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Abstract
We study separable plus quadratic (SPQ) polynomials, i.e., polynomials that are the sum of

univariate polynomials in different variables and a quadratic polynomial. Motivated by the fact
that nonnegative separable and nonnegative quadratic polynomials are sums of squares, we study
whether nonnegative SPQ polynomials are (i) the sum of a nonnegative separable and a nonnegative
quadratic polynomial, and (ii) a sum of squares. We establish that the answer to question (i) is
positive for univariate plus quadratic polynomials and for convex SPQ polynomials, but negative
already for bivariate quartic SPQ polynomials. We use our decomposition result for convex SPQ
polynomials to show that convex SPQ polynomial optimization problems can be solved by “small”
semidefinite programs. For question (ii), we provide a complete characterization of the answer based
on the degree and the number of variables of the SPQ polynomial. We also prove that testing non-
negativity of SPQ polynomials is NP-hard when the degree is at least four. We end by presenting
applications of SPQ polynomials to upper bounding sparsity of solutions to linear programs, polyno-
mial regression problems in statistics, and a generalization of Newton’s method which incorporates
separable higher-order derivative information.

Keywords: Nonnegative and sum of squares polynomials, semidefinite programming, polynomial
optimization.

1 Introduction

A polynomial p : Rn → R with real coefficients is said to be nonnegative if p(x) ≥ 0 for all x ∈ Rn
and a sum of squares (sos) if there exist polynomials q1(x), . . . , qm(x) such that p(x) =

∑m
i=1 q

2
i (x).

It is clear that the set Σn,d of sos polynomials of degree d in n variables is contained in the set Nn,d

of nonnegative polynomials of degree d in n variables. The question of equivalence between Nn,d and
Σn,d is a classical problem of algebraic geometry which was resolved by Hilbert in 1888:

Theorem 1.1 ([20]). Σn,d = Nn,d if and only if n = 1, or d = 2, or (n, d) = (2, 4).

As both nonnegative univariate (n = 1) polynomials and nonnegative quadratic (d = 2) polynomials
are sums of squares, it is natural to wonder what would happen to the sum of a univariate and
a quadratic polynomial. Would it also be the case that any nonnegative polynomial with such a
structure admits a sum of squares representation? We aim to answer this and related questions in
a more general setting where the univariate polynomial is replaced by a separable polynomial. This
structure is captured in the following definition.

Definition 1. A polynomial p : Rn → R is separable plus quadratic (SPQ) if p(x) = s(x)+q(x), where
s(x) is a separable polynomial, i.e., s(x) =

∑n
i=1 si(xi) for some univariate polynomials si : R → R,

and q(x) is a quadratic polynomial.
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Hilbert’s proof of Theorem 1.1 exhibited no explicit examples of polynomials which are nonnegative
but not sos. In fact, it took a further 80 years for such examples to emerge. Of particular interest
are examples corresponding to the cases where (n, d) = (2, 6) and (n, d) = (3, 4) as they constitute the
minimal cases for which Σn,d 6= Nn,d. These examples were produced by Motzkin [25] and Robinson [33]
respectively and are given below:

M(x1, x2) = x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1, (1)

R(x1, x2, x3) = x2
1(x1 − 1)2 + x2

2(x2 − 1)2 + x2
3(x3 − 1)2 + 2x1x2x3(x1 + x2 + x3 − 2). (2)

Many other examples have appeared in the literature over the years; see, e.g., [32, 12, 13, 14]. An
interesting feature of existing examples such as (1) and (2) is the presence of cross-terms of high degree.
It is thus not immediately clear that examples of nonnegative but not sos polynomials are possible
among SPQ polynomials, as their cross-terms have degree equal to 2.

While questions about the relationship between sos and nonnegative polynomials had previously
been the preserve of the mathematics community, the beginning of the 21st century saw a renewed
interest in these questions originating from the optimization community. This was mainly due to
two factors: first, the observation that many important problems in semialgebraic optimization can
be reformulated as optimization problems over nonnegative polynomials; second, the discovery of a
fundamental link between semidefinite programming and sos polynomials, as given below.

Theorem 1.2 ([15, 29]). A polynomial p(x) in n variables and of degree 2d is sos if and only if there
exists a (symmetric) positive semidefinite matrix Q such that p(x) = z(x)TQz(x) where z(x) is the
vector of monomials of degree up to d, i.e., z(x) = (1, x1, . . . , xn, x1x2, . . . , x

d
n)T .

This theorem immediately leads to a semidefinite programming-based method for checking whether
a polynomial is a sum of squares, and in fact, more interestingly, for optimizing a linear function over
the intersection of the set of sos polynomials with an affine subspace. In sharp contrast, optimization
over the set of nonnegative polynomials is intractable. Indeed, simply checking whether a polynomial
of degree 4 is nonnegative is NP-hard [26].

The fact that optimization over the set of sos polynomials can be done using semidefinite program-
ming has enabled wide-ranging applications. As alluded to before, numerous semialgebraic problems in
applied and computational mathematics can be cast as optimization problems over the set of nonnegat-
ive polynomials; see, e.g., [24, 10, 18]. While these problems are generally intractable to solve exactly,
it is nevertheless possible to use sos polynomials as surrogates for nonnegative polynomials and, in
view of Theorem 1.2, solve an approximation of the problem using semidefinite programming. It is
thus increasingly relevant to study the relationship between nonnegative and sos polynomials under
additional structure. This is what this paper proposes to do for polynomials with an SPQ structure.
As mentioned previously, this is a very natural structure to consider in light of the first two equality
cases in Theorem 1.1; it is also a structure of interest in various applications, as we see later. We
further extend our study in this paper to understanding nonnegativity of convex SPQ polynomials.
This has implications for polynomial optimization problems involving such polynomials.

1.1 Organization and main contributions

The organization of the remainder of this paper is as follows. In Section 2, we study when nonnegative
SPQ polynomials can be written as the sum of nonnegative univariate polynomials and a nonnegative
quadratic polynomial. In Section 2.1, we show that this is the case for nonnegative separable polyno-
mials and nonnegative polynomials that are the sum of a univariate and a quadratic polynomial. In
Section 2.2, we show that this is not the case in general, and provide a minimal example where this
decomposition fails to exist.
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In Section 3, we prove the analogue of Theorem 1.1 for SPQ polynomials. This involves construct-
ing minimal examples of SPQ polynomials that are nonnegative but not sos (Section 3.1) and then
generalizing these examples to higher degrees (Section 3.2). While the results of Section 3 imply that
testing nonnegativity of SPQ polynomials cannot always be accomplished via a sum of squares decom-
position, they do not exclude the possibility of a polynomial-time algorithm for the task. In Section 4,
we give a proof of NP-hardness of deciding nonnegativity of degree-4 SPQ polynomials. This precludes
a polynomial-time algorithm from existing, unless P=NP.

Section 5 focuses on convex SPQ polynomials. In Section 5.1, we show that the Hessian of a convex
SPQ polynomial can be written as the sum of positive semidefinite univariate polynomial matrices. In
Section 5.2, we prove that any nonnegative convex SPQ polynomial can be written as the sum of a
nonnegative separable and a nonnegative quadratic polynomial. In Section 5.3, we build on this result
to show that polynomial optimization problems whose objective and constraint functions are given by
convex SPQ polynomials can be solved via a single semidefinite program whose size is much smaller
than that obtained via the first level of the Lasserre hierarchy. A procedure for extracting an optimal
solution is also presented.

We conclude our paper in Section 6 with three potential applications involving SPQ polynomials.
In Section 6.1, we use separable polynomials as a surrogate for the `0-pseudonorm to obtain upper
bounds on the sparsity of solutions of linear programs. These bounds improve on those given by the
`1-norm. As opposed to the `1-based approach, our approach takes into consideration the problem
data, and can produce problem-specific surrogates for the `0-pseudonorm. In Section 6.2, we consider
shape-constrained polynomial regression where we fit a convex SPQ polynomial to noisy evaluations of
a convex function with low-degree interactions between variables. In Section 6.3, we propose a variant
of Newton’s method for minimizing a multivariate function that relies on local approximations by SPQ
polynomials, instead of local quadratic approximations. We perform numerical experiments for all
three applications highlighting the potential benefits of these approaches.

2 Nonnegativity of Special Cases of SPQ Polynomials

We begin this section by considering two subsets of the set of SPQ polynomials: separable polynomials
and univariate plus quadratic polynomials. We show that these polynomials are nonnegative if and
only if they are sos. Our proof technique is similar for both results: it involves recasting nonnegative
polynomials with these structures as sums of nonnegative univariate polynomials and a nonnegative
quadratic polynomial. This approach motivates the question as to whether such a decomposition
is always possible for nonnegative SPQ polynomials. We give a negative answer to this question in
Section 2.2. Interestingly, such a decomposition can fail even when the existence of a sum of squares
decomposition is guaranteed.

2.1 Separable polynomials and univariate plus quadratic polynomials

We start by examining nonnegativity of separable polynomials.
Lemma 2.1. Every nonnegative separable polynomial can be written as the sum of nonnegative uni-
variate polynomials. In particular, a separable polynomial is nonnegative if and only if it is sos.
Proof. Let p(x) =

∑n
i=1 pi(xi) be a nonnegative separable polynomial. Let x∗i ∈ R be a global min-

imum1 of pi(xi) and let x∗ ∈ Rn be the vector x∗ = (x∗1, x∗2, . . . , x∗n)T . We have

p(x) =
n∑
i=1

(
pi(xi)− pi(x∗i )

)
+ c, (3)

1As p(x) is nonnegative, each function pi(xi) is lower bounded, and being a univariate polynomial, its infimum is
attained.
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where the constant c is nonnegative since c = p(x∗) and as p(x∗) ≥ 0 by the assumption of nonnegativity
of p(x). Equation (3) thus proves the first statement. The second statement follows as an immediate
corollary of Theorem 1.1.

We now prove a similar result for univariate plus quadratic polynomials, although the proof is
slightly more involved.

Theorem 2.2. Let p(x) be a polynomial that can be written as the sum of a univariate and a quadratic
polynomial. If p(x) is nonnegative, then it can be written as the sum of a nonnegative univariate and
a nonnegative quadratic polynomial. In particular, p(x) is nonnegative if and only if it is sos.

Proof. Let p(x) be a nonnegative polynomial in n variables and of degree d that can be written as the
sum of a univariate and a quadratic polynomial. We may assume that the variable whose degree in
p(x) is higher than 2 is x1. (If there is no such variable, the claim is trivial.) By pushing, if necessary,
the constant, x1, and x2

1 terms from the quadratic part into the univariate part, we may also assume
that p(x) can be written as p(x) = x̄TAx̄ + u(x1), where x̄ = (1, x1, x2, . . . xn)T , u(x1) is a univariate
polynomial of degree d, and the matrix A is of the following structure:

A =



0 0 a2 a3 . . . an
0 0 b2 b3 . . . bn
a2 b2 c2 e23 . . . e2n

a3 b3 e23 c3
...

...
...

... . . .
an bn e2n . . . cn


.

Let C denote the (n− 1)× (n− 1) matrix obtained from A by deleting the first and second rows and
columns. We observe that p(x) can also be written as p(x) = x̃TA(x1)x̃, where x̃ = (1, x2, . . . , xn)T
and

A(x1) =



u(x1) a2 + b2x1 a3 + b3x1 . . . an + bnx1
a2 + b2x1 c2 e23 . . . e2n

a3 + b3x1 e23 c3
...

...
...

... . . .
an + bnx1 e2n . . . cn


.

Since p(x) is nonnegative, the matrix A(x1) is positive semidefinite for all x1 ∈ R, and therefore C
is positive semidefinite. Let C† be the pseudo-inverse of C, a = (a2, . . . , an)T , b = (b2, . . . , bn)T , and
c = (c2, . . . , cn)T . We define t(x1) to be the univariate quadratic polynomial given by

t(x1) = (a+ bx1)TC†(a+ bx1).

Let I denote the (n− 1)× (n− 1) identity matrix. We now prove two claims concerning t(x1).

(2.2.1) The polynomial u(x1)− t(x1) is nonnegative, (I − CC†)a = 0, and (I − CC†)b = 0.

We recall the generalized Schur complement (see, e.g., [11]): A symmetric matrix M =
(
X Y
Y T Z

)
is positive semidefinite if and only if Z is positive semidefinite, (I − ZZ†)Y T = 0, and the matrix
X−Y Z†Y T is positive semidefinite. Since the matrix A(x1) is positive semidefinite for every x1 ∈ R, it
follows that u(x1)−(a+bx1)TC†(a+bx1) = u(x1)−t(x1) is nonnegative and that (I−CC†)(a+bx1) = 0
for every x1 ∈ R. Hence, (I − CC†)a = 0 and (I − CC†)b = 0.
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(2.2.2) The quadratic polynomial x̄TAx̄+ t(x1) is nonnegative.

Observe that t(x1) = (a+ bx1)TC†(a+ bx1) = (1 x1)T
(
aTC†a aTC†b
bTC†a bTC†b

)
(1 x1).

We then have x̄TAx̄+ t(x1) = x̄TLx̄, where

L =

aTC†a aTC†b aT

bTC†a bTC†b bT

a b C

 .
Note that C is positive semidefinite, (I − CC†)(a b) = 0, and that the matrix(

aTC†a aTC†b
bTC†a bTC†b

)
− (a b)TC†(a b)

is positive semidefinite as it equals the zero matrix. By the generalized Schur complement, it follows
that L is positive semidefinite. Therefore, the quadratic polynomial x̄TAx̄+ t(x1) is nonnegative.

To finish the proof of the theorem, we now write p(x) as follows:

p(x) = x̄TAx̄+ u(x1) = x̄TAx̄+ t(x1) + u(x1)− t(x1).

By (2.2.1), the univariate polynomial u(x1) − t(x1) is nonnegative, and by (2.2.2), the quadratic
polynomial x̄TAx̄+ t(x1) is nonnegative.

Remark 2.3. The second (and weaker) assertion in the statement of Theorem 2.2, i.e., that p(x) is
nonnegative if and only if it is sos, can also be obtained via the following theorem (see [14] for a self-
contained proof and [6] for a discussion of related literature). Recall that a form (or a homogeneous
polynomial) is a polynomial where all the monomials have the same degree.

Theorem 2.4 ([6, 14]). Let f(u1, u2, v1, . . . , vm) be a form in the variables u = (u1, u2) and
v = (v1, . . . , vm) that is a quadratic form in v for fixed u and a form (of any degree) in u
for fixed v. Then, f(u1, u2, v1, . . . , vm) is nonnegative if and only if it is sos.

Following the notation in the proof of Theorem 2.2, we have p(x) = x̃TA(x1)x̃. Since p(x) is nonneg-
ative, the matrix A(x1) is positive semidefinite for every x1 ∈ R. Let Ã(x1, xn+1) be the n× n matrix
whose entries are obtained by homogenizing (see, e.g., [32]) the entries of A(x1). It is easy to see that
x̃T Ã(x1, xn+1)x̃ is then the form obtained by homogenizing p(x) = x̃TA(x1)x̃ and is therefore nonneg-
ative. Now we can employ Theorem 2.4 with (u1, u2) = (x1, xn+1) and (v1, . . . , vn) = (1, x2, . . . , xn)
to deduce that x̃T Ã(x1, xn+1)x̃ is sos. Upon dehomogenizing by setting xn+1 = 1, we conclude that
p(x) = x̃TA(x1)x̃ is sos. This completes the proof. However, this proof does not show that p(x) can
be written as the sum of a nonnegative univariate and a nonnegative quadratic polynomial.
Remark 2.5. The proof of Theorem 2.2 suggests a simple algorithm for checking nonnegativity of a
univariate plus quadratic polynomial p(x) that does not require semidefinite programming. Using the
notation of the proof, we can check nonnegativity of p(x) by equivalently testing that C is positive
semidefinite, (I − CC†)a = 0, (I − CC†)b = 0, and that the univariate polynomial u(x1) − t(x1) is
nonnegative2.

2Testing nonnegativity of a (nonconstant) univariate polynomial can be done, e.g., by checking that all real roots have
even multiplicity and that the polynomial takes a positive value at an arbitrary point (which is not a root).
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2.2 Sums of nonnegative separable and nonnegative quadratic polynomials

The prevailing idea in Lemma 2.1 and Theorem 2.2 is to write a nonnegative polynomial as the sum
of nonnegative univariate and nonnegative quadratic polynomials. It is therefore natural to more
generally investigate the relationship between the following three sets of polynomials:

• NSPQ
n,d : the set of nonnegative SPQ polynomials in n variables and degree d,

• ΣSPQ
n,d : the set of sos SPQ polynomials in n variables and degree d,

• (NS + NQ)n,d: the set of SPQ polynomials in n variables and degree d that can be written as
the sum of a nonnegative separable polynomial and a nonnegative quadratic polynomial.3

We have
(NS +NQ)n,d ⊆ ΣSPQ

n,d ⊆ NSPQ
n,d ,

where the second inclusion is evident and the first follows from Lemma 2.1 and Theorem 1.1. One
might be tempted to show that (NS +NQ)n,d = NSPQ

n,d , which would imply ΣSPQ
n,d = NSPQ

n,d and prove
that a nonnegative SPQ polynomial is sos. However, this approach would not work, as the following
lemma shows that even equality between (NS + NQ)n,d and ΣSPQ

n,d does not hold. We present an
example of an sos SPQ polynomial in 2 variables and degree 4 that cannot be written as the sum of a
nonnegative separable and a nonnegative quadratic polynomial. Since we have (NS +NQ)n,d = ΣSPQ

n,d

for n = 1 and for d = 2, this example is minimal in both degree and dimension.

Lemma 2.6. The bivariate quartic polynomial

p(x) = x4
1 − x2

1 + 2x1 + x4
2 − x2

2 − 2x2 + 12
5 − 2x1x2

belongs to ΣSPQ
2,4 \ (NS +NQ)2,4.

Proof. Clearly, the polynomial p(x) is SPQ. We prove the two claims separately.

(2.6.1) The polynomial p(x) is sos.

One can observe that p(x) = z(x)TQz(x) where z(x) = (1, x1, x2, x
2
1, x1x2, x

2
2)T and Q is the matrix

Q = 1
240


576 240 −240 −205 −108 −205
240 170 −132 0 −99 −99
−240 −132 170 99 99 0
−205 0 99 240 0 −42
−108 −99 99 0 84 0
−205 −99 0 −42 0 240

.

It can be easily checked that Q is positive semidefinite (in fact, positive definite4). Therefore, p(x) is
sos (cf. Theorem 1.2).

3By Lemma 2.1, (NS+NQ)n,d is the same set as the set of polynomials in n variables and degree d that can be written
as the sum of nonnegative univariate polynomials and a nonnegative quadratic polynomial. Interestingly, (NS +NQ)n,d
is different from the set of SPQ polynomials in n variables and degree d that can be written as the sum of a nonnegative
separable polynomial and a nonnegative quadratic form (see Remark 2.7 and Lemma 2.8).

4Whenever we state a matrix is positive definite, this claim is supported by a rational LDLT factorization of the
matrix. The operations showing that p(x) = z(x)TQz(x) and that Q is positive definite can be found online at
http://colab.research.google.com/github/cdibek/spq_polynomials/blob/main/Lemma_2_6_Proof.ipynb.
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(2.6.2) The polynomial p(x) cannot be written as the sum of a nonnegative separable and a
nonnegative quadratic polynomial.

Assume for the sake of contradiction that p(x) = s(x) + q(x) where s(x) is a nonnegative separable
polynomial and q(x) is a nonnegative quadratic polynomial. By Lemma 2.1, s(x) can be written as
s(x) = s1(x1) + s2(x2) where s1(x1), s2(x2) are nonnegative univariate polynomials. We observe that
for some choice of parameters a, b, c, d, e1, e2 ∈ R, the polynomial p(x) is the sum of the following three
polynomials:

s1(x1) = x4
1 − (a+ 1)x2

1 − (2c− 2)x1 + e1,

s2(x2) = x4
2 − (b+ 1)x2

2 − (2d+ 2)x2 + e2,

q(x) = ax2
1 − 2x1x2 + bx2

2 + 2cx1 + 2dx2 + 12
5 − e1 − e2.

The nonnegative polynomials s1(x1), s2(x2), q(x) are sos since they are univariate or quadratic. Thus,
by Theorem 1.2, there exist positive semidefinite matrices A,B,C such that

s1(x1) = z1(x1)TAz1(x1), s2(x2) = z2(x2)TBz2(x2), q(x) = z(x)TCz(x),

where z1(x1) = (1, x1, x
2
1)T , z2(x2) = (1, x2, x

2
2)T , z(x) = (1, x1, x2)T , and

A =

 e1 −c+ 1 A13
−c+ 1 −2A13 − a− 1 0
A13 0 1

 , B =

 e2 −d− 1 B13
−d− 1 −2B13 − b− 1 0
B13 0 1

 , C =

 12
5 − e1 − e2 c d

c a −1
d −1 b

.
It follows that the matrix

E = A+ C =

 12
5 − e2 1 A13 + d

1 −2A13 − 1 −1
A13 + d −1 b+ 1


is positive semidefinite. In the rest of the proof, we show that the matrices B and E cannot be positive
semidefinite at the same time, leading to a contradiction. First, for notational convenience, we do the
following change of variables: b+ 1→ v, d→ y, e2 → u, −A13 → w, and −B13 → t. We have

B =

 u −y − 1 −t
−y − 1 2t− v 0
−t 0 1

 , E =

 12
5 − u 1 y − w

1 2w − 1 −1
y − w −1 v

.
Now, consider the following two matrices:

B̃ =

72 56 60
56 60 46
60 46 51

 , Ẽ =

 72 −27 56
−27 56 5
56 5 60

.
It can easily be checked that the matrices B̃ and Ẽ are positive definite. Since the matrices B,E, B̃, Ẽ
are all positive semidefinite, we must have Tr(BB̃) + Tr(EẼ) ≥ 0, where for a matrix M , the notation
Tr(M) denotes the trace of M . We have

Tr(BB̃) + Tr(EẼ) = 72u− 60v − 112y − 61 + 60v − 72u+ 112y + 52.8 = −8.2,

a contradiction.
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Given the polynomial p(x) given in Lemma 2.6, it is straightforward to construct polynomials in
ΣSPQ
n,d \ (NS + NQ)n,d for any n ≥ 2 and d ≥ 4. We omit the proof of this construction as it is very

similar in style to the proof of Theorem 3.4 in the next section.
Remark 2.7. In view of the definition of an SPQ polynomial (cf. Definition 1), observe that any
SPQ polynomial can be written as the sum of a separable polynomial and a quadratic form (since we
may always push the constant term and the degree-1 terms into the separable part). However, this
distinction becomes more subtle when we consider the cone (NS+NQ)n,d. Let (NS+NQf )n,d denote the
set of polynomials in n variables and degree d that can be written as the sum of a nonnegative separable
polynomial and a nonnegative quadratic form. Although the definition of an SPQ polynomial remains
the same when we replace “quadratic polynomial” with “quadratic form”, the cones (NS +NQ)n,d and
(NS + NQf )n,d are not the same. While the inclusion (NS + NQf )n,d ⊆ (NS + NQ)n,d is clear, the
following example shows that the converse inclusion does not hold. This example is minimal in degree
and dimension as it belongs to (NS+NQ)2,2 \(NS+NQf )2,2 and since (NS+NQf )n,d = (NS+NQ)n,d
for n = 1.

Lemma 2.8. The bivariate quadratic polynomial

p(x) = 8x2
1 − 4x1 + 2x2

2 − 2x2 + 3 + 8x1x2

belongs to (NS +NQ)2,2 \ (NS +NQf )2,2.

Proof. The polynomial p(x) belongs to (NS+NQ)2,2 because it is a nonnegative quadratic polynomial.
To see that p(x) is nonnegative, observe that

p(x) =
(√5 + 1

2 − 2x1 − x2
)2

+
(√5− 1

2 + 2x1 + x2
)2
.

Assume for the sake of contradiction that p(x) = s(x)+q(x), where s(x) is a nonnegative separable
polynomial and q(x) is a nonnegative quadratic form. By Lemma 2.1, the polynomial s(x) can be
written as s(x) = s1(x1) + s2(x2) where s1(x1), s2(x2) are nonnegative univariate polynomials. We
observe that for some choice of parameters a, b, c, d, e, f ∈ R, the polynomial p(x) is the sum of the
following three polynomials:

s1(x1) = ax2
1 − 4x1 + b, s2(x2) = cx2

2 − 2x2 + d, q(x) = ex2
1 + 8x1x2 + fx2

2.

The nonnegative polynomials s1(x1), s2(x2), q(x) are sos since they are quadratic. By Theorem 1.2,
there exist positive semidefinite matrices A,B,C such that

s1(x1) = z1(x1)TAz1(x1), s2(x2) = z2(x2)TBz2(x2), q(x) = z(x)TCz(x),

where z1(x1) = (1, x1)T , z2(x2) = (1, x2)T , z(x) = (x1, x2)T , and

A =
(
b −2
−2 a

)
, B =

(
d −1
−1 c

)
, C =

(
e 4
4 f

)
.

We have

• b+ d = 3, a+ e = 8, c+ f = 2,
• a, b, c, d, e, f ≥ 0, ab ≥ 4, cd ≥ 1, and ef ≥ 16,

where the equations in the first item hold since p(x) = s1(x1) + s2(x2) + q(x) and the inequalities in
the second item hold since A,B,C are positive semidefinite. Note that e ≤ 8 and f ≤ 2 since a, c ≥ 0.
As we also know that e, f ≥ 0 and ef ≥ 16, we conclude that e = 8 and f = 2. Therefore, a = 0,
which contradicts the inequality ab ≥ 4.
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3 Nonnegative SPQ Polynomials That Are Not Sums of Squares

We have established that already when (n, d) = (2, 4), not every nonnegative SPQ polynomial can
be written as the sum of a nonnegative separable and a nonnegative quadratic polynomial (cf. see
Lemma 2.6). However, this does not rule out the possibility of a sum of squares decomposition for
nonnegative SPQ polynomials. The main result of this section is the following theorem, which precisely
characterizes degrees and dimensions where nonnegative SPQ polynomials are sos.

Theorem 3.1. ΣSPQ
n,d = NSPQ

n,d if and only if n = 1, or d = 2, or (n, d) = (2, 4).

The equality ΣSPQ
n,d = NSPQ

n,d holds in these cases by virtue of Theorem 1.1 (this is true for any
polynomial with n = 1, or d = 2, or (n, d) = (2, 4), so in particular for SPQ polynomials). It remains
to prove that the equality does not hold in the other cases. To show this, we present explicit examples
of nonnegative SPQ polynomials that are not sos for the minimal cases, that is (n, d) = (2, 6) and
(n, d) = (3, 4). These are given in Section 3.1. We then show how to generalize these examples to
higher degrees and dimensions in Section 3.2.

3.1 Minimal cases

The next two theorems present examples of nonnegative SPQ polynomials that are not sos in the
minimal cases.

Theorem 3.2. The bivariate sextic polynomial

p(x) = 17x6
1 − 20x4

1 + 7x2
1 + 18x1 + 18x4

2 − 19x2
2 − 19x2 + 21− 20x1x2

belongs to NSPQ
2,6 \ ΣSPQ

2,6 .

Theorem 3.3. The trivariate quartic polynomial

p(x) = x4
1 + 2x2

1 + x4
2 + 2x2

2 + x4
3 + 2x2

3 + 9
4 + 8x1x2 + 8x1x3 + 8x2x3

belongs to NSPQ
3,4 \ ΣSPQ

3,4 .

Proof of Theorem 3.2. Clearly, the polynomial p(x) is SPQ. The proof that p(x) is not sos is done via
a separating hyperplane argument. More precisely, we present a member µ of the cone dual to ΣSPQ

2,6
whose inner product with the coefficients of p(x) is negative. We fix the following monomial ordering:

v = (1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2, x

4
1, x

3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2, x

5
1, x

4
1x2, x

3
1x

2
2, x

6
1)T .

Let the vector of coefficients of p(x) in the above monomial ordering be denoted by

−→p = (21, 18,−19, 7,−20,−19, 0, 0, 0, 0,−20, 0, 0, 0, 18, 0, 0, 0, 17)T .

One can verify5 that the vector

µ = (11156,−2031, 8817, 4897,−127, 8436,−1457, 3005,−292, 7015, 3302,−37, 3639, 759,
6730,−1105, 1873,−274, 2245)T

5All the computations in this proof are carried out over rational numbers and can be verified via the following link:
http://colab.research.google.com/github/cdibek/spq_polynomials/blob/main/Theorem_3_2_Proof.ipynb.
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satisfies 〈µ,−→p 〉 = −5 < 0. We claim that for any sos polynomial q(x) containing only the monomials in
v, we should have 〈µ,−→q 〉 ≥ 0, where −→q denotes the coefficients of q(x) listed according to the ordering
in v. Indeed, if q(x) is sos, by Theorem 1.2, it can be written as

q(x) = z(x)TQz(x) = Tr
(
Q z(x)z(x)T

)
for some positive semidefinite matrix Q and vector of monomials6

z(x) = (1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1)T .

It is not difficult to see that
〈µ,−→q 〉 = Tr

(
Q
(
z(x)z(x)T

)
|µ
)
,

where

(
z(x)z(x)T

)
|µ =


11156 −2031 8817 4897 −127 8436 −1457
−2031 4897 −127 −1457 3005 −292 3302
8817 −127 8436 3005 −292 7015 −37
4897 −1457 3005 3302 −37 3639 −1105
−127 3005 −292 −37 3639 759 1873
8436 −292 7015 3639 759 6730 −274
−1457 3302 −37 −1105 1873 −274 2245


is the matrix where each monomial in z(x)z(x)T is replaced with the corresponding element of the vector
µ. We can check that the matrix

(
z(x)z(x)T

)
|µ is positive definite.7 Now, since Q and

(
z(x)z(x)T

)
|µ

are positive semidefinite, we have 〈µ,−→q 〉 = Tr
(
Q
(
z(x)z(x)T

)
|µ
)
≥ 0. This completes the proof that

p(x) is not sos.
Next, we show that p(x) is nonnegative. Recall that a function f : Rn → R is coercive if for

every sequence {xk} with {||xk||} → +∞, we have {f(xk)} → +∞. It is easy to see that a continuous
coercive function achieves its infimum on a closed set (see, e.g., Appendix A.2 of [8]). Hence, a coercive
polynomial always has a global minimum, and by the first order necessary condition for optimality, the
gradient of the polynomial must vanish at all global minima. It follows that a coercive polynomial is
nonnegative if and only if it is nonnegative at the points where its gradient vanishes. In the rest of the
proof, we show that p(x) is coercive, and that p(x) ≥ 0 for all x ∈ R2 where the gradient ∇p(x) = 0.

(3.2.1) p(x) is coercive.

We write p(x) = q1(x1) + q2(x2) + r(x), where

q1(x1) = 17x6
1 − 20x4

1 + 6x2
1 + 18x1,

q2(x2) = 17x4
2 − 19x2

2 − 19x2 + 21,
r(x) = x2

1 − 20x1x2 + x4
2.

Since q1(x1), q2(x2) are univariate polynomials of even degree with a positive leading coefficient, they
are coercive. Hence, the polynomial q1(x1)+q2(x2) is coercive as well since it is the sum of two coercive
univariate polynomials. Now, observe that r(x) is bounded below:

r(x) = (x1 − 10x2)2 + (x2
2 − 50)2 − 2500 ≥ −2500,∀x ∈ R2.

6If N is the Newton polytope of q(x) (i.e., the convex hull of the exponent vectors of the 19 monomials in v), then
the extreme points of N are (0, 0), (6, 0), (0, 4). Hence, if q(x) =

∑
i
q2
i (x) is a sum of squares, then the polynomials qi(x)

are in the subspace spanned by the monomials with exponent vectors in 1
2N (see, e.g., [31]).

7The proof of positive definiteness of
(
z(x)z(x)T

)
|µ is done by a rational LDLT factorization and can be found at

http://colab.research.google.com/github/cdibek/spq_polynomials/blob/main/Theorem_3_2_Proof.ipynb.
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Therefore, p(x) = q1(x1) + q2(x2) + r(x) is coercive since it is the sum of a coercive polynomial and a
polynomial that is bounded below.

(3.2.2) p(x) ≥ 0 for every x ∈ R2 that satisfies ∇p(x) = 0.

Observe that existence of two polynomials `1(x) and `2(x) which make the polynomial

p(x)−
(
`1(x), `2(x)

)T
∇p(x)

sos would imply the claim (see [28] for a more in-depth treatment of this approach to proving nonneg-
ativity). We show that `1(x) = 0 and `2(x) = − 1

25x
3
2 satisfy this property. Indeed, with this choice,

we have p(x)−
(
`1(x), `2(x)

)T ∇p(x) = z̃(x)T Q̃z̃(x), where

z̃(x) = (1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2)T ,

and Q̃ is the following matrix:

Q̃ = 1
300



6300 2700 −2850 −1329 −1635 −4037 90 1282 246 −828
2700 4758 −1365 −90 −2123 −1533 −3565 287 −69 −448
−2850 −1365 2374 841 1287 714 −238 −993 −151 277
−1329 −90 841 1130 −49 228 0 −1050 −147 489
−1635 −2123 1287 −49 1668 479 1050 21 −402 153
−4037 −1533 714 228 479 4390 126 −87 −153 0

90 −3565 −238 0 1050 126 5100 0 −668 96
1282 287 −993 −1050 21 −87 0 1336 −96 −592
246 −69 −151 −147 −402 −153 −668 −96 1184 0
−828 −448 277 489 153 0 96 −592 0 864


.

We can check that Q̃ is positive definite8. Thus, p(x)−
(
`1(x), `2(x)

)T∇p(x) is sos. This proves (3.2.2).
Now, by (3.2.1) and (3.2.2), it follows that p(x) is nonnegative.

Proof of Theorem 3.3. Clearly, the polynomial p(x) is SPQ. As in the proof of Theorem 3.2, we show
that p(x) is not sos via a separating hyperplane argument. We fix the following monomial ordering:

v = (1, x2
1, x1x2, x

2
2, x1x3, x2x3, x

2
3, x

4
1, x

3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2, x

3
1x3, x

2
1x2x3, x1x

2
2x3, x

3
2x3, x

2
1x

2
3, x1x2x

2
3,

x2
2x

2
3, x1x

3
3, x2x

3
3, x

4
3)T .

Let the vector of coefficients of p(x) in the above monomial ordering be denoted by
−→p = (9/4, 2, 8, 2, 8, 8, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)T .

One can verify9 that the vector

µ = (120, 95,−47, 95,−47,−47, 95, 95,−47, 78,−47, 95,−47,−10,−10,−47, 78,−10, 78,−47,−47, 95)T

satisfies 〈µ,−→p 〉 = −3 < 0. We claim that for any sos polynomial q(x) containing only the monomials in
v, we should have 〈µ,−→q 〉 ≥ 0, where −→q denotes the coefficients of q(x) listed according to the ordering
in v. Indeed, if q(x) is sos, by Theorem 1.2, it can be written as

q(x) = z(x)TQz(x) = Tr
(
Q z(x)z(x)T

)
8To verify positive definiteness of Q̃ and the equality p(x)−

(
`1(x), `2(x)

)T ∇p(x) = z̃(x)T Q̃z̃(x), refer to:
http://colab.research.google.com/github/cdibek/spq_polynomials/blob/main/Theorem_3_2_Proof.ipynb.

9All the computations in this proof are carried out over rational numbers and can be verified via the following link:
http://colab.research.google.com/github/cdibek/spq_polynomials/blob/main/Theorem_3_3_Proof.ipynb.
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for some positive semidefinite matrix Q and vector of monomials

z(x) = (x1, x2, x3, 1, x2
1, x1x2, x

2
2, x1x3, x2x3, x

2
3)T .

It is easy to see that
〈µ,−→q 〉 = Tr

(
Q
(
z(x)z(x)T

)
|µ
)
,

where

(
z(x)z(x)T

)
|µ =



95 −47 −47 0 0 0 0 0 0 0
−47 95 −47 0 0 0 0 0 0 0
−47 −47 95 0 0 0 0 0 0 0

0 0 0 120 95 −47 95 −47 −47 95
0 0 0 95 95 −47 78 −47 −10 78
0 0 0 −47 −47 78 −47 −10 −10 −10
0 0 0 95 78 −47 95 −10 −47 78
0 0 0 −47 −47 −10 −10 78 −10 −47
0 0 0 −47 −10 −10 −47 −10 78 −47
0 0 0 95 78 −10 78 −47 −47 95


is the matrix where each monomial in z(x)z(x)T is replaced with the corresponding element of the vector
µ (or zero, if the monomial is not in v). We can check that the matrix

(
z(x)z(x)T

)
|µ is positive definite.

Since Q and
(
z(x)z(x)T

)
|µ are positive semidefinite, it follows that 〈µ,−→q 〉 = Tr

(
Q
(
z(x)z(x)T

)
|µ
)
≥ 0.

This completes the proof that p(x) is not sos.
Next, we prove that p(x) is nonnegative by showing that the polynomial (x2

1 + x2
2 + x2

3) p(x) is sos.
Indeed, (x2

1 + x2
2 + x2

3) p(x) = z̃(x)T Q̃z̃(x), where

z̃(x) = (x2
1, x1x2, x

2
2, x1x3, x2x3, x

2
3, x1, x2, x3, x

3
1, x

2
1x2, x1x

2
2, x

3
2, x

2
1x3, x1x2x3, x

2
2x3, x1x

2
3, x2x

2
3, x

3
3)T ,

and Q̃ is the following matrix:

1
336



826 861 105 861 336 105 0 0 0 0 0 0 0 0 0 0 0 0 0
861 1638 861 1239 1239 336 0 0 0 0 0 0 0 0 0 0 0 0 0
105 861 826 336 861 105 0 0 0 0 0 0 0 0 0 0 0 0 0
861 1239 336 1638 1239 861 0 0 0 0 0 0 0 0 0 0 0 0 0
336 1239 861 1239 1638 861 0 0 0 0 0 0 0 0 0 0 0 0 0
105 336 105 861 861 826 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 756 0 0 −77 294 −126 189 294 −21 −105 −126 −105 189
0 0 0 0 0 0 0 756 0 189 −126 294 −77 −105 −21 294 −105 −126 189
0 0 0 0 0 0 0 0 756 189 −105 −105 189 −126 −21 −126 294 294 −77
0 0 0 0 0 0 −77 189 189 336 0 −63 0 0 −126 63 −63 63 0
0 0 0 0 0 0 294 −126 −105 0 462 0 −63 126 84 −147 −147 −75 63
0 0 0 0 0 0 −126 294 −105 −63 0 462 0 −147 84 126 −75 −147 63
0 0 0 0 0 0 189 −77 189 0 −63 0 336 63 −126 0 63 −63 0
0 0 0 0 0 0 294 −105 −126 0 126 −147 63 462 84 −75 0 −147 −63
0 0 0 0 0 0 −21 −21 −21 −126 84 84 −126 84 450 84 84 84 −126
0 0 0 0 0 0 −105 294 −126 63 −147 126 0 −75 84 462 −147 0 −63
0 0 0 0 0 0 −126 −105 294 −63 −147 −75 63 0 84 −147 462 126 0
0 0 0 0 0 0 −105 −126 294 63 −75 −147 −63 −147 84 0 126 462 0
0 0 0 0 0 0 189 189 −77 0 63 63 0 −63 −126 −63 0 0 336



.

We can check that Q̃ is positive definite10, and thus (x2
1 + x2

2 + x2
3) p(x) is sos.

3.2 Examples in higher degrees and dimensions

In Theorems 3.2 and 3.3, we presented nonnegative SPQ polynomials that are not sos for the two
minimal cases (n, d) = (2, 6) and (n, d) = (3, 4). In this subsection, we show how to construct SPQ
polynomials that are nonnegative but not sos in higher degrees and dimensions.

10To verify positive definiteness of Q̃ and the equality (x2
1 + x2

2 + x2
3) p(x) = z̃(x)T Q̃z̃(x), refer to:

http://colab.research.google.com/github/cdibek/spq_polynomials/blob/main/Theorem_3_3_Proof.ipynb.

12

http://colab.research.google.com/github/cdibek/spq_polynomials/blob/main/Theorem_3_3_Proof.ipynb


Theorem 3.4. For n ≥ 2 and d ≥ 6, and for n ≥ 3 and d ≥ 4, the set NSPQ
n,d \ ΣSPQ

n,d is nonempty.

Proof. The fact that NSPQ
2,6 \ ΣSPQ

2,6 6= ∅ follows from Theorem 3.2. We first show existence of polyno-
mials in NSPQ

n,d \ ΣSPQ
n,d for n = 2 and d ≥ 8. Let p(x1, x2) be a bivariate SPQ polynomial of degree 6

that is nonnegative but not sos (e.g., the polynomial given in Theorem 3.2). Let d be an even integer
greater than or equal to 8. Consider the polynomial

qt(x) = p(x1, x2) + txd1,

where t is a parameter. Clearly, qt(x) ∈ NSPQ
2,d , ∀t ≥ 0, and q0(x) ∈ NSPQ

2,6 \ ΣSPQ
2,6 since p(x1, x2)

is not sos. We claim that the polynomial qt(x) is not sos for some t > 0. Suppose for the sake of
contradiction that qt(x) was sos for every t > 0. Then, by the closedness of the cone Σ2,d (see [33]),
the polynomial q0(x) must be sos, which is a contradiction.11

Next, we show that from any polynomial p(x) ∈ NSPQ
n,d \Σ

SPQ
n,d , one can easily construct a polynomial

p̃(x, xn+1) ∈ NSPQ
n+1,d\Σ

SPQ
n+1,d. This, together with the result of the previous paragraph and Theorem 3.3,

would complete the proof. Consider the polynomial

p̃(x, xn+1) = p(x) + xdn+1.

Clearly, p̃(x, xn+1) ∈ NSPQ
n+1,d. Moreover, p̃(x, xn+1) is not a sum of squares since a decomposition

p̃(x, xn+1) =
∑
i q

2
i (x, xn+1) would imply that p(x) = p̃(x, 0) =

∑
q2
i (x, 0) is a sum of squares, which is

a contradiction.

This completes our study of the relationship between nonnegative and sos SPQ polynomials for all
combinations (n, d) and hence the proof of Theorem 3.1.

3.3 Summary of the minimal examples

Recall the inclusion relationships

(NS +NQf )n,d ⊆ (NS +NQ)n,d ⊆ ΣSPQ
n,d ⊆ NSPQ

n,d , (4)y ⊂ y ⊂ y ⊂
(2, 2) (2, 4) (2, 6), (3, 4)

where the downward arrows point to minimal (n, d) for which the inclusion is strict, as proven in
Lemma 2.8, Lemma 2.6, Theorem 3.2, and Theorem 3.3, respectively. We summarize the examples
showing the strictness of these inclusions in Table 1.

p(x) p(x) belongs to

p(x) = 8x2
1 − 4x1 + 2x2

2 − 2x2 + 3 + 8x1x2 (NS+NQ)2,2\(NS+NQf )2,2

p(x) = x4
1 − x2

1 + 2x1 + x4
2 − x2

2 − 2x2 + 12
5 − 2x1x2 ΣSPQ

2,4 \ (NS +NQ)2,4

p(x) = 17x6
1 − 20x4

1 + 7x2
1 + 18x1 + 18x4

2 − 19x2
2 − 19x2 + 21− 20x1x2 NSPQ

2,6 \ ΣSPQ
2,6

p(x) = x4
1 + 2x2

1 + x4
2 + 2x2

2 + x4
3 + 2x2

3 + 9
4 + 8x1x2 + 8x1x3 + 8x2x3 NSPQ

3,4 \ ΣSPQ
3,4

Table 1: Minimal examples showing the strictness of the inclusions in (4)

11To make the proof completely constructive, one can solve a semidefinite program that finds the smallest ε which
makes p(x1, x2) + εxd1 sos, and then set t = ε/2. (If this program is infeasible, then set t to any positive real number.)
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4 Complexity of Deciding Nonnegativity of SPQ Polynomials

Theorem 3.1 indicates that nonnegativity of an SPQ polynomial cannot always be established by a
decomposition as a sum of squares of polynomials. One might still wonder whether there exists a
characterization of nonnegative SPQ polynomials which can be checked in polynomial time. In this
section, we show that, unless P=NP, the answer to this question is negative. Our hardness result holds
already for SPQ polynomials of degree 4.

Theorem 4.1. The following decision problem is NP-hard:
SPQ-Nonnegativity
INSTANCE: Rational coefficients of a quartic SPQ polynomial p(x) given in a fixed monomial
ordering.
QUESTION: Decide if p(x) ≥ 0 for all x ∈ Rn.

Proof. We prove the claim by giving a polynomial-time reduction from the Partition problem, which
is known to be NP-hard [17]. Recall that in Partition, we are given a set of positive integers and
asked whether it is possible to split them into two subsets with equal sums:

Partition
INSTANCE: A set of positive integers {a1, . . . , an}.
QUESTION: Decide if there exists a partition of {1, 2, . . . , n} into two subsets I and IC

such that
∑
i∈I

ai =
∑
j∈IC

aj .

We say that a Partition instance is feasible (resp. infeasible) if the answer to the Partition question
is yes (resp. no). Consider a given Partition instance {a1, . . . , an}. Let N = 18

(
max
i
ai
)(∑

i
ai
)3

,

and c = 1
2 . Define the quartic SPQ polynomial

p(x) = N
n∑
i=1

(x2
i − 1)2 +

( n∑
i=1

aixi
)2
− c.

We show that the Partition instance {a1, . . . , an} is infeasible if and only if p(x) is nonnegative. This
would complete the proof.

Assume first that {a1, . . . , an} is feasible. Let x∗i = 1 if i ∈ I, and x∗i = −1 if i ∈ IC . Then,∑n
i=1 aix

∗
i = 0 since {a1, . . . , an} is feasible, and so p(x∗) = −c < 0. Therefore, p(x) is not nonnegative.

Assume now that {a1, . . . , an} is infeasible. To show that p(x) is nonnegative, we prove that if x∗
is a global minimum of p(x), then p(x∗) ≥ 0. Notice that since the top homogeneous component of
p(x) equals N

∑n
i=1 x

4
i , the polynomial p(x) is coercive, and so it achieves its infimum. We will make

use of the following partial derivatives of p(x):

∂p

∂xi
(x) = 4N(x2

i − 1)xi + 2
( n∑
j=1

ajxj
)
ai for i = 1, . . . , n,

∂2p

∂x2
i

(x) = 4N(3x2
i − 1) + 2a2

i for i = 1, . . . , n.

We see from the second-order necessary condition for optimality that x = 0 is not a local minimum of
p(x) since, e.g., ∂2p

∂x2
1
(0) = −4N + 2a2

1 < 0. Let x∗ 6= 0 be a global minimum of p(x). The first-order
necessary condition for optimality implies that ∇p(x∗) = 0, i.e.,

4N(x∗2i − 1)x∗i = −2(
n∑
j=1

ajx
∗
j )ai for i = 1, . . . , n.
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Taking the absolute value of both sides, we obtain

2N |x∗2i − 1||x∗i | =
∣∣∣ n∑
j=1

ajx
∗
j

∣∣∣ai for i = 1, . . . , n. (5)

Next, we prove three claims about the entries of x∗, with the third claim enabling us to show that
p(x∗) ≥ 0.

(4.1.1) For i = 1, . . . , n, we have 1
6 ≤ |x

∗
i | ≤ 3

2 .

Let i+ ∈ arg max
i∈{1,...,n}

|x∗i |. As x∗ 6= 0, |x∗i+ | > 0. From (5), we have

2N |x∗2i+ − 1||x∗i+ | = ai+

∣∣∣ n∑
j=1

ajx
∗
j

∣∣∣ ≤ ai+ n∑
j=1

aj |x∗j | ≤ ai+
n∑
j=1

aj |x∗i+ |.

Hence, 2N |x∗2i+ − 1| ≤ ai+
n∑
j=1

aj , and so

|x∗2i+ − 1| ≤
ai+

n∑
j=1

aj

2N ≤ 1
2 .

It follows that x∗2i+ ≤
3
2 , and thus x∗2i ≤ 3

2 for i = 1, . . . , n. To obtain the desired upper bound on |x∗i |,
observe that |x∗i | ≤

√
3
2 ≤

3
2 .

For the lower bound, we make use of the second-order necessary condition for optimality, which
implies that

∂2p

∂x2
i

(x∗) = 4N(3x∗2i − 1) + 2a2
i ≥ 0 for i = 1, . . . , n.

This yields x∗2i ≥ 1
3 −

a2
i

6N ≥
1
6 , where the second inequality follows since a2

i
6N ≤

1
6 . Thus, x∗2i ≥ 1

6 for
i = 1, . . . , n, and |x∗i | ≥

√
1
6 ≥

1
6 .

(4.1.2) For i = 1, . . . , n, we have |x∗2i − 1| ≤ 1
4

1
(
∑
j

aj)2 .

Observe that

1
62N |x∗2i − 1| ≤ 2N |x∗2i − 1||x∗i | = ai

∣∣∣∑
j

ajx
∗
j

∣∣∣ ≤ ai∑
j

aj |x∗j | ≤
3
2ai

∑
j

aj ,

where the first and the last inequalities follow from (4.1.1) and the equality follows from (5). Hence,
for i = 1, . . . , n, we obtain

|x∗2i − 1| ≤ 9
2

ai
∑
j
aj

N
= 9

2

ai
∑
j
aj

18
(

max
j
aj
)(∑

j
aj
)3 ≤ 1

4
1

(
∑
j
aj)2 .
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(4.1.3) For i = 1, . . . , n, x∗i = sgn(x∗i ) + εi, where |εi| ≤ 1
4

1
(
∑
i

ai)2 and sgn(·) is the sign function.

For ease of notation, let m = 1
4

1
(
∑
j

aj)2 . From (4.1.2), we have 1 −m ≤ x∗
2
i ≤ 1 + m for i = 1, . . . , n.

Since 0 < 1−m < 1 and 1 < 1 +m < 2, it follows that

1−m ≤
√

1−m ≤ |x∗i | ≤
√

1 +m ≤ 1 +m,

and thus 1−m ≤ |x∗i | ≤ 1 +m. If sgn(x∗i ) > 0, then

1−m ≤ |x∗i | ≤ 1 +m =⇒ sgn(x∗i )−m ≤ x∗i ≤ sgn(x∗i ) +m,

and if sgn(x∗i ) < 0, then

1−m ≤ |x∗i | ≤ 1 +m =⇒ sgn(x∗i ) +m ≥ x∗i ≥ sgn(x∗i )−m.

Thus, in both cases, we obtain −m ≤ x∗i − sgn(x∗i ) ≤ m, that is, |x∗i − sgn(x∗i )| ≤ m. Finally, letting
εi = x∗i − sgn(x∗i ), it follows that x∗i = sgn(x∗i ) + εi where |εi| ≤ 1

4
1

(
∑
i

ai)2 . This proves (4.1.3).

We finish the proof by showing that p(x∗) ≥ 0. Define

min gap = min
I⊆{1,...,n}

∣∣∣∣∣∑
i∈I

ai −
∑
j∈IC

aj

∣∣∣∣∣.
We have

p(x∗) = N
n∑
i=1

(x∗2i − 1)2 +
( n∑
i=1

aix
∗
i

)2
− c

≥
( n∑
i=1

aix
∗
i

)2
− c (6)

=
( n∑
i=1

ai sgn(x∗i ) +
n∑
i=1

aiεi
)2
− c (7)

≥
( n∑
i=1

ai sgn(x∗i )
)2
− 2

∣∣∣ n∑
i=1

ai sgn(x∗i )
∣∣∣∣∣∣ n∑
i=1

aiεi
∣∣∣− c (8)

≥ (min gap)2 − 2
∣∣∣ n∑
i=1

ai sgn(x∗i )
∣∣∣∣∣∣ n∑
i=1

aiεi
∣∣∣− c, (9)

where (6) follows since N
∑n
i=1(x∗2i − 1)2 ≥ 0, the equality (7) follows by (4.1.3), the inequality (8)

follows since (a+b)2 ≥ a2−2|a||b|, and the inequality (9) follows since
( n∑
i=1

ai sgn(x∗i )
)2
≥ (min gap)2.

Now, since
∣∣∣∑
i
ai sgn(x∗i )

∣∣∣ ≤∑
i
ai and

∣∣∣∑
i
aiεi

∣∣∣ ≤∑
i
ai|εi| ≤ 1

4
1

(
∑
i

ai)2
∑
i
ai = 1

4
1∑
i

ai
, we have

∣∣∣∑
i

ai sgn(x∗i )
∣∣∣ ∣∣∣∑

i

aiεi
∣∣∣ ≤ 1

4 .

Moreover, since ai’s are integers and {a1, . . . , an} is infeasible, we have min gap ≥ 1. Hence, we obtain

p(x∗) ≥ (min gap)2 − 2
∣∣∣ n∑
i=1

ai sgn(x∗i )
∣∣∣∣∣∣ n∑
i=1

aiεi
∣∣∣− c ≥ 1− 2 1

4 −
1
2 = 0.
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5 Convex SPQ Polynomials

In this section, we study the problems of checking convexity of SPQ polynomials (Section 5.1), checking
nonnegativity of convex SPQ polynomials (Section 5.2), and solving polynomial optimization problems
where the objective and the constraints are given by convex SPQ polynomials (Section 5.3).

We start by recalling some definitions. We refer to a matrix with polynomial entries as a polynomial
matrix. A symmetric m×m polynomial matrix P (x) in n variables is said to be positive semidefinite,
denoted by P (x) � 0, if P (x) is positive semidefinite for all x ∈ Rn. It is straightforward to see that this
condition holds if and only if the (scalar) polynomial yTP (x)y in m+n variables (x, y) is nonnegative.
A polynomial matrix P (x) is said to be an sos-matrix if P (x) = A(x)TA(x) for some polynomial matrix
A(x); equivalently, if the polynomial yTP (x)y in the variables (x, y) is sos. Obviously, if P (x) is an
sos-matrix, then P (x) is positive semidefinite.

We recall that a polynomial p(x) is convex if and only if its Hessian H(x), i.e., the n×n symmetric
matrix of its second derivatives, is positive semidefinite. It is known that the problem of deciding
convexity of polynomials is strongly NP-hard already for polynomials of degree four [2]. Helton and
Nie [19] proposed the notion of sos-convexity as a tractable algebraic certificate for convexity of polyno-
mials. We say that a polynomial p(x) is sos-convex if its Hessian H(x) is an sos-matrix. Sos-convexity is
obviously a sufficient condition for convexity. Moreover, as a consequence of Theorem 1.2, the problem
of deciding if a given polynomial is sos-convex amounts to solving a single semidefinite program.

5.1 Deciding convexity of SPQ polynomials

It is known that polynomials of degree 4 or larger can be convex without being sos-convex (see,
e.g., [3, 4]). An implication of our next theorem is that this cannot happen for SPQ polynomials, i.e.,
every convex SPQ polynomial is sos-convex. Hence, deciding convexity of an SPQ polynomial can be
reduced to solving a semidefinite program of tractable size. In fact, the proof of the theorem below
shows that convexity of an n-variate SPQ polynomial can be decided by simply finding the roots of
n univariate polynomials and checking whether a constant matrix is positive semidefinite. This is in
contrast to the NP-hardness result (Theorem 4.1) for deciding nonnegativity of an SPQ polynomial.

Theorem 5.1. The Hessian of a convex SPQ polynomial can be written as the sum of positive semi-
definite univariate polynomial matrices. In particular, an SPQ polynomial is convex if and only if it
is sos-convex.

Proof. Let p(x) = q(x)+
∑n
i=1 ui(xi) be a convex SPQ polynomial, where q(x) is a quadratic polynomial

and ui(xi), for i = 1, . . . , n, is a univariate polynomial in xi. Observe that the Hessian H(x) of p(x) is
given as

H(x) = C + U(x),

where C is a constant matrix (which corresponds to the Hessian of q(x)) and U(x) is an n×n diagonal
matrix with the vector (u′′1(x1), . . . , u′′n(xn))T on its diagonal. We may assume that the matrix C has
zero diagonal since, for i = 1, . . . , n, we may push, if necessary, the x2

i term of q(x) into ui(xi).
Since p(x) is convex, H(x) � 0. Hence, for i = 1, . . . , n, the univariate polynomial u′′i (xi) is

nonnegative. Let x∗i ∈ R be a global minimum of u′′i (xi) and let D be the n× n diagonal matrix with
the vector (u′′1(x∗1), . . . , u′′n(x∗n))T on its diagonal. Since H(x∗1, . . . , x∗n) � 0, it follows that C +D � 0.
Moreover, U(x) − D is a diagonal matrix with nonnegative diagonal entries u′′i (xi) − u′′i (x∗i ), and
therefore positive semidefinite. Thus, H(x) can be written as

H(x) = H0 +
n∑
i=1

H i(xi),
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where H0 = C +D and H i(xi) is an n×n matrix with H i
ii(xi) = u′′i (xi)− u′′i (x∗i ) and zero everywhere

else. Since H0 and H i(xi), i = 1, . . . , n, are positive semidefinite, this shows that H(x) can be written
as the sum of positive semidefinite univariate polynomial matrices. To see that p(x) is sos-convex,
observe that the scalar polynomial yTH(x)y = yTH0y+

∑n
i=1 y

2
i (u′′i (xi)−u′′i (x∗i )) is sos, and therefore

H(x) is an sos-matrix.

5.2 Nonnegativity of convex SPQ polynomials

It is known that there are nonnegative convex polynomials that are not sos [9], though the construction
of an explicit example remains an open problem. In [19], it is shown that a nonnegative sos-convex
polynomial is sos. This result, combined with Theorem 5.1, immediately gives the following corollary.

Corollary 5.2. A nonnegative convex SPQ polynomial is sos.

The main result of this subsection is the following stronger statement, which also has computational
implications for convex SPQ polynomial optimization (see Section 5.3).

Theorem 5.3. A nonnegative convex SPQ polynomial can be written as the sum of a nonnegative
separable and a nonnegative quadratic polynomial.

Proof. Let p(x) = q(x) +
∑n
i=1 ui(xi) be a nonnegative convex SPQ polynomial, where q(x) is a

quadratic polynomial and ui(xi), for i = 1, . . . , n, is a univariate polynomial in xi. Since p(x) is
a lower-bounded convex polynomial, its infimum is attained (see, e.g., [7]). Let x̄ ∈ Rn be a global
minimum of p(x), and note that p(x̄) ≥ 0 as p(x) is nonnegative. In fact, we may assume that p(x̄) = 0.
Indeed, if we define g(x) = p(x)−p(x̄), then g(x) is a nonnegative convex SPQ polynomial and satisfies
g(x̄) = 0. Moreover, if g(x) ∈ (NS +NQ)n,d, then p(x) ∈ (NS +NQ)n,d as p(x̄) ≥ 0. Hence, from now
on, we assume that p(x̄) = 0. We also know that ∇p(x̄) = 0 by the first order optimality condition.

Since p(x) is convex, as in the proof of Theorem 5.1, the Hessian H(x) of p(x) can be written as

H(x) = C +D + Diag(u′′1(x1)− d1, . . . , u
′′
n(xn)− dn),

where C is the Hessian of q(x), di ∈ R, for i = 1, . . . , n, is the minimum value of u′′i (xi), D is the
diagonal matrix with (d1, . . . , dn)T on its diagonal, and Diag(u′′1(x1) − d1, . . . , u

′′
n(xn) − dn) is the

diagonal matrix with (u′′1(x1) − d1, . . . , u
′′
n(xn) − dn)T on its diagonal. We know from the proof of

Theorem 5.1 that C +D is positive semidefinite. We now prove two claims.

(5.3.1) We have p(x) = 1
2(x− x̄)TC(x− x̄) +

n∑
i=1

(
ui(xi)− ui(x̄i)− u′i(x̄i)(xi − x̄i)

)
.

Since q(x) is a quadratic polynomial, by Taylor expansion around x̄, we have

q(x) = q(x̄) +∇q(x̄)T (x− x̄) + 1
2(x− x̄)TC(x− x̄).

Similarly, by Taylor expansion of ui(xi) around x̄i, we have

ui(xi) = ui(x̄i) + u′i(x̄i)(xi − x̄i) +Ri(xi),

where Ri(xi) is the remainder polynomial in the expansion. Then,

p(x) = q(x) +
n∑
i=1

ui(xi) = p(x̄) +∇p(x̄)T (x− x̄) + 1
2(x− x̄)TC(x− x̄) +

n∑
i=1

Ri(xi).

Since, p(x̄) = 0 and ∇p(x̄) = 0, and since Ri(xi) = ui(xi)− ui(x̄i)− u′i(x̄i)(xi − x̄i), the claim follows.
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(5.3.2) For i = 1, . . . , n, we have ui(xi)− ui(x̄i)− u′i(x̄i)(xi − x̄i)− 1
2(xi − x̄i)2di ≥ 0.

Since u′′i (xi)−di ≥ 0, it follows that the univariate polynomial fi(xi) = ui(xi)− 1
2(xi− x̄i)2di is convex.

By the first-order characterization of convexity, we obtain

ui(xi)−
1
2(xi − x̄i)2di = fi(xi) ≥ fi(x̄i) + f ′i(x̄i)(xi − x̄i) = ui(x̄i) + u′i(x̄i)(xi − x̄i),

which proves (5.3.2).
Now, observe that the equation in (5.3.1) can be rewritten as

p(x) = 1
2(x− x̄)T (C +D)(x− x̄) +

n∑
i=1

(
ui(xi)− ui(x̄i)− u′i(x̄i)(xi − x̄i)−

1
2(xi − x̄i)2di

)
.

The first term in this sum is a nonnegative quadratic polynomial since C +D is positive semidefinite.
Also, by (5.3.2), each summand in the second term is nonnegative, and therefore the second term is a
nonnegative separable polynomial.

Remark 5.4. By contrasting Lemma 2.6 and Theorem 5.3, we see that sos SPQ polynomials cannot
always be written as the sum of a nonnegative separable and a nonnegative quadratic polynomial,
while nonnegative convex SPQ polynomials can.

5.3 Convex SPQ polynomial optimization

In this subsection, we focus on polynomial optimization problems where the objective and the constraint
set are defined by convex SPQ polynomials, and study some implications of Theorem 5.3 for such
optimization problems.

5.3.1 Unconstrained case

For a convex polynomial p(x) in n variables and degree 2d ≥ 2, consider the problem of finding
p∗ := inf

x∈Rn
p(x), and recovering an optimal solution (whose existence is guaranteed [7]). Observe that

p∗ = sup
γ∈R

γ

s.t. p(x)− γ ∈ Nn,2d.
(10)

A semidefinite programming-based lower bound psos on p∗ can be obtained by replacing the nonneg-
ativity constraint in (10) with an sos constraint:

psos := sup
γ∈R

γ

s.t. p(x)− γ ∈ Σn,2d.
(11)

Since p(x) is convex, the polynomial p(x)− γ is convex for any scalar γ. Therefore, if it were true that
nonnegative convex polynomials are sos, then we would have p∗ = psos. While we know that this is not
true in general [9], Corollary 5.2 implies that p∗ = psos if p(x) is also SPQ. In fact, by Theorem 5.3,
the following stronger statement holds when p(x) is convex and SPQ:

p∗ = sup
γ∈R

γ

s.t. p(x)− γ ∈ (NS +NQ)n,2d.
(12)
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While the bounds obtained from the semidefinite programs (11) and (12) are the same for convex
SPQ polynomials, the size of the semidefinite program (12) can be significantly smaller. Indeed,
suppose that p(x) is a convex SPQ polynomial in n variables and degree 2d. Then, the semidefinite
constraint in (11) (cf. Theorem 1.2) is of size

(n+d
d

)
×
(n+d
d

)
. By contrast, to implement (12), we

impose that p(x) − γ = q(x) +
∑n
i=1 ui(xi), and require the quadratic polynomial q(x) and each

univariate polynomial ui(xi) to be sos. This reduces the size of the largest semidefinite constraint to
max

{(n+1
1
)
×
(n+1

1
)
,
(d+1
d

)
×
(d+1
d

)}
. To demonstrate how significant the difference can be, we compare

in Table 2 the running times of the two approaches on randomly generated convex SPQ polynomials
of different dimensions and degrees. While both approaches always return the same (tight) bound as
expected, the difference in running times can be observed even at low degrees and dimensions. All
experiments were done using MATLAB, the solver MOSEK [5], and a computer with 2.6 GHz speed
and 8 GB RAM.

(n, 2d) (4,10) (4,12) (4,14) (5,10) (5,12) (5,14) (6,10) (6,12) (6,14)

Σn,2d 7.44 22.43 73.86 33.72 184.92 2206.3 168.84 1894.4 NA

(NS +NQ)n,2d 5.82 6.28 5.29 6.99 4.77 4.46 4.86 4.76 5.62

Table 2: Comparison of running times (in seconds) of the semidefinite programs (11) and (12) for
minimizing a convex SPQ polynomial

Recovering an optimal solution. The following proposition shows that Theorem 5.3 can be further
exploited to recover a minimizer of a convex SPQ polynomial.

Proposition 5.5. Let p(x) be a convex SPQ polynomial in n variables and degree 2d ≥ 2, and define
p∗ := infx∈Rn p(x). Then, a point x∗ ∈ Rn such that p(x∗) = p∗ can be recovered by finding zeros of at
most n nonnegative univariate polynomials and at most one nonnegative quadratic polynomial, which
can be obtained by solving a semidefinite program.

Proof. Since p(x) − p∗ is a nonnegative convex SPQ polynomial, by Theorem 5.3, it can be written
as p(x) − p∗ = q(x) +

∑n
i=1 ui(xi), where q(x) is a nonnegative quadratic polynomial (and therefore

convex), and for i = 1, . . . , n, ui(xi) is a nonnegative convex univariate polynomial. (Indeed, it can
be easily verified that the univariate polynomials obtained at the end of the proof of Theorem 5.3 are
convex.) To obtain p∗ and such a decomposition of p(x)− p∗, we solve the semidefinite program (12)
with additional convexity constraints on the univariate polynomials of the separable part.12

Let x̄ = (x̄1, . . . , x̄n)T be a minimizer of p(x). Since the polynomials q(x), u1(x1), . . . , un(xn) are
nonnegative, the equality p(x̄) − p∗ = 0 implies that q(x̄) = 0 and ui(x̄i) = 0 for i = 1, . . . , n. Note
that unless ui(xi) is identically zero, as a univariate convex polynomial, it has a unique minimizer.
Without loss of generality, for some k ≤ n, let u1(x1), . . . , uk(xk) be the univariate polynomials that
are not identically zero. For i = 1, . . . , k, the unique minimizer x∗i of ui(xi) can be obtained by setting
ui(xi) = 0. Then, we can let x∗k+1, . . . , x

∗
n be any solution to q(x∗1, . . . , x∗k, xk+1, . . . , xn) = 0. Now, the

point x∗ = (x∗1, . . . , x∗k, x∗k+1, . . . , x
∗
n)T satisfies p(x∗) = p∗.

12Note that a convexity constraint on a univariate polynomial is a semidefinite constraint since it is equivalent to
requiring the second derivative of the polynomial to be sos.
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5.3.2 Constrained case

A polynomial optimization problem (POP) is a problem of the form

inf
x∈Rn

p(x)

s.t. x ∈ K,
(13)

where K := {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . ,m}, and p(x), g1(x), . . . , gm(x) are polynomial functions. It
is straightforward to see that the optimal value p∗ of problem (13) is equal to

p∗ = sup
γ∈R

γ

s.t. p(x)− γ ≥ 0, ∀x ∈ K.
(14)

In [22], Lasserre introduced a hierarchy of semidefinite programming-based lower bounds on p∗ that
asymptotically converge to p∗ under a certain assumption on K. More recently, finite convergence of
this hierarchy has been studied for convex polynomial optimization problems [23, 21]. In particular,
under the Slater regularity assumption, the Lasserre hierarchy is known to converge in one step if
p(x), g1(x), . . . , gm(x) are sos-convex [23]. Hence, if p(x), g1(x), . . . , gm(x) are convex SPQ polynomials,
the previous statement, together with Theorem 5.1, implies that p∗ can be found by solving a single
semidefinite program (associated with the first level of the Lasserre hierarchy). We next show that in
the same setting, we can find p∗ by solving a much smaller semidefinite program. Moreover, under a
mild additional assumption on p(x), we present a procedure to recover an optimal solution to (13).
Theorem 5.6. Consider the polynomial optimization problem (13) and assume that the Slater regular-
ity condition holds for g1(x), . . . , gm(x), i.e., there exists x̄ ∈ Rn such that gi(x̄) < 0 for i = 1, . . . ,m.
Suppose p(x), g1(x), . . . , gm(x) are convex SPQ polynomials of degree at most 2d. Then, the optimal
value p∗ of (13) can be computed by solving the following semidefinite program:

p∗ = sup
γ∈R,y∈Rm

γ

s.t. p(x)− γ +
m∑
i=1

yigi(x) ∈ (NS +NQ)n,2d,

y ≥ 0.

(15)

Moreover, if p(x) is strictly convex, then an optimal solution x∗ ∈ Rn to (13), i.e., a point x∗ ∈ K such
that p(x∗) = p∗, can be found by finding zeros of at most n nonnegative univariate polynomials and at
most one nonnegative quadratic polynomial, which can be obtained by solving a semidefinite program.
Proof. By the convex Farkas lemma (see, e.g., [34]), under the Slater regularity condition, a scalar
γ is a lower bound on the optimal value p∗ of (13) if and only if there exists a nonnegative vector
y = (y1, . . . , ym)T such that p(x)− γ +

∑m
i=1 yigi(x) is nonnegative. Hence,

p∗ = sup
γ∈R,y∈Rm

γ

s.t. p(x)− γ +
m∑
i=1

yigi(x) ∈ Nn,2d,

y ≥ 0.

(16)

Since p(x), g1(x), . . . , gm(x) are convex SPQ polynomials, p(x) − γ +
∑m
i=1 yigi(x) is a convex SPQ

polynomial when y ≥ 0. By Theorem 5.3, p(x) − γ +
∑m
i=1 yigi(x) is nonnegative if and only if it

belongs to the set (NS +NQ)n,2d. Hence, p∗ can be computed by the semidefinite program (15).13

13For the reasons discussed in Section 5.3.1, the semidefinite program (15) can be much smaller than that of the first
level of the Lasserre hierarchy, which would correspond to (15) with (NS +NQ)n,2d replaced by Σn,2d.
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Next, assume that p(x) is strictly convex. Let (γ∗, y∗) be an optimal solution14 to (15) (or equival-
ently (16)). We have γ∗ = p∗ and y∗ ≥ 0. Consider the polynomial

L(x) := p(x)− γ∗ +
m∑
i=1

y∗i gi(x).

Note that L(x) is a nonnegative, strictly convex SPQ polynomial. Therefore, it has a unique minimizer
x̄ ∈ Rn. By Proposition 5.5, the point x̄ can be obtained by finding zeros of at most n nonnegative
univariate polynomials and at most one nonnegative quadratic polynomial.

We now show that x̄ ∈ K and p(x̄) = p∗, and therefore x̄ is an optimal solution to (13). Observe
that L(x̄) = 0 since L(x̄) > 0 would imply that the optimal value of (16) is larger than p∗. We claim
that there exists a point x̂ ∈ K such that L(x̂) = 0. Assume for the sake of contradiction that for
every x satisfying gi(x) ≤ 0, i = 1, . . . ,m, we have

L(x) = p(x)− p∗ +
m∑
i=1

y∗i gi(x) > 0.

As y∗i gi(x) ≤ 0 for i = 1, . . . ,m, it follows that for every x ∈ K, we have p∗ < p(x), a contradiction
since we know that p∗ = p(x∗) for some x∗ ∈ K. This shows that there exists a point x̂ ∈ K such that
L(x̂) = 0. But since x̄ is the unique solution of L(x) = 0, we must have x̂ = x̄, and therefore x̄ ∈ K.

Finally, we show that p(x̄) = p∗. Assume for the sake of contradiction that p∗ < p(x̄). Let x∗ be the
optimal solution to (13), i.e., the (unique) point satisfying gi(x∗) ≤ 0 for i = 1, . . . ,m and p(x∗) = p∗.
As x̄ is the unique minimizer of the nonnegative polynomial L(x), we must have L(x∗) > 0. Since

L(x∗) = p(x∗)− p∗ +
m∑
i=1

y∗i gi(x∗),

we conclude that
∑m
i=1 y

∗
i gi(x∗) > 0. But this contradicts the inequalities y∗i ≥ 0 and gi(x∗) ≤ 0 for

i = 1, . . . ,m. Hence x∗ = x̄, and therefore p(x̄) = p∗.

6 Applications of SPQ Polynomials

In this section, we present three potential applications involving SPQ polynomials.

6.1 Upper bounds on the sparsity of solutions to linear programs

Given a matrix A ∈ Rm×n with m < n and a vector b ∈ Rm, what is the maximum number of zeros
that a vector in the polytope15 P := {x ∈ Rn | Ax = b,−1 ≤ x ≤ 1} can have? If we denote the
`0-pseudonorm of a vector x ∈ Rn by ||x||0 :=

∣∣{i | xi 6= 0}
∣∣, then the answer is n− p0, where p0 is the

optimal value of the following problem:

(P0) p0 := min
x∈Rn

||x||0

s.t. Ax = b,

− 1 ≤ xi ≤ 1, i = 1, . . . , n.

Computing p0, however, typically requires an intractable enumerative search, as the optimization
problem (P0) is a nonconvex NP-hard problem [27]. While many algorithms have been proposed to

14The existence of (γ∗, y∗) is guaranteed by the convex Farkas lemma.
15By a simple rescaling argument, the results of this section generalize to the case where the polytope is of the form

P̂ := {y ∈ Rn | Ây = b̂,−λi ≤ yi ≤ λi, i = 1, . . . , n} for some scalars λ1, . . . , λn > 0.
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provide upper bounds on p0, methods that produce lower bounds are less common. One approach to
obtain a lower bound on p0 is to replace the `0-pseudonorm by its convex envelope over the hypercube,
which is the `1-norm:

(P1) p1 := min
x∈Rn

||x||1

s.t. Ax = b,

− 1 ≤ xi ≤ 1, i = 1, . . . , n.

Here, ||x||1 =
∑n
i=1 |xi|. Unlike (P0), problem (P1) can be solved efficiently as it can be recast as a linear

program. Because ||x||1 ≤ ||x||0 for any x with −1 ≤ xi ≤ 1, i = 1, . . . , n, we have dp1e ≤ p0. Noting
that the `0-pseudonorm and the `1-norm are both separable functions, it is natural to ask whether
one can improve the lower bound that (P1) provides by considering separable polynomials. This is
the question we study in this subsection. We propose to replace the objective function in (P0) by a
separable polynomial

∑n
i=1 ui(xi) to obtain “input-independent” (Section 6.1.1) and “input-dependent”

(Section 6.1.2) surrogates for the `0-pseudonorm. As we shall see, our approach leads to a nonnegativity
constraint on SPQ polynomials and results in semidefinite programming-based lower bounds on p0.
We call the polynomials u1, . . . , un penalty polynomials. In the next two subsections, we discuss the
choice of these polynomials.

6.1.1 Input-independent penalty polynomials

We first consider the setting where the penalty polynomials u1, . . . , un are chosen to be independent
of A and b, similar to the `1-norm approach in (P1). Consider the optimization problem

(Pu) pu := min
x∈Rn

n∑
i=1

ui(xi)

s.t. Ax = b,

− 1 ≤ xi ≤ 1, i = 1, . . . , n,

where, for i = 1, . . . , n, ui(xi) is a univariate polynomial satisfying ui(0) ≤ 0 and ui(xi) ≤ 1 when
xi ∈ [−1, 1]. It is easy to see that for any choice of such penalty polynomials, we have dpue ≤ p0. A
lower bound on pu can be obtained by solving the following semidefinite program:

(Pfixed) pufixed := max
γ∈R, η,τ∈Rn,
µ1,...,µm

γ

s.t.
n∑
i=1

ui(xi)− γ −
m∑
j=1

µj(x)(aTj x− bj)−
n∑
i=1

ηi(1− xi)−
n∑
i=1

τi(1 + xi) is sos,

ηi ≥ 0, τi ≥ 0, i = 1, . . . , n,
µj(x) is an affine polynomial, j = 1, . . . ,m.

Here, for j = 1, . . . ,m, aTj denotes the jth row of the matrix A. Note that the polynomial in the first
constraint of (Pfixed) is an SPQ polynomial16. It is straightforward to check that pufixed ≤ pu ≤ p0. Our
goal is to first design appropriate penalty polynomials u1, . . . , un that can be used as a proxy for the
`0-pseudonorm on all instances of (P0), and then insert them in (Pfixed) to approximate (P0) better

16If we replace the constants ηi, τi in (Pfixed) by higher even-degree univariate polynomials ηi(xi), τi(xi), and impose
sos constraints on ηi(xi) and τi(xi) for i = 1, . . . , n, the polynomial in the first constraint of (Pfixed) would still be an
SPQ polynomial and the whole program would still be a semidefinite program. Our choice of the constant multipliers
ηi, τi is for simplicity and due to the fact that increasing the degrees of these multipliers did not result in better bounds
in our experiments.
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than (P1). In other words, by appropriately choosing u1, . . . , un, we hope that dpufixede will be a better
lower bound on p0 than dp1e.

In this input-independent setting, it is natural to pick u1, . . . , un so that they are each as close as
possible to the `0-pseudonorm in one dimension. A possible approach to achieve this goal would be to
let u1 = · · · = un = u, where u is determined as follows. For a fixed degree 2d, we let

u(t) = c0 + c1t+ c2t
2 + · · ·+ c2dt

2d,

where the coefficients c0, c1, . . . , c2d are an optimal solution to the following problem:

max
c0,c1,...,c2d

∫ 1

−1
u(t) dt

s.t. c2d ≥ 0
u(0) ≤ 0
u(t) ≤ 1 on t ∈ [−1, 1].

(17)

The constraint c2d ≥ 0 ensures that the first constraint of (Pfixed) can always be satisfied. The objective
function and the first two constraints in (17) are linear in the decision variables c0, c1, . . . , c2d. The
last constraint requires a univariate polynomial to be nonnegative over an interval and can be turned
into an equivalent sos condition through the following proposition. This implies that problem (17) can
be solved as a semidefinite program.

Proposition 6.1 (Pólya-Szegö, Fekete, Markov-Lukacs; see, e.g., [30] for a proof). A univariate
polynomial p(x) of even degree 2d is nonnegative over an interval [a, b], with a < b, if and only if it
can be written as p(x) = s(x) + (x− a)(b− x)t(x), where t(x) and s(x) are sos polynomials of degree
at most 2d− 2 and 2d respectively.

Problem (17) yields different polynomials for different degrees. For instance, the optimal univariate
polynomials that the solver [5] returns for degrees 6 and 10 are the following (to two digits of accuracy):

u(t) = 5.67t2 − 10.11t4 + 5.45t6,
u(t) = 13.00t2 − 61.20t4 + 128.42t6 − 122.78t8 + 43.57t10.

As one could anticipate from (17), our optimal penalty polynomials end up being nonnegative and
even. Figure 1 illustrates the optimal penalty polynomials for different degrees, together with the
`0-pseudonorm and the `1-norm in dimension one.

Figure 1: The optimal input-independent penalty polynomials for degrees 2d = 6, 10, 14, 18, together
with the `0-pseudonorm and the `1-norm in dimension one
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6.1.2 Input-dependent penalty polynomials

The penalty polynomials obtained in Section 6.1.1 are input-independent, i.e., they can be used as
a proxy for the `0-pseudonorm on any instance of (P0) (given by input A, b). In this subsection, we
show how the lower bound on p0 can be improved by designing penalty polynomials that take into
consideration the problem input. This is achieved by solving the following semidefinite program, where
the penalty polynomials u1, . . . , un are part of the decision variables:

(Pfree) pufree := max
γ∈R, η,τ∈Rn,
u1,...,un,

r1,...,rn,s1...,sn,
µ1,...,µm,t11,t12,...,tnm

γ

s.t.
n∑
i=1

ui(xi)− γ −
m∑
j=1

µj(x)(aTj x− bj)−
n∑
i=1

ηi(1− xi)−
n∑
i=1

τi(1 + xi) is sos,

1− ui(xi)− ri(xi)(1− xi)− si(xi)(1 + xi)−
m∑
j=1

tij(x)(aTj x− bj) is sos, i = 1, . . . , n,

ui(0) ≤ 0, i = 1, . . . , n,
ηi ≥ 0, τi ≥ 0, i = 1, . . . , n,
ui(xi) is a polynomial of degree 2d, i = 1, . . . , n,
ri(xi), si(xi) are sos polynomials of degree 2d− 2, i = 1, . . . , n,
µj(x), tij(x) are affine polynomials, i = 1, . . . , n, j = 1, . . . ,m.

The second set of constraints17 in (Pfree) implies that for i = 1, . . . , n, we have ui(xi) ≤ 1 for all
xi ∈ [−1, 1] for which there exist x2, . . . , xn with Ax = b. This, together with the third set of
constraints, ensures that the polynomials u1, . . . , un are underestimators of the `0-pseudonorm over
the polytope P = {x ∈ Rn |Ax = b,−1 ≤ x ≤ 1}. In addition, since the penalty polynomials designed
as an optimal solution to (17) are feasible for (Pfree), we have pufixed ≤ pufree ≤ p0. We observe in our
experiments (see Section 6.1.3) that pufree is often a better lower bound on p0 than pufixed, and that
both pufixed and pufree are often better lower bounds on p0 than p1. Figure 2 compares optimal input-
independent and input-dependent penalty polynomials of degree 2d = 6 for an input A ∈ R5×10, b ∈ R5

to (P0) for which dpufreee > dpufixede.

6.1.3 Numerical experiments

We illustrate our method by a small proof-of-concept numerical experiment. We set n = 10 and m = 5,
and generate a matrix A ∈ Rm×n and a vector b ∈ Rm with entries drawn independently from the
standard normal distribution. On 100 instances where the polytope P = {x ∈ Rn |Ax = b,−1 ≤ x ≤ 1}
is nonempty, we compare the lower bounds p1, pufixed, pufree on p0. The degree of our penalty polynomials
is chosen to be 2d = 6. Table 3 (left) shows the comparison between these three lower bounds and
Table 3 (right) compares their ceilings, which are also valid lower bounds on p0. In each row, two
lower bounds are compared and the number of times that equalities/strict inequalities hold out of our
100 instances are recorded. The results indicate that replacing the `1-norm with appropriate separable
penalty polynomials frequently improves the lower bound on p0. For example, it can be seen in Table 3
(right) that the strict inequality dp1e < dpufreee holds 99 times out of the 100 instances.

17We remark that the polynomials in the second set of constraints of (Pfree) are univariate plus quadratic, and therefore,
by Theorem 2.2, are nonnegative if and only if they are sos.
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(a) The optimal input-independent penalty
polynomial for degree 2d = 6, together
with the `0-pseudonorm in dimension one

(b) The optimal input-dependent penalty poly-
nomials for degree 2d = 6, together with the
`0-pseudonorm in dimension one

Figure 2: Comparison of optimal input-independent and input-dependent penalty polynomials of de-
gree 2d = 6 for an input A ∈ R5×10, b ∈ R5 to (P0) for which dpufreee > dpufixede

> = <

p1 19 0 81 pufixed

pufixed 0 0 100 pufree

p1 0 0 100 pufree

> = <

dp1e 0 75 25 dpufixede

dpufixede 0 12 88 dpufreee

dp1e 0 1 99 dpufreee

Table 3: Pairwise comparison of lower bounds p1, p
u
fixed, p

u
free on p0 (left) and pairwise comparison of

their ceilings (right): in each row, the number of times (out of 100 randomly generated instances of
(P0)) that equalities/strict inequalities hold between two quantities are recorded

6.2 Convex SPQ polynomial regression

In this subsection, we consider the problem of convex polynomial regression (see [16]). We assume that
we have m noisy measurements (wi, yi), i = 1, . . . ,m, of an unknown convex function f : Rn → R. To
extrapolate this function at new points, we would like to find a polynomial p : Rn → R (of a given
degree) which best explains the observations. This can be done, e.g., by minimizing the sum of the
absolute deviations between the observed values and the predicted ones:

min
p

m∑
i=1
|p(wi)− yi|. (18)

In order to exploit the fact that the underlying function f is convex, one would like to impose a
convexity constraint on the regressor p(x). However, the convexity constraint makes the resulting
regression problem intractable. In [16], the authors instead impose an sos-convexity constraint on p(x)
and solve the resulting regression problem by semidefinite programming.

Suppose that in addition to being convex, the underlying unknown function f is known to have
low-degree interactions between its variables. In that case, it is natural to approximate f with a convex
SPQ polynomial. As we see below, this will also help significantly with the scalability of the resulting
regression problem. We thus consider the following SPQ convex regression problem:

min
p SPQ and of deg. 2d

m∑
i=1
|p(wi)− yi|

s.t. H(x) � 0.
(19)
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Here, the decision variables are the coefficients of p(x), the degree 2d is fixed, and the matrix H(x) is
the Hessian of p(x). Observe that by the proof of Theorem 5.1, Problem (19) is equivalent to

min
p SPQ and of deg. 2d,
u1,...,un of deg. 2d− 2,

Q∈Rn×n

m∑
i=1
|p(wi)− yi|

s.t. H(x) = Q+ Diag(u1(x1), . . . , un(xn)) ∀x ∈ Rn,
ui(xi) is sos for i = 1, . . . , n,
Q � 0,

(20)

where Q is a matrix with constant entries, ui(xi) is a univariate polynomial in xi for i = 1, . . . , n,
Diag(u1(x1), . . . , un(xn)) is the diagonal matrix with the vector (u1(x1), . . . , un(xn))T on its diagonal,
and the equality constraint in (20) is imposed by coefficient matching.

For our numerical experiment, we consider the following family of convex functions:

fa,b(x) = log
( n∑
i=1

aie
bixi
)

+ xT (aaT + I)x+ bTx, (21)

where the entries of a, b ∈ Rn are drawn uniformly and independently from the interval [0, 4] and
[−2, 2] respectively, and I is the n × n identity matrix. We consider r = 100 different instances of
functions in 10 variables thus generated. For each instance, we have a training (resp. test) set of
m = 300 (resp. t = 100) random vectors wi ∈ R10 drawn independently from the (multivariate)
standard normal distribution. The values yi are then computed as yi = fa,b(wi) + εi, where εi is again
chosen independently from the standard normal distribution. Restricting ourselves to polynomials of
degree 2d = 4, we compare the performances of the four regression problems shown in Table 4.

Polynomial regression min
p

m∑
i=1
|p(wi)− yi|.

SPQ polynomial regression min
p SPQ

m∑
i=1
|p(wi)− yi|.

Sos-convex polynomial re-
gression

min
p

m∑
i=1
|p(wi)− yi| s.t. H(x) is an sos-matrix.

SPQ convex polynomial re-
gression

min
p SPQ

m∑
i=1
|p(wi)−yi| s.t.H(x) = Q+Diag(u1(x1), . . . , un(xn)) ∀x,

Q � 0, ui(xi) is sos for i = 1, . . . , n.

Table 4: The four regression problems considered in our experiments

We solve the four regression problems using the training set and obtain an optimal polynomial
p∗ in each case. We then calculate the average absolute deviation error and the maximum absolute
deviation error over the test set:

Avg Deva,b = 1
t

t∑
i=1

∣∣fa,b(wi)− p∗(wi)∣∣ , Max Deva,b = max
1≤i≤t

∣∣fa,b(wi)− p∗(wi)∣∣ .
The histograms in Figure 3 compare these test errors over r = 100 instances. As the results illustrate,
we are able to obtain significantly smaller errors with SPQ convex polynomial regression.
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Figure 3: Histograms demonstrating test set performance of the different regression approaches over
100 functions randomly chosen from the family of convex functions fa,b given in (21)

We shall also remark on the running times of sos-convex and SPQ convex polynomial regression
problems. Recall that for SPQ convex polynomial regression, instead of requiring H(x) to be an sos-
matrix, we equivalently require H(x) to be the sum of a positive semidefinite constant matrix and
a diagonal matrix with entries that are univariate sos polynomials. As can be seen in Table 5, this
leads to a significant difference in running times between the sos-convex and SPQ convex regression
formulations already at n = 10. While we are unable to run sos-convex regression programs beyond
n = 18 due to memory constraints, SPQ convex regression programs take less than a minute to execute
for n = 80.

n 10 12 14 16 18 20 40 60 80

SPQ convex regression 4.6 4.7 5.9 6.0 6.4 8.8 20.1 32.8 48.8

Sos-convex regression 23.3 69.2 267.4 825.7 17778.5 NA NA NA NA

Table 5: Comparison of running times (in seconds) averaged over 5 instances for sos-convex and SPQ
convex polynomial regression on problems of increasing size with degree 2d = 4

6.3 The Newton-SPQ method

In this subsection, we propose a generalization of Newton’s method for minimizing a multivariate
function. Recall that Newton’s method for minimizing a function f : Rn → R first approximates f
with its second-order Taylor expansion at a current iterate x̂ ∈ Rn:

q(x) := f(x̂) +∇f(x̂)T (x− x̂) + 1
2(x− x̂)T∇2f(x̂)(x− x̂). (22)

It then chooses the next iterate to be a critical point of the quadratic polynomial q(x). If the function f
is convex, this critical point will be a global minimum of q(x). When f is not convex, what is commonly
done in practice is to add a scaled identity matrix to the Hessian of f , with the scale adjusted at every
iteration so that the resulting matrix is positive semidefinite.

Here, we propose to approximate f with an SPQ polynomial around the current iterate and min-
imize the resulting SPQ polynomial in order to obtain the next iterate. The idea of approximating f
with an SPQ polynomial instead of a quadratic polynomial allows us to take advantage of higher-order
information, while maintaining tractability of the iterative method through sos techniques and a very
structured semidefinite program.
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Let f(x) = f(x1, . . . , xn) be the function that we would like to minimize. At the current iterate
x̂ = (x̂1, . . . , x̂n), we find the best SPQ polynomial approximation of f as follows. We first keep
the quadratic approximation (22) that would also appear in Newton’s method. Then, in order to
capture higher-order information, we add, for each variable xi, a higher-order Taylor expansion of the
univariate function fi(xi) obtained by restricting f to the line x̂ + αei, where ei is the ith standard
coordinate vector. We need to also subtract the quadratic part of these univariate Taylor expansions
as they are already accounted for in the quadratic approximation of f . More specifically, let q(x) be
the second-order Taylor expansion of f at x̂ as given in (22). For each variable xi, let

fi(xi) := f(x̂1, . . . , x̂i−1, xi, x̂i+1, . . . , x̂n)

be the univariate function that is obtained from f by setting xj = x̂j for j 6= i. For a fixed integer
d ≥ 2, let ui,2(xi) and ui,2d(xi) be the second-order and 2dth-order Taylor expansions of fi(xi) at x̂i,
respectively. We then obtain the following degree-2d SPQ polynomial approximation of f at x̂:

p(x) := q(x) +
n∑
i=1

(
ui,2d(xi)− ui,2(xi)

)
.

Similar to the modification done in Newton’s method to make q(x) convex, we propose to modify p(x)
by adding λ

∑n
i=1(x2d

i + x2
i ), where λ is the smallest nonnegative scalar that makes the polynomial

p(x) + λ
∑n
i=1(x2d

i + x2
i ) convex. It is not hard to see that such λ always exists (see [1]), and by

Theorem 5.1, λ can be computed by a semidefinite program where the size of the largest semidefinite
constraint is max{n× n, d× d}. To obtain the next iterate, we minimize the convex SPQ polynomial
p(x) + λ

∑n
i=1(x2d

i + x2
i ) and recover a point at which the optimal value is achieved. This minimiz-

ation problem is precisely of the type studied in Section 5.3.1. Therefore, by using Theorem 5.3, the
minimization can be carried out by a scalable semidefinite program, and an optimal solution can be
recovered, e.g., using Proposition 5.5.

As an example, we compare the Newton’s method and the Newton-SPQ method to minimize the
bivariate function

f(x1, x2) = 2(x1 − x2) arctan(x1 − x2)− log(1 + (x1 − x2)2) + x2
1, (23)

which is strictly convex and has a unique global minimum at (x1, x2) = (0, 0). We observe that
Newton’s method fails to converge to the global minimum of f if the coordinates of the initial point
(x̂1, x̂2) are not close to each other. More precisely, Newton’s method converges to (0, 0) only for
initial values (x̂1, x̂2) that approximately satisfy |x̂1 − x̂2| ≤ 1.3917. By contrast, we observe that the
Newton-SPQ method with 2d = 4 converges to the global minimum of f for every initial point. The
plots in Figure 4 demonstrate this situation where the basins of attraction of the global minimum for
both methods are shown with initial points (x̂1, x̂2) chosen from the domain [−20, 20]× [−20, 20].

Figure 4: Basins of attraction (in light gray) of the global minimum of f in (23) for the Newton’s
method (left) and for the Newton-SPQ method (right)
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