij +

∑
ω∈Ω

∑
i∈I

pωriû
ω
i

+
∑
ω∈Ω

∑
j∈J

pωbjo
ω`′

j ∀`′ ≤ m′ (4b)

αω`
′

j − βω`
′

j ≤ pωbj ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (4c)

oω`
′

j ≥
∑
i∈I

dωi q̂
ω
ij − T ŷj(1− z`

′

j ) ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (4d)

oω`
′

j ≤ vj ŷj(1− z`
′

j ) ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (4e)

oω`
′

j (pωbj − αω`
′

j + βω`
′

j ) = 0 ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (4f)

αω`
′

j

(
oω`

′

j −
∑
i∈I

dωi q̂
ω
ij + T ŷj(1− z`

′

j )

)
= 0 ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (4g)

βω`
′

j (vj ŷj(1− z`
′

j )− oω`
′

j ) = 0 ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (4h)
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∑
j∈J

z`
′

j ≤ Γ (4i)

oωj , α
ω
j , β

ω
j , θ ≥ 0; zj ∈ {0, 1} ∀i ∈ I, ω ∈ Ω, j ∈ J . (4j)

Since constraints (4f)-(4h) have bilinear terms, we use the big-M method to linearize them. We introduce
the binary variables bin1

jω, bin2
jω, and bin3

jω with respect to constraints (4f)-(4h), and obtain the upper
bounds of following set of the constraints:

αωj ≤Mα ∀j ∈ J , ω ∈ Ω

βωj ≤Mβ ∀j ∈ J , ω ∈ Ω

pωbj − αωj + βωj ≤ pωbj +Mβ ∀j ∈ J , ω ∈ Ω

oωj −
∑
i∈I

dωi q̂
ω
ij + T ŷj(1− zj) ≤ vωj + T ∀j ∈ J , ω ∈ Ω

vj ŷj(1− zj)− oωj ≤ vj ∀j ∈ J , ω ∈ Ω.

We finally obtain the following MILP-based formulation of the MPS at the `′-th iteration.

[MPS] : max ρ θ (5a)

s.t. θ ≤
∑
ω∈Ω

∑
i∈I

∑
j∈J

pωcij q̂
ω
ij +

∑
ω∈Ω

∑
i∈I

pωriû
ω
i

+
∑
ω∈Ω

∑
j∈J

pωbjo
ω`′

j ∀`′ ≤ m′ (5b)

αω`
′

j − βω`
′

j ≤ pωbj ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (5c)

oω`
′

j ≥
∑
i∈I

dωi q̂
ω
ij − T ŷj(1− z`

′

j ) ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (5d)

oω`
′

j ≤ vj ŷj(1− z`
′

j ) ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (5e)

oω`
′

j ≤ vj(1− bin1
jω`′) ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (5f)

pωbj − αω`
′

j + βω`
′

j ≤ (bj +Mβ)bin1
jω`′ ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (5g)

αω`
′

j ≤Mα(1− bin2
jω`′) ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (5h)

oω`
′

j −
∑
i∈I

dωi q̂
ω
ij + T ŷj(1− z`

′

j ) ≤ (vj + T )bin2
jω`′ ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (5i)

βω`
′

j ≤Mβ(1− bin3
jω`′) ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (5j)

vj ŷj(1− z`
′

j )− oω`
′

j ≤ vjbin3
jω`′ ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (5k)∑

j∈J
z`

′

j ≤ Γ (5l)

oωj , α
ω
j , β

ω
j , θ ≥ 0; zj ∈ {0, 1} ∀j ∈ J , ω ∈ Ω (5m)

bin1
jω, bin

2
jω, bin

3
jω ∈ {0, 1} ∀j ∈ J , ω ∈ Ω (5n)

Given the worst-case scenarios that are derived from MPS, the SPS can be formulated as follows:

[SPS] : minimize
q,u,o

∑
ω∈Ω

∑
i∈I

∑
j∈J

pωcijq
ω
ij +

∑
ω∈Ω

∑
i∈I

pωriu
ω
i +

∑
ω∈Ω

∑
j∈J

pωbjo
ω
j (6a)

subject to
∑
j∈J

qωij + uωi = δωi ∀i ∈ I, ω ∈ Ω (6b)

∑
i∈I

dωi q
ω
ij ≤ T ŷj(1− ẑj) + oωj ∀j ∈ J , ω ∈ Ω (6c)

13



oωj ≤ vj ŷj(1− ẑj) ∀j ∈ J , ω ∈ Ω (6d)

oωj ≥ 0; qωij , u
ω
i ∈ {0, 1} ∀i ∈ I, j ∈ J , ω ∈ Ω. (6e)

Algorithm 2 The Inner Level C&CG Implementation

1: Initialize m′ = 0, LBS = −∞,UBS = +∞ for all ω..
2: while ( |UBS−LBS

UBS
| > ε) do

3: Solve the MPS (5)
4: Record optimal solution zm

′
, and optimal objective Uobjm

′
.

5: Update UBS := Uobjm
′
.

6: Fix ẑ := zm
′
, and solve SPS (6).

7: Obtain optimal solution qm
′
,um

′
,om

′
.

8: Update LBS := max

{
LBS, min

q,u,o

∑
ω∈Ω

pω

(∑
i∈I

∑
j∈J

cijq
ω
ij +

∑
j∈J

bjo
ω
j +

∑
i∈I

riu
ω
i

)}
.

9: Create integer variables qm
′+1, um

′+1 and add constraints (5b)-(5k) to the MPS.
10: Set m′ := m′ + 1.
11: end while
12: return zm := ẑ

4.2.2 Strong Duality based Inner Level Method

In this section, we employ strong duality approach to derive the MPS. Let αωj , βωj be the dual variables in
terms of constraints (3c) and (3d), respectively. Then, for the `′-th iteration, we still rewrite the objective
function (3a) as its epigraph form (i.e., constraint (7b)), then we apply the strong duality for the innermost
minimization over o, which gives rise to the following maximization-based MILP problem (7). We remark
that the SPS is the same as problem (6).

maximize ρ θ (7a)

subject to θ ≤
∑
ω∈Ω

∑
i∈I

∑
j∈J

pωcij q̂
ω
ij +

∑
ω∈Ω

∑
i∈I

pωriû
ω
i

+
∑
ω∈Ω

∑
j∈J

∑
i∈I

dωi q
ω
ijα

ω
j −

∑
ω∈Ω

∑
j∈J

T ŷj(1− z`
′

j )

−
∑
ω∈Ω

∑
j∈J

vj ŷj(1− z`
′

j )βωj (7b)

αω`
′

j − βω`
′

j ≤ pωbj ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (7c)∑
j∈J

z`
′

j ≤ Γ (7d)

αωj , β
ω
j ≥ 0; zj ∈ {0, 1} ∀j ∈ J , ω ∈ Ω (7e)

Similarly to problem (4), we still use the big-M approach to linearize the bilinear terms in constraint (7b)
by introducing binary variables bin4

jω and bin5
jω, which finally gives rise to the following MILP-based master

problem (8).

[MPS] : max ρ θ (8a)

s.t. θ ≤
∑
ω∈Ω

∑
i∈I

∑
j∈J

pωcij q̂
ω
ij + pωriû

ω
i

+
∑
ω∈Ω

∑
i∈I

∑
j∈J

dωi q̂
ω
ijα

ω`′

j −∑
ω∈Ω

∑
j∈J

(
T ŷj(α

ω`′

j − bin4
jω`′) + vj ŷj(β

ω`′

j − bin5
jω`′)

)
∀`′ ≤ m′ (8b)
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αω`
′

j − βω`
′

j ≤ pωbj ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (8c)∑
j∈J

z`
′

j ≤ Γ (8d)

bin4
jω`′ ≤ αω`

′

j ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (8e)

bin4
jω`′ ≤Mαz

`′

j ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (8f)

bin4
jω`′ ≥ αω`

′

j −Mα(1− z`
′

j ) ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (8g)

bin5
jω`′ ≤ βω`

′

j ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (8h)

bin5
jω`′ ≤Mβz

`′

j ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (8i)

bin5
jω`′ ≥ βω`

′

j −Mβ(1− z`
′

j ) ∀j ∈ J , ω ∈ Ω, `′ ≤ m′ (8j)

αωj , β
ω
j ≥ 0; bin4

jω, bin
5
jω ∈ {0, 1}; zj ∈ {0, 1} ∀j ∈ J , ω ∈ Ω (8k)

4.3 Symmetry-breaking Constraints
Without loss of generality, we assume that the cost parameters are homogeneous. This is a common assump-
tion in the healthcare operations management literature. Given this assumption, we add the following set of
symmetry-breaking constraints (Denton et al., 2010) to the MP (2).

yj ≥ yj+1 ∀j ∈ J (9)

Since we assume that the cost of the assignment, telemedical doctors’ working, and overtime are homoge-
neous, which means complete symmetry for the telemedical doctors. Therefore, for any solution, an equivalent
solution can be derived by exchanging the sets of patients assigned to any pair of telemedical doctors. To
break the symmetry and limit the number of solutions, we add the constraints y1 ≥ y2 ≥ . . . ≥ y|J |. This
could in turn help us to quickly identify a good solution of MP and further generate a better upper bound
that is given by the inner level problem.

5 Numerical Study
In this section, we conduct an extensive study to verify the performance of our model and the proposed
solution algorithms. We first describe the implementation details in Section 5.1, then report the compu-
tational performance in Section 5.2 and the robustness and sensitivity analysis in Section 5.3. Section 5.4
presents how the no-show behaviours affect the performance. Finally, Section 5.5 compares our model with
its two-stage SP counterpart.

5.1 Implementation Details
We consider a set of randomly generated instances of different sizes. For the sake of brevity, we use |I|-|J |-K
to represent each class of problem size. We consider the problem size with 30-10-3 in Section 5.2.1 and
with 100-10-10 for the rest. Note that each class of problems has 5 randomly generated instances, which
are generated as follows. We consider Ω empirical scenarios to capture the uncertain service duration and
the patient no-show, and we use Ω ∈ {30, 50, 80} in Section 5.2.1 and Ω ∈ {50, 100, 200} in Section 5.2.2.
For each scenario ω, the service duration dωi of patient i is randomly and independently generated from the
uniform distribution [5,10], with probability pω = 1/|Ω|. Regarding the no-show behaviours of the patients,
we consider the probability of patient no-show pno, which means the binary vector δωi of the patient i who
does not show up under scenario ω follows the binomial distribution with a mean of 1 − pno. The budget
of uncertainty Γ takes a set of integer values Γ ∈ {0, 1, . . . ,K}. Finally, we set the the assignment cost cij
to 2, the overtime cost bj to 0.3, the working cost hj to 20, and the penalty cost ri to 60. We consider the
fixed-length of the block T = 100 minutes, maximum length of the overtime vj = 50 minutes and the weight
ρ ∈ {0.2, 0.5, 0.8}.

All the algorithms are implemented in MATLAB 2019a and YALMIP package (https://yalmip.github.
io/) using CPLEX 12.71 as the solver with the default setting on a Desktop machine with Intel(R) Xeon(R)
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3.30 GHz processor and 64 GB RAM in a Windows 64-bit system. The algorithms are run until either
an optimality gap below 1% or a time limit of 7200 seconds is reached. All the reported performance
measurements are averaged over five instances.

5.2 Computational Performance
In this section, we present the computational results of the proposed algorithms in terms of different problem
sizes (e.g., |I|-|J |-K, Ω) and different parameters (e.g., Γ, pno, ρ). More specifically, Section 5.2.1 shows
the algorithmic performance comparisons of three variants of our algorithm for small-size problems, and
Section 5.2.2 further presents the numerical efficiency of our improved nested C&CG algorithm for large-size
instances. For each class of problem sizes, we report the average CPU solution time (Time, in seconds), the
proportion of unsolved instances (prop) over five instances, and the average number of iterations (# of Iter),
respectively.

5.2.1 Computational Performance of Different Algorithms

In this section, we consider the problem size with Ω ∈ {30, 50, 80} and 30-10-3. For other parameters, ρ is
assumed to 0.5 and pno is assumed to 0.1. We evaluate the computational performance using the following
three variants: KKT refers to the nested C&CG with KKT conditions in Section 4.2.1; Dual refers to
the nested C&CG with strong duality in Section 4.2.2 and symmetry-breaking constraints (9) in Section
4.3; Improve refers to the nested C&CG with KKT conditions in Section 4.2.1 and symmetry-breaking
constraints (9) in Section 4.3.

Table 3 reports the numerical efficiency of the above three variants. From the table we can observe that,
as expected, for all three algorithms the computational difficulty increases as the number of scenarios Ω is
increasing from 30 to 80. Given Ω and Γ, we can see that, the improved method outperforms the best among
all three methods and can solve all the instances optimally within 2 minutes on average, while the KKT
method is the most inefficient one and needs the largest number of iterations on average (e.g., the outer level
with 7.2 iterations on average), which can only solve a half of all instances (i.e. 30 instances over 60 in total)
optimally within 2 hours. Moreover, the dual method could solve 97% of all instances optimally within about
an hour on average. Here we can conclude that the symmetry-breaking constraints (9) plays a very important
role in improving the numerical efficiency of our proposed nested C&CG algorithm, which however greatly
reduces the number of integer variables in the outer master problem and makes our algorithm quickly find
a good feasible solution of the assignment for telemedical doctors to speed up the convergence. In addition,
the dual method seems to have fewer constraints, which results in a better computational efficiency than
the KKT method in terms of the average solution time (e.g., 2508.5 vs 5753.2). Although the dual method
converges slowly than the KKT method for each inner level iteration, the KKT method needs more iterations
in the outer level problem. We remark that we also tried the dual method without the symmetry-breaking
constraints (9). However, the numerical efficiency performs very bad, and thus we omit it in the table. For any
given Ω and each method, we also learn from the table that the average solution time increases as Γ increases
from 0 to 3. This could be explained by the fact that the proposed model becomes more conservative and
robust when Γ becomes larger, which in some sense makes the computations more expensive. In summary, the
improved method performs the best, which motivates us to further test its peformance for solving large-sized
problem in the next section.

5.2.2 Computational Performance of Large-scaled Problems using Improved C&CG Algo-
rithm

In order to further explore the algorithmic efficiency for the problems of more realistic sizes, this section
reports the computational performance for the problem with 100-10-10 over a large number of scenarios (i.e.,
Ω ∈ {50, 100, 200}), using the improved C&CG method.

From Table 4, we can learn that we can solve 97% of the instances optimally within 4516.6 seconds on
average (over 360 instances in total). As we increase the number of the patients and telemedical doctors, the
average solution time significantly increases, because the size of the model becomes bigger. Moreover, the
“budgeted” robustness Γ and the number of the empirical scenarios Ω have a big impact on the computational
performance.
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Table 3: Computational performance for three variants of our algorithm for 30 patients, 10
telemedical doctors over Ω ∈ {30, 50, 80} and Γ ∈ {0, 1, 2, 3}, where we report the average
solution time (Time, in seconds), proportion of unsolved instances within 2 hours (prop), and
average number of iterations for inner level (inner) and outer level (outer) C&CG.

Ω Γ
Dual KKT Improve

Time prop inner outer Time prop inner outer Time prop inner outer

30

0 89.0 0.0 1.0 1.0 10.1 0.0 1.0 1.0 8.3 0.0 1.0 1.0
1 3398.2 0.4 3.8 5.4 706.1 0.0 2.0 9.0 26.3 0.0 2.0 2.0
2 1437.9 0.0 5.8 2.0 11657.7* 1.0 1.8 12.4 29.4 0.0 2.0 2.0
3 580.7 0.0 2.0 2.0 10589.4* 1.0 1.8 11.6 27.7 0.0 2.0 2.0

50

0 327.4 0.0 1.0 1.0 53.1 0.0 1.0 1.0 13.5 0.0 1.0 1.0
1 2189.8 0.0 4.0 2.0 2484.2 0.0 2.0 9.0 48.5 0.0 2.0 2.0
2 3760.1 0.0 6.0 2.0 9659.3* 1.0 1.8 9.6 52.9 0.0 2.0 2.0
3 1467.8 0.0 2.0 2.0 9923.5* 1.0 1.7 7.6 50.6 0.0 2.0 2.0

80

0 798.8 0.0 1.0 1.0 98.7 0.0 1.0 1.0 24.0 0.0 1.0 1.0
1 5148.3 0.0 4.0 2.0 5738.0 0.0 2.0 9.0 86.2 0.0 2.0 2.0
2 7429.2* 0.0 3.0 2.0 8748.0 1.0 1.7 7.8 92.1 0.0 2.0 2.0
3 3475.3 0.0 2.0 2.0 9369.9* 1.0 1.7 7.6 88.9 0.0 2.0 2.0

Avg 2508.5 0.03 3.0 2.0 5753.2 0.50 1.6 7.2 45.7 0.0 1.8 1.8

“*” in the column of “Time” means that at least one of the five instances can not be solved
optimally within the time limit.

As is shown in the previous section, it is clear that once again increasing robustness (i.e., Γ), the compu-
tational cost becomes higher for any given parameters setting of Ω, pno, and ρ. Moreover, as expected the
average solution time greatly increases when we increase the number of empirical scenarios from 50 to 200.
If we have a closer analysis on the nested C&CG method, we note that MPS and SPS are easier to solve,
and the bottleneck is to solve MP, which initially is a large integer program with a large number of binary
variables and constraints over each iteration. Fortunately, as shown in Table 4, it only takes a small number
of iterations to reach the convergence. Finally, the numerical results show that pno and ρ have a slight impact
on the average solution time.

5.3 Robustness and Sensitivity Analysis
In this section, we explore how the three different sources of uncertainty and the parameters affect the balances
between the robustness and cost budget, i.e., the weight ρ that balances the expected cost of the first-stage
and second-stage problem, the “budgeted” robustness parameter Γ, and the probability of patient no-show
pno. As described before, our analysis in this section is based on 100 patients and 10 telemedical doctors
with 100 empirical scenarios. More specifically, Section 5.3.1 presents how Γ affects the cost configuration
while Section 5.3.2 performs the sensitivity analysis on the weight ρ. Finally, Section 5.3.3 shows a trade-off
analysis between the expected total cost and assignment policy.

5.3.1 Robustness Analysis of Cost Configuration

In this section, we further explore how the robustness parameter Γ affects the cost configuration (i.e., first-
stage cost, second-stage cost, and total cost) for ρ = {0.2, 0.5, 0.8}. We set the probability of patient no-show
to 0.1. We presents the average expected total cost (TC), first-stage cost (FSC), second-stage cost (SSC)
with respect to Γ ∈ [0, 10] for ρ = 0.2 in Figure 3(a), ρ = 0.5 in Figure 3(b), and ρ = 0.8 in Figure 3(c),
respectively, while Figure 3(d) presents the TC as a function of Γ for ρ ∈ {0.2, 0.5, 0.8}. As we can see from
the figure when ρ is relatively small (e.g., ρ = 0.2), FSC seems to be nearly unchanged with a relatively small
expected cost (except when Γ = 0), while TC and SSC are increasing as Γ increases, especially Γ ∈ [4, 10].
In addition, for any given Γ ∈ [4, 10], the average expected total cost increases with the increase of ρ. More
interestingly, there is a very slight difference between SSC and TC. This is because, for the given Γ, FSC is
very small when ρ is relatively small. When ρ is large (e.g., ρ ∈ {0.5, 0.8}), we can see the very similar trends.
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Table 4: Computational performance of the improved C&CG for 100 patients, 10 telemedical doctors
over Ω ∈ {50, 100, 200}, Γ ∈ {0, 2, 8, 10}, ρ ∈ {0.2, 0.5, 0.8}, and pno ∈ {0.1, 0.3}, where we report the
average solution time (Time, in seconds), proportion of unsolved instances within 2 hours (prop), and
average number of iterations (# of Iter).

Ω ρ pno
Gamma=2 Gamma=4 Gamma=8 Gamma=10

time prop # of iter time prop # of iter time prop # of iter time prop # of iter

50

0.2 0.1 401.6 0 2.0 278.6 0 2.0 260.3 0 2.0 428.0 0 3.0
0.3 339.9 0 2.0 308.3 0 2.0 456.9 0 2.6 618.1 0 3.0

0.5 0.1 425.0 0 2.0 308.0 0 2.0 298.0 0 2.0 480.3 0 3.0
0.3 448.9 0 2.0 498.2 0 2.0 426.8 0 2.0 650.5 0 3.0

0.8 0.1 380.0 0 2.0 325.0 0 2.0 310.7 0 2.0 498.2 0 3.0
0.3 426.9 0 2.0 513.6 0 2.0 665.7 0 2.8 705.8 0 3.0

Avg 403.7 0.0 2.0 371.9 0.0 2.0 403.1 0.0 2.2 563.5 0.0 3.0

100

0.2 0.1 1713.1 0 2.0 1499.1 0 2.0 1130.9 0 2.0 1754.8 0 3.0
0.3 1119.5 0 2.0 1190.6 0 2.0 945.0 0 2.0 1658.3 0 3.0

0.5 0.1 1628.5 0 2.0 1406.0 0 2.0 1118.0 0 2.0 1713.7 0 3.0
0.3 1201.8 0 2.0 1438.9 0 2.0 1043.0 0 2.0 1696.9 0 3.0

0.8 0.1 1309.1 0 2.0 1456.1 0 2.0 1124.7 0 2.0 1711.3 0 3.0
0.3 1158.9 0 2.0 2390.5 0 2.0 1268.7 0 2.0 1867.9 0 3.0

Avg 1355.2 0.0 2.0 1563.5 0.0 2.0 1105.1 0.0 2.0 1733.8 0.0 3.0

200

0.2 0.1 5155.7 0 2.0 3651.4 0 2.0 2929.4 0 2.0 4825.5 0 3.0
0.3 3284.6 0 2.0 3260.0 0 2.0 2369.1 0 2.0 4976.5 0 3.0

0.5 0.1 3845.6 0 2.0 4432.3 0 2.0 3270.1 0 2.0 5026.4 0 3.0
0.3 2710.7 0 2.0 2317.5 0 2.0 2747.4 0 2.0 4127.2 0 3.0

0.8 0.1 5338.0 0 2.0 5022.5 0 2.0 3203.9 0 2.0 5155.9 0 3.0
0.3 3643.2 0 2.0 3941.4 0 2.0 4516.6 0.2 2.4 4232.1 0 3.0

Avg 3996.2 0 2.0 3770.9 0.0 2.0 3172.8 0.03 2.1 4723.9 0.0 3.0

However, the distance between TC and SSC seems to be bigger than that with ρ = 0.2, because FSC becomes
larger when more weight is imposed on the normal case of telemedicine assignment. We also observe from
Figure 3(d) that TC under different ρ crosses and the ranking changes after Γ ≥ 4. This could be explained
by the fact that when Γ is small (e.g., Γ ≤ 4), nearly all the patients could be served by the telemedical
doctors who do show up, which results in a relatively low TC when ρ is small. However, if we continue to
increase Γ, TC becomes higher. This is caused by the fact that more patients might not be served, which in
turn results in a higher SSC (i.e., including the overtime cost and penalty cost for the unserved patients).

5.3.2 Sensitivity Analysis on Weight ρ

In order to further explore the cost configuration, in this section, we conduct a sensitivity analysis on weight
parameter ρ. We present the TC, FSC, and SSC as a function of ρ ∈ [0, 1] for different Γ ∈ {1, 5, 7}, which
are shown in Figures 4 (a), (b), and (c) respectively, while Figure 4(d) presents TC as a function of ρ for
different Γ ∈ {1, 5, 7}. We do not consider the patient no-show (i.e., pno = 0), in order to clearly see how ρ
affects the cost configuration.

From Figure 4(a) and Figure 4(b), we can clearly see that TC is increasing as ρ increases, and TC is a
simple linear combination of FSC and SSC, when Γ is small (i.e., Γ = 1 and Γ = 5). More interesting, if we
further increase Γ (e.g., Γ = 7 in Figure 4(c)), it seems to be that TC is linearly decreasing as ρ increases.
This is because SSC decreases very fast when Γ is large, which makes TC be decreasing. Besides, one could
further confirm these observations in Figure 4(d). Finally, we conclude that the weight ρ plays a key role in
the trade-off between FSC and SSC, especially when facing the uncertainty with the no-show behaviour of
the telemedical doctors. Our analyses shed light on the fact that the decision-maker is less conservative with
a large ρ and unwilling to configure the system in a way such that less recourse operation costs be incurred
under a situation with telemedical doctor no-show.
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(d) TC with ρ ∈ {0.2, 0.5, 0.8}

Figure 3: The average expected cost of first-stage (FSC), second-stage (SSC), and total cost (TC) for 100
patients and 10 telemedical doctors as a function of Γ over Ω = 100, ρ = {0.2, 0.8}, and pno = 0.1.

5.3.3 Trade-Off Analysis between Expected Total Cost and Assignment Policy

In this section, we conduct a trade-off analysis between the expected total cost and the number of unassigned
patients under Ω = 100, ρ = 0.8, pno ∈ {0.1, 0.3, 0.5} and Γ ∈ {0, 2, 4, 6, 8, 10}, which is specifically presented
in Figure 5. The tickmarks under different pno represent different Γ levels. From Figure 5, we can observe
that the trade-off frontier between the expected total cost and the number of unassigned patients under
pno = 0.5 dominates these with pno = 0.3 and pno = 0.1 in order. This is due to the fact that the probability
of overtime being lower when pno is relatively large. Thus, given a very limited number of telemedical doctors
who show up, they could serve as many patients as possible while achieving a lower expected total cost. This
can be further confirmed in Section 5.4. As a complement, Table 5 further reports the expected total cost
and the number of unassigned patients under different pno and Γ. We can oberve that, for a given pno, when
Γ increases, the number of unassigned patients increases and the expected total cost is increasing (except
when Γ = 0, see Remark 1), which behaves the same as Figure 3(c). On the other hand, for a given Γ, the
same observations are derived as those in Figure 5.

5.4 Analysis on the Impact of the No-Show Behaviours
In this section, we aim to explore that how the no-show behaviours of patients (i.e., pno) and telemedical
doctors (i.e., Γ) affect the average expected total cost. We set the weight ρ to 0.5. Figure 6(a) presents
the average expected total cost as a function of Γ for pno ∈ {0, 0.1, 0.3}, while Figure 6(b) presents the
average expected total cost as a function of pno for Γ ∈ {1, 3, 5}. As we can clearly see from Figure 6(a) that,
for a fixed pno (e.g., pno = 0 means that only the telemedical doctor no-show is considered), the average
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Figure 4: The average expected cost as a function of ρ over Ω = 100, Γ ∈ {1, 5, 7}, and pno = 0.

expected total cost is non-decreasing as Γ increases from 2 to 10. In particular, the average expected total
cost drastically increases when Γ ≥ 4. This could be based on the fact that the workload of telemedical
doctors is extremely heavy and more and more patients might not be served at the price of the shortage of
available telemedical doctors, when at least 4 telemedical doctors might fail to show up due to the emergency
requests. In terms of the patient no-show, we can learn from Figure 6(b) that, for any given Γ (e.g., Γ = 0
means that only the patient no-show is considered), the average expected total cost decreases as pno becomes
larger. This is because it is easy to serve all the patients who show up by the available telemedical doctors,
without the overtime and the penalty for the unserved patients. Moreover, we observe that the no-show of
the telemedical doctors has a bigger impact on the expected total cost than the patient no-show, given that
the former generally leads to a larger expected total cost, which is clearly shown in Figure 6. This might
imply that the optimal choice of the hyper-parameters in this study consists in Γ ∈ (0, 4] and a relatively
small pno, which says that, under current setting, we might allow a limited number of telemedical doctors to
be no-shows (due to emergency events) and can serve as many patients as possible while paying a relatively
cheaper expected total cost. This is in line with the observations derived in Section 5.3.3. Finally, we derive
that the total expected cost decreases as patient no-show rates increases, and the total expected cost will
significantly increase when the number of telemedicine doctors failing to show up exceeds a certain proportion
(e.g., 60% in our numerical study).

5.5 A Comparison of Robust and Stochastic Solutions
To further show the quality of our robust solutions, in this section we compare our two-stage robust optimiza-
tion (2RO) model with a benchmark model (i.e., two-stage stochastic programming (2SP) model, which is
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Figure 5: The trade-off between average expected total cost and the number of unassigned patients for 100
patients and 10 telemedical doctors under Ω = 100, ρ = 0.8, and pno ∈ {0.1, 0.3, 0.5}.

Table 5: The expected total cost and the number of unassigned patients for 100 patients and 10 telemedical
doctors under Ω = 100, ρ = 0.8, pno ∈ {0.1, 0.3, 0.5} and Γ ∈ {0, 2, 4, 6, 8, 10}.

Γ 0 2 4 6 8 10

pno =0.1 Expected total cost 339.9 312.7 334.3 442.5 829.0 1351.6
Number of unassigned patients 0.0 0.0 0.0 7.8 41.7 90.0

pno=0.3 Expected total cost 280.1 253.8 274.6 493.7 590.4 1058.5
Number of unassigned patients 0.0 0.0 0.0 17.8 24.5 69.8

pno =0.5 Expected total cost 204.8 184.1 216.8 249.0 361.4 762.6
Number of unassigned patients 0.0 0.0 0.1 0.0 8.2 50.0

presented in A). For both models, we consider 100 patients and 10 telemedical doctors with ρ = 0.5, Ω = 50
and pno ∈ {0.1, 0.3}. For the 2SP model, the key point is how to capture the no-show of the telemedical
doctors, in order to make the comparison to be fair. Specifically, we assume that the probability that the
at most Γ (1 ≤ Γ ≤ 9) telemedical doctors were no-shows is 1 − ρ, i.e., 0.5 in this study, which roughly
matches the weight of normal situation in the 2RO model. We also assume that each telemedical doctor has
the same no-show probability (denoted by γ) and their no-shows are independent of each other. We use the
random variable X to denote the event that there are Γ telemedical doctors with no-show behaviour. Thus,
the random variable X follows a Binomial Distribution, i.e., X ∼ B(|J |, γ). For example, if Γ = 2, one can
easily calculate the no-show probability of a telemedical doctor is 0.26. In doing so, the no-show probability
of the telemedical doctors varies with Γ accordingly.

We propose two measurements for the total cost (i.e., the expected total cost (ETC) and the worst-case
total cost (WTC), respectively) to evaluate the performance of the robust solutions and stochastic solutions.
For 2SP model, the WTC is calculated by fixing its optimal assignments of telemedical doctors (i.e., ŷSP)
to 2RO model, while for 2RO model, the ETC is obtained by fixing its optimal assignment of telemedical
doctors (i.e., ŷRO) to 2SP model.

Table 6 and Table 7 present the comparisons with 2SP model in terms of the ETC and WTC under pno ∈
{0.1, 0.3} and 1 ≤ Γ ≤ 9. In order to evaluate the performance, we define ∆ETC = (ETCSP−ETCRO)/ETCRO
and ∆WTC = (WTCSP −WTCRO)/WTCRO to show their relative differences. As we can see from these
tables, for both models the expected total cost increases as Γ increases from 1 to 9 and pno decreases from
0.3 to 0.1. This is because the larger the no-show probability of patients and the more telemedical doctors
who do not show up, the less unserved patients and the lower penalty cost. For pno = 0.3, we observe from
Table 7 that an 2SP solution might have a little bit less ETC (with negative ∆ETC) for most of Γ values,
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Figure 6: The average expected total cost as a function of pno and Γ.

while its WTC could be significantly more (with positive ∆WTC), when compared with an 2RO solution. A
similar observation could also be derived from Table 6. Furthermore, we see that the difference in ETC for
these two models is not drastic, which implies that, 2SP and 2RO models are comparable, even when Γ is
relatively large, and that our 2RO model is not overly conservative. In terms of the WTC in both tables,
we can observe that an 2SP solution always results in a higher total cost than our 2RO solution for both
pno = 0.1 and pno = 0.3, given that all ∆WTC are positive, which could save at most 15.32% of the total
cost under pno = 0.1 and 22.6% under pno = 0.3, respectively. This might imply that, instead of relying on
accurate probabilistic information for the 2SP model, our 2RO model seems to provide a relatively cheaper
modeling alternative that requires much less information support under a worst-case situation.

Table 6: The comparisons with the 2SP model in terms of the WTC and ETC with pno = 0.1.

Γ 1 2 3 4 5 6 7 8 9

ETC 2SP 268.0 286.7 339.9 428.7 636.9 929.1 1287.2 1764.1 2380.3
2RO 270.3 303.0 347.7 411.0 611.1 852.3 1194.9 1807.5 2433.4

∆ETC -0.85% -5.39% -2.23% 4.29% 4.22% 9.01% 7.72% -2.40% -2.18%

WTC 2SP 270.6 280.6 290.2 300.6 316.6 550.8 1004.1 1506.6 2435.5
2RO 259.8 269.6 280.6 292.0 306.4 536.1 991.9 1506.1 2112.0

∆WTC 4.14% 4.07% 3.41% 2.94% 3.31% 2.73% 1.23% 0.03% 15.32%

Table 7: The comparisons with the 2SP model in terms of the WTC and ETC with pno = 0.3.

Γ 1 2 3 4 5 6 7 8 9

ETC 2SP 209.4 218.6 238.3 277.6 386.7 495.6 799.5 1266.2 1778.3
2RO 155.4 245.8 251.3 308.8 357.9 521.1 870.7 1296.1 1776.3

∆ETC 34.80% -11.08% -5.14% -10.10% 8.04% -4.88% -8.18% -2.31% 0.11%

WTC 2SP 240.8 246.4 259.4 268.7 275.6 290.3 516.1 982.8 1859.4
2RO 206.9 214.4 225.8 236.5 246.0 257.1 492.8 955.5 1516.2

∆WTC 16.39% 14.90% 14.88% 13.61% 12.02% 12.91% 4.73% 2.86% 22.64%
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6 Concluding Remarks
Telemedicine plays an important role in health care delivery during the COVID-19 pandemic to reduce the
transmission of the virus while minimizing people’s exposure to the public and in-person visits. Therefore, it
is crucial for healthcare managers to make an assignment plan for the patients and telemedical doctors when
providing telemedicine services, especially in a highly uncertain environment. Motivated by this background,
we present the first comprehensive study of a telemedicine assignment problem when three different sources
of uncertainty are incorporated. Methodologically speaking, we propose a novel two-stage robust model
to address the assignment plan for the normal case that all the telemedical doctors show up and the re-
assignment plan for the worst case with telemedical doctor no-show, once some of the telemedical doctors
fail to show up due to the emergency events. The proposed model is a hard problem since the recourse
problem is a max-min-based MILP, which prevents us from using the state-of-art decomposition schemes in
the literature. Therefore, we propose an efficient nested C&CG solution scheme that decomposes the whole
model into the outer level and inner level problems. The results have confirmed its efficiency for the problems
of realistic sizes. We can solve the problems with 100 patients, 10 telemedical doctors, and 200 empirical
scenarios within two hours.

On the empirical side, this paper demonstrated in detail how the hyper-parameters affect the balances be-
tween cost management and the coverage level under a highly uncertain context. We derive some interesting
findings and insights from our analyses, which might make our study more attractive for healthcare practi-
tioners. Specifically, when the patient no-show rate is high, we might allow a limited number of telemedical
doctors who show up to serve as many patients as possible while producing a relatively cheaper expected
total cost. We also observe that higher patient no-show rates generally result in a decrease in the expected
total cost, and the expected total cost will increase significantly when the number of telemedicine doctors
who fail to show up exceeds a relatively high proportion (e.g., 60% in our numerical study). Our comparison
with the 2SP model implies that our 2RO model is not overly conservative and seems to provide a rela-
tively cheaper modeling alternative that requires much less information support when hedging against three
different sources of uncertainty under a worst-case situation.

Finally, we believe that our work still leaves space for some directions regarding: 1) address the case that
service duration d is influenced by the assignment decisions, where d is captured by a decision-dependent
uncertainty set (e.g., Nohadani and Sharma, 2018); 2) incorporate scheduling and sequencing decisions with
downstream resources constraints and multiple performance criteria (e.g., revenue and the number of patients)
in the model.
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Appendix A A Two-Stage Stochastic Programming Model
In this appendix, we present a two-stage stochastic programming (denoted by 2SP) counterpart for the
telemedicine assignment problem when incorporating three different sources of uncertainty.

For the 2SP model, the way how we capture the no-show behaviour of the telemedical doctors is the
main difference between the 2RO and 2SP models. In order to propose a comparable benchmark model, it
should be noted that the no-show behaviour of the telemedical doctors is also dependent on the “budgeted”
robustness parameter Γ that is used in the 2RO model. Here we still introduce a set of random binary
variables zωj to capture the no-show behaviour of the telemedical doctors, and we allow that at most Γ
(1 ≤ Γ ≤ 9) telemedical doctor no-shows. We assume that each telemedical doctor has the same no-show
probability (denoted by γ) and their no-shows are independent of each other. Specifically, zωj = 1 indicates
that telemedical doctor j will be no-show under scenario ω, and otherwise zωj = 0. We keep the same
notations that are used in our paper. Since we note that the 2SP model has a similar two-stage optimization
structure and shares a set of constraints, here we omit the description of notations and constraints for the
sake of simplicity. Then, the 2SP model is presented as follows:

[2SP] : minimize
x,y

ρ
∑
ω∈Ω

pω

∑
i∈I

∑
j∈J

cijx
ω
ij +

∑
j∈J

hjyj

+ (1− ρ)S(y)

subject to xωij ≤ yj ∀i ∈ I, j ∈ J , ω ∈ Ω∑
j∈J

xωij = δωi ∀i ∈ I, ω ∈ Ω

∑
i∈I

dωi x
ω
ij ≤ Tyj ∀j ∈ J , ω ∈ Ω∑

j∈J
yj ≤ K

xωij ∈ {0, 1}, yj ∈ {0, 1} ∀i ∈ I, j ∈ J , ω ∈ Ω

where S(y) = minimize
q,o,u

∑
ω∈Ω

pω

∑
i∈I

∑
j∈J

cijq
ω
ij +

∑
j∈J

bjo
ω
j +

∑
i∈I

riu
ω
i


subject to

∑
j∈J

qωij + uωi = δωi ∀i ∈ I, ω ∈ Ω

∑
i∈I

dωi q
ω
ij ≤ Tyj(1− zωj ) + oωj ∀j ∈ J , ω ∈ Ω

oωj ≤ vjyj(1− zωj ) ∀j ∈ J , ω ∈ Ω

qωij ∈ {0, 1}, uωi ∈ {0, 1}, oωj ≥ 0 ∀i ∈ I, j ∈ J , ω ∈ Ω,

where the objective function minimizes the expected weighted total cost of the cases with/without incorpo-
rating the no-show behaviour of the telemedical doctors.
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