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Abstract

A total coloring of a graph G = (V,E) is an assignment of colors to vertices and edges such that
neither two adjacent vertices nor two incident edges get the same color, and, for each edge, the
end-points and the edge itself receive different colors. Any valid total coloring induces a partition of
the elements of G into total matchings, which are defined as subsets of vertices and edges that can
take the same color. In this paper, we propose Integer Linear Programming models for both the
Total Coloring and the Total Matching problems, and we study the strength of the corresponding
Linear Programming relaxations. The total coloring is formulated as the problem of finding the
minimum number of total matchings that cover all the graph elements, and we prove that this
relaxation is tighter than a natural assignment model. This covering formulation can be solved by
a column generation algorithm, where the pricing subproblem corresponds to the Weighted Total
Matching Problem. Hence, we study the Total Matching Polytope. We introduce two families of
nontrivial valid inequalities: congruent-2k3 cycle inequalities based on the parity of the vertex set
induced by the cycle, and clique inequalities induced by complete subgraphs of even order. We
prove that congruent-2k3 cycle inequalities are facet-defining only when k = 4, while the even
cliques are always facet-defining. Since the separation problem of the clique inequalities of even
order is NP-hard, we get a polyhedral proof of the NP-hardness of the Weighted Total Matching
Problem.

Keywords: Integer Programming, Combinatorial Optimization, Total Coloring, Total Matching

1. Introduction

Let us consider a simple and undirected graph G = (V,E) and let D = V ∪ E be the set of its
elements. We say that a pair of elements a, b ∈ D are adjacent if a and b are adjacent vertices, or
if they are incident edges, or if a is an edge incident to a vertex b. If two elements a, b ∈ D are not
adjacent, they are independent. A matching is a subset of edges M ⊆ E such that e ∩ f = ∅ for all
e, f ∈ M with e 6= f . A matching is called perfect if it covers all vertices, that is, has size 1

2 |V |.
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We define ν(G) := max{|M | : M is a matching}. Given a set of colors K = {1, . . . , k}, a k–total
coloring of G is an assignment φ : D → K such that φ(a) 6= φ(b) for every pair of adjacent elements
a, b ∈ D. Each subset of elements assigned to the same color by φ defines a total matching, that is,
a subset T ⊆ D where the elements are pairwise independent. Hence, a k-total coloring induces a
partition of the elements in D into k disjoint total matchings. The minimum value of k such that
G admits a k-total coloring is called the total chromatic number, and it is denoted by χT (G). A
total matching of maximum cardinality is denoted by νT (G).

The Total Coloring Problem consists of finding χT (G). It is an NP-hard problem [38], which is
studied mainly in graph theory [43] for the conjecture attributed independently to Vizing [42] and
Behzad [3] that relates χT (G) to the maximum degree ∆(G) of the nodes in G. The conjecture
states that χT (G) ≤ ∆(G) + 2. Note that ∆(G) + 1 is a trivial lower bound on χT (G). Hence,
if the conjecture were true, we would be left with the NP-Complete problem of deciding whether
χT (G) = ∆(G) + 1. While the conjecture is valid for specific classes of graphs (e.g., see [41]), the
conjecture is still open for general graphs1. The Total Coloring Problem generalizes both the Vertex
Coloring Problem, where we have to color only the vertices of G, and the Edge Coloring Problem,
where instead we have to color only the edges. The Vertex Coloring Problem belongs to the list of
21 NP-hard problems introduced by E. Karp in [18], and it was tackled in the literature by many
exact polyhedral approaches (for a recent survey, see [28]).

The most efficient exact approaches to the Vertex Coloring Problem are based on set covering
formulations [30, 10, 27, 14], where every single set of the covering represents a subset of vertices
taking the same color, corresponding hence to a (maximal) stable set of G. Similarly, the best
polyhedral approach to the Edge Coloring Problem is based on a set covering formulation, where
the edges are covered by (maximal) matchings of G [33, 19]. An interesting alternative formulation
for the Edge Coloring Problem is based on a different ILP model based on a binary encoding of
the problem variables [20]. While in the literature there are other interesting approaches to graph
coloring problems (e.g., branch-and-cut [31], semidefinite programming [17], decision diagrams [40],
constraint satisfiability [13], memetic algorithms [24]), and other interesting types of coloring prob-
lems (e.g., equitable coloring [22, 4], graph multicoloring [11], sum coloring [5], selective graph
coloring [6]), in this work, we focus on a polyhedral approach to the Total Coloring Problem.

A problem related to the total coloring of a graph is the Total Matching Problem, where we
look for a set of vertices and edges which together yield an independent set. The Total Matching
generalizes both the Matching Problem, where we look for an independent set of edges [8], and
the Stable Set Problem, where instead we look for an independent set of vertices [36, 35]. The
first work on the Total Matching Problem appeared in [1], where the authors derive lower and
upper bounds on the size of a maximum total matching. Despite the strong connection with the
Matching Problem, the Total Matching Problem is less studied in the operations research literature.

1When submitting this paper, we have found a paper on arxiv claiming a proof for Vizing’s conjecture [32].
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In particular, significant results are obtained only for structured graphs, as cycles, paths, full binary
trees, hypercubes, and complete graphs, see [21]. This work presents a first polyhedral study of the
Total Matching Problem deriving several facet-defining inequalities for its polytope.

The Total Coloring Problem has several practical applications, for instance, in Match Scheduling
[16], Network Task Efficiency, and Math Art [21]. As an example of match scheduling, consider the
martial art tournament problem, which can be modeled using a tournament graph G = (V,E) and
a set of colors K defined as follows. We add a vertex i to V for each player, and an edge {i, j} to
E for each match. Then, for each time period of the tournament, we introduce a color in K. The
assignment of a color k ∈ K to an edge {i, j} represents the scheduled time period of the match
between players i and j. The assignment of a color k ∈ K to a vertex i represents a rest time for
player i during the time period associated with color k. Given this graph formulation, no pair of
incident edges get the same color because no player can be in two matches at once; no vertex can
be incident to an edge with the same color as the vertex because no player should have a match
during his rest time; no pair of adjacent vertices should get the same color because no two matched
players can leave the stage simultaneously. Hence, a proper total coloring of the tournament graph
represents a feasible scheduling of the tournament, and the total chromatic number represents the
minimum number of time periods to schedule the tournament.

Our contributions. The main results of this paper are:

• A set covering formulation of the Total Coloring Problem based on maximal total matchings,
which can be solved by column generation. Motivated by the pricing subproblem, we introduce
the Maximum Weighted Total Matching Problem.

• The definition of two families of nontrivial valid inequalities that we call the congruent-2k3

cycle inequality, which are based on the parity of the cycle, and the even clique inequality,
which are based on complete graphs of even cardinality. We prove that congruent-2k3 cycle
inequalities are facet-defining only when k = 4 (see Proposition 13), while the even cliques
(but not the odd clique) are always facet-defining (see Theorem 1).

• A polyhedral proof of the NP-hardness of the Weighted Total Matching Problem.

Outline. The outline of this paper is as follows. In the next paragraph, we fix the notation. In
Section 2, we present two Integer Linear Programming (ILP) formulations of the Total Coloring
Problem, and we introduce the Maximum Weighted Total Matching Problem. In Section 3, we
study the Total Matching Polytope, proposing several facet-defining inequalities. In Section 4, we
present two families of nontrivial valid inequalities: cycle inequalities based on the parity of the
vertex set induced by the cycle, and clique inequalities induced by complete subgraphs of even
order. Using the complexity of the separation problem for even clique inequalities, we provide a
polyhedral proof of the NP-hardness of the Weighted Total Matching Problem. In Section 5, we
conclude the paper with a discussion on future works.
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Notation. The graphs considered in this paper are simple and undirected. Given a graph G =

(V,E), we define n = |V | and m = |E|. For a vertex v ∈ V , we denote by δ(v) the set of edges
incident to v and by NG(v) the set of vertices adjacent to v. The degree of a vertex is |δ(v)|, in
particular, we denote by ∆(G) = max{|δ(v)| | v ∈ V }. For a subset of vertices U ⊆ V , let G[U ] be
the subgraph induced by U on G. We define δ(U) := {e ∈ E | e = {u, v}, u ∈ U, v ∈ V \ U}.

2. Total Coloring and Total Matching Models: ILP models

In this section, we first present an assignment Integer Linear Programming (ILP) model for the
Total Coloring Problem. Second, we introduce a stronger set covering formulation based on the
idea of covering the elements of the graph by the minimum number of maximal total matchings.
Third, we introduce the Weighted Total Matching Problem.

2.1. Total Coloring: Assignment model

Let G = (V,E) be a graph and let K be the set of available colors, with |K| ≥ ∆(G) + 1. We
introduce binary variables xvk ∈ {0, 1} for every vertex v and binary variables yek ∈ {0, 1} for every
edge e to denote whether they get assigned color k. Besides, we introduce the binary variables zk
to indicate whether any element uses color k. Using these variables, our assignment ILP model for
the Total Coloring Problem is as follows.

χT (G) := z
(A)
IP = min

∑
k∈K

zk (1)

s.t.
∑
k∈K

xvk = 1 ∀v ∈ V (2)∑
k∈K

yek = 1 ∀e ∈ E (3)

xvk +
∑
e∈δ(v)

yek ≤ zk ∀v ∈ V,∀k ∈ K (4)

xvk + xwk + yek ≤ zk ∀e ∈ E,∀k ∈ K (5)

xvk ∈ {0, 1} ∀v ∈ V,∀k ∈ K (6)

yek ∈ {0, 1} ∀e ∈ E,∀k ∈ K. (7)

The objective function (1) minimizes the number of used colors. Constraints (2)–(3) ensure that
every vertex and every edge get assigned a color. Constraint (4) enforces that all edges e incident to
a vertex v, and the vertex v itself, take a different color; at the same time, the constraints guarantee
that the corresponding variable zk is set to 1 whenever color k is used by at least an element of G.
Constraint (5) imposes that for each edge e = {i, j} at most one element among {e, i, j} can take
color k, and it sets the corresponding variable zk accordingly. If we relax the integrality constraints
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(6) and (7), we get a Linear Programming relaxation. We denote the optimal value of the LP
relaxation by z(A)

LP .
The LP relaxation of model (1)–(7) yields the following lower bound.

Proposition 1. Let G = (V,E) be a graph. Then, we have χT (G) ≥ z(A)
LP ≥ ∆ + 1.

Proof: Let xvk = yek = 1
∆+1 for k = 1, . . . ,∆ + 1 and zk = 1 for k = 1, 2, . . . ,∆ + 1. Notice that

this assignment gives a feasible solution for the LP relaxation of (1)–(7). Since |K| ≥ ∆ + 1, the
assertion follows immediately. �

2.2. Total Coloring: Set Covering model

The assignment model (1)–(7) is easy to write, but it suffers from symmetry issues: any permu-
tation of the color classes indexed by k generates the same optimal solution [29, 15]. To overcome
this issue and to get a stronger LP lower bound, we introduce a set covering formulation based on
maximal total matchings. A total matching is (inclusion-wise) maximal if it is not a subset of any
other total matching. Note that the number of maximal total matchings in a graph is strictly less
than the number of total matchings.

Let T be the set of all maximal total matchings of G. Let λt be a binary decision variable
indicating if the matching t ⊂ T is selected (or not) for representing a color class. The 0–1 parameter
avt indicates if vertex v is contained in the total matching t. Similarly, the 0–1 parameter bet = 1

indicates if edge e is contained in the total matching t. The following set covering model is a valid
formulation for the Total Coloring Problem.

χT (G) = z
(C)
IP := min

∑
t∈T

λt (8)

s.t.
∑
t∈T

avtλt ≥ 1 ∀v ∈ V (9)∑
t∈T

betλt ≥ 1 ∀e ∈ E (10)

λt ∈ {0, 1} ∀t ∈ T . (11)

Given an optimal solution of the previous problem, whenever an element of G appears in t > 1

maximal total matchings, it is always possible to recover a proper total coloring by removing the
element from t − 1 of those total matchings. Note that the covering model has an exponential
number of variables, one for each maximal total matching in G. We denote by z(C)

LP the optimum
value of the LP relaxation of problem (8)–(11).

If we introduce the dual variables αv for constraints (9) and the variables βe for constraints
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Figure 1: A total coloring of a cycle of length 5 with k = 4 = ∆(G)+2 colors. The optimal value of the LP relaxation
of the assignment model (1)–(7) is equal to z

(A)
LP = 3, while the optimal value of the LP relaxation of the set covering

model (8)–(11) is equal to z
(C)
LP = 10

3
.

(10), we can write the dual of the set covering LP relaxation as follows.

z
(C)
LP := min

∑
t∈T

λt s.t. (9)–(10), λt ≥ 0, ∀t ∈ T (Primal) (12)

= max
∑
v∈V

αv +
∑
e∈E

βe (Dual) (13)

s.t.
∑
v∈V

avtαv +
∑
e∈E

betβe ≤ 1 ∀t ∈ T (14)

αv, βe ≥ 0 ∀v ∈ V,∀e ∈ E. (15)

For this LP covering relaxation, the following proposition holds.

Proposition 2. Let G = (V,E) be a graph. Then, we have χT (G) ≥ z(C)
LP ≥ ∆(G) + 1.

Proof: Consider a vertex v of maximum degree, and let ∆(G) = k, where NG(v) := {v1, ..., vk}
and δ(v) := {e1, ..., ek}. Consider the total matching T0 := {v}, and the additional k distinct total
matchings Ti := {vi, ei+1} for all i = 1, . . . , k − 1 and Tk := {vk, e1}. Hence, we have k + 1 total
matchings, which can be used to define a feasible dual solution: we set αv = 1, αvi = βei+1 = 1

2

for all i = 1, . . . , k − 1 and αvk = βe1 = 1
2 . Thus, summing up all these dual values in the dual

objective function, we get the valid lower bound result z(S)
LP ≥ ∆(G) + 1. �

The example in Figure 1 shows that the optimal value of the LP relaxation of the set covering
model can be tighter than the value of the LP assignment relaxation. Next, we prove that the LP
covering relaxation always provides a lower bound at least as strong as that of the LP assignment
relaxation. Our proof uses the equivalence of the set covering relaxation z(C)

LP with a set partitioning
relaxation, where the inequality constraints (9)–(10) are replaced with equality constraints. Herein,
we denote by z(P )

LP the optimal value of the LP partitioning relaxation. The proof of the following
result is straightforward.

Lemma 1. z(C)
LP = z

(P )
LP .

We are now ready to prove the following proposition.
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Proposition 3. Let G = (V,E) be a graph. Then, we have χT (G) ≥ z(C)
LP ≥ z

(A)
LP ≥ ∆ + 1.

Proof: It suffices to prove that the set covering model (8)–(11) can be obtained by applying
the Dantzig-Wolfe reformulation of the assignment model (1)–(7). We exploit the block struc-
ture of the constraint matrix. First, we group the variables by a fixed color k ∈ K. Let uk :=

(xv1k, xv2k, . . . , xvnk, ye1k, ye2k, . . . , yemk, zk) be the vector associated to the decision variable of the
assignment model and let z := (z1, . . . , zk). We notice that the constraint matrix has the following
block structure:

min 1T z

s.t.

A1u1+ A2u2+ . . . +A|K|u|K| = 1

B1u1 ≤ 0

B2u2 ≤ 0
. . .

B|K|u|K| ≤ 0

uk ∈ {0, 1}n+m+1,∀k = 1, 2, . . . , |K|.

The corresponding sub-block matrices can be written as:

Aj =

[
Iv,j 0n×(m+1)

0m×n Ie,j

]
, Bj =

[
Iv Bv,j

Be,j Ie

]
.

The blocks Aj for j = 1, . . . , |K| correspond to the constraint matrices of (2)–(3), where Iv,j is the
identity matrix relative to the vertex components, and Ie,j is the identity matrix relative to the edge
components with one more column with all zeros. The blocks Bj for j = 1, . . . , |K| correspond to
constraints (4)–(5), where Bv,j and Be,j are the edge-vertex incidence matrix and the vertex-edge
incidence matrix respectively, both with one more column of all minus ones indicating the color
j. Notice that the blocks A1 = A2 = · · · = A|K| and B1 = B2 = · · · = B|K| are identical, since
they are incidence matrices of the same graph. Now, define Pt := {wt ∈ {0, 1}n+m+1 | Btwt ≤ 0}
for t = 1, . . . , |K|. Thus, for a fixed k ∈ K, we can express ut =

∑
j∈Pk

λtjwj such that
∑
j∈Pt

λtj = 1,

where the variables λtj for j = 1, . . . , |Pt| correspond to the convexity coefficients with respect to the
points of conv(Pt). In order to guarantee the integrality of the solution and to select exactly one
of the feasible solution, we impose that λtj ∈ {0, 1} for j = 1, . . . , |K|. Since we cannot distinguish
between colors and the blocks Bj are the same, we have the same feasible regions, and thus, we can
define P := P1 = P2 = · · · = P|K|. Let Av,j be the upper block matrix corresponding to the vertex
components of Aj and Ae,j be the below block matrix corresponding to the edge components, then
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we can rewrite the model as:

min

|K|∑
j=1

∑
t∈P

λjtwt (16)

s.t.
|K|∑
j=1

∑
t∈P

(Av,jwt)λ
j
t = 1 (17)

|K|∑
j=1

∑
t∈P

(Ae,jwt)λ
j
t = 1 (18)

∑
t∈P

λjt = 1 ∀j ∈ K (19)

λjt ∈ {0, 1} ∀t ∈ P,∀j ∈ K. (20)

Notice that Av,jwt = Av,t and Ae,jwt = Ae,t, where Av,t = (avt,0m)v∈V and Ae,t = (0n, aet)e∈E

are characteristic vectors of a total matching t, since each element belonging to the same color
class corresponds to a total matching. From the previous observation, we can replace for every

t ∈ P , λt :=
|K|∑
j=1

λjt . In addition, since we can select at most one total matching t ∈ P for every

color class j ∈ K, we replace constraint (19) with λt ∈ {0, 1}. The final integer program with the
Dantzig-Wolfe reformulation becomes:

min
∑
t∈P

λt (21)

s.t.
∑
t∈P

avtλt = 1 ∀v ∈ V (22)∑
t∈P

aetλt = 1 ∀e ∈ E (23)

λt ∈ {0, 1} ∀t ∈ P, (24)

where P represents the set of all possible total matchings. �

2.3. Column generation and Weighted Total Matchings

We can solve problem (12), or equivalently its dual (13)–(15), by considering a subset T̄ ⊂ T ,
and by applying a column generation algorithm, where looking for a primal negative reduced cost
variables corresponds to look for a violated dual constraint [25, 2, 7, 12]. Given a dual feasible
solution ᾱ and β̄, the separation problem of the dual constraints (14) reduces to the following
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Maximum Weighted Total Matching.

νT (G, ᾱ, β̄) := max
∑
v∈V

ᾱvxv +
∑
e∈E

β̄eye (25)

s.t.
∑
e∈δ(v)

ye ≤ 1− xv ∀v ∈ V (26)

xv + xw ≤ 1− ye ∀e = {v, w} ∈ E (27)

xv, ye ∈ {0, 1} ∀v ∈ V,∀e ∈ E. (28)

Note that constraints (26) and (27) together define the valid constraints for total matchings of G.
In addition, whenever the optimal value νT (G, ᾱ, β̄) > 1, the corresponding total matching gives a
violated constraint (14). That is, problem (25)–(28) is the pricing subproblem for solving our set
covering model by column generation.

Motivated by the solution of the pricing subproblem (25)–(28), in the next section, we study
valid (facet) inequalities of the Total Matching Polytope.

3. Facet inequalities for the Total Matching Polytope

In this section, we study the feasible region of the Maximum Weighted Total Matching Problem
(25)–(28), and we provide facet-defining inequalities for the corresponding polytope. The most
important original contribution of this paper is given in Theorem 1, where we prove that the even
clique inequalities are facet-defining for the Total Matching Polytope.

3.1. Total Matching Polytope

The Total Matching Polytope is defined as the convex hull of characteristic vectors of total
matchings. Hence, given a total matching T , the corresponding characteristic vector is defined as
follows.

χ[T ] =

{
za = 1 if a ∈ T ⊆ D = V ∪ E,
za = 0 otherwise.

where z = (x, y) ∈ {0, 1}n+m, x corresponds to the vertex variables and y to the edges variables.

Definition 1. The Total Matching Polytope of a graph G = (V,E) is defined as:

PT (G) := conv{χ[T ] ⊆ Rn+m | T ⊆ D = V ∪ E is a total matching}.

Proposition 4. PT (G) has the following valid inequalities:∑
e∈δ(v)

ye ≤ 1− xv ∀v ∈ V (29)

xv + xw ≤ 1− ye ∀e = {v, w} ∈ E (30)
xv, ye ≥ 0 ∀v ∈ V,∀e ∈ E. (31)
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Proof: In a total matching, by definition, we can take for each vertex v at most one edge incident
to v or the vertex itself (constraints (29)). For every edge e = {v, w}, a total matching contains at
most one element among e, v, w (constraints (30)). Clearly, the variables must be nonnegative. �

The following proposition implies that the valid inequalities that are facet-defining are nonre-
dundant, and, hence, they represent a minimal system defining PT (G).

Proposition 5. PT (G) is full-dimensional, that is, dim(PT (G)) = n+m.

Proof: We have that the origin, the unit vectors χ[{v}] for every v ∈ V and χ[{e}] for every
e ∈ E belong to PT (G), and clearly they are linearly independent. Thus, we have n+m+1 affinely
independent points. �

We establish now an important connection between total matchings of a graph and the stable
sets of the adjoint graph, defined as follows. Consider the graph G and its corresponding line graph
L(G), that is, the graph obtained from G having one vertex for each edge e ∈ E(G), and where two
vertices are linked by an edge if the corresponding edges in G are incident to the same vertex in G.
Starting from the line graph, we construct a new graph H = (V ∪V (L(G)), E(L(G))∪E′), that we
will call the line-full graph, where E′ is the set of edges connecting the vertices of L(G) to vertices
of G, if and only if v ∈ V (L(G)) is an edge of G. We call a doubling of an edge the operation that
adds an edge between a pair of vertices.

Definition 2. Let G be a graph and H its corresponding line-full graph. The graph W obtained
from H applying a doubling of an edge for every pair of vertices {v, w} ∈ V (H) \ V (L(G)) such
that e = {v, w} ∈ E(G), is called the adjoint graph of G.

Note that in the line graph, if |δ(v)| = l, then we have a corresponding clique Kl. In addition, by
doubling the edges, we can create triangles in the adjoint graph. Hence, as shown in Figure 2, the
adjoint graph can be described as the union of cliques K3 and general cliques. We can prove that
total matchings of G correspond to stable sets of its adjoint graph W . In the following, we denote
as Pstable the Stable Set Polytope.

Proposition 6. Let G be a graph and W its adjoint. Then, PT (G) = Pstable(W ).

Proof: The characteristic vectors of the stable sets of W correspond to the characteristic vectors
of total matchings of G, and, hence, the vertices of Pstable(W ) are the vertices of PT (G). �

3.2. Perfect Total Matchings

A total matching is perfect if every vertex of the graph is covered by a total matching, that
is, every vertex is either in the total matching or one of its incident edges belongs to the total
matching. We prove next, that for any graph G, we can always find a perfect total matching.

Proposition 7. Every graph G has a perfect total matching.
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Figure 2: A star graph on the left and the corresponding adjoint graph on the right.

Proof: If G has a perfect matching, it is trivial. Otherwise, let us suppose that G has no perfect
matching. Given a subset of vertices S ⊆ V , let k be the number of odd components of G that
is, the number of maximal connected components of odd order. We denote the odd components
as O1, O2, . . . , Ok. By applying the Tutte’s theorem [39, 23], we have k > |S|. Notice that, since
the maximum size of a matching in an odd component is |V (Oi)|−1

2 for i = 1, 2, . . . k, there is a
vertex that is not covered by a matching, we call it a left-out vertex. Instead, we have a perfect
matching N that covers all the vertices in the even components. Now, let T be a total matching of
G. We show how to construct T so that all the vertices of G are covered by T . First, for each odd
component we can construct a maximum matching Mi of size

|V (Oi)|−1
2 for every i = 1, 2, . . . k, in

which we choose as a left-out vertex one of the vertices connecting an odd component to S. Let vi
be the left-out vertex by Mi of the component Oi for i = 1, 2, . . . , k. Now, take one edge of |S| odd
components connecting vi to the set S and consider the matching SO := {e = {vi, si} | si ∈ V (S)

for i = 1, 2, . . . , |S|}. Since k > |S|, for each of the remaining components, we have a left-out vertex
that cannot be covered by a matching Mi and in particular, in order to form an independent set
of elements, we cannot choose an edge connecting S to the odd component. Consider the set L of
these vertices and define T := M1 ∪M2 · · · ∪Mk ∪ SO ∪ L ∪N . Since every vertex is covered by T
by construction, the assertion follows. �

The previous proposition allows us to define the Perfect Total Matching Polytope. Let PPT (G)

be the convex hull of all perfect total matchings of G.

Proposition 8. Let G be a graph. The following inequalities are valid for PPT (G).∑
e∈δ(v)

ye = 1− xv ∀v ∈ V (32)

xv + xw = 1− ye ∀e = {v, w} ∈ E (33)
xv, ye ≥ 0 ∀v ∈ V,∀e ∈ E. (34)

In practice, for any perfect total matching, the inequalities describing the feasible region of total
matchings are all tight.
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3.3. Facet-defining inequalities

In the following paragraphs, we prove that the valid inequalities describing the feasible region
of the Total Matching Polytope are all facet-defining.

Proposition 9. Let G be a graph. Then, the inequality∑
e∈δ(v)

ye ≤ 1− xv ∀v ∈ V, (35)

is facet-defining for the Total Matching Polytope PT (G).

Proof: Fix a vertex v ∈ V with |δ(v)| = k, and let δ(v) := {e1, ..., ek} and NG(v) := {v1, ..., vk}.
Let F := {z ∈ PT (G) | λT z = λ0} be the face corresponding to the inequality (35). We have to
exhibit n + m affinely independent points satisfying (35) at equality. Consider the unit vector x
with xv = 1, and zero the other entries, and the unit vectors with yei = 1 for i ∈ {1, . . . , k}, and
zero the other components. These k + 1 vectors belong to F and they are linearly independent.
Thus, they are also affinely independent. Now, pick the vertex v together with an edge e /∈ δ(v).
This is a total matching, and, in addition, we can form m − k distinct total matchings, whose
characteristic vectors are linearly independent and so affinely independent. Indeed, consider the set
S := {χ[{v}] + χ[{e}] | ∀e /∈ δ(v)}. The matrix having as columns these vectors has rank m − k,
and together with the previous vectors, we have m+1 affinely independent points. Then, if we take
the vertex v together with w /∈ NG(v), we can build n− (k + 1) distinct total matchings, and the
corresponding points are linearly independent. Finally, note that Ti = {vi, ei+1} for i = 1, . . . , k−1

and Tk = {vk, e1} are distinct total matchings, and the corresponding vectors χ[Ti] for i = 1, . . . , k

are linearly independent, since the matrix having as columns these vectors forms the identity matrix
relative to the vertex components of NG(v). This completes the proof, since we have found n+m

affinely independent points. �

Proposition 10. The inequality

xv + xw ≤ 1− ye ∀e = {v, w} ∈ E, (36)

is facet-defining for the Total Matching Polytope PT (G).

Proof: Consider an edge e = {v, w}. Let |δ(v)| = k and |δ(w)| = l with NG(v) := {v1, ..., vk} and
NG(w) := {w1, ..., wl}. Denote also δ(v) := {ev1 , ..., evk} and δ(w) := {ew1 , ..., ewl

}. We have to
exhibit n+m affinely independent points belonging to the face F := {z ∈ PT (G) | xv+xw = 1−ye}.
Consider the set Su := {z ∈ PT (G) | ye = 1, xu = 1, u /∈ e, zi = 0,∀i ∈ (V \{u})∪(E \{e})}. Notice
that Su ⊆ F . Thus, we can construct n − 2 distinct total matchings and together with the two
unit vectors χ[{v}] and χ[{w}], we can show n affinely independent points. Since the matrix with
columns the characteristic vectors of these total matchings are linearly independent, we have the

12



1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

Figure 3: A vertex x = 1
3
1 of the cycle C5.

identity matrix Iv relative to the vertex components, so they are also affinely independent. Now,
consider the vector z ∈ Rn+m with ye = 1, and zero the other components. Clearly, z belongs
to F . Then, take the vertex w and consider an edge f /∈ δ(w), and note that Tf = {w, f} is a
total matching. In this way, we can build m − l distinct total matchings. In addition, take the
vertex v and consider an edge f ′ ∈ δ(w), f ′ 6= e, also in this case Tf ′ = {v, f ′} is a total matching.
Note that we can form l − 1 distinct total matchings of this type excluding the edge e. Since the
matrix having as columns these m vectors is the identity matrix Ie relative to the edge components,
the corresponding m characteristic vectors are linearly independent. Hence, we have found n+m

affinely independent points satisfying the inequality at equality. �

Proposition 11. The inequalities

xv ≥ 0, ∀v ∈ V, and ye ≥ 0, ∀e ∈ E,

are facet-defining for the Total Matching Polytope PT (G).

Proof: Fix an edge e ∈ E and let F := {z ∈ PT (G) | ye = 0}. Consider the unit vectors χ[{v}] for
every v ∈ V and χ[{f}] for every f 6= e. The matrix A with columns these vectors is the identity
matrix I of order (n×m)×(n×m−1), thus it has rank(A) = n+m−1 and so dim(F ) = n+m−1.
Similarly, fix a vertex v ∈ V and consider F̂ := {z ∈ PT (G) | xv = 0}. The vectors χ[{u}] for
u ∈ V, u 6= v and χ[{e}] for e ∈ E are n+m− 1 linearly independent vectors and are contained in
F̂ . This completes the proof. �

In the following section, we introduce nontrivial facet-defining inequalities for the Total Match-
ing Polytope.

4. Congruent-2k3 cycle and even clique inequalities

In the previous section, we have proved that all the inequalities defining the feasible region of the
Total Matching Problem are facet-defining. In this section, we introduce two families of nontrivial
valid inequalities.
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4.1. Congruent-2k3 cycle inequalities

The inequalities (29)–(31) define the feasible region of total matchings and they are facet-
defining, but they do not describe the complete convex hull of the Total Matching Polytope. For
instance, Figure 3 shows that using only those inequalities, we have that for a cycle C of length 5,
the point za = 1

3 for all a ∈ V (C)∪E(C) belongs to PT (C) and it is a vertex. However, in [21], the
authors show that the cardinality of a maximum total matching in a cycle of cardinality k ∈ N is
equal to

⌊
2k
3

⌋
. Thus, we introduce an inequality that cuts off these nonintegral solutions for cycles,

which we call the congruent-2k3 cycle inequality.

Proposition 12. Let Ck be an induced cycle. Then, if k ≡ 1 mod 3 or k ≡ 2 mod 3, the
congruent-2k3 cycle inequality defined as∑

v∈V (Ck)

xv +
∑

e∈E(Ck)

ye ≤
⌊

2k

3

⌋
(37)

is facet-defining for PT (Ck).

Proof: Let F := {z ∈ PT (Ck) | λT z = λ0} be a facet of PT (Ck) such that F̃ := {z ∈ PT (Ck) |
λ̃T z = λ̃0} ⊆ F where the inequality λ̃T z ≤ λ̃0 corresponds to the inequality (37). We want to
prove that there exists a ∈ R such that λ = aλ̃ and λ0 = aλ̃0. We distinguish two cases based on
the parity of the cycle. We label the vertices V (Ck) := {v0, . . . , vk−1}, so that vi is adjacent to vi−1

for i = 0, 1, . . . , k − 1 mod k , and the edges E(Ck) := {e0, . . . , ek−1}, so that ei = {vi, vi+1} for
i = 0, 1, . . . , k − 1 mod k.

Case 1: (k ≡ 1 mod 3). Consider the total matching T0 := {vi, ei+1 | 0 ≤ i ≤ k − 4, for i ≡ 0

mod 3}. This is a maximal total matching, since every element in T0 is mutually nonadjacent.
The number of elements of T0 is twice the numbers of integers i satisfying the condition, that is,
|T0| = 2(k−1)

3 , and, hence, χ[T0] ∈ F̃ and, in particular, χ[T0] ∈ F . Note that the set {vk−2, ek−2}
is not contained in T0, because of our description of T0. Now, consider the total matchings T−0 :=

(T0 \ {ek−3}) ∪ {vk−2} and T+
0 := (T0 \ {ek−3}) ∪ {ek−2}. In this way, we obtain two distinct total

matchings with the same cardinality, whose characteristic vectors belong to F̃ . Since χ[T+
0 ] ∈ F and

χ[T−0 ] ∈ F , then λTχ[T0] = λTχ[T+
0 ] and λTχ[T0] = λTχ[T−0 ], thus λek−3

= λvk−2
= λek−2

, where
λvi is the cost coefficient corresponding to the vertex vi and λei is the coefficient relative to the edge
ei = {vi, vi+1}. Now, consider the function σ : C −→ C such that σ(vi) = vi+1 and σ(ei) = ei+1.
Indeed, σ shifts every element to the next position with respect to the ordering of the vertices and
the edges. Composing k−1 times the shifting function on T0, we obtain the following total matchings
σ(T0), σ2(T0), . . . , σk−1(T0). For a fixed i, denote σi(T0) := Ti. These are still total matchings and
each characteristic vector χ[Ti] ∈ F̃ . Notice also that Ti does not contain {vi−2, ei−2}, for i = 1

the corresponding set is {vk−1, ek−1}. So, following the same previous procedure, we deduce that
λei−3 = λvi−2 = λei−2 for all i = 1, . . . , k − 1 mod k. This implies that there exists a ∈ R such that
λ = a1. Then, since χ[Ti] ∈ F̃ , we have that λTχ[Ti] = a(1Tχ[Ti]) = aλ̃0. We conclude that, since
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(λ, λ0) = a(1, λ̃0), λT z ≤ λ0 is a scalar multiple of the cycle inequality.
Case 2: (k ≡ 2 mod 3). Consider the total matching T0 := {vi, ei+1 | 0 ≤ i ≤ k − 5, for
i ≡ 0 mod 3} ∪ {vk−2}. Notice that now ek−2 /∈ T0. Also in this case χ[T0] ∈ F̃ , since |T0| =
2(k−2)

3 + 1 =
⌊

2k
3

⌋
. We can construct other two total matchings with the same cardinality T̂0 :=

(T0 \{vk−2})∪{ek−2} and T̃0 := (T̂0 \{ek−4})∪{vk−3}. Note that χ[T̂0], χ[T̃0] ∈ F̃ , and so they also
lie in F . Thus, λTχ[T̂0] = λTχ[T0] and λTχ[T̂0] = λTχ[T̃0]. From the first equality, we deduce that
λvk−2

= λek−2
and for the second one, λvk−3

= λek−4
. We conclude as in the Case 1 by applying the

shifting function σ, so we have a scalar multiple of the cycle inequality. �

In particular, we notice that when the induced cycle is C4, then the corresponding cycle in-
equality is facet-defining for the Total Matching Polytope of the entire graph.

Proposition 13. Let G be a graph and let C4 be the induced cycle of four vertices. Then, the
inequality: ∑

v∈V (C4)

xv +
∑

e∈E(C4)

ye ≤ 2 (38)

is facet-defining for PT (G).

Proof: Denote by F̃ the face induced by the inequality (38). Suppose by contradiction that F̃
is contained in F := {z ∈ PT (G) | λT z = λ0}. By proposition (12), the corresponding inequality
inducing the face F has the form a(

∑
v∈V (C4)

xv +
∑

e∈E(C4)

ye) +
∑
l /∈C4

λTl zl ≤ 2a for a ∈ R. Denote as

V (C4) := {v0, v1, v2, v3} and E(C4) := {ei,i+1 = {vi, vi+1} | i = 0, 1, 2, 3 mod 4}. Consider the
matchingM := {e0,1, e2,3}, then the corresponding characteristic vector lies on F̃. SinceM∩{u} = ∅
for every u /∈ V (C4), Tu := M ∪{u} is a total matching whose characteristic vector lies on F̃ . This
implies that λu = 0 for every u /∈ V (C4). Similarly, M ∩{e} = ∅ for every e /∈ δ(V (C4))∪E(C4), so
Te := M ∪ {e} is a total matching whose characteristic vector lies on F̃ . This implies that λe = 0

for every e /∈ δ(V (C4)) ∪ E(C4). Now, let S := {v ∈ V (C4) | δ(V (C4)) 6= ∅}. Fix a vertex vi ∈ S,
and consider the total matching Tvi := {ei+1,i+2, vi+3} ∪ {evi}, where i is taken modulo 4 and
evi ∈ δ(V (Kh))∩ δ(vi). It is easy to see that the characteristic vector of Tvi lies on F̃ , in particular
exactly one edge e ∈ δ(vi)∩ δ(V (C4)) is chosen, so λevi = 0 for every evi ∈ δ(vi)∩ δ(V (C4)). In this
way, repeating the same argument for all v ∈ S, we obtain that λevk = 0 for every evk ∈ δ(V (Kh)).
This completes the proof since we have proved that λl = 0 for all l /∈ C4. �
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Separation of congruent-2k3 cycle inequalities. In this paragraph, we deal with the problem of
separating the facet-defining inequalities given by the class of the congruent-2k3 cycle inequalities.
Given a fractional optimal solution of the LP relaxation of the pricing subproblem, the separation
for the congruent-2k3 cycle inequalities consists of either finding an inequality in this class that is
violated by a cycle inequality or proving that all inequalities are satisfied. To this end, we propose
an Integer Linear Programming formulation for solving this separation problem.

Let (cv, we) denote the fractional optimal solution to the current LP problem, and let xv and
ye denote the decision variables of the problem of finding a congruent-2k3 cycle in a graph G. The
separation problem consists of maximizing the following value

α :=
∑
v∈V

cvxv +
∑
e∈E

weye −
⌊

2k

3

⌋
, (39)

where k is the cardinality of the cycle induced by the variables xv and ye. Thus, we want to
detect a maximum weighted cycle, where node and edge weights are (cv, we), and the cycle contains
a number of nodes that is not a multiple of three. Whenever α > 0, we have a violated cycle.
Otherwise all the congruent-2k3 cycle inequalities are satisfied. Since k ≡ 1, 2 mod 3, we can
express k = 3z + t where z ∈ Z and t ∈ {1, 2}, and we can rewrite the floor expression in (39) as
follows ⌊

2k

3

⌋
=

⌊
2(3z + t)

3

⌋
=

{
2z if t = 1

2z + 1 if t = 2,

and, hence, we get ⌊
2k

3

⌋
= 2z + t− 1. (40)

Another important element of our ILP model for the separation of congruent-2k3 cycle inequalities
is the connectivity constraints, which we formulate exploiting the ideas presented in [26], by setting a
network flow model. Given the original graphG = (V,E) the flow networks is defined asH = (V,A),
where A :=

⋃
{i,j}∈E{(i, j), (j, i)}. The network H has a single source node that introduces all the

flow, while every node that belongs to the cycle is the sink of a single unit of flow. However, we do
not fix in advance the source node, and we let variables si ∈ {0, 1} for i = 1, . . . , n to indicate which
node ofH is the source. Then, we introduce the variables ui ∈ Z+ for every vertex vi ∈ V to indicate
the overall amount of flow originated at the only source node i having si = 1. Indeed, we have that
ui > 0 only for the sink node. The complete ILP model for the separation of congruent-2k3 cycle
inequalities is the following:
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max
∑
v∈V

cvxv +
∑
e∈E

weye − (2z + t− 1) (41)

s.t.
∑
e∈δ(v)

ye = 2xv ∀v ∈ V (42)

∑
v∈V

xv = 3z + t ∀v ∈ V,∀e ∈ E (43)

xi +
∑

(i,j)∈A

fij = ui +
∑

(j,i)∈A

fji ∀i ∈ V (44)

n∑
i=1

si = 1 ∀i ∈ V (45)

ui ≤ n · si ∀i ∈ V (46)

fij ≤ n · ye ∀(i, j) ∈ A (47)

ye, xv ∈ {0, 1} ∀v ∈ V,∀e ∈ E (48)

ui ∈ Z+ ∀i ∈ V (49)

z ∈ Z+, t ∈ {1, 2}. (50)

The objective function (41) includes the relation specified in (40). Constraints (42) ensure that
the subgraph induced by the variables xv and ye is a union of disjoint cycles, since every node has
either degree zero or two. Constraints (43) impose the congruence on the length of the cycle, which
cannot be a multiple of three. Constraints (44) impose the flow conservation at every node, and
constraints (45) impose that a single vertex is the origin of the flow. Constraints (46) impose that
all the vertices but the source have ui = 0, that is, they do not originate any unit of flow. For every
flow variable fij , constraints (47) set the capacity of the flow variables to zero whenever ye = 0,
that is, whenever arc e is not included in the cycle.

The ILP model (41)–(50) permits us to look for the most violated congruent-2k3 cycle inequality
by solving a single problem. Alternatively, we could solve a simplified version of the separation
problem by fixing in advance both the source node si and the value of variable t. In this way, to
find the most violated inequality, we have to solve two (easier) subproblems for every node, for a
total of 6n subproblems. However, each subproblem reduces to a Shortest Path Problem defined
on an auxiliary directed graph having nonnegative weights, as shown in the proof of the following
proposition.

Proposition 14. The separation problem of the congruent-2k3 cycle inequality is in P .

Proof: The separation problem consists of a sequence of 2n Minimum Weighted s, t-Path problems
from a source node s to the target node t of an auxiliary graph. Let G = (V,E) be a weighted graph
where (cv, we) are the optimal values of the current LP relaxation. Starting from G = (V,E), we
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construct a weighted directed graph H = (N,A) in the following way. For every vertex v ∈ V , we
introduce three nodes labelled as v0, v1, v2 in N . Now, for each edge e = {v, w} ∈ E, we introduce
three arcs ai ∈ A with respect to the permutation σ = (012), that is, ai = (vi, wσ(i)), with i = 0, 1, 2.
Observe that a path from v0 to v1 gives a path Pk of size k ≡ 1 mod 3, and a path from v0 to v2

gives a path Pk of size k ≡ 2 mod 3. Next, we distinguish the two cases.

Case 1: (k ≡ 1 mod 3). In this case, we have
⌊

2k
3

⌋
= 2(k−1)

3 , and the separation problem reads
as follows:

∃Ck :
2

3
|Ck| −

∑
v∈V (Ck)

cvxv −
∑

e∈E(Ck)

wexe <
2

3
.

Since we look for the most violated inequality, for each node v ∈ V , the separation problem is
equivalent to a Minimum Weighted s, t-Path Problem where the source is v0 and the target is v1.
Now, we define the costs on the arcs as la=(i,j) := 2

3 − ci − we={i,j} + 1, for every a = (i, j) ∈ A.
We know that ci + cj + we={i,j} ≤ 1 due to feasibility of constraints (27) and, hence, the costs are
positive. Let P1 be a minimum weighted path in H from v0 to v1. By construction, the path P1 in
H corresponds to a cycle Ck in G of length k ≡ 1 mod 3, where for each node vi ∈ N we consider
the corresponding node v ∈ V . If we sum up all the costs on the path P1, we obtain:

l(P1) :=
∑

(i,j)∈A(P1)

l(i,j) =
2

3
|P1| −

∑
i∈V (Ck)

ci −
∑

e∈E(Ck)

we + |P1|. (51)

Hence, the path P1 yields a violated congruent-2k3 cycle Ck in G if and only if l(P1)− |P1| < 2
3 .

Case 2: (k ≡ 2 mod 3). In this case, we have
⌊

2k
3

⌋
= 2(k−2)

3 , and the separation problem reads
as follows:

∃Ck :
2

3
|Ck| −

∑
v∈V (Ck)

cvxv −
∑

e∈E(Ck)

wexe <
4

3
.

Hence, we have to find a minimum weighted path P2 from v0 to v2 for each node v in V . We define
the arc costs la as before, and we get a maximum violated cycle if and only if l(P2)− |P2| < 4

3 .
In conclusion, by solving 2n shortest path problems on a directed graph with positive weights,

we get the most violated congruent-2k3 cycle inequalities in polynomial time. �

4.2. Even and odd clique inequalities

At this point, we focus on valid inequalities that can be derived by complete subgraphs Kh of
G, with h ≤ n. This leads to consider the following valid inequality.
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Proposition 15. Let G be a graph, and let Kh a clique of order h ≤ n of G. Then,∑
v∈V (Kh)

xv +
∑

e∈E(Kh)

ye ≤
⌈
h

2

⌉
(52)

is a valid inequality for PT (G).

First, it is useful to notice that the result obtained by Padberg in [34] for a maximal clique can be
extended also for the Total Matching Polytope.

Proposition 16. Let G be a graph and let Kh be a maximal clique of G. Then, the inequality∑
v∈V (Kh)

xv ≤ 1 (53)

is facet-defining for PT (G).

Proof: Let G be a graph and let Kh ⊆ G be a maximal clique. We have to exhibit n+m affinely
independent points which belong to the face F := {z ∈ PT (G) |

∑
v∈V (Kh)

xv = 1}. We know that,

sinceKh is maximal, by Theorem 2.4 in [34], we can easily construct n of such points belonging to F .
Now, fix a vertex v ∈ V (Kh) and denote NG(v)∩V (Kh) := {v0, v1, . . . , vh−2} and δ(v)∩E(Kh) :=

{ei = {v, vi} | i = 0, 1, . . . , h−2}. Define the total matching T ev := {v, e}, where e /∈ δ(v) and notice
that χ[T evi ] ∈ F . Thus, we can construct the set of 0-1 vectors {χ[T ev ] | ∀e /∈ δ(v)} ⊆ F . It is easy
to see that the corresponding characteristic vectors are affinely independent, so up to now we have
found |E \ δ(v)|. Then, fix a vertex w ∈ V (Kh) with w 6= v, and consider the set of total matchings
T ew := {{w, e} | ∀e ∈ δ(V (Kh))∩ δ(v)}. By construction, the set of the corresponding characteristic
vectors of T ew is contained in F . Finally, the vectors χ[Tvi,ei+1 ] for i = 0, 1, . . . , h − 2 mod h − 1

with one in entry xvi and yei+1 and zero the other components, are characteristic vectors lying on F
and are affinely independent, thus we have |E| affinely independent points. We have found in total
n + m affinely independent points, since the matrix having the columns the characteristic vectors
found assumes the following form: [

Av B

0 Ie

]
,

where Av represents the vertex components of the n points and B the characteristic vectors of total
matchings relative to a fixed vertex in the clique and exactly one edge not belonging to the clique
itself. This completes the proof. �

In particular, when the subgraph Kh has even cardinality, we get the following result.

Proposition 17. Let Kh be a complete graph, where h ∈ N is an even number. Then, the even
clique inequality defined as ∑

v∈V (Kh)

xv +
∑

e∈E(Kh)

ye ≤
h

2
(54)
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is facet-defining for the Total Matching Polytope PT (Kh).

Proof: Let G = Kh be a complete graph, where h = 2l for l ∈ N and let V (Kh) :=

{v1, v2, . . . , v2l} and E(Kh) := {ei,j = {vi, vj} | ∀i, j ∈ {1, 2, . . . , 2l}, i 6= j}. First, we show
that the even clique inequalities are valid for PT (G). Since Kh is a complete graph of even order, it
admits a perfect matchingM . Notice that any stable set S intersects Kh in at most one vertex, thus
a maximum total matching T can be obtained by a perfect matching, or by deleting from a perfect
matching an edge e = {i, j} and adding one of its endpoints. This implies that |T | ≤ l. Next, we
prove that the face induced by an even clique inequality is facet-defining. To this end, consider a face
F := {z ∈ PT (G) | λT z = λ0} and let F ′ := {z ∈ PT (G) | λ̃T z = λ̃0}, where λ̃T z ≤ λ̃0 corresponds
to the even clique inequality. Suppose that F ′ ⊆ F , we want to show that every inequality of F is
a scalar multiple of the even clique inequality. Place the vertices v1, v2, . . . , v2l−1 at equal distances
on a circle and place v2l in the center. Starting from this configuration, we show a decomposition
of Kh into disjoint union of perfect matchings, such that E(Kh) = M1 ∪M2 ∪ · · · ∪Mh−1. Notice
also that a perfect matching M can be naturally identified as a total matching. Now, fix an index i
and consider the edge that connects a vertex vi to the center v2l of the circle, we call ci = {vi, v2l}
the central edge, and consider the set of edges Ei := {ei+j,i−j = {vi+j , vi−j} | ∀j ∈ {1, . . . , h2 − 1}},
where the indexes run modulo h − 1. It turns out that Mi := Ei ∪ {ci} is a perfect matching. In
this way, repeating the same construction we can form h − 1 distinct perfect matchings Mi, with
χ[Mi] ∈ F ′, for all i ∈ {1, 2, . . . , 2l − 1}. Now, we can construct a total matching with the same
cardinality of the perfect matchings just constructed. Consider an edge e = {vj , vk} ∈Mi of a fixed
perfect matching Mi. Then, Tk := (Mi \ {ej,k}) ∪ {vk} and Tj := (Mi \ {ej,k}) ∪ {vj} are total
matchings. Observe that χ[Tj ] ∈ F ′ and χ[Tk] ∈ F ′, in particular these characteristic vectors lie on
F . This implies that λvj = λvk = λej,k , since λ

Tχ[Tj ] = λTχ[Tk] = λTχ[Mi], where we denote as
λa the cost coefficient for the element a ∈ D = V ∪ E. In particular, we apply this construction
for all the edges of the same perfect matching Mi. Repeating the same argument for all the perfect
matchings in the decomposition, we obtain that λv = λe for e ∈ δ(v), ∀v ∈ V , and since the
cost coefficients for the endpoints of each edge are the same by construction, and we consider only
perfect matchings (we can touch each vertex), we deduce that there exists a ∈ R such that λ = a1.
Thus, this implies that λ0 = ah2 . We conclude that λT z ≤ λ0 is a scalar multiple of the even clique
inequality since (λ, λ0) = a(1, h2 ). This completes the proof. �

Now, we are ready to prove the main theorem of this section.

Theorem 1. Let G be a graph, and let Kh be a complete graph, where h is even. Then, the even
clique inequality defined as ∑

v∈V (Kh)

xv +
∑

e∈E(Kh)

ye ≤
h

2

is facet-defining for the Total Matching Polytope PT (G).

Proof: Let Kh be a complete subgraph of even order of G. We denote as F the face induced by
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the even clique inequality. By Proposition 17, we can find |V (Kh)|+ |E(Kh)| affinely independent
points satisfying at equality the even clique inequality. Now, fix a perfect matchingM of G[V (Kh)].
Since M ∩ {u} = ∅ for every u /∈ V (Kh), Tu := M ∪ {u} is a total matching. Observe that,
χ[Tu] ∈ F . Thus, the set of characteristic vectors {χ[Tu] | ∀u /∈ V (Kh)} is contained in F and
the corresponding |V \ V (Kh)| points are affinely independent. Clearly, it is easy to see that they
are still affinely independent with respect to the previous points, so we have n points up to now.
Similarly, Te := M ∪ {e} for every e /∈ δ(V (Kh)) ∪ E(Kh) is a total matching, since M ∩ {e} = ∅.
Consequently, also the set of vectors {χ[Te] | ∀e /∈ δ(V (Kh) ∪ E(Kh)} is contained in F , and the
corresponding points are affinely independent. Now, let S := {v ∈ V (Kh) | δ(V (Kh)) 6= ∅}. We
can construct a total matching Ts := (Ms \ {e}) ∪ {s}, where e = {s, s} ∈ E(Kh), s ∈ S and
Ms is a perfect matching of G[V (Kh)] with one end-point in s. Then, Tes := Ts ∪ {es} for every
es ∈ δ(V (Kh))∩δ(s), is a total matching whose characteristic vector lies on F . Repeating the same
construction for all the edges es ∈ δ(V (Kh)), we can obtain distinct total matchings for every s ∈ S
whose characteristic vectors belong to F , where the corresponding points are affinely independent.
In this way, we have found n+m affinely independent points belonging to F , since we can rearrange
the rows of the matrix having as columns these points in such a way that we get the following form: AKh

BKh
CKh

0 Ĩv 0

0 0 Ĩe

 ,
where the matrices AKh

, BKh
, CKh

have dimension |V (Kh)|×|E(Kh)| and correspond to the vertex
and edge components of Kh. The rest of the blocks are the zero and identity matrices of the
remaining vertex and edge components. This completes the proof. �

Proposition 18. Let G be a graph, and let Kh be a complete subgraph of G, where h is odd. Then,
the odd clique inequality defined as∑

v∈V (Kh)

xv +
∑

e∈E(Kh)

ye ≤
h+ 1

2 (55)

is valid for the Total Matching Polytope PT (G), but it is not facet-defining.

Proof: Let Kh be a clique of odd order. Since in a total matching of Kh we can pick at most
one vertex, and the size of the largest matching is h−1

2 , we can take at most h−1
2 +1 = h+1

2 elements
of a total matching, as shown in Figure 5. Therefore, this implies that the odd clique inequality is
valid for PT (G). Now, we prove that it is not facet-defining. Adding a vertex u to the clique Kh,
we can form a clique of even order Kh+1 := (V (Kh+1), E(Kh+1)), where V (Kh+1) := V (Kh)∪ {u}
and E(Kh+1) := E(Kh) ∪ {e = {u, v} | v ∈ V (Kh)}. Then, the inequality

∑
v∈V (Kh)

xv +
∑

e∈E(Kh)

ye ≤
h+ 1

2
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Figure 4: Five perfect matchings of K6

is dominated by ∑
v∈V (Kh+1)

xv +
∑

e∈E(Kh+1)

ye ≤
h+ 1

2

This completes the proof. �

We stressed out the fact that, even if the odd clique inequality is maximal it remains not
facet-defining. Indeed, suppose that Kh is a maximal clique of odd order. We know that∑

v∈V (Kh)

xv ≤ 1

is facet-defining, and it is easy to notice that the following is a valid inequality for the Total
Matching Polytope

∑
e∈E(Kh)

ye ≤
h− 1

2
.

Thus, the sum of the two inequalities gives the odd-clique inequality.

Separation for the even clique inequalities. We propose the following ILP model to detect a max-
imum violated even clique, which is based on the maximum edge weighted clique model discussed
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Figure 5: A complete K5 graph. In green, a possible maximal total matching.

in [37]:

max
∑
v∈V

(
cv −

1

2

)
xv +

∑
e∈E

(
we −

1

2

)
ye (56)

s.t.
∑
v∈I

xv ≤ 1 ∀I ∈ I (57)∑
v∈V

xv +
∑
e∈E

ye = 2z (58)

xv ≤ ye ∀e = {u, v} ∈ E (59)

xu ≤ ye ∀e = {u, v} ∈ E (60)

xv, ye ∈ {0, 1} ∀v ∈ V,∀e ∈ E (61)

z ∈ Z, (62)

where I represents the set of all maximal stable sets of G. Since we want to detect a clique of even
order, we introduce the integer variable z ∈ Z. The constraints (57) impose that we can select at
most one vertex from a stable set in the clique found. Notice that there are exponentially (in the
size of the graph) many constraints of this type, and their separation is NP-hard. As a consequence,
the problem (56)–(62) is NP-hard in general, and it contains the maximum edge weighted clique as
a special case [37]. The NP-hardness of problem (56)–(62) allows us to give a polyhedral proof of
the NP-hardness also of the Weighted Total Matching Problem.

Theorem 2. The Weighted Maximum Total Matching Problem is NP-hard.

Proof: Consider the optimization problem ν(G,α, β) for PT (G). Since the Total Matching Polytope
is full-dimensional (Proposition 5) and the separation problem for the even clique inequality is NP-
hard (Theorem 1), by applying the Equivalence Theorem between Optimization and Separation,
(see [9], Chap. 6.4, pp. 174–181), we conclude that solving problem ν(G,α, β) is NP-hard. �

5. Conclusion and future works

In this paper, we have proposed polyhedral approaches to the Total Coloring and Total Matching
Problem. We have introduced two ILP models for the Total Coloring Problem: the assignment
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model and a set covering model by maximal total matchings. We can obtain the second model
by applying a Dantzig-Wolfe reformulation to the first model. For the Total Matching Problem,
our main contributions include the characterization of the feasible region of the Total Matching
Polytope and the introduction of two families of nontrivial valid inequalities: congruent-2k3 cycle
inequalities that are facet-defining when k = 4, and the facet-defining even clique inequalities.
Curiously, we have also shown that the odd clique inequalities are valid, but they are not facet-
defining. Finally, our polyhedral study of the Total Matching Problem has permitted an alternative
proof for the NP-hardness of the Weighted Total Matching Problem.

As future work, we plan to give a complete description of the Total Matching Polytope for
certain classes of graphs. For instance, since we have a complete description of the Stable Set
Polytope for bipartite graphs, our research direction goes towards identifying of new facet-defining
inequalities that will completely describe the Total Matching Polytope for bipartite graphs and,
likely, for complete graphs.
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