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Abstract

We address a single-machine scheduling problem motivated by a last-mile-delivery
setting for a food company. Customers place orders, each characterized by a delivery
point (customer location) and an ideal delivery time. An order is considered on time
if it is delivered to the customer within a time window given by the ideal delivery
time ±δ, where δ is the same for all orders. A single courier (machine) is in charge of
delivery to all customers. Orders are either delivered individually, or two orders can
be aggregated in a single courier trip. All trips start and end at the restaurant, so
no routing decisions are needed. The problem is to schedule courier trips so that the
number of late orders is minimum. We show that the problem with order aggregation
is NP-hard and propose a combinatorial branch and bound algorithm for its solution.
The algorithm performance is assessed through a computational study on instances
derived by a real-life application and on randomly generated instances. The behavior
of the combinatorial algorithm is compared with that of the best ILP formulation
known for the problem. Through another set of computational experiments, we also
show that an appropriate choice of design parameters allows applying the algorithm to
a dynamic context, with orders arriving over time.
Keywords: Scheduling; Complexity; Integer programming; Branch and bound; Food
delivery; Last-mile delivery.

1 Introduction

In this paper we address a scheduling problem called single-courier meal delivery scheduling

problem (MDSP). In fact, it is motivated by a food pick-up and delivery application in
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Rome, Italy. A restaurant collects food orders from the final customers. The customers

specify their location and the ideal delivery time (besides, of course, the type and amount

of required dishes). Meals are delivered by a single courier. The problem is to schedule

the courier’s trips so that the number of orders which are not delivered within their time

window is minimized. This is a sensible objective, since one can assume that missed orders

are outsourced to a third-party logistics operator charging a fixed rate for each order. We

assume that the restaurant is non-bottleneck, i.e., meals are always ready when needed for

delivery.

During each roundtrip, the courier can deliver a limited number of orders. In fact, to

cope with the congested traffic of big cities, couriers typically move around by bicycles or

mopeds, and hence can carry no more than one or two orders. (This is a relevant difference

from, e.g., parcel delivery which is typically carried out through vans or small trucks.) In

particular, we let MDSPS denote the problem in which all trips carry a single order, and

MDSPA the problem in which up to two orders can be aggregated in the same trip.

A relevant feature of our meal delivery problem is that each delivery should take place in

a time window of width δ, centered around the ideal delivery time specified by the customer.

The value of δ is the same for all orders, and it expresses service timeliness. The consequence

(as shown in detail in Section 2) is that, if we consider the problem in which each trip delivers

a single order (MDSPS), our problem reduces to a single-machine scheduling problem in

which, denoting by rj, dj and pj release date, due date and processing time of a job j, it

turns out that for all j

dj − rj − pj = δ,

i.e., all jobs have the same slack. Scheduling problems with fixed or limited slack have been

addressed in the literature, as reviewed in Section 2.

In this paper we consider the more general case in which the courier is allowed to serve

up to two different orders in a single trip, that we refer to as order aggregation (problem

MDSPA). This additional feature results in a substantially different scheduling model.

Such a variant of the problem has been introduced by Cosmi et al. (2019a), where different

lower bounds are compared. In Cosmi et al. (2019b), computational results are presented

concerning a number of integer optimization models for the problem.

MDSP is conceptually similar to the so-called same-day delivery problem (SDDP ). Also

in this case, consumers place orders for the same day, and the orders are fulfilled drawing

items from a centralized inventory. However, SDDP is stochastic and dynamic (see Ulmer

et al. (2020)), that is, online orders are not known a priori and are only revealed over time.

2



SDDP is indeed strongly related to the vehicle routing problem with release dates (Archetti

et al. (2015), Azi et al. (2012)).

Among the most recent literature on SDDP , the following works specifically deal with

deliveries performed by a single vehicle. In Ulmer et al. (2019) the problem with a single

vehicle and stochastic order arrival is addressed. The vehicle is allowed to (preemptively)

return to the depot before delivering all loaded packages. To solve the problem, they combine

an approximation procedure based on dynamic programming that chooses the subset of

requests for delivery with a routing heuristic. Klapp et al. (2018b) consider a problem with

a single vehicle and orders distributed on a line. The decision process is divided in epochs

characterized each by a set of known delivery requests and a set of potential requests. At each

epoch the goal is to decide whether or not to dispatch the vehicle, loaded with known orders,

so that expected operational costs and penalties for unserved orders are minimized. In Klapp

et al. (2018a), the same authors assume a more general network topology and provide a more

realistic model of the same-day delivery operations in a typical road network.

Different from SDDP , it is important to stress that in MDSPA deliveries contain at most

two orders, and delivery-time requirements are stricter than in most of the above models.

Hence, in MDSPA scheduling decisions, rather than routing decisions, are crucial.

The paper is organized as follows. In Section 2 we formally describe MDSPS, and we

define the main notation used in the paper. In Section 3 we introduce the concept of order

aggregation and the corresponding additional notation, give a formal definition of problem

MDSPA and characterize its complexity. In Section 4 some lower bounds are described,

exploited in a branch and bound algorithm presented in Section 5. Section 6 presents the

results of an extensive computational campaign. Finally, in Section 7 some conclusions are

drawn.

2 The meal delivery problem with single-order trips

(MDSPS)

In this section we introduce notation and establish some properties of our problem in which,

during each courier trip, a single order is delivered, so in this case there is a one-to-one

correspondence between orders and courier’s trips.

A set of orders J = {1, . . . , n} is given. (Since each order corresponds to a customer, we

indifferently use the terms order and customer.) For each order j ∈ J , an ideal delivery

time d̂j and a restaurant-to-destination travel time tj are specified. The trip corresponding
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to order j consists in the courier leaving the restaurant, reaching customer j, and heading

back to the restaurant.

The delivery time of an order j equals the courier start time at the restaurant plus the

travel time between the restaurant and destination j. An order is considered on time if it is

delivered in an interval of δ minutes centered around the ideal delivery time chosen by the

customer. As long as the courier is traveling, she is not available for processing any other

order until she is back again to the restaurant. So, in MDSPS we may view the orders

as jobs and the courier as a processing resource, and each job j ∈ J is associated with the

following data. The due date dj is the latest possible time for the courier to be back at the

restaurant after delivering order j on time to the customer, i.e.,

dj = d̂j +
1

2
δ + tj. (1)

The release date rj is the earliest possible time for the courier to start from the restaurant

and deliver order j on time to the customer, i.e.,

rj = d̂j −
1

2
δ − tj (2)

The processing time pj equals the amount of time the courier is busy with order j, i.e., the

total roundtrip time

pj = 2tj. (3)

(We implicitly assume that loading/unloading times are included in travel times.)

In this framework, an order j is on time if and only if the corresponding job starts (i.e.,

the courier picks up the food at the restaurant) not before rj and completes (i.e., the courier

returns to the restaurant) not later than dj. An order which is not on time is tardy . As a

consequence of the above definitions, one has:

dj = rj + pj + δ (4)

which makes our scheduling problem a special case of problem 1∣rj ∣∑Uj, in which due dates

and release dates are interdependent, namely, while due dates and processing times may

vary, the difference dj − rj − pj is the same (equal to δ) for all j. This quantity is known as

slack or additive laxity (Böhm et al. (2021)).

While problem 1∣rj ∣∑Uj is, in general, strongly NP-hard (Garey and Johnson (1979)),
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a number of papers addressed the case in which constraints exist on slack. For the case

in which the slack must not exceed a certain value δ, Cieliebak et al. (2004) address the

problem of minimizing the number of machines necessary to complete all jobs on time. The

authors show that their problem can be solved in polynomial time if δ ∈ {0,1}. Otherwise,

they propose a solution algorithm that runs in O(n(δ+1)HH logH), where n and H are the

number of jobs and the maximum number of overlapping job time windows, respectively. A

refined algorithm for the feasibility version of the same problem is proposed in van Bevern

et al. (2017). Its complexity is O(nδm log(δm)(δ+1)m(2δ+1)+n logn), where m is the number

of available machines. While it is shown in Cieliebak et al. (2004) that this problem is already

NP-hard when δ = 2 for arbitrary m, it is tractable for fixed parameter m + δ (van Bevern

et al. (2017)). Cosmi et al. (2019c) show that the optimization version of the same problem

with m = 1 can be solved in O(n(δ + 2)2(δ+1) + n logn). When m = 1 and (4) holds, which

is the case of our MDSP without order aggregation, Böhm et al. (2021) recently proposed

an algorithm that exactly solves this problem in O(n2). So, MDSPS is indeed polynomially

solvable. We next see that this is not the case when order aggregation is allowed (MDSPA).

3 The meal delivery problem with order aggregation

(MDSPA)

In this section, we consider MDSPA, i.e., the problem in which a courier may pick up either a

single order or a pair of orders to be delivered in a single trip. In the latter case, the deliveries

to the two customers are sequentially performed in the same trip from the restaurant to the

two different locations and back. In the following we refer to such a composite trip as a twin.

When performing a twin, we suppose that after the first delivery, the courier immediately

proceeds to deliver the second order, i.e., we assume that the following condition holds.

No-wait assumption: While performing a twin, the courier is not allowed to introduce

idle time between the two deliveries.

This assumption comes from the application scenario motivating this study. In fact, such

a policy prevents decays in the quality of the delivered food. Moreover, one typically wants

that the courier spends traveling only the time strictly necessary to reach the customers.

Clearly, a courier may deliver two orders i and j in a single trip (and hence, orders i

and j are allowed to be in the same twin) only if it is possible to meet the corresponding

delivery-time constraints under the no-wait assumption. In this case, the twin composed by

order i followed by order j (hereafter, for notation simplicity, indicated by ij) is called a
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feasible twin. In the following, we let tij denote the travel time from customer i to customer

j.

Similar to MDSPS, taking into account travel times from/to the restaurant and between

two customers, we can define processing times, release dates, and due dates for each twin ij.

The processing time pij represents the total amount of time the courier is busy with the twin

ij. Due to the no-wait assumption, j is reached ti + tij time units after the courier starts

from the restaurant, while the same courier is back after pij time units, where

pij
def
= ti + tij + tj. (5)

Recalling that d̂k−δ/2 is the earliest time at which customer k can be reached, the release

date rij of the twin ij is the earliest possible time for the courier to start from the restaurant

and deliver both orders i and j on time, i.e.,

rij
def
= max{d̂i −

δ

2
− ti, d̂j −

δ

2
− (ti + tij)} . (6)

Since d̂k + δ/2 is the latest time at which customer k can be reached, the due date dij

of the twin ij is the latest possible time for the courier to be back to the restaurant after

delivering both the orders i and j on time, i.e.,

dij
def
= min{d̂i +

δ

2
+ tij + tj, d̂j +

δ

2
+ tj} . (7)

Hence, a pair of customer orders i and j may constitute a feasible twin if a courier starting

not before rij is able to deliver the two orders and return back to the restaurant within the

due date dij.

Proposition 1. Given two orders i, j ∈ J × J , the twin ij is feasible if and only if:

δij
def
= δ − ∣tij − dj + di + 1/2(pj − pi)∣ ≥ 0 (8)

Proof. Recall that, for any order j ∈ J , the processing time pj is twice the travel time tj

from the restaurant to customer j and that (4) holds. In (6), we notice that, by (2), the first

term in the max expression d̂i −
δ
2 − ti equals ri. Since d̂j −

δ
2 = rj + tj, the second term can be

rewritten as rj +
1
2(pj − pi) − tij.

Similarly, the second term of the min function in (7), by (1), is equal to dj. The first

term, since d̂i +
δ
2 = di − ti, is equal to di +

1
2(pj − pi) + tij.
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Now, let τij
def
= tij − (dj − di) +

1
2(pj − pi). Due to (1), it is immediate to verify that the

following expression holds:

τij ≥ 0⇔ tij ≥ d̂j − d̂i. (9)

As a consequence, we can rewrite (6) and (7) as:

rij =

⎧⎪⎪
⎨
⎪⎪⎩

ri if τij ≥ 0;

rj +
1
2(pj − pi) − tij otherwise.

(10)

dij =

⎧⎪⎪
⎨
⎪⎪⎩

dj if τij ≥ 0;

di +
1
2(pj − pi) + tij otherwise.

(11)

The above relations show that, if the travel time between the two customers is larger than

the difference between their ideal delivery times, then the release date (resp. due date) of

the twin is equal to the release date of the first order i (resp. the due date of the second

order j). Otherwise, the other terms of expressions (10) and (11) dominate.

Clearly, in order for twin ij to be feasible, one must have:

rij + ti + tij + tj ≤ dij.

If τij ≥ 0, recalling that ri = di−pi−δ, this condition can be rewritten as δ−τij ≥ 0. Viceversa,

if τij ≤ 0, with some algebra, one can show that the same condition is equivalent to δ+τij ≥ 0.

In conclusion, (8) can be written as

δij=δ − ∣τij ∣ ≥ 0

i.e., ij is a feasible twin if and only if δij ≥ 0. ◻

Note that, similar to δ for a standard (single) trip, δij plays the role of a slack time for

a feasible twin. In fact, it is easy to see that for any twin ij, it holds

dij = rij + pij + δij.

However, note that δij ≤ δ and in general it depends on the pair (i, j) of orders forming the

twin.
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We denote the set of feasible twins by

D = {ij ∶ (i, j) ∈ J × J, δij ≥ 0}. (12)

For notational convenience, in D we also include the special symbol jj (for any j ∈ J) to

represent a single order j (not aggregated to another order) as a twin. Clearly, jj ∈D for all

j ∈ J , since, from (8), δjj = δ. Note that τjj = 0 and hence rjj = rj and djj = dj. Hence, from

now on we do not distinguish between trips containing one or two orders, regarding all trips

as twins.

Naturally extending the concept of on-time order, we say that a twin ij ∈D is on time if

both its component orders are so. Notice that the feasibility condition (8) is only necessary

for a twin ij to be on time. Indeed, ij is on time if and only if its starting time sij belongs

to the interval [rij, rij + δij].

We can now formally define the problem addressed in the remainder of the paper.

Problem MDSPA

Given: n customer orders J = {1,2, . . . , n}, the ideal delivery time d̂j, j =

1, . . . , n, the travel time tj between the restaurant and customer j, j = 1, . . . , n,

the travel time tij between customers i and j, i, j = 1, . . . , n (tjj = 0), a slack value

δ > 0;

Find: a set of twins T such that each order belongs to exactly one twin ij of

T , and a starting time sij for each of these twins so that the number of on-time

orders is maximized.

Note that the solution of MDSPA includes the possibility to schedule single-order trips

(through twins jj, for j ∈ J).

3.1 Complexity

In this section we show that MDSPA is difficult. We make use of a reduction from the

well-known (binary) NP-complete decision problem:

Partition: Given q integers {a1, a2, . . . , aq}, is there a subset S ⊂ {1, . . . , q} such that

∑i∈S ai =
1
2 ∑

q
i=1 ai?

Theorem 2. Problem MDSPA is NP-hard.

Proof. Consider an instance I of Partition with q integers {a1, a2, . . . , aq} as above. Let

W = ∑
q
i=1 ai. We can build a corresponding instance I ′ of MDSPA as follows.
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In I ′ there are n = 2(q + 2) orders forming set J = N ∪N ′ in which N and N ′ are two

disjoint sets each with (q + 2) orders. In particular, for each integer i of the Partition

instance I, we define a pair of identical partner orders i ∈ N and i′ ∈ N ′ with pi = pi′ = ai,

ri = ri′ =W − ai and di = di′ = 2W + 1, i, i′ = 1, . . . , q. We refer to these orders as item-orders.

Moreover, there are two more pairs of partner orders. Namely, there is a pair of partner

short orders (q + 1) ∈ N and (q + 1)′ ∈ N ′, and a pair of partner long orders (q + 2) ∈ N and

(q + 2)′ ∈ N ′. All the data are reported in Table 1.

Table 1: Data of instance I ′

order Processing Time Release Date Due Date
i, i′ = 1, . . . , q pi = pi′ = ai ri = ri′ =W − ai di = di′ = 2W + 1

(q + 1) p(q+1) = 1 r(q+1) =
W
2 − 1 d(q+1) =

3
2W + 1

(q + 1)′ p(q+1)′ = 1 r(q+1)′ =
3
2W d(q+1)′ =

5
2W + 2

(q + 2) p(q+2) =W r(q+2) = 0 d(q+2) = 2W + 1

(q + 2)′ p(q+2)′ =W r(q+2)′ =W d(q+2)′ = 3W + 1

Clearly, in I ′ we have δ =W + 1. In addition, the travel time between two partner orders

i, i′ is set to zero, i, i′ = 1, . . . , q + 2. For any other order-pair, the travel time is set to the

maximum possible value that meets the triangle inequality. Hence, we have the following

values for the travel times

tji = tij =

⎧⎪⎪
⎨
⎪⎪⎩

0 ∀i ∈ N, j = i′ ∈ N ′;
1
2(pi + pj) otherwise.

which imply that the (feasible) twin processing times in I ′ are, from (3) and (5),

pji = pij =

⎧⎪⎪
⎨
⎪⎪⎩

pi (= pj) ∀i ∈ N, j = i′ ∈ N ′;

pi + pj otherwise.

It is easy to verify that any pair of orders (i, j) ∈ J×J forms a feasible twin (unless i = (q+2)′

and j is an item-order with pj > 1.)

We next show that there is a schedule σ of MDSPA in which no order is tardy if and

only if the instance of Partition is a yes-instance.

Let us consider a solution of MDSPA with no tardy orders. We next show that an early
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completion of all the orders implies that:

1. Orders (q + 2) and (q + 2)′ do not form a twin.

2. Any order i ∈ N ∖(q + 2) necessarily forms a twin with its partner order i′ ∈ N ′∖(q + 2)′

and, symmetrically, any order i′ ∈ N ′∖(q + 2)′ necessarily forms a twin with its partner

order i ∈ N ∖ (q + 2).

To prove the first statement, consider first a schedule σ in which orders (q + 2) and (q + 2)′

are in a twin. Such a twin must be processed between times W and 2W + 1. Consequently,

all the 2q item-orders must complete not later than W + 1 but, recalling the release and due

dates of the item-orders, this is impossible for q > 2. Hence, (q + 2) and (q + 2)′ must form a

twin.

To prove the second statement, suppose that a twin ij exists in σ in which i and j are

not partner orders and i is not a long order. In this case, pij = pi+pj. In the total processing

time p(σ) of the orders in σ, pi and pj appear twice. In fact, the partner orders of i and j

respectively may form a twin with some other order or be processed as singletons. In both

cases, their duration is added to p(σ). Then one would have:

p(σ) ≥ 2p(q+2) + p(q+1) + ∑
`=1,...,q

p` + pi + pj = 2W + 1 +W + pi + pj > 3W + 1

which implies that there must be at least one order which is delivered after its due date,

contradicting the hypothesis that no order is tardy in σ.

As a consequence of the previous facts, in any schedule with no tardy orders, the long

orders (q + 2) and (q + 2)′ are processed at the beginning and at the end of the schedule

respectively, while the short orders (q+1) and (q+1)′ form a twin that is necessarily processed

in the interval [32W,
3
2W + 1]. The remaining item-orders form q twins with their respective

partner order, and the processing times of each such twin equals the size of a Partition

item. Moreover, those twins have only two disjoint intervals left for processing: I1 = [W, 32W ]

and I2 = [32W + 1,2W + 1]. The resulting structure is illustrated in Figure 1.

Since the width of I1 and I2 is W
2 , it is clear that a schedule with no tardy orders exists

for instance I ′ if and only if I is a YES-instance of Partition. ◻
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Figure 1: Illustration of a schedule corresponding to a YES-instance of Partition with five
items. Dotted rectangles indicate the orders windows [ri, di].
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4 Lower bounds

In this section we illustrate the lower bounds that we employed in our branch and bound

algorithm. As observed in Cosmi et al. (2019a), the combinatorial lower bounds (presented

in that work) outperform those provided by the Gurobi solver in 91% of the cases, and they

are computed much faster. Below we present a combinatorial lower bound which improves

those contained in Cosmi et al. (2019a).

Given an instance of MDSPA, the idea is to define an auxiliary single-machine scheduling

problem Paux such that its optimal solution can be found efficiently and its value is a lower

bound on the optimal value ofMDSPA. There is a one-to-one correspondence between orders

in MDSPA and jobs in Paux, therefore we use j to denote the job in Paux corresponding to

order j in MDSPA. In particular, Paux is an instance of the scheduling problem 1∣rj ∣∑Uj in

which release and due dates are agreeable, i.e., for any two jobs i and j such that ri < rj, then

di ≤ dj. (For simplicity, we use the term agreeable either referred to a set of jobs or to the

corresponding intervals.) This problem can be solved in O(n2) using the well known Kise-

Ibaraki-Mine algorithm (KIM, Kise et al. (1978)), which generalizes the classical Moore’s

algorithm for 1∣∣∑Uj to the problem with agreeable release and due dates.

In the following, we describe how the auxiliary instance Paux is defined. We first illustrate

the definition of release dates and due dates, and then the definition of the processing times.

Definition of time windows. In what follows, we let Ij = [rj, dj] denote the interval (time

window) of order j in problem MDSPA. We say that Ij is properly contained in Ii if ri < rj

and di > dj. Note that a set of intervals is agreeable if and only if there are no two intervals

Ii, Ij such that one is properly contained in the other.

In the instance of the auxiliary scheduling problem Paux, for each order j in MDSPA, we

want to define a new interval I ′j = [r′j, d
′

j] such that Ij ⊆ I ′j and the intervals I ′j, j = 1, . . . , n,

are agreeable.

The idea is to obtain the intervals I ′j by enlarging the original intervals [rj, dj]. This can

be done in many different ways. In particular, let us call enlargement the amount by which

each interval Ij = [rj, dj] is stretched. In order to preserve as far as possible the structure

of the original intervals, it seems reasonable to determine the minimum total enlargement

yielding an agreeable set of intervals. We next show how this can be attained.

For each job j ∈ J , let

Ĩj = ⋃
i∶Ii⊃Ij

Ii (13)

i.e., Ĩj = [r̃j, d̃j] is the union of all the intervals that strictly contain Ij. Algorithm 1 computes
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the values of r′j and d′j. The idea is that each interval Ij is modified by either extending it

leftwards (up to r̃j) or rightwards (up to d̃j).

Algorithm 1 Minimum Total Enlargement (MTE) Algorithm

1: for j ∈ J do
2: Ĩj = [r̃j, d̃j] = ⋃i∶Ii⊃Ij Ii
3: if rj − r̃j < d̃j − dj then
4: r′j ∶= r̃j
5: else
6: d′j ∶= d̃j
7: end if
8: end for

Theorem 3. The intervals returned by Algorithm 1 are agreeable and total enlargement is

minimum.

Proof. We first show that the intervals resulting from the application of the algorithm are

agreeable. Consider any i, and suppose that we enlarge the interval Ii by setting the left

endpoint of the interval to r̃i. Now, the interval I ′i = [r̃i, di] is no more properly contained

in any other interval.

We next observe that, as a consequence of the enlargement of Ii, even if I ′i is used instead

of Ii in (13), no interval Ĩj is affected, for any j ≠ i. In fact, for this to happen, one should

have that Ij ⊂ I ′i and r̃i < r̃j, since otherwise no change in Ĩj occurs. But this is not possible:

In fact, since Ij ⊂ I ′i , then one would have Ĩj ⊇ I ′i which in turn implies r̃i ≥ r̃j.

Similar considerations hold if we enlarge the interval Ii by setting the right endpoint of

the interval to d̃i.

Finally, observe that total extension is minimum, since each interval Ii is extended by

the minimum amount such that the extended interval I ′i is no more properly contained in

any other interval. ◻

Note that a straightforward computation of the intervals Ĩj requires time O(n2).

A more careful implementation of the above procedure is sketched hereafter. For every

job j, consider the set

Qj = {i ∈ J ∶ di > dj ∧ ri < rj}.

Clearly, if Qj = ∅, there is no need to consider enlargements for j, otherwise r̃j = mini∈Qj
{ri}

and d̃j = maxi∈Qj
{di}. In order to determine such values, we sort the jobs in non-decreasing

order of release dates and compute the set J̃ of jobs h ∈ J with Qh = ∅ (no other job ` ∈ J
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exists with r` < rh and d` > dh). J̃ can be found in O(n logn) time by simply sweeping

through the ordered set of jobs. Note that J̃ = {h(1), h(2), . . . , h(q)} with rh(`) ≤ rh(`+1) and

dh(`) ≤ dh(`+1), ` = 1, . . . , q − 1.

For all j = 1, . . . , n we compute the minimum enlargements d̃j and r̃j as follows:

Let d̃0 = −∞. If dj > d̃j−1 then d̃j ∶= dj else d̃j ∶= d̃j−1. As for the leftward enlargement r̃j,

we have to determine the job in Qj with minimum release date. Then r̃j = min{ri ∶ di ≥

dj, i ∈ J̃}. That is, we search for the job h ∈ J̃ with minimum due date larger than dj, which

can be done in O(logn) time. Then r̃j = rh (as job h has the minimum release date among

those with due date greater than dj.) The overall computational cost is O(n logn) and this

is the complexity of the algorithm.

We next show how to define the processing times of the auxiliary instance Paux of 1∣rj ∣∑Uj

with the new set of agreeable intervals I ′j, so that the value of the optimal solution is a lower

bound on the optimal value of MDSPA.

Definition of processing times. In order to have a lower bound on the original instance

of MDSPA, the processing time p′j in Paux must be defined in such a way that its value is not

larger than the contribution of order j to the makespan of on-time orders in any solution of

the instance of MDSPA, regardless of whether order j forms a twin with some other order,

or it is delivered in a single trip.

We consider two different ways of defining the processing times p′j of the auxiliary instance

Paux.

1. Flat lower bound. We set the length of job j equal to

p′j = tj +min{tj,min
k

{
1

2
tjk}} . (14)

Note that p′j ≤ pj. Moreover, if we consider any twin ij in a feasible schedule of problem

MDSPA, one has p′i + p
′

j ≤ ti + tj + tij = pij. Then, given any solution σ of MDSPA, with z

tardy orders, if we sequence the jobs in Paux in the same order in which the corresponding

customers are visited in σ, we get a schedule with z′ ≤ z tardy jobs.

2. Order-based lower bound. Given the initial set of intervals in MDSPA, we first apply

Algorithm MTE. Then, we renumber all jobs in Paux so that i < j if d′i < d
′

j or d′i = d
′

j and

r′i < r
′

j. The processing times p′j are defined as follows:

p′j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

pj j = 1

min{pj,min h<j∶
(h,j)∈D

{phj − p′h},min h<j∶
(j,h)∈D

{pjh − p′h}} j > 1
(15)
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Given an order j, we use the notation m(j) to indicate the order such that:

pj,m(j) = min{min{pij ∶ ij ∈D},min{pji ∶ ji ∈D}, i ≠ j}.

If order j is not in any feasible twin, then m(j) is undefined and p′j = pj.

Lemma 1. In problem Paux, for each job j it holds that (1) p′j ≤ pj and (2) p′j+p
′

m(j)
≤ pj,m(j).

Proof. Inequality (1) p′j ≤ pj follows from (15).

We next show that (2) holds. For each job j, either m(j) = h < j or m(j) = l > j. We

consider these two cases separately.

Case 1 m(j) = h < j.

It holds that: p′j = min{pj,min i<j∶
(ij)∈D

{pij − p′i}} ≤ phj − p
′

h. Hence p′j + p
′

h ≤ phj.

Case 2 m(j) = l > j

2.1 Consider the case in which p′l is attained in correspondence to j, i.e., j =

argmin i<l,
il∈D

{pl, pil − p′i}. Hence, p′l ≤ pjl − p
′

j, so again pjl ≥ p′l + p
′

j.

2.2 If p′l is attained for k ≠ j, then: j ≠ k = argmin i<l,
il∈D

{pl, pil − p′i}. Hence, p′l = pkl−p
′

k ≤

pjl − p′j, which yields again p′l + p
′

j ≤ pjl.

This completes the proof. ◻

Theorem 4. Each feasible schedule σ of value zσ for the original problem MDSPA defines

a sequence of jobs which corresponds to a feasible schedule σ′ of value z′σ for problem Paux

with zσ ≥ z′σ.

Proof. Given a feasible schedule σ for MDSPA, we consider a schedule σ′ for Paux where:

• jobs are sequenced as the customers in σ;

• the processing time of job j ∈ J is given by p′j defined in (15);

• if job j corresponds to either a single order or to the first order in a twin in σ, then we

let s′j = sj; if j is the second order of the twin ij in σ, then s′j = max{s′i + p
′

i, r
′

j}.

Clearly, σ′ is always a feasible schedule for Paux, since s′j ≥ r
′

j.

Given a feasible schedule σ for MDSPA, we next show that the corresponding schedule

σ′ for Paux has a number of tardy jobs which does not exceed the number of tardy orders in
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σ. To this aim, we separately consider the two cases of single-order trips and twins. Recall

that the values d′j are obtained using the mte Algorithm, hence d′j ≥ dj for each job j ∈ J .

Single-order trips Each job j corresponding to a single-order trip in which the order j is

on time in σ, in σ′ ends at C ′

j = sj + p
′

j ≤ sj + pj ≤ dj ≤ d
′

j, hence j is on time also in σ′.

Twins Let us consider a twin ij which is on time in σ, corresponding to the two consecutively

scheduled jobs i and j in σ′. We consider separately the two jobs:

First Job The first job i starts at s′i = si and it ends at C ′

i = si + p
′

i ≤ si + pi ≤ di ≤ d
′

i,

hence i is on time in σ′.

Second Job In σ′, job j starts either at its release time r′j ≤ rj or when the job i ends

at C ′

i . In the first case, since obviously rj + pj ≤ dj, and since r′j ≤ rj, p
′

j ≤ pj and

d′j ≥ dj, one has r′j + p
′

j ≤ rj + pj ≤ dj ≤ d
′

j. In the latter case, C ′

j = si + p
′

i + p
′

j,

and since, from Lemma 1, p′i ≤ pi,m(i) − p
′

m(i)
≤ pij − p′j, it follows that p′i + p

′

j ≤ pij

and hence C ′

j ≤ si + pij, since the twin is on time in σ one has si + pij ≤ dj, so in

conclusion C ′

j ≤ d
′

j, i.e., also in this case job j is on time in σ′.

This completes the proof. ◻

Example 1. We refer to an instance with n = 5 orders, namely 1,2,3,4,5. Beside those
corresponding to single orders, the feasible twins are “12”,“14”,“21”,“35”,“41”,“53”. Their
processing times, release times, and due dates—obtained from Equations (5), (6), and (7)—
are as follows:

{pij} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

10 15 − 30 −
15 10 − − −
− − 10 − 25

30 − − 16 −
− − 25 − 14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

{rij} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 − 0 −
1 1 − − −
− − 1 − 1

0 − − 0 −
− − 3 − 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

{dij} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

40 41 − 50 −
40 41 − − −
− − 47 − 47

40 − − 50 −
− − 47 − 47

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

According to MTE Algorithm 1 and Equation (15) we compute release times (r′j), due dates
(d′j) and processing times (p′j) of the jobs in the instance of Paux:

Job j 1 2 3 4 5

r′j 0 0 0 0 3

d′j 40 41 47 50 50

p′j 10 5 16 15 9
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We solve Paux using Kise-Ibaraki-Mine algorithm obtaining the following schedule: σ′ =

⟨1,2,4,5⟩ which provides a lower bound equal to 1 (job 3 is late). Note that, there is a feasible

(and optimal) schedule for the original instance of the problem σ = ⟨“12”,“35”⟩ in which job

4 is late.

5 A combinatorial branch and bound

Here we describe the combinatorial branch and bound (B&B) we have developed to solve

the problem MDSPA.

B&B works as follows. As in many enumeration algorithms for scheduling problems, we

fix the orders from left to right, taking into account that there are two types of trips, namely

single-order trips and twins. Each node l of the enumeration tree is characterized by:

• a set Sl of on-time scheduled orders;

• a schedule σl of the orders in Sl (called partial schedule), specifying single-order trips

and twins;

• a set Tl of tardy orders;

• the set of unscheduled orders Jl = J ∖ (Sl ∪ Tl).

At each node l of the enumeration tree, children are generated by appending an order to

the partial schedule σl, forming either a single-order trip or a twin with the currently last

order. More in detail, let k be the last scheduled order in σl. Consider two cases.

(i) k is scheduled in a single-order trip. In this case, each child node is obtained by

appending to σl an order h scheduled either as a single-order trip or as the second

order of the twin kh.

(ii) k is the second order of a twin ik. In this case, each child node is obtained by appending

an order scheduled as a single-order trip.

For example, in Figure 2, node 5 of the enumeration tree is a child of node 2 and corresponds

to a partial schedule consisting of two single-order trips, namely σ5 = ⟨b, c⟩. The sibling node

6 corresponds instead to a partial schedule with one twin σ6 = ⟨bc⟩.

Consider a partial schedule σl, and an order h ∈ Jl such that, when appended to σl, h is

tardy. Then, h will be inserted in the set Tq for all nodes q of the subtree rooted in l.
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When branching from node l, its children nodes are built taking into account some

dominance rules:

• In case (i) above, for each h ∈ Jl, a child node is generated appending to σl the order

h only if the following conditions are met:

– ∄j ∈ Jl ∶ max(rj, sk + pk) + pj ≤ rh

– ∄j ∈ Jl ∶ max(rkj, sk) + pkj ≤ rh

– if h is scheduled as a single-order trip, sk + pk + ph ≤ dh

– if h is scheduled as the second order of the twin kh ∈D, max(sk, rkh) + pkh ≤ dkh.

• In case (ii) above, i.e., l ends with the twin ik having starting time sik, for each order

h ∈ Jl, a child node is generated appending to σl the order h only if the following

condition is met:

– ∄j ∈ Jl ∶ max(sik + pik, rj) + pj ≤ rh.

Lower Bounds.

At each node l of the enumeration tree, a lower bound is computed applying Algorithm

2. If the computed lower bound is not smaller than the incumbent best solution, the node

is fathomed.

Algorithm 2 Twin Lower Bound

1: Build problem p:
2: Use mte Algorithm on the job set J to compute release times and due dates
3: Build edd sequence of jobs in J and rename jobs according to it
4: for j ∈ {1, . . . , ∣J ∣} do
5: if j = 1 then
6: p̃j = pj
7: else j ≠ 1
8: p̃j = min{pj,min h<i∶

(h,j)∈D
{(phj − p̃h},min h<j∶

(j,h)∈D

{(pjh − p̃h}}

9: end if
10: end for
11: Solve p:
12: Run KIM algorithm (Kise et al. (1978))

The procedure to compute the lower bound is slightly different in cases (i) and (ii) above.

In case (ii), the partial schedule σl ends with a twin ik. Let t∗ be the completion time of the
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twin ik. In this case, Algorithm 2 is applied to the set Jl of unscheduled orders, considering

that no trip can start before t∗.

On the other hand, if case (i) holds, i.e., σl ends with the single-order trip k, then

Algorithm 2 is applied to the set Jl ∪ {k}, and the completion time of the order preceding k

in σl is the first available starting time for the other trips. This is due to the fact that k can

still be the first order in a twin ki with i ∈ Jl, so it has to be reconsidered when computing

the lower bound.

In both cases, if we let zl be the value obtained applying Algorithm 2, the lower bound

at node l is ∣Tl∣ + zl.

Upper bounds. Before children are generated from a node l, in order to speed up the

algorithm, a heuristic is run to compute a suitable upper bound and possibly update the

incumbent solution.

In the heuristic, single-order trips and twins are considered. The idea is to sequence

the unscheduled orders (Jl) by iteratively computing a weight for each order or twin and

selecting as the next order or twin the one having minimum weight.

Let t∗ be the current makespan, i.e., the completion time of the last order k in σl. Let Cj

denote the completion time of job j ∈ Jl if it is scheduled immediately after k in a single-order

trip, and Cj ≤ dj. In this case, we let wj = Cj − t∗. If j is appended to k to form the twin

kj ∈ D, completing at Ckj ≤ dkj, we let wkj = Ckj − t∗. Finally, if a twin ij is appended to

k, completing at Cij ≤ dij, we let wij =
Cij−t

∗

2 . In all cases, if the completion time of the

single-order trip or twin exceeds the due date, we assume that the weight is +∞. Once a

new single-order trip or twin is added to the partial schedule, it is considered as the new last

trip, t∗ is recomputed and the algorithm iterates until the last available order is scheduled.

Note that orders/twins having a large release time may receive a large weight even if they

are short and their due date is smaller compared to other longer orders.

The branch and bound tree is explored using a depth-first strategy. Among the sibling

nodes of a given node, the node having the lowest lower bound is selected. In case of a tie,

the node l is selected in which the difference between due date and completion time of the

last order of σl is smallest.

For the sake of clarity, the following example gives an idea of our ad-hoc branching

procedure.

Example 2. We refer to an instance with n = 4 orders, namely a, b, c, d. Feasible twins are

ab, ac, ba, bc, cb (while twins ca and jd, dj with j = a, b, c, are not feasible). The branch and
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bound tree is shown in Figure 2. Beside each node l, we report the partial schedule σl and the

value computed for the lower LBl and, possibly upper UBl bounds. At the root node, a lower

Figure 2: An example of the enumeration tree of the branch and bound procedure.
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bound LBroot = 1 and an upper bound UBroot = 2 (which is therefore the incumbent solution

schedule) are computed. Children 1, 2, and 3 of the root node are generated and correspond

to scheduling orders a, b, and c, respectively, at the beginning of the schedule. The child node

relative to the partial schedule ⟨d⟩ is not generated due to the dominance rule (order b can

be delivered before d is released). Concurrently, lower bounds at each node are computed.

A depth-first strategy is applied and node 2 is explored first since it has the lowest lower

bound (together with node 3). An upper bound UB2 = Nodes 4, 5, 6, and 7 are then generated:

node 6 shows a lowest lower bound LB6 = 1. Now, node 6 is explored and its child node 8

is generated and, in turn, explored: Here, the heuristic computes a new incumbent solution

with value UB8 = 1 and hence, nodes 1, 3, 4, 5, and 7 are fathomed. The corresponding

schedule σ∗ = ⟨bc, d, a⟩ (in which order a is late) is an optimal schedule.

6 Computational results

In this section we present the results of a large computational campaign including three

distinct experimental settings. [Instances are available from the authors upon request.]

1. (Real-life offline scenario.) The first experimental setting consists of real data from

a case study, in which all orders have been already accepted, and deliveries must be
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scheduled. As orders have been accepted by some rough-cut capacity planner, this

scenario typically results in a relatively small number of tardy deliveries.

2. (High-demand offline scenario.) The second setting consists in randomly generated

instances in which the distribution of ideal delivery times is close to that of real-life

instances, but the number of orders has been increased. Also in this scenario, orders

have already been accepted. The purpose of this experiment is to test our solution

algorithms in a more stressed scenario than the previous scenario.

3. (Real-life online scenario.) This setting is based on the real data of scenario 1, and it

is the closest to real-life operations. Customer orders are supposed to arrive over time,

and the overall schedule is updated at regular intervals in a rolling horizon fashion.

We have addressed all the instances of both real-life and random scenarios using the

combinatorial branch and bound (B&B) algorithm presented in Section 5 and an ILP for-

mulation for the problem. In particular, we used the ILP formulation which turned out to

be the most effective among a set of possible formulations in Cosmi et al. (2019b). The

formulation is reported in the Appendix.

Our experiments were aimed at investigating (i) the benefits of order aggregation with

respect to having single-order deliveries, (ii) the computational efficiency of the two solution

methods and (iii) the effectiveness of our approach in practice. In particular, we investigate

(i) in Scenario 1, (ii) in Scenarios 1 and 2, and (iii) in Scenario 3.

All tests were performed on a computer equipped with an Intel Xeon E5-2643v3 3.40

GhZ CPU and 32 GB RAM. B&B was implemented using Julia (Bezanson et al. (2017).)

The ILP model is built using JuMP (Dunning et al. (2017)) and it is solved using Gurobi

9.0 (Gurobi Optimization LLC (2018)) in its multithread version. The time limit is set to

one hour, for both B&B and Gurobi.

6.1 Real-life offline scenario

The first experimental scenario consists of 478 instances derived from data provided by

an Italian food delivery operator. In each instance, the number of orders n varies from 5

to 31 orders. The time horizon is roughly a courier shift, i.e., 4 hours, and corresponds,

in all instances, to the busiest hours of the day, namely the hours spanning either lunch

time or dinner time. Instances refer to nine different restaurants and a number of different

days, therefore they may vary in physical location of the customers and distribution of ideal
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Figure 3: Distribution of ideal delivery times in real-life instances.

(a) Lunch (b) Dinner

delivery times. The distributions of ideal delivery times around lunch time and dinner time

are shown in Figure 3 (a) and (b) respectively.

In Table 2, for each n between 5 and 31, the number of instances with n orders is reported.

The delivery time window of each order i is centered around the ideal delivery time d̂i,

and the slack is δ = 30 minutes. This corresponds to assuming that a delivery is acceptable

as long as its earliness or tardiness with respect to d̂i does not exceed 15 minutes, which

corresponds to a commonly accepted level of service in food delivery.

While the analysis of the effectiveness of our solution approach is presented in Section

6.1.2, we next comment on the values of the number of late order with and without order

aggregation.

6.1.1 Benefits of order aggregation

Aggregating two orders in the same delivery represents an opportunity for increasing the

productivity of the couriers with respect to single-order deliveries. It is therefore interesting

to evaluate the improvement, in terms of late deliveries, that can be achieved by order

aggregation. For each of the instances of the real-life scenario solved to optimality, we

compared the number of late orders with and without the possibility of order aggregation.

(The problem with single-order deliveries has been solved using an ILP formulation similar

to the one in the Appendix) The results are summarized in Figure 4, in which, for each value

of n, the average number of late deliveries is displayed with and without order aggregation.

From Figure 4 we observe that order aggregation consistently results in a lower number

of late deliveries, typically saving 1 or 2 late deliveries for medium-size instances. A detailed

comparison of the results show that in 212 out of 476 optimally solved instances, order

aggregation reduces the number of late deliveries (compared to the single-order setting).
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Figure 4: Average number of late deliveries in real-life instances when order aggregation is
allowed (dashed line) and when it is not (solid line).

If we compare the total number of late deliveries (across all the 476 instances) with and

without order aggregation, it turns out that with order aggregation, such a total number of

late deliveries is 47.91% smaller.

6.1.2 Comparison between the efficiency of the solution approaches

In this section we analyze the computational behavior of the branch and bound approach in

the real-life scenario, and compare it to the ILP formulation in Appendix.

The results are reported in Table 2. The 478 instances are grouped for different values of

n. For each row, columns 3–6 report figures over all the instances having a certain value of

n, namely: the number of instances for which B&B succeeded to find the optimal solution

within the time limit (column 3), the number of instances for which the ILP solver found the

optimal solution within the time limit (column 4), the average CPU time of B&B (column 5)

and of the ILP solver (column 6) on the instances that were optimally solved within the time

limit by the respective algorithm. The second last row reports the total number of unsolved

instances, and the average CPU times on solved instances with the two methods respectively.

The last row only considers the 445 instances that have been solved to optimality by both

methods.

B&B solves to optimality all the instances with up to 30 orders within 1 hour of CPU,

while ILP leaves 33 instances unsolved. B&B performs better also in terms of average running
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time. If we consider only the 445 instances optimally solved by both methods, the average

running time for B&B is 5.99 secs, hence on the average B&B is 8 times faster than Gurobi

on these instances.

Table 2: Results of B&B vs ILP for real-life instances. ∗CPU time refers to solved instances
only.

n # Inst
B&B ILP B&B ILP
solved solved CPU sec. CPU sec.

5 1 1 1 0.60 0.01
7 2 2 2 0.61 0.03
9 2 2 2 0.00 0.07
10 113 113 113 0.14 0.14
11 91 91 91 0.36 0.19
12 63 63 63 0.37 0.48
13 42 42 42 0.23 0.76
14 27 27 27 3.87 8.80
15 25 25 25 2.49 11.18
16 15 15 14 1.36 3.41∗

17 20 20 20 23.90 124.32
18 18 18 16 39.06 82.13∗

19 12 12 11 13.46 307.38∗

20 12 12 8 92.76 326.89∗

21 5 5 2 6.30 908.44∗

22 8 8 5 8.07 490.32∗

23 3 3 2 291.02 2743.12∗

24 2 2 0 483.53 -
25 2 2 0 390.77 -
26 4 4 1 612.17 1590.40∗

27 5 5 0 669.20 -
29 2 2 0 73.57 -
30 2 2 0 437.56 -
31 2 0 0 - -

Overall 478 476 445 25.76 49.00
Solved by both 445 5.99 49.00
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6.2 High-demand scenario

In this section we report the computational results concerning a set of instances which

are generated by suitably modifying and scaling real-life instances. The purpose of this

experiment is to evaluate the performance of the two solution approaches in a realistic,

busier scenario characterized by a larger number of orders, which therefore results in larger

problems. In particular:

• Restaurant locations are obtained by slightly perturbing their original positions (this

has been done in order to conceal the identity of the restaurants.)

• The number n of orders is chosen in {15,25,35,45}.

• Customer ideal delivery times are generated using two different distributions, namely

Gaussian and Uniform, with parameters adapted from the real distributions in Fig. 3

(a) and (b). More precisely, the Gaussian distribution has the same mean and variance

of the real distributions, while the Uniform distribution has the same mean value and

spans from 11.30 to 15.30 for lunchtime and from 18.30 to 22.30 for dinnertime.

In conclusion, we have 8 different experimental settings, each setting being characterized

by a value for n and delivery time distribution either Gaussian or Uniform.

For each setting, 90 instances have been generated. For each instance, the orders are

generated in points which are uniformly scattered throughout a region defined as the smallest

rectangle including all the orders from the restaurants. The location of the orders determines

the processing times pj and travel times tij. The results are shown in Tables 3–6.

A few comments are in order.

• On the whole, the combinatorial branch and bound algorithm has a superior perfor-

mance with respect to the ILP. In particular, almost all the instances up to 25 orders

are solved to optimality by B&B within the time limit, while the ILP solver runs into

trouble for more than 15 orders and even for n = 15 in the Gaussian scenario. Com-

paring the CPU times on the instances for which both methods found the optimal

solution, B&B turns out to be almost two orders of magnitude faster than ILP.

• In terms of CPU time, the performance of B&B is not significantly different on these

instances with respect to real-life instances. On the contrary, even for the instances

with n = 15 solved to optimality, the ILP solver requires significantly more time (322.95
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seconds for Uniform instances, 876.1 seconds for Gaussian instances) than in the real-

life instances (11.18 seconds). In other words, B&B appears more suitable to deal with

congested instances than the ILP.

• Tables 5 and 6 allow a comparison between B&B and ILP also including the instances

which were not solved to optimality. In these tables, ∆ denotes the average percentage

difference between the values of the best found solution by the two methods, UBILP

and UBB&B respectively. The tables distinguish the instances for which neither method

was able to certify optimality (Unsolved instances) and the instances for which only

B&B certified optimality. For instances unsolved by both methods, we report the

number of instances for which, respectively, B&B found a better solution (∆ > 0), the

two best found solutions have the same value (∆ = 0), and the ILP incumbent was

better (∆ < 0). For the instances for which B&B certified optimality, we report the

number of instances for which ∆ > 0, the number of instances for which ∆ = 0 and

finally for which ∆ = 0 and the ILP was able to certify optimality. On the whole,

we observe that only in 49 (out of 720) instances did ILP find a better solution than

B&B, while in 221 instances the solution found by B&B (either certified optimal or

not) was strictly better than the incumbent of the ILP solver when the time limit

was reached. We also notice that for n = 15 the ILP indeed always found the optimal

solution, even if it was not always able to certify it, but as n grows the superiority of

B&B is increasingly apparent, even in unsolved instances.

Table 3: Results of B&B for Gaussian instances. ∗CPU time refers to solved instances only.
†The B&B gaps refer to unsolved instances only.

n # Inst
B&B ILP B&B B&B ILP
solved solved gap (%)† CPU sec. CPU sec.

15 90 90 40 - 2.85 876.10∗

25 90 88 0 48.33 188.51∗ -
35 90 50 0 31.15 1054.33∗ -
45 90 1 0 31.27 979.59∗ -

Overall 360 229 40 31.50 308.04∗ 876.10∗

Solved by both 40 21.92 876.10
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Table 4: Results of B&B for Uniform instances. ∗CPU time refers to solved instances only.
†The B&B gaps refer to unsolved instances only.

n # Inst
B&B ILP B&B B&B ILP
solved solved gap (%)† CPU sec. CPU sec.

15 90 90 90 - 4.40 322.95
25 90 89 2 38.46 358.51∗ 1365.37∗

35 90 14 0 32.07 1985.94∗ -
45 90 0 0 31.93 - -

Overall 360 193 92 32.03 311.43∗ 345.61∗

Solved by both 92 8.18 345.61

Table 5: Comparison between best found solutions: Gaussian instances (∆ = UBILP −

UBB&B).

n
Unsolved Instances Instances solved by B&B

∆ > 0 ∆ = 0 ∆ < 0 ∆ > 0 ∆ = 0 ∆ = 0: OPT
% # # % # % # # #

15 - - - - - - - 50 40
25 - - 2 - - 7.41 17 71 -
35 6.60 19 16 -4.28 5 5.39 29 21 -
45 4.63 42 42 -5.50 5 - - 1 -

Overall 5.24 61 60 -4.89 10 6.14 46 143 40

Table 6: Comparison between best found solutions: Uniform instances (∆ = UBILP −

UBB&B).

n
Unsolved Instances Instances solved by B&B

∆ > 0 ∆ = 0 ∆ < 0 ∆ > 0 ∆ = 0 ∆ = 0: OPT
% # # % # % # # #

15 - - - - - - - - 90
25 - - - -8.33 1 7.81 30 57 2
35 6.12 31 30 -6.74 15 6.14 11 3 -
45 4.90 42 25 -4.46 23 - - - -

Overall 5.42 73 55 -5.43 39 7.49 41 60 92
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6.3 Real-life online scenario

Here we report the computational results for the third scenario. Besides the order information

in Scenario 1, here we also consider the time at which each order has been placed.

The scheduler operates by solving subsequent instances of the problem, at certain decision

times. At each decision time, the set of orders considered includes all orders received and not

yet delivered. After a solution is computed for the current set of orders, it is implemented

up to the next decision time. If a decision time occurs at time t, the next decision time

occurs the first time the courier returns to the restaurant after time t + T . The choice of

T is an important parameter. If T is too small, at each decision point the set of released

orders considered by the algorithm can be too small, possibly missing many optimization

opportunities. On the other hand, if we wait too long to run the next instance of the problem

(i.e., if T is too large), the orders’ time windows may become too tight, and there may be

no time to schedule an order which might have been accommodated earlier.

The average number of late orders (i.e., order that will have to be outsourced, as discussed

in Section 1) throughout the whole set of real-life instances when solved offline is 0.85. In our

experiments, we have run the online scenario employing the values T = 5,10,15,20,25,30.

The results of these experiments are reported in Table 7. Each row shows the average value

of the number of late orders on the whole set of 478 real-life instances.

T 5 10 15 20 25 30

# 2.16 2.12 2.05 2.03 2.08 2.16

Table 7: Average number of late orders in the 478 real-life instances for various values of T .

The best value for T is T = 20, yielding an average of 2.03 late orders. Hence, the fact that

orders are not all known at the beginning but rather arrive over time results in an average of

1.18 extra orders which have to be outsourced at each shift. Thanks to the limited number

of jobs considered at each run, the solution algorithm at each decision time requires few

seconds, hence making the approach viable in practice.

7 Conclusions

In this paper we addressed a single-restaurant, single-courier last-mile-delivery scheduling

problem in which the objective is the maximization of on-time deliveries. To improve the

28



quality of the solutions we consider the possibility of aggregating two orders, so that a single

courier can deliver one or two meals in the same trip.

Our experiments show that order aggregation allows to improve the quality of service,

significantly decreasing the number of late deliveries (on a sample of real-life data). Moreover,

the relatively short computation times for small-sized instances suggest that the model can

also be usefully employed in a dynamic setting, i.e., a set of new incoming orders may trigger

the solution of a new instance in which the newly released orders are added to the orders

not yet delivered.

The proposed branch and bound algorithm outperforms the best ILP model presented

in Cosmi et al. (2019b) both in terms of effectiveness and efficiency: Within the time limit

of one hour, B&B solves instances with up to 45 orders which is about twice the size of the

largest instances solved by the ILP within the same time limit. Concerning the instanced

solved by both methods, B&B is from 10 to 40 times faster than the ILP solver.

Possible directions of research may include (but are not limited to): (i) Investigating this

last-mile delivery problem in a robust optimization setting in which uncertainty affects the

data concerning courier travel times and/or waiting times at the restaurant. In this respect,

our model would present similarities to flexible maintenance scheduling problems as, for

instance, in Aloulou and Della Croce (2008), Detti et al. (2019). (ii) The design of a branch

and price ad-hoc algorithm using either a time-indexed formulation or a packing formulation

(see, e.g., Agnetis et al. (2009)). (iii) Addressing a last-mile delivery problem in which the

same courier is shared by multiple restaurants, which brings the problem closer to a multi-

agent scheduling problem where different agents (the restaurants) compete for the usage of

a single machine (the courier, see e.g. Agnetis et al. (2013, 2015), Nicosia et al. (2018)).

(iv) While our results have been devised under the no-wait assumption (see Section 3), the

problem can be analyzed for different definitions of a feasible twin. For instance, the courier

can be allowed some limited slack time between two deliveries in the same trip, or the twin is

considered feasible if the second order is delivered within a certain time from the departure

from the restaurant.
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Appendix: ILP model for MDSPA

In this section we report the ILP model used to benchmark the branch and bound algorithm.

This formulation has been presented in Cosmi et al. (2019b) along with three other integer

programs for MDSPA, and it was shown to be the most effective among the four ILPs.

In the objective function, we count the number of late orders by using indicator variables

yij ∈ {0,1} representing whether a twin ij is late (yij = 1) or not (yij = 0). We account for the

fact that a late twin order ij is assumed to be equivalent to both i and j late1 by setting,

for each ij ∈D, a parameter wij = 2 if i ≠ j, i.e., if ij is a twin order, and wij = 1 if i = j.

1This is with no loss of generality: In fact, suppose a schedule σ exists in which a twin ij has one order
on time and the other one late. Then σ is dominated by another schedule σ̄ identical to σ but for i and j
split into two single orders. In this case only one between i and j is on time and the value of the objective
function is such that f(σ̄) ≤ f(σ).
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We define the following decision variables:

• si ∈ R+, representing the starting time of order i;

• xij ∈ {0,1}, encoding whether order i precedes order j;

• βij ∈ {0,1}, indicating whether orders i and j are scheduled as a twin order ij.

The formulation is illustrated below.

min ∑
ij∈D

wijyij (16)

s.t. si ≥ ∑
ij∈D

rijβij i ∈ J (17)

sj ≥ ci −M(βij − xij + 1) i, j ∈ J ∶ i ≠ j (18)

si ≥ cj −M(βij + xij) i, j ∈ J ∶ i ≠ j (19)

sj ≥ si −M(1 − βij) ij ∈D (20)

si + pij ≤ dij +M(yij + 1 − βi,j) ij ∈D (21)

sj + pij ≤ dij +M(yij + 1 − βi,j) ij ∈D (22)

cj = sj + ∑
i∶ij∈D

pijβij j ∈ J (23)

xij + xji = 1 ij ∶ i ≠ j ∈D (24)

xjh ≥ xih −M(1 − βij)
ij ∈D

h ∈ J ∶ h ≠ i, j
(25)

∑
j∶ij∈D

βij ≤ 1 i ∈ J (26)

∑
i∶ij∈D

βij ≤ 1 j ∈ J (27)

∑
j∶ij∈D

βij + ∑
h∶hi∈D,h≠i

βhi = 1 i ∈ J (28)

si, ci ∈ R+ i ∈ J (29)

βij , xij , yij ∈ {0,1} ij ∈D (30)

Constraints (26)-(28) impose that each order i must always be associated and hence

scheduled within a twin order (including order (i, i)). Constraints (17) force each order i to

always start after the release time of the twin order it is associated to. Constraints (18)-(19)

are standard disjunctive constraints imposing precedences between each pair of orders i and
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j not belonging to the same twin order. These constraints do not hold if i is scheduled as

single order, whereas, in the latter case, constraint (20) holds. Each single order has to be

completed before its twin order delivery time otherwise the twin order is considered late

(21)-(22). Constraints (24) impose that if i precedes j then it is not possible that j precedes

i. Constraint (25) sets that if i and j are scheduled in the twin order ij then if i precedes h

also j has to precede h.
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