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Abstract

In this paper we study the Traveling Salesman Problem with release dates (TSP-
rd) and completion time minimization. The TSP-rd considers a single vehicle
and a set of customers that must be served exactly once with goods that arrive
to the depot over time, during the planning horizon. The time at which each
requested good arrives is called release date and it is known in advance. The ve-
hicle can perform multiple routes, however, it cannot depart to serve a customer
before the associated release date. Thus, the release date of the customers in
each route must not be greater than the starting time of the route. The objec-
tive is to determine a set of routes for the vehicle, starting and ending at the
depot, where the completion time needed to serve all customers is minimized.
We propose a new Integer Linear Programming model and develop a branch
and cut algorithm with tailored enhancements to improve its performance. The
algorithm proved to be able to significantly reduce the computation times of
the best exact algorithm in the literature, obtaining 24 new optimal solutions
on benchmark instances with up to 30 customers within one hour. We further
extend the benchmark to instances with up to 50 customers where the algo-
rithm proved to be efficient. Building upon these results, the proposed model is
adapted to new TSP-rd variants (Capacitated and Prize-Collecting TSP), with
different objectives: completion time minimization and traveling distance mini-
mization. To the best of our knowledge, our work is the first in-depth study to
report extensive results for the TSP-rd through a branch and cut, establishing
a baseline and providing insights for future approaches. Overall, the approach
proved to be very effective and gives a flexible framework for several variants,
opening the discussion about formulations, algorithms and new benchmark in-
stances.
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Programming, Branch and Cut

1. Introduction and literature review

In this paper, we address the Traveling Salesman Problem with release dates
and completion time minimization (TSP-rd(time)) with an exact approach. The
TSP-rd(time) addresses a key operational constraint within nowadays last-mile
logistics, which is partly motivated by same-day and fast deliveries. The package
requested by a customer may not be available at the beginning of the planning
horizon, representing the timing of its arrival at the distribution center. Thus,
the vehicle is allowed to perform multiple routes to serve all customers. The
TSP-rd(time) is formulated as a synchronization problem, but so far, neglects
the effect of vehicle capacity. Variants of routing problems with release dates
have only recently been introduced in the literature, and applications arise in
the context of cross-docking and same-day delivery problems (Mor et al. [13]).

The motivation behind release dates is to represent the time at which a
requested package arrives at the depot. In this fashion, the vehicle is required
to only satisfy the requests of customers whose packages are ready at the depot
at the moment of departure. This version of release dates is first introduced by
Cattaruzza et al. [10] where the authors tackle the multi-vehicle routing problem
with time windows and release dates. The objective is to minimize the total
travel distance, and the authors propose a hybrid genetic algorithm on a set
of instances adapted from Solomon [17]. A single-vehicle variant of a routing
problem with release dates is presented in Archetti et al. [5]. The problem
is called Traveling Salesman Problem with release dates (TSP-rd) for the first
time by the authors and it does not consider capacities or time windows. Two
different objective functions are proposed: (a) completion time minimization
(TSP-rd(time)), where the idea is to minimize the time needed to complete the
distribution of all packages computed as the sum of the total traveling time
plus the total waiting time, and (b) total traveling distance minimization (TSP-
rd(distance)), in which there is a deadline for completing the distribution and
the goal is to minimize the total traveling distance. Although both variants are
NP-hard, the authors show that they can be solved in polynomial time provided
that the underlying graph has a special structure. Reyes et al. [15] generalize
these results considering a service guarantee that implies a common deadline
for the orders after each release date. Still the contributions are towards the
complexity of the problem on specific networks (e.g., the half-line). Archetti
et al. [4] present a Mixed Integer Linear Programming (MILP) formulation for
the TSP-rd(time) and propose two iterated local-search procedures based on
a destroy-and-repair scheme. The article focuses on the heuristics and report
results for instances up to 500 customers. A natural extension for multi-vehicle
routing problem with release dates is presented in Shelbourne et al. [16] for
which a path relinking algorithm is proposed. Due dates are considered for each
order, i.e. a time by which the order must be delivered to the customer. The
objective function considered combines an operational cost and customer service



level by means of the total distance traveled and the total weighted tardiness
of delivery, respectively. Waiting times are not considered and no results are
reported for the single-vehicle case. Another version which is related to TSP-
rd is the Multi-Trip Vehicle Routing Problem (MTVRP) where each vehicle
is allowed to perform multiple trips starting and ending at the depot due to
duration or capacity constraints (see Azi et al. [6, 7, 8] for potential applications
and results that, despite missing release dates, incorporate time windows). An
exact solution framework which accounts for the modeling of release dates for
the Capacitated MTVRP with Time Windows (CMTVRP-TW) is proposed in
Paradiso et al. [14]. It relies on column generation, column enumeration and
cutting planes. Among the four different variants, one of them incorporates
release dates. However, the objective function accounts for the minimization of
the total traveled distance instead of the makespan and the developed labeling
algorithm explicitly exploits the presence of time windows. Thus, no direct
comparison with Archetti et al. [4] is established, as the framework cannot be
directly adapted.

Finally, a survey about routing problems over time is presented by Mor et
al. [13], and a recent article about challenges in routing and inventory routing
in the context of e-commerce and last-mile delivery is presented in Archetti et
al. [3], including a dedicated section about release dates.

Release dates are still relatively new in the VRP literature. The contribu-
tions of our paper are threefold. First, on the methodological side, we propose a
new MILP formulation for the TSP-rd(time) where the multiple trips are mod-
elled via an adaptation of the Generalized Cut Set (GCS) constraints (see, e.g.,
Taccari [18]). To the best of our knowledge, the only exact approach for the
TSP-rd(time) is proposed in Archetti et al. [4]. Although both models consider
the edge flow variables, our approach provides an improved fashion to model
the multiple visits to the depot. In addition, we propose two enhanced families
of valid inequalities to model the interaction among the release dates. Second,
from an algorithmic standpoint, we develop a tailored branch and cut (BC)
algorithm incorporating the new valid inequalities as part of the formulation,
the GCS, an initial heuristic to compute an upper bound on the instance and a
specific branching criterion. We conduct extensive computational experiments
over benchmark instances and compare our results with the ones reported by
Archetti et al. [4]. We show that our method outperforms their approach, and
we provide strong evidence on the components that drive such improvement via
specific experiments. We provide 24 new optimal solutions for the benchmark
instances having up to 30 customers proposed in Archetti et al. [4], and we
further expand the benchmark and report results for instances with up to 50
customers. Third, building upon the previous results, we consider different vari-
ants for the TSP-rd by incorporating other characteristics such as capacities,
distances and profits. The model is adapted to each variant and we generate
tailored instances in each case to study the performance of our algorithm in
different setups, which may result very valuable for practitioners or researchers
tackling such problems. Overall, our paper contributes with improved method-
ology and strong computational results for a family of single vehicle routing



problems with release dates.

The rest of the paper is organized as follows. In Section 2 we present the
formal definition of the TSP-rd(time) and the notation used along the paper.
In Section 3 we introduce the formulation proposed by Archetti et al. [4] and
our new formulation. Section 4 describes the details of the BC algorithm based
on the new formulation, and Section 5 reports the computational results for the
TSP-rd(time). Several TSP-rd variants are explored in Section 6, considering
both completion time and distance minimization, as well as capacities and the
prize-collecting version of the problem. Finally, we conclude and state some
future research lines in Section 7.

2. Problem definition

Let G = (V, A) be a complete digraph, with V the set of vertices and A the
set of edges. The set V' = {0} U N models the depot, denoted by vertex 0, and
the set of customers N = {1,...,n}. We consider a traveling time ¢;; associated
to each edge (i,7) € A which satisfy the triangle inequality. We assume a non-
negative release date r; for each customer ¢ € N, which represents the time at
which the requested package arrives at the depot. In particular, setting r; = 0
models that the package is available at the beginning of the distribution because
it arrived overnight. Note that the classical TSP can be retrieved by setting
r; = 0 for all ¢ € N. The operations are carried out by one vehicle with infinite
capacity, ready to depart at t = 0. The vehicle is allowed to perform multiple
consecutive routes. However, each route can only include packages which are
ready before the corresponding departure from the depot (i.e., its release date
r; is at most the departure time of the vehicle from depot). The objective is to
serve all customers at minimum total completion time, defined as the time at
which the vehicle is back to the depot after visiting all customers, computed as
the sum of travel and waiting times.

For simplicity, we adopt the definition of a route used in Archetti et al. [4].
A route refers to a trip that starts and ends at the depot and that does not
visit the depot in between. Note that in the context of multiple vehicles (e.g.,
Cattaruzza et al. [10]) trips and routes may refer to different concepts.

Figure 1 shows two examples of feasible solutions for a distribution network
with 3 customers. Let ¢ be the starting time of the k-th route within a solution.
In the example, Solution (1a) involves one route which departs as soon as all
packages are available at time 40 = max{ry, 7o, r3}, resulting in a completion
time of 130 and a traveled time of 90. Solution (1b) involves two routes. In the
first one, the vehicle departs at time 5 = max{ry, r2} being able to deliver the
requested package of Customers 1 and 2. As soon as the vehicle returns to the
depot at time 85, the requested package of Customer 3 is available (r3 < 85),
and the vehicle departs again to visit the remaining customer with the second
route. The total completion time is 125 with a traveled time of 120 and a wait-
ing time of 5. In this example, Solution (1b) is better than Solution (1a) as the
total completion time of the former is lower.
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Figure 1: Examples of feasible solutions for the TSP-rd(time).

We introduce two properties presented by Archetti et al. [4], which are im-
portant to understand the structure of the TSP-rd(time) and to enhance the
mathematical formulations presented in Section 3.

Property 1 (No waiting time after first departure). Given an instance of the
TSP-rd(time), there exists an optimal solution with no waiting time after the
departure of the first route.

The intuition behind this result is that each departure can be shifted forward
without changing the set of customers served in each route, neither the total
completion time as depicted in Figure 2.

Route ¢ Route ¢ 4+ 1

t; til+1
Figure 2: Forward shift of Route 4 to remove waiting time after departure (Property 1)

Property 2 (Routes & latest release date). There exists an optimal solution
with exactly one route starting not earlier than 1,4z, i.e., the latest release date.



We omit the proof and refer the reader to Archetti et al. [4] for further
details.

3. MILP formulations

In this section we present two MILP formulations for the TSP-rd(time).
First, we describe the formulation proposed in Archetti et al. [4]. We then
introduce our new formulation as well as an improved version with tightened
constraints.

3.1. AFMG formulation (Archetti et al. [4])

The 3-index formulation introduced in Archetti et al. [4] for the TSP-rd(time),
named AFMG, is based on flow variables indexed by the route in which the
edge is traversed. Let K be a set of routes, with |K| being an upper bound for
the number of routes in the optimal solution. Define binary variables xfj taking
value 1 if and only if edge (i,j) € A is traversed in route k € K, and let binary
variables y; take value 1 if and only if vertex ¢ € V is visited in route k € K.
To account for the timing of the route, let t¥,.., and t* , denote the starting
and ending time of route k € K, respectively.

Additional continuous non-negative flow variables u¥.

ij
subtour elimination, and a binary variable x§, is considered for each k € K,
taking the value 1 if and only if route k is an empty route, i.e., it visits no

customers. As a result, the model is:
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The objective function (1) minimizes the total completion time as it is the
ending time of the last route. Constraints (2) guarantee that all customers are
visited by exactly one route. Constraints (3) establish the flow conservation
between edges entering and leaving each customer, and connect flow variables
with indicator variables y¥. Constraints (4)-(5) impose that each route is a
circuit connected to the depot. In particular, constraints (5) were first proposed
by Gavish and Graves [11] and are used to prevent subtours through a flow that
decreases while the vehicle visits customers. The relation between variables
th, e and t* . is set by constraints (6) and (7). Feasible starting times of a
route depending on the release dates of the customers served is modeled through
constraints (8). Properties 1 and 2 are incorporated by constraints (9) and (10)
respectively in order to reinforce the formulation. Note that constraints (9)
imply (7), but we include both sets of constraints to be consistent with the
model presented by Archetti et al. [4]. Constraints (11) enable an edge in a
tour only if the latter visits at least one vertex. Finally, constraints (12) remove
symmetric solutions by setting that if route k is empty then all routes k < k
must be empty as well. Note that all empty routes, if any, will precede all the
non-empty routes given constraints (12), and the fact that the last route (noted
as |K|) departs not earlier than rpay due to constraints (10).

Although the model uses an upper bound on the number of routes in the
optimal solution, Archetti et al. [4] develop an exact algorithm by setting | K| =
n. The authors only replace it with a tighter value for the purpose of embedding
the model in a heuristic scheme.

8.2. AJI formulation

We propose a new formulation that also uses the 3-index flow variables in-
dexed by route in which the edge is traversed. However, similar to other TSP
variants, modelling specific constraints in a different fashion can translate into
improved formulations that perform better in practice. This is the aim of our
formulation, where subtours are prevented by an adaptation of the GCS con-

k

straints. Thus, we do not consider variables u;; as part of the formulation.

Moreover, both t¥,,., and t* . are removed and we let continuous variables t;,
indicate the starting time of route k£ € K, and consider the special case of
tix|+1 that indicates the ending time of route |K|. For the sake of notation,
given S CV,let 67(S) ={(i,j) € A : i€ S,j € V\S}. Then, the formulation

reads:

min U K|+1 (17)
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The objective function (17) minimizes the total completion time as it is the
ending time of the last route, i.e., route |K|. Constraints (18)-(19) play the same
role as in the formulation from Archetti et al. [4] to ensure that all customers
are visited and that flow conservation is satisfied. Constraints (20) are based
on Generalized CutSet Inequalities (GCS) to enforce elimination of subtours.
Symmetry breaking is done through constraints (21) which establish that all
empty routes, if any, precede all the non-empty routes. Note that variables
zk, are not needed because of variables y§ and constraints (21). Constraints
(22) are similar to constraints (6), but also incorporate the idea behind (9)
and (7) that exploit Property 1 by removing waiting times between routes. As
a consequence, the model removes solutions with waiting time after the first
departure. Although it is not needed, such solutions with waiting time can be
included by relaxing constraints (22) as inequalities. Finally, constraints (23)
and (24) are the analogous of constraints (8) and (10).

Regarding the set of routes K, the model is still flexible as it makes use of
an upper bound on the number of routes in the optimal solution. However, in
all cases, we set |K| = n which is the trivial upper bound on the number of
routes.

3.3. Valid inequalities

Let K< = {h € K : h < k} denotes the subset of route indices smaller
than or equal to k. We provide in this section two families of valid inequalities
to strengthen the AJI formulation. Intuitively, the first family states that once
a customer ¢ € N is visited, all subsequent routes must start later than release
date r;.



Proposition 1. Given a customer i € N and a route k € K, constraint

te>ri Yyl (29)

heK<y
is valid for the AJI formulation.

Proof. Constraints (23) can be generalized by considering h < k, i.e. t) > nyzh
Since at most one y! can take value 1 for h € K<y, (23) can be lifted by adding
the rhs of these constraints, resulting in the desired inequality. O

The intuition behind the second family is to exploit that empty routes, if
any, precede non-empty routes. Then, route k € K is used (i.e., y& = 1), if at
least one customer is assigned to k or to a precedent route h < k.

Proposition 2. Given a customer i € N and a route k € K, constraint

> ou<us (30)

hEKSk
is valid for the AJI formulation.

Proof. We separate the proof in two cases. If the lhs is 0, the inequality is
trivially satisfied. Otherwise, note that at most one of the variables takes value
1 due to constraints (18). Let A’ < k be the index of the trip visiting . Then,
Yl =y =1 due to constraints (20) and (19). If 2’ < k, then by constraints
(21) we get y¥ = 1 as well, which concludes the proof. O

Constraints (23) are replaced by its strengthened version (29). Constraints
(30) are incorporated as part of the formulation, although they are not needed
for the formulation to be correct. Both (29) and (30) should help by removing
fractional points and improving the linear relaxation. We call the resulting
model AJI++.

4. Branch and Cut algorithm

We develop a BC algorithm based on the formulation presented in Section
3.2 for the TSP-rd(time). In this section we describe the main components,
such as how we compute an initial feasible solution, the cutting plane algorithm
and the branching scheme.

4.1. Initial feasible solution

The BC algorithm is initialized with a feasible solution obtained by a time-
explorer multi-start heuristic depicted in Algorithm 1. The heuristic considers as
input a set T of feasible departure-times for the first route of the TSP-rd(time)
solution, and the idea is to compute a sequence of tours using the myopic-
optimal solution for each ¢t € T. In other words, every time the vehicle reaches
the depot, it either departs to serve the customers whose goods arrived while



the vehicle was traveling, or waits for the next customer that can be served and
then immediately departs. The routing (i.e., the order in which customers are
going to be served), is decided by solving to optimality a TSP instance defined
by the underlying sub-graph.

Algorithm 1 Time-Explorer heuristic

Input: Instance Z of the TSP-rd(time), with G = (V, A), V = N U {0}, travel
times t;; for (i,j) € A

Output: Feasible solution xpes: of cost zpest

1. Initialization. Define T = {rmin, ..., max} as the list of possible departure times
for the first trip of the depot as all the (integer) instants between the minimum
and maximum release dates, where rmin = min;eny 7; and rmax = max;en 7.
Initialize the cache of TSP solutions mem = {}, indexed by subsets of vertices;
current solution information zpest = 00 and Tpest = nil.

2. Iteration. If T is non-empty, get the next t € T and define the current solution
x =< 0 > with makespan z = t. Set NS = N as the set of non-assigned customers.

2.1 Augziliary TSP. Compute S = {v € NS | r, < z} as the set of non-visited
customers ready to be delivered at time z. Let Zg be the auxiliary TSP instance
defined by the subset of vertices S U {0}. If mem/[S] is defined, retrieve the
optimal solution z¢sp and its objective value z;sp. Otherwise, solve the auxiliary
TSP instance, obtain z:sp and z¢sp, and update mem/[S] = (x¢sp, 2tsp) for future
iterations. Update the current solution * = = + z¢sp and 2 = z + 2¢p as the
current makespan.

2.2 Feasibility check. Update NS = NS\ S. If NS is non-empty, update z =
max{z, miny,ens{r.}}, and return to Step 2.

3. Termination. If z < zpest, then update zpest = z and Tpest = x. Set T =T\ {t}. If
T is non-empty, go to Step 2. Otherwise, return the best solution found xpest, Zpest-

Algorithm 1 starts with the set T of all the (integer) time instants between
the minimum and maximum release dates, as there is no need to consider values
outside that range. During the execution, it is possible for a TSP instance to
appear as an auxiliary subproblem more than once. In order to avoid solving the
same subproblem several times and speed-up the execution, the algorithm stores
a table that maps TSP instances (i.e., subsets of vertices) to optimal solutions.
In Step 2, every time a TSP is formulated, this table is first examined to check
whether the same instance has been solved previously and, in that case, retrieves
the optimal solution. As the number of vertices n is at most 50, this table can
be queried and modified efficiently.

We remark that it is not sufficient to consider in T only the release dates
of the vertices, since eventually a better solution can be obtained by initially
departing from the depot at other time. For example, consider an instance with
3 customers where ¢;; = 2 for all (¢,j) € A. Let the release dates be 0, 4
and 5, respectively. Then, the best solution that the Time-Explorer heuristic
can provide is obtained by departing at ¢ = 1, which is not a release date.

10



However, during the execution it is possible to identify time instants that will
not lead to an improving solution and, therefore, can be removed from T as
starting values in Step 3. One of those situations involves the first auxiliary TSP
considered and eventual waiting times. Let ¢ be the current initial departure
time from the depot and 7 the return to the depot after the first tour. If the
latter occurs before the minimum release date of the non-visited vertices, i.e.
T < min;e g 75, the solution would include waiting times. Then, the heuristic
can remove the interval [¢,t 4+ min;e yg r; — 7] from T since the subset of vertices
in the underlying first TSP instance remains unchanged for those time instants.
A second situation arises when the initial departure time ¢ occurs before the
maximum release date, but the return to the depot 7 afterwards, i.e., t < rpax <
7. In these cases, the heuristic does not need to consider initial departures
t’ > t since the subset of vertices in the underlying first TSP instance remains
unchanged for those time instants. Therefore, the subsequent TSP instances, if
any, also remain unchanged and only lead to solutions at most as good as the
one obtained from the initial depart at ¢ in the best case.

In practice, Concorde [2] is used to solve the auxiliary TSP instances, and a
feasible solution is guaranteed (e.g., departing initially at ¢ = 7yax). The speed-
up is driven mostly by exploiting the cache of TSP solutions, and the heuristic
runs in less than one second per instance. These running times to compute an
initial upper bound are negligible in the context of the BC algorithm developed,
specially for the most demanding instances.

4.2. Cutting planes

The family of GCS inequalities (20) is exponential, and therefore we incorpo-
rate them as cuts through the corresponding separation algorithm. In this case,
violated cuts can be found by solving a sequence of polynomial-time max-flow
sub-problems (see, e.g. Taccari [18]). Constraints (20) are needed to ensure the
correctness of the formulation, so we need to incorporate them as lazy-cuts, i.e.,
on every integer solution. Moreover, such constraints can be used to tighten the
model by removing fractional points. In particular, we found that this type of
cuts are more effective when added at the root node, while they downgrade the
performance when added during node enumeration given that the trade-off be-
tween time required to separate them and improvement in the linear relaxation
is not convenient. As a consequence, the upper limit on the number of cutting
plane passes is set to 100 in the root node, and to 20 (i.e., CPLEX’s default
value) on the other nodes.

4.3. Branching scheme

During tree enumeration, decisions are made about which variable to choose
to branch on at each node. A custom branching is considered by assigning
priorities to variables (25) and (26). Variables y§ have highest priority as they
determine whether a new route is used. Next in priority order, we have variables
yf for ¢ > 0, as they decide if a customer is served or not in the route k. Finally,
flow variables xfj have the lowest priority. Within each group, all variables have

11



the same priority and we let CPLEX apply its default criterion for the variable
selection.

5. Computational results

5.1. Experimental setup

The proposed BC algorithm is evaluated on the instances considered in
Archetti et al. [4] which are derived from Solomon [17]. These are adapted
to the TSP-rd(time) by discarding time windows and considering different sets
of clustered located (C1, C2), randomly located (R1) and a mix of randomly lo-
cated and clustered located (RC1) customers. Sets R2 and RC?2 were discarded
because they have the same coordinates as R1 and RC1, respectively, and they
only differ in the time windows information.

The instances are characterized by 3 values:

e n: number of customers

e drgp: optimal TSP value of the underlying graph

e [3: parameter that controls the width of the interval in which release dates
are defined

For each instance, the original data is truncated after n + 1 nodes, and
the first node is set to be the depot. The release date of the i-th customer
is determined by uniformly sampling an integer from [0, 8 X drgsp]. Instances
are generated with 8 = {0.5, 1, 1.5, 2, 2.5, 3} resulting in 24 instances for each
n = {10, 15, 20, 25, 30, 50}.

In order to extend our results, we use the same approach to generate in-
stances for n = {35, 40, 45}, resulting in 72 new instances. All instances are
publicly available at github.com/agusmontero/tsprd.

The algorithms are implemented in the C++ programming language using
g++ 7.5.0 and an Ubuntu 18.04 LTS as operating system. The experiments are
run on a workstation with an Intel Core i7-8700 3.20 GHz processor with 32 GB
of RAM. CPLEX 12.9 is used as optimization solver!. We set the traditional
branch and cut search strategy? and impose a total time limit of 3600 seconds
for the execution time of each instance. The source code is available at github.
com/agusmontero/tsprd>.

5.2. Comparison of formulations

We begin by comparing the performance of the AJI++ model with the ap-
proach proposed in Archetti et al. [4] which is, to the best of our knowledge, the
best exact method for the TSP-rd(time) in the scientific literature. For the sake
of simplicity, in the remaining of the paper we refer to the methods presented

n particular, cuts described in Section 4.2 are added through CPLEX’s legacy callbacks.
2https://www.ibm.com/docs/en/icos/12.9.07topic=enumerations-ilocplexmipsearch
3Upon acceptance of the article.
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through the article both as formulations and as algorithms. The former refer-
ences the corresponding MILP model and the later the BC algorithm based on
such MILP formulation. The following methods are considered:

e AFMG: MILP model proposed in Archetti et al. [4];

e AJI++: MILP formulation from Section 3.2 incorporating the GCS for the
subtour elimination, without initial heuristic and CPLEX default branch-

ing strategy.

To account for the different machines used?, time units are scaled in AJI++.
Table 1 reports the number of instances solved to proven optimality within 3600
seconds considering the time scaling. Our model is able to solve all instances
up to n = 20, 83% of the instances for n = 25 and 50% of the instances for
n = 30 within the time limit. Moreover, AJI++ is also able to solve a subset of
instances up to n = 50. It improves the best known results® of Archetti et al. [4],
for which authors report to solve 96%, 54% and 29%, respectively, highlighting
the effectiveness of our proposal.

Building upon this initial comparison regarding the effectiveness, we focus on
the AJI++ to assess regarding the impact of the different components affecting
the BC algorithm.

Source n AFMG AJT+
Solved % Solved Solved % Solved
10 24 100% 24 100%
15 24 100% 24 100%
Archetti et al. [4] 20 23 96% 24 100%
25 13 54% 20 83%
30 7 29% 12 50%
35 n.r. n.r. 7 29%
New instances 40 n.r. n.r. 3 13%
45 n.r. n.r. 4 17%
Archetti et al. [4] 50 n.T. n.r. 2 8%

Table 1: Number of TSP-rd(time) instances solved to proven optimality within 3600 seconds.
Instances with n > 35 are not reported in Archetti et al. [4] which is indicated as n.r.

5.8. Impact of subtour elimination strategies

In this section, we focus on the impact of different alternatives to forbid
subtours within each route in the solution. For this purpose, we consider the
following variants of the AJI++ formulation:

e AJI: MILP formulation described in Section 3.2. We emphasize that con-
straints (29) and (30) are not part of this formulation.

4Our processor is 43% faster than the one used in Archetti et al. [4] according to the CPU

Mark index from www.cpubenchmark.net [1]
5Updated results w.r.t. to the ones published in Archetti et al. [4] were provided in a

private communication with the authors.
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e AJI poly-subtours: AJI formulation but replacing the GCS (20) by the
polynomial family of constraints (4) - (5) used by Archetti et al. [4] for
the AFMG model.

e AJI++ poly-subtours: Same modification as in the previous case, but for
the AJI++ formulation. Observe that the difference between these two
variants is the presence of constraints (29) and (30).

Table 2 compares these three variants with the AJI++ formulation considered in
Section 5.2. The key to the table is the following: the number of instances solved
to proven optimality before the time limit (Solved), grouped by n; the average
time (in seconds) required for the solved instances by the corresponding method,
also grouped by n (Time); the average percentage gap of the best lower bound
b found by the corresponding method in the root node of the BC with respect
to the best known solution (bks) for that instance, computed as |bks — Ib] X 102
(Root); the average percentage gap found at the end of the execution of the BC
algorithm (GAP).

The main message from Table 2 is that GCS-based subtour elimination con-
straints (20), when combined with constraints (29) and (30), result in the best
method. More specifically, AJI++ solves 34 more instances to optimality within
the imposed time limit than AJI++ poly-subtours in shorter computation times
on average, and outperforming the other variants as well. This behavior can
also be observed when considering the other two more basic variants that do not
consider the valid inequalities proposed in Section 3.3. In this case, AJI solves
5 more instances to optimality than AJI poly-subtours within the time limit.

AJI poly-subtours AJI AJI++ poly-subtours

AJl++

" Solved Time Root GAP Solved Time Root GAP Solved Time Root GAP Solved Time Root GAP

10 24 2 6.82% 0.00% 24 2 10.68% 0.00% 24 1 2.76% 0.00% 24
15 24 311 15.41% 0.00% 24 344 14.43% 0.00% 24 39 12.06% 0.00% 24

1 6.85% 0.00%
12 10.41% 0.00%

20 9 1004 20.18% 3.09% 11 559 16.52% 2.81% 13 368 16.58% 1.06% 24 223 13.38% 0.00%
25 3 1206 19.12% 9.06% 5 1305 15.96% 6.65% 6 1013 15.65% 4.78% 20 1102 13.35% 0.14%
30 1 2920 23.68% 16.03% 2 803 19.30% 10.42% 3 817 18.61% 10.46% 12 678 15.52% 1.62%

Table 2: Impact of adding GCS (20) subtour elimination constraints in combination with
inequalities (29) and (30) when solving AJI++. Note that Column AJI++ corresponds to the
same algorithm of Column AJI++ in Table 1. The difference that can be observed in Column

Solved across the aforementioned tables is only due to the scaling needed in Table 1 to
account for the different machine used in Archetti et al. [4]

This experiment also provides evidence on the impact of the valid inequal-
ities proposed in Section 3.3. The results indicate that the incorporation of
constraints (29) and (30) has a very positive effect, improving the root average
percentage gap, solving more instances when comparing polynomial-size subtour
elimination and GCS based formulation independently (9 for AJI poly-subtour
vs. AJI++ poly-subtour; 38 for AJI vs. AJI++) in shorter average computation
times and with smaller average final percentage gaps. The only exception is
the case when n = 10, in which the root average percentage gap increases on
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GCS based formulations. Based on additional experiments, we identified that
the difference may be caused by a smaller number of general purpose cuts in-
corporated by CPLEX during the execution of the algorithm. Overall, AJI++
outperforms the other variants. Finally, we remark that this experiment is lim-
ited to instances having n < 30 as the other variants only solve a very limited
number of instances to optimality for larger values of n.

5.4. Impact of the initial solution and the tailored branching strategy

Building upon the results in the previous section, we further investigate the
impact of the other components developed for the BC algorithm. Using AJI++
as a baseline, we evaluate and quantify the benefit of incorporating the initial
heuristic and the tailored branching strategy when considered in an isolated
fashion as well as combined. For this experiment, we consider the following
variants:

e AJI++1S: AJI++ using an initial feasible solution obtained by Algorithm 1
and CPLEX default branching scheme.

e AJI++ Br: AJI++ using the tailored branching strategy described in Sec-
tion 4.3. No initial solution considered.

e AJI++ IS+Br: A combination of the previous two variants, i.e. the AJI++
model using both the initial feasible solution obtained by Algorithm 1 and
the tailored branching strategy from Section 4.3.

Table 3 summarizes the results obtained for these three variants as well as
AJI++ over all the instances. The key to the table remains the same as in
Table 2. Although it is not explicitly reported, Algorithm 1 is always able to
obtain an initial feasible solution is less than 1 second with an average quality
of 4.18% w.r.t. the best known solutions for n € {10, ..., 50}.

If considered independently, only AJI++ Br show improvements, solving 20
additional instances and reducing the average GAP by 21%. For AJI++ IS, the
addition of the warm-start only helps when combined with the tailored branch-
ing, and often negatively impacts the performance when applied independently
(see, e.g., the case for n = 25). In AJI++ IS4Br, both features are activated
and show further improvements by solving 3 additional instances and reducing
the average GAP by 31% w.r.t. AJI++.

Finally, we remark that Archetti et al.[4] also generated instances for n =
100. Although the authors do not report results obtained with an exact al-
gorithm for such instances, it is worth mentioning that Algorithm 1 is able to
compute feasible initial solutions for all instances with n = 100. Briefly, it re-
quires 13 seconds on average, having an average quality of 5.26% w.r.t. to the
best known solutions reported in Archetti et al. [4], which are obtained via more
sophisticated heuristic approaches. Regarding AJI++ IS+Br, we comment that
it is not able to solve any instance for n = 100 within 3600 seconds.

Overall, the formulation AJI++ proves to be, in combination with the initial
heuristic and the branching strategy, improving the current benchmark regard-
ing exact algorithm in the literature studied by Archetti et al. [4]. Based on this
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AJT++ AJI++ 4 IS AJI++ 4 Br AJI++ 4+ IS+Br
n Solved Time GAP Solved Time GAP Solved Time GAP Solved Time GAP

10 24 1 0.00% 24 1 0.00% 24 1 0.00% 24 1 0.00%
15 24 12 0.00% 24 8 0.00% 24 5  0.00% 24 4 0.00%
20 24 223  0.00% 24 180 0.00% 24 43 0.00% 24 38 0.00%
25 20 1102 0.14% 15 616 0.53% 23 476 0.03% 24 445 0.00%
30 12 678 1.62% 11 443 2.29% 18 745 0.46% 19 661 0.48%
35 7 1365 7.35% 7 759 8.26% 13 1305 4.07% 10 717 4.33%
40 3 914 12.06% 3 743 9.70% 8 1571 8.16% 8 1194 7.85%
45 4 2068 14.54% 3 1281 14.90% 4 1706 12.81% 6 1702 10.57%
50 2 2433 17.85% 3 2544 16.55% 2 1849 16.92% 4 2302 13.57%

Table 3: Impact of providing an initial solution to the BC as described in Section 4.1 in
combination with the custom branching proposed in Section 4.3.

assessment, we select AJI++ IS+Br as the baseline for the remaining experiments
in the paper.

5.5. Analyzing the impact of release dates

Finally, we shift the focus to provide some insights regarding the efficiency
of the algorithms as well as for the structure of the optimal solutions in terms of
the characteristics of the instances. By construction, the release dates depend
on the parameter 5. Figure 3 illustrates the behavior for the completion time
of the optimal solutions and the computation time required by AJI++ IS+Br
for the instances with n = 20 as a function of 8 and plotted by instance type
(see Section 5.1). As expected, the completion time increases as [ increases,
meaning that the more spread out release dates are (i.e., higher value of ), the
later the distribution will be completed. In particular, clustered instances have
the lower completion time. This is consistent with the behaviour we observe on
the number of routes. Although not explicitly reported, on average, 2 additional
routes are required in the optimal solution per additional unit of 8. Therefore, as
[ increases, there is a preference for visiting customers as soon as they become
available. We also observe that the time required by the BC increases as (8
increases. A similar behaviour is reported by Archetti et al. [4].
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Figure 3: Completion time (left) and BC time in seconds (right) w.r.t. the value of
parameter [ in instances with n = 20 solved by AJI++ IS+Br.
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6. TSP-rd variants

Given that release dates are relatively new in the literature, it is interesting
to incorporate them and study their impact from an algorithmic perspective
into other problem variants. The formulation AJI++ from Section 3.2 can be
adapted to other variants of the TSP-rd considering different objective functions
and operational constraints. In this section we explore such adaptations. In all
cases, an adapted version of the Time-Explorer heuristic described in Section
4.1 and the custom branching scheme proposed in Section 4.3 are used.

6.1. TSP-rd(distance)

Archetti et al. [5] introduce the TSP-rd(distance) as a variant of the TSP-
rd(time) in which an upper bound, called Tiax, is imposed to the completion
time and the objective is to minimize the total traveled distance. Then, in
AJI++ the objective (17) is replaced by:

minz Z Cijxi‘ﬂj (31)

keEK (i,j)€EA

where ¢;; denotes the distance incurred when traveling the edge (¢, 7). Note that
the distance c;; and the travel time ¢;; do not need to be the same. However, in
Archetti et al. [5] the variant TSP-rd(distance) is introduced assuming ¢;; = t;;
for the sake of simplicity. In addition, the following constraint is added to model
the deadline Tp,ax on the completion time:

t\K\Jrl < Thnax (32)

To illustrate how the TSP-rd(time) and TSP-rd(distance) objectives may
differ, consider the example depicted in Figure 4 where c;; = ¢;; for every edge

(4,5)-

T = 0 ™ = 0
10 10
10
T2 = 20
Thna = 50 ner @
10 10
(a) Solution 1 (b) Solution 2
Completion-time: 50 Completion-time: 40
Distance: 30 Distance: 40

Figure 4: Optimal solutions for TSP-rd(distance) (left) and TSP-rd(time) (right), for an
instance with two customers {1, 2} and Tmax = 50 for the case of TSP-rd(distance).

17



Solution (4a) consists of one route which departs at time 20 = max{ry, 72}
and completes the distribution at time 50. The waiting time before departing
is 20 and the total traveled distance is 30. Solution (4b) consist of two routes in
which the first one departs at time 0, visits Customer 1 (r; = 0), returns to the
depot at time 20, and then departs to visit Customer 2 (whose release date is
ro = 20). The total completion time is 40 as there is no waiting time, and the
traveled distance is also 40. Solution (4a) reduces the traveled distance at the
expense of a higher completion time, while Solution (4b) increases the traveled
distance but reduces the completion time. This highlights how the different
objective functions (i.e., completion-time minimization and traveled-distance
minimization) may shape the solutions. Note that minimizing completion time,
both in AFMG and AJI++, does not guarantee the minimization of traveled
distance.

In order to evaluate the adapted AJI++ formulation for the TSP-rd(distance),
the instances presented in Section 5.1 require the additional definition of Ti,ax,
i.e., a new constraint for the distribution that imposes a deadline for the to-
tal completion time. In this regard, we introduce the interval of interesting
deadlines for the TSP-rd(distance), depicted in Figure 5. Let I; denote the
completion time of the optimal solution for the TSP-rd(time), rmnax the latest
release date, and zrgp the traveled distance of the optimal TSP solution when
discarding the release dates.

Interval of interesting deadlines

t t t
0 l1=2TSP_rd(time) l2="max+2TSP

Figure 5: Interval of interesting deadlines for the TSP-rd(distance).

Proposition 3. Let Z be an instance of the TSP-rd(distance). If Tyasw < 1,
then T is infeasible.

Proof. Assume T« < l1 and let x be a feasible solution for the associated TSP-
rd(distance) with completion-time z(x). If the underlying graph G is considered,
then z is also a feasible solution for the TSP-rd(time) in G with completion-time
z(x) < Tax < l1, which is a contradiction. O

Values of Tiax > Tmax+21sp will not be of interest. The deadline becomes
unrestrictive as the solution minimizing travel distance can be obtained by solv-
ing the underlying TSP instance (without release dates) as the triangle inequal-
ity holds.

For every TSP-rd(time) instance, the start and ending of the quintiles of the
interval of interesting deadlines were selected as Tyax. The greatest value for
which the optimal solution of the associated TSP-rd(time) is known is n = 30
and, as a result, instances are generated for each n € {25, 30, 35, 40, 45, 50}
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using the best known solution for values of n > 35,, resulting in a total of
720 instances. Similarly to Archetti et al.[4], for the sake of simplicity, in all
instances we set ¢;; = t;; for all (4,7) € A.

The adapted version of AJI++ to TSP-rd(distance) includes the straightfor-
ward adaptation of Algorithm 1 used to obtain an initial feasible solution, in
which instances having total completion time greater than T, are discarded.

Table 4 reports the computational results obtained on the aforementioned
TSP-rd(distance) instances. For this experiment, we further indicate in column
Tmax QU the quintile of the interval of interesting deadlines.

The main insight of Table 4 is that the time required to solve instances
decreases as T},,x increases. For example, Figure 7 shows such trend on instances
C101 and R101 for 8 = 2.5 and n = 30, in which the time required by the BC
is reported (log-scale) for multiple values of Tinax. Intuitively, it makes sense
as the problem becomes closer to a pure TSP. Moreover, the problem suffers
from allowing multiple solutions with the same traveled distance but different
completion time as depicted in Figure 6. As T),,x decreases, the number of such
solutions decreases, arguably making less likely to encounter feasible primal
solutions during the enumeration of the BC tree. In this regard, we observe
that the computation time required to find the first feasible solution during the
BC is larger for small values of Ti,,x. In addition, we observe that the adapted
version of Algorithm 1 only finds feasible solutions for 68% of the instances, and
in particular, only in 2 out of 48 instances for values of n € {25, 30} in which
Tmax = l1. It would be interesting to explore more sophisticated methods to
compute initial solutions, aiming to reduce the time required to solve instances
with tight values of Tiax-

Regarding the number of instances solved, only 30 instances out of the 720
considered are not solved in less than 3600 seconds (see Table 4). We remark
that 28 out of the 30 unsolved instances have Ty, QU= 1. Furthermore, in 37%
of them, neither Algorithm 1 nor the BC were able to find a feasible solution.

Figure 6: In the context of the TSP-rd(distance), multiple solutions with the same traveled
distance d (but different completion-time z1, z2 and z3), may be obtained by shifting the
departure ¢ to t{, and t{ respectively.

6.2. Capacitated TSP-rd(time)

Another natural extension considers a single capacitated vehicle, imposing a
limit on the total demand to be delivered in each route. Let C\y.x be the capacity
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n  Tmax QU Solved Time

1 24 55
2 24 8
25 3 24 4
4 24 3
5 24 2
1 22 462
2 24 41
30 3 24 13
4 24 8
5 24 3
1 21 745
2 24 86
35 3 24 23
4 24 19
5 24 8
1 17 673
2 24 197
40 3 24 46
4 24 34
5 24 17
1 17 565
2 23 358
45 3 24 105
4 24 62
5 24 35
1 15 434
2 23 489
50 3 24 141
4 24 111
5 24 64

Table 4: Computational results on TSP-rd(distance) instances.
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Figure 7: BC time (log-scale) in seconds w.r.t. the value of parameter Timax on
TSP-rd(distance) instances of type C101 and R101 for 8 = 2.5 and n = 30.

of the vehicle. The following constraints are added to AJI++ formulation from
Section 3.2 to model the limit imposed by the capacity:

Yo yf < Coaxys VEEK (33)
i€EN

The value ¢; is a one-dimensional representation of the good (e.g., the weight) to
be delivered to customer 7 € N. It is assumed w.l.o.g. that ¢; < Cpax Vi € N.
The variable y§ on the right-hand-side is not actually needed, but improves the
linear relaxation of the model.

Remark 4. Let 7 be an instance of the Capacitated TSP-rd(time). Then,
Property 1 holds.

Remark 4 is deduced from the forward shift depicted in Figure 2 which is
also feasible for the Capacitated TSP-rd(time). Therefore, constraints (22) are
valid as well.

Remark 5. Let T be an instance of the Capacitated TSP-rd(time). Then,
Property 2 does not hold.

Remark 5 can be easily proved by considering an instance where more than
one route is needed after ry., due to the capacity of the vehicle. As a conse-
quence, constraints (24) must be removed for the TSP-rd(distance).
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Moreover, it is possible to tighten the formulation with the following con-
straint:

2 i
JrnelEER] (34)

The rationale is to explicitly provide a lower bound on the number of routes
that the vehicle needs to perform.

Instances for the Capacitated TSP-rd(time) are obtained by setting Ciax =
100 and assigning to each customer a uniformly random integer ¢; in [1, Cax]
for every TSP-rd(time) instance with n € {15,20,25,30}. The adapted version
of AJI++ is run over all the instances and an initial solution is computed with
an extension of Algorithm 1 that checks the remaining capacity of the vehicle
before adding every customer for routing. It is guaranteed that an initial feasible
solution is found.

Table 5 reports columns Solved, Time and GAP as in Table 2. In addi-
tion to each value of n, the instance type is reported to highlight a trend mostly
observed for the Capacitated TSP-rd(time). The main message is that the prob-
lem is more challenging than the uncapacitated version, i.e. the TSP-rd(time).
The number of instances solved decreases from 24 to 19 for n = 20 and from
24 to 4 for n = 25. Moreover, for n = 30 no instance is solved to proven opti-
mality within the time limit, and the final average GAP is about 12.95%. The
number of routes also increased by 2.55 times w.r.t. the uncapacitated version.
Regarding the instance type, it is observed that the number of unsolved clus-
tered instances (i.e., C101 and C201) is bigger than non-clustered instances for
n € {20, 25}. For n = 30, the average GAP is also higher on pure clustered
instance types. This suggests that the more clustered the customers, the more
challenging the TSP-rd(time) instances become when a vehicle capacity and
random weights are incorporated. Additional investigations would be needed in
this regard. Furthermore, we examine in Tables 6 and 7 the impact of 5 and
Cmax both on C101 (clustered) and R101 (non-clustered) instances, respectively.
An extended set of instances is generated for n = 20 varying the vehicle capac-
ity Chnax = {100, 120, ..., 200}, for 8 € {1, 2, 3}, maintaining the demand of
a given customer fixed across all different combinations, resulting in 36 new in-
stances. The BC time is reported on solved instances and the optimality GAP
is used on instances that are not solved before the time limit. Table 6 shows 10
solved clustered instances out of 18, whereas for non-clustered instances such
number increases to 16 out of 18 (see Table 7). In particular, given a fixed value
of Cpyax on C101 instances (see Table 6), both the GAP and Time decrease as /3
increases, which is inverted w.r.t. to the pattern reported for the TSP-rd(time)
(see Figure 3). Moreover, such trend is less evident on R101 instances (see, e.g.,
cases Chax € {100,180} in Table 7). Further investigation would be needed
to elucidate the underlying factors responsible of the observed trend inversion.
Finally, we remark that the model does not incorporate constraints that link
both the vehicle capacity and the weights of goods with the release dates, and
it would be interesting to study valid inequalities that exploit this connection
to enhance the formulation.
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n  Instance Solved Time GAP

C101 6 6 -

C201 6 9 -

15 R101 6 6 -
RC101 6 8 -

C101 3 233 1.93%

C201 5 1009 1.90%

20 R101 5 278 2.48%
RC101 6 460 -

C101 0 - 6.61%

C201 0 - 7.62%

25 R101 2 1670 4.21%
RC101 2 1378 6.69%

C101 0 - 14.8™%

C201 0 - 14.31%

30 R101 0 - 16.08%
RC101 0 - 6.55%

Table 5: Computational results on Capacitated TSP-rd(time) instances.

Chmax

A 100 120 140 160 180 200
1 241% 2.84% 3.04% 1292 3271 358
2.08% 2.41% 1.21% 156 235 121
3 0.96% 2.12% 372 187 75 66

]

Table 6: Results on Capacitated TSP-rd(time) instances of type C101 for n = 20 segmented
by value of 8 and Cmax. The optimality GAP is reported on unsolved instances, whereas the
BC time is presented (in seconds) for instances solved before the time limit.

Chax

A 100 120 140 160 180 200
1 248% 3.97% 2335 1014 283 251
2 356 2353 226 320 564 249
3 1055 325 116 237 124 90

Table 7: Results on Capacitated TSP-rd(time) instances of type R101 for n = 20 segmented
by value of 8 and Cmax. The optimality GAP is reported on unsolved instances, whereas the
BC time is presented (in seconds) for instances solved before the time limit.
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6.3. Capacitated TSP-rd(distance)

This version combines the Capacitated TSP-rd and the TSP-rd(distance).
Instances require the addition of the value Ty,ax to impose a deadline for the total
completion time. Thus, the interval of interesting deadlines (see Figure 5) is
replaced with l; = 2oTgp-rd(time), i-6- the completion time of the optimal solution
of the Capacitated TSP-rd(time), and ly = rmax+2zorsp which corresponds to
the value of the optimal solution of the Capacitated TSP where the vehicle
departs at 1. and may require to perform multiple routes. A total of 120
instances are generated from each Capacitated TSP-rd(time) instance for n €
{10, 15, 20} where the optimal Capacitated TSP-rd(time) solution is known®.

Table 8 shows the results similarly to Table 4, including also the average final
GAP for instances not solved within the time limit. We note that for n = 10 all
instances are solved in 1 second on average, while for n = 15 instances require
15 seconds on average. Several instances remain unsolved for n = 20, where
only 64 out of 120 instances are solved to proven optimality. Regarding exe-
cution time, for n = 20 it takes on average 569 seconds, which is significantly
larger in comparison with the uncapactitated version, in which all instances are
solved in 2 seconds on average. This suggest, once again, that incorporating the
vehicle capacity together with random weights make the problem more challeng-
ing than the TSP-rd(distance). Finally, it is worth mentioning that, unlike the
corresponding uncapacitated variant, the trend regarding the different values of
Tmax i weaker, but still noticeable.

n  Tmax QU Solved Time GAP

1 24 0 -
2 24 0 -
10 3 24 1 -
4 24 1 -
5 24 1 -
1 24 10 -
2 24 11 -
15 3 24 16 -
4 24 25 -
5 24 24 -
1 13 492 4.61%
2 14 412 4.42%
20 3 13 578 4.67%
4 12 547  4.55%
5 12 817 4.81%

Table 8: Computational results on Capacitated TSP-rd(distance) instances.

6 All instances with n = 20 are solved to optimality by running the adapted AJI++ with a
time limit of 12 hours.
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6.4. Prize-Collecting TSP-rd(time)

In this section we introduce the Prize-Collecting variant of the TSP-rd(time).
We adapt the definition stated in Vansteenwegen et al. [19] to define the Prize-
Collecting TSP-rd(time) where the objective is to find a set of routes performed
by a single uncapacitated vehicle that minimizes the total completion time, with
the constraint that the total collected profit is at least py,,,. Each customer ¢ €
N contributes with a profit p; > 0, and it is assumed that p,,;, can be collected
by visiting all customers in the worst case, i.e., Y .. n Pi > Pmin. However, not
all customers need to be visited, but still the constraints imposed by the release
dates have to be satisfied. A first adaptation of the AJI++ formulation to the
Prize-Collecting TSP-rd(time) involves the constraints (18), that are replaced
by

dyF<1 VieN (35)
keK

The following result shows that it is not necessary to include such constraints.
Proposition 6. Constraints (30) and (26) imply constraints (35).

Proof. Given i € N, consider constraint (30) for k = |K| and note that the left
hand side is the same as in (35). Thus, if the left hand side is 0, the inequality
is trivially satisfied. Otherwise, vertex i is visited by trip k € K and the right
hand side of (30) becomes 1, thus obtaining (35). O

The following inequality must be further incorporated to account for the
total profit collected:

keK ieN

As regards the instances, we incorporate profits by following Rule 3 in Bérubé

et al. [9]:
to;
pi =1+ {99 H

where 0 = max;cn to;. The rule generates hard instances where larger profits
are associated with customers that are far from the depot. The parameter pp,in
is defined as pmin = @ ;o pi, With a € {0.25,0.50,0.75,0.90}, and instances
are generated for n € {20, 25, 30, 35, 40}, resulting in a total of 480 instances.

We also adapted Algorithm 1 so that no additional customers are considered
once the collected profit is greater than p,,;,. Given that Zie N Pi = Pmin, a0
initial feasible solution is guaranteed.

Table 9 reports columns Solved, Time and GAP as in Table 2. Results are
grouped by n and a. For n = 20 all instances are solved to proven optimality
in 12 seconds on average. For n = 25, only two instances cannot be solved
within the time limit, having a final GAP of 1.87% and 1.45% respectively.
For n = 30 the number of solved instances is 80 out of 96, with an average
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GAP of 5.49%. The number of solved instances decreases to 66 (avg. GAP of
11.50%) and 55 (avg. GAP of 19.20%) for n = 35 and n = 40, respectively.
Regarding execution time of the BC algorithm, it can be noted that it increases
as « increases. This is reasonable given that the higher the value of parameter
«, the more customers the vehicle needs to visit to satisfy the minimum profit
imposed by pmin. Therefore, as o increases, the problem becomes closer to the
TSP-rd(time). Figure 8 shows the aforementioned trend on BC time (log-scale)
both on clustered (C101) and non-clustered (R101) instances for n = 25, across
values of 8 € {1, 2, 3}.

n « Solved Time GAP

0.25 24 1 -
0.50 24 4 -
20 075 24 22 -
0.90 24 21 -
0.25 24 3 -
95 0.50 24 18 -
0.75 24 290 -
0.90 22 432 1.64%
0.25 24 9 -
30 0-50 24 82 -
0.75 17 548  4.97%
0.90 15 770 5.25%
0.25 24 26 -
35 050 22 226 3.39%
0.75 11 1012 11.34%
0.90 9 518 12.73%
0.25 24 53 -
40 050 18 1094  7.99%
0.75 6 701  21.86%
0.90 7 1193 21.80%

Table 9: Computational results on
Prize-Collecting TSP-rd(time) instances.

6.5. Prize-Collecting TSP-rd(distance)

Finally, we consider the variant that minimizes the total traveled distance,
formulated as an adaptation of the Prize-Collecting TSP-rd(time) proposed in
Section 6.4. The objective function is defined by equation (31), and constraint
(32) is incorporated to impose a deadline for the completion time. Instances
can be generated in a similar fashion by replacing the interval of interesting
deadlines from Figure 5 with [; being the completion time of the optimal solu-
tion for the Prize-Collecting TSP-rd(time), and Iy corresponding to the value
of the optimal solution of the Prize-Collecting TSP departing at rpax, both
using the same underlying network. Once again, the motivation is to evaluate
interesting values of Ti.x, Where values of Ty,.x < {1 will result in infeasible
instances for the Prize-Collecting TSP-rd(distance), and values of Typax> o in-
duce instances where release dates are not relevant. Instances are generated for
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Figure 8: BC time (log scale) in seconds w.r.t. the value of parameter o on Prize-Collecting
TSP-rd(time) instances of type C101 and R101 for 8 € {1, 2, 3} and n = 25.

n € {20, 25, 30, 35, 40} based on Prize-Collecting TSP-rd(time) instances.”.

Table 10 reports the average execution time required by the BC algorithm
over the solved instances, grouped by n, a and the quintiles of Ti.x. Although
it is not explicitly reported, the number of unsolved instances is 5 for n = 30, 7
for n = 35 and 22 for n = 40, resulting in 33 out of a total of 2400 instances.
Furthermore, 32 of them have Tihax QU = 1 and only 1 has Th,.x QU = 2 (for
n = 40). The main insight of the table is that the required time increases as
« increases and T,,,« decreases. This is consistent with what is observed for
the TSP-rd(distance), i.e., the lower the T},.x, the harder the problem instance,
and in variant Prize-Collecting TSP-rd(time), where higher values of a result
in more time required to solve the problem instance. Regarding the unsolved
instances, in 14 out of 33 the BC algorithm is not able to provide a primal
feasible solution within the time limit.

"The BC considers an extended time limit of 12 hours for n € {20, 25, 30} in order to solve
the Prize-Collecting TSP-rd(time), and only 4 instances with n = 30 remained unsolved with
an average GAP of 1.24%. In all cases, the best objective found so far is used to generate
Prize-Collecting TSP-rd(distance) instances.
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Tomax QU
noo«a T 2 3 4 5
0.25 0 0 T 1 1
0.50 2 1 1 1 1
20 075 7 3 2 1 1
0.90 6 3 2 2 1
0.25 2 2 2 2 3
95 050 10 4 3 3 3
0.75 181 7 5 3 3
0.90 208 16 7 5 2
0.25 1 1 6 7 6
50 0-50 62 12 9 9 6
075 2151 28 16 10 5
0.90 2070 67 16 11 5
0.25 7 9 11 14 15
55 050 371 28 22 19 12
0.75 1204 79 34 20 12
0.0 1175 134 33 22 13
0.25 25 17 22 30 30
4 050 793 75 46 37 27

0.75 1876 294 104 44 24
0.90 2269 507 96 42 26

Table 10: Time (in seconds) required to solve Prize-Collecting T'SP-rd(distance)
instances segmented by parameters o and Tmax-

7. Conclusions and future research

In this paper, we propose an alternative formulation for the Traveling Sales-
man Problem with release dates and completion time minimization, which we
use to develop an exact algorithm following a branch and cut scheme. The algo-
rithm is able to solve to optimality instances with up to 30 customers within one
hour, outperforming current benchmark from the literature studied by Archetti
et al. [4]. An extended set of instances is proposed and our model proved to be
able to solve several instances up to 50 nodes. We further extend our formulation
to account for other relevant variants of the TSP-rd considering a capacitated
vehicle, profits to be collected if a customer is visited and the minimization of
the total traveled distance as an alternative objective function to the comple-
tion time. We explore variants, analyze some properties and report extensive
computational results highlighting the most relevant trends for each case. The
objective is not only to find methodological and algorithmic improvements but
to also understand the difficulty of each variant. These models may be of value
for practitioners seeking for a flexible exact algorithm for Traveling Salesman
Problems with release dates. We also aim at opening the discussion around
benchmark instances and MILP formulations, by releasing the source code to
foster research on these problems.

Several research directions are worth considering as next steps. It would be
interesting to perform an in-depth analysis for each variant, as well as strength-
ening each model with domain specific cuts. Other variants can also be explored,
for instance the Profitable TSP-rd should be straightforward to obtain from the
AJI formulation. More complex frameworks may be explored, such as Paradiso
et al. [14] for the TSP-rd, which would be interesting to evaluate the feasibility
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of adapting it to the TSP-rd(time), as the time windows must be discarded and
the objective function should be modified to account for the completion time.
A comparison around the trade-off between performance, flexibility and sim-
plicity of the implementation of such approaches would be of practical interest.
Following the scheme proposed by Archetti et al. [4], it would be interesting
to re-consider the heuristic MathTSPrd using this improved formulation and
validate the impact on the results. Another interesting line of research would
be to explore models in which the objective is to minimize distance over the
set of solutions with minimum completion-time and it could be interesting to
explore bi-level programming models [12] in this regard.
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