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Abstract

A small polygon is a polygon that has diameter one. The maximal perimeter of a convex
equilateral small polygon with n = 2s sides is not known when s ≥ 4. In this paper, we construct
a family of convex equilateral small n-gons, n = 2s and s ≥ 4, and show that their perimeters
are within O(1/n4) of the maximal perimeter and exceed the previously best known values from
the literature. In particular, for the first open case n = 16, our result proves that Mossinghoff’s
equilateral hexadecagon is suboptimal.
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1 Introduction
The diameter of a polygon is the largest distance between any pair of its vertices. A polygon is called
small if its diameter equals one. We recall that an equilateral polygon is a polygon that has all sides
of the same length and a regular polygon is an equilateral polygon whose interior angles are equal.
For an integer n ≥ 3, the problem of finding the maximal perimeter of a convex small n-gon was
investigated by Reinhardt [1] in 1922, Vincze [2] in 1950, and Datta [3] in 1997. They proved that for
n ≥ 3

• the value 2n sin π
2n

is an upper bound on the perimeter of any convex small n-gon;

• the regular small n-gon is an optimal solution only when n is odd;

• there are finitely many optimal solutions [4–6] when n has an odd factor and these solutions are
all equilateral.

When n is a power of 2, the maximal perimeter problem is solved for n = 4 and n = 8. The case
n = 4 was solved by Tamvakis [7] in 1987 and the case n = 8 by Audet, Hansen, and Messine [8]
in 2007. Both optimal 4-gon and 8-gon, shown respectively in Figure 1b and Figure 3d, are not
equilateral. For n = 2s with integer s ≥ 4, exact solutions in the maximal perimeter problem appear
to be presently out of reach. However, tight lower bounds may be obtained analytically. Recently,
Bingane [9, 10] constructed a family of convex non-equilateral small n-gons, for n = 2s with s ≥ 4,
and proved that the perimeters obtained cannot be improved for large n by more than π9/(8n8).

The diameter graph of a polygon is the graph with the vertices of the polygon, and an edge
between two vertices exists only if the distance between these vertices equals the diameter. Figure 1,
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Figure 2, and Figure 3 represent diameter graphs of some convex small polygons. The solid lines
illustrate pairs of vertices which are unit distance apart. Vincze [2] studied the problem of finding
the minimal diameter of a convex polygon with unit-length sides. This problem is equivalent to the
equilateral case of the maximal perimeter problem. He showed that a necessary condition of a convex
equilateral small polygon to have maximal perimeter is that each vertex should have an opposite vertex
at a distance equal to the diameter. It is easy to see that for n = 4, the maximal perimeter of a
convex equilateral small 4-gon is only attained by the regular 4-gon. Vincze also described a convex
equilateral small 8-gon, shown in Figure 3b, with longer perimeter than that of the regular 8-gon. In
2004, Audet, Hansen, Messine, and Perron [11] used both geometrical arguments and methods of
global optimization to determine the unique convex equilateral small 8-gon with the longest perimeter,
illustrated in Figure 3c.

For n = 2s with integer s ≥ 4, the equilateral case of the maximal perimeter problem remains
unsolved and, as in the general case, exact solutions appear to be presently out of reach. In 2008,
Mossinghoff [12] constructed a family of convex equilateral small n-gons, for n = 2s with s ≥ 4,
whose perimeters differ from the upper bound 2n sin π

2n
by just O(1/n4). By contrast, the perimeter

of a regular small n-gon differs by O(1/n2) when n ≥ 4 is even. In the present paper, we propose
tighter lower bounds on the maximal perimeter of convex equilateral small n-gons when n = 2s and
integer s ≥ 4 by a constructive approach. Thus, our main result is the following:

Theorem 1. Suppose n = 2s with integer s ≥ 4. Let Ln := 2n sin π
2n

denote an upper bound on
the perimeter L(Pn) of a convex small n-gon Pn. Let Mn denote the convex equilateral small n-gon
constructed by Mossinghoff [12]. Then there exists a convex equilateral small n-gon An such that

Ln − L(An) =
π4

n4
+O

(
1

n5

)
and

L(An)− L(Mn) =
2π4

n4
+O

(
1

n5

)
> 0.

In addition, we show that the resulting polygons for n = 32 and n = 64 are not optimal by
providing two convex equilateral small polygons with longer perimeters.

The remainder of this paper is organized as follows. Section 2 recalls principal results on the
maximal perimeter of convex small polygons. Section 3 considers the polygons An and shows that
they satisfy Theorem 1. Section 4 shows that the polygons A32 and A64 are not optimal by constructing
a 32-gon and a 64-gon with larger perimeters. Concluding remarks are presented in Section 5.

(a) (R4, 2.828427) (b) (Q4, 3.035276)

Figure 1: Two convex small 4-gons (P4, L(P4)): (a) Regular 4-gon; (b) Optimal non-equilateral
4-gon [7]
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(a) (R6, 3) (b) (R3,6, 3.105829)

Figure 2: Two convex equilateral small 6-gons (P6, L(P6)): (a) Regular 6-gon; (b) Reinhardt 6-gon [1]

(a) (R8, 3.061467) (b) (V8, 3.090369) (c) (H8, 3.095609) (d) (B∗8, 3.121147)

Figure 3: Four convex small 8-gons (P8, L(P8)): (a) Regular 8-gon; (b) Vincze 8-gon [2]; (c) Optimal
equilateral 8-gon [11]; (d) Optimal non-equilateral 8-gon [8]

2 Perimeters of convex equilateral small polygons
Let L(P) denote the perimeter of a polygon P. For a given integer n ≥ 3, let Rn denote the regular
small n-gon. We have

L(Rn) =

{
2n sin π

2n
if n is odd,

n sin π
n

if n is even.

When n has an odd factor m, consider the family of convex equilateral small n-gons constructed
as follows:

1. Transform the regular small m-gon Rm into a Reuleaux m-gon by replacing each edge by a
circle’s arc passing through its end vertices and centered at the opposite vertex;

2. Add at regular intervals n/m− 1 vertices within each arc;

3. Take the convex hull of all vertices.

These n-gons are denoted Rm,n and L(Rm,n) = 2n sin π
2n
. The 6-gon R3,6 is illustrated in Figure 2b.

Theorem 2 (Reinhardt [1], Vincze [2], Datta [3]). For all n ≥ 3, let L∗
n denote the maximal perimeter

among all convex small n-gons, `∗n the maximal perimeter among all equilateral ones, and Ln :=
2n sin π

2n
.

• When n has an odd factor m, `∗n = L∗
n = Ln is achieved by finitely many equilateral n-

gons [4–6], including Rm,n. The optimal n-gon Rm,n is unique ifm is prime and n/m ≤ 2.

• When n = 2s with s ≥ 2, L(Rn) < L∗
n < Ln.
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(a) (M16, 3.134707) (b) (M32, 3.140134)

Figure 4: Mossinghoff polygons (Mn, L(Mn)): (a) Hexadecagon M16; (b) Triacontadigon M32

Whenn = 2s, bothL∗
n and `∗n are only known for s ≤ 3. Tamvakis [7] found thatL∗

4 = 2+
√
6−
√
2,

and this value is only achieved by Q4, represented in Figure 1b. Audet, Hansen, and Messine [8]
proved that L∗

8 = 3.121147 . . . , and this value is only achieved by B∗8, represented in Figure 3d. For
the equilateral quadrilateral, it is easy to see that `∗4 = L(R4) = 2

√
2. Audet, Hansen, Messine

and Perron [11] studied the equilateral octagon and determined that `∗8 = 3.095609 . . . > L(R8) =

4
√

2−
√
2, and this value is only achieved by H8, represented in Figure 3c. If u := `∗8

2/64 denote the
square of the sides length of H8, we can show that u is the unique root of the polynomial equation

2u6 − 18u5 + 57u4 − 78u3 + 46u2 − 12u+ 1 = 0

that belongs to (sin2(π/8), 4 sin2(π/16)). Note that the following inequalities are strict: `∗4 < L∗
4 and

`∗8 < L∗
8.

For n = 2s with s ≥ 4, exact solutions of the maximal perimeter problem appear to be presently
out of reach. However, tight lower bounds may be obtained analytically. Recently, Bingane [9, 10]
proved that, for n = 2s with s ≥ 4,

L∗
n ≥ 2n sin

π

2n
cos

(
1

2
arctan

(
tan

2π

n
tan

π

n

)
− 1

2
arcsin

(
sin(2π/n) sin(π/n)√

4 sin2(π/n) + cos(4π/n)

))
,

which implies

Ln − L∗
n ≤

π9

8n8
+O

(
1

n10

)
.

On the other hand, Mossinghoff [12] constructed a family of convex equilateral small n-gons Mn,
illustrated in Figure 4, such that

Ln − L(Mn) =
3π4

n4
+O

(
1

n5

)
and

L(Mn)− L(Rn) =
π3

8n2
+O

(
1

n4

)
> 0

for n = 2s with s ≥ 4. The next section proposes tighter lower bounds for `∗n.
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3 Proof of Theorem 1
Cartesian coordinates are used to describe an n-gon Pn: a vertex vi, i = 0, 1, . . . , n−1, is positioned at
abscissa xi and ordinate yi. Sums or differences of the indices of the coordinates are taken modulo n.
Placing the vertex v0 at the origin, we set x0 = y0 = 0. We also assume that the n-gon Pn is in the
half-plane y ≥ 0 and the vertices vi, i = 1, 2, . . . , n− 1, are arranged in a counterclockwise order as
illustrated in Figure 5, i.e., xiyi+1 ≥ yixi+1 for all i = 1, 2, . . . , n− 2.

The n-gon Pn is small if maxi,j ‖vi − vj‖ = 1. It is equilateral if ‖vi − vi−1‖ = c for all
i = 1, 2, . . . , n. Imposing that the determinants of the 2× 2 matrices satisfy

σi :=

∣∣∣∣xi − xi−1 xi+1 − xi−1

yi − yi−1 yi+1 − yi−1

∣∣∣∣ ≥ 0

for all i = 1, 2, . . . , n− 1 ensures the convexity of the n-gon.

v0(0, 0)

v1(x1, y1)

v2(x2, y2)

v3(x3, y3)

v4(x4, y4)

v5(x5, y5)

v6(x6, y6)

v7(x7, y7)

x

y

Figure 5: Definition of variables: Case of n = 8 vertices

For any n = 2s where s ≥ 4 is an integer, we introduce a convex equilateral small n-gon called An
and constructed as follows. Its diameter graph has the edge v0 − vn

2
as axis of symmetry and can be

described by the 3n/8 − 1-length half-path v0 − vn
2
−1 − . . . − v 3n

4
+1 − vn

4
and the pendant edges

v0 − vn
2
, v4k−1 − v4k−1+n

2
, k = 1, 2, . . . , n/8. The polygons A16 and A32 are shown in Figure 6. They

are symmetrical with respect to the vertical diameter.

(a) (A16, 3.135288) (b) (A32, 3.140246)

Figure 6: Polygons (An, L(An)) defined in Theorem 1: (a) Hexadecagon A16; (b) Triacontadigon A32

Place the vertex vn
2
at (0, 1) in the plane. Let t = ∠vn

2
v0vn

2
−1 ∈ (0, π/n). This implies that the

sides length of An is 2 sin(t/2). Since An is equilateral and symmetric, we have from the half-path

5



v0 − . . .− vn
4
,

x 3n
4
+1 = sin t−

n/8−1∑
k=1

(−1)k−1(sin(4k − 1)t− sin 4kt+ sin(4k + 1)t)

= sin t− (2 cos t− 1)(sin 2t+ sin(n/2− 2)t)

2 cos 2t
= −xn

4
−1,

xn
4
= x 3n

4
+1 + sin(n/2− 1)t = −x 3n

4
,

y 3n
4
+1 = cos t−

n/8−1∑
k=1

(−1)k−1(cos(4k − 1)t− cos 4kt+ cos(4k + 1)t)

= cos t− (2 cos t− 1)(cos 2t+ cos(n/2− 2)t)

2 cos 2t
= yn

4
−1,

yn
4
= y 3n

4
+1 + cos(n/2− 1)t = y 3n

4
.

Finally, the angle t is chosen so that ‖v 3n
4
+1 − v 3n

4
‖ = 2 sin(t/2), i.e.,

(2x 3n
4
+1 + sin(n/2− 1)t)2 + cos2(n/2− 1)t = 4 sin2(t/2).

An asymptotic analysis produces that, for large n, this equation has a solution t0(n) satisfying

t0(n) =
π

n
− π4

n5
+
π5

n6
− 11π6

6n7
+

35π7

12n8
+O

(
1

n9

)
.

By setting t = t0(n), the perimeter of An is

L(An) = 2n sin
t0(n)

2
= 2n sin

(
π

2n
− π4

2n5
+O

(
1

n6

))
= π − π3

24n2
+

(
π5

1920
− π4

)
1

n4
+
π5

n5
−
(

π7

322560
+

41π6

24

)
1

n6
+O

(
1

n7

)
and

Ln − L(An) =
π4

n4
− π5

n5
+O

(
1

n6

)
.

Since the polygon Mn proposed by Mossinghoff [12] satisfies

L(Mn) = π − π3

24n2
+

(
π5

1920
− 3π4

)
1

n4
+

9π5

n5
−
(

π7

322560
+

9π6

8

)
1

n6
+O

(
1

n7

)
,

it follows that
L(An)− L(Mn) =

2π4

n4
− 8π5

n5
− 7π6

12n6
+O

(
1

n7

)
.

To verify that An is small, we calculate

‖vn
4
− v 3n

4
‖ = 2xn

4
= 1− π3

n3
− 7π5

4n5
+O

(
1

n7

)
< 1.

To test that An is convex, we compute

σn
4
=

2π3

n3
− π4

n4
+O

(
1

n5

)
> 0.

This completes the proof of Theorem 1.
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All polygons presented in thiswork and in [13,14]were implemented as a package: OPTIGON [15],
which is freely available on GitHub. In OPTIGON, we provide Julia andMATLAB functions that give
the coordinates of the vertices. For example, the vertices coordinates of a regular small n-gon are ob-
tained by calling[x,y] = cstrt_regular_ngon(n). The commandcalc_perimeter_ngon(x,y)
computes the perimeter of a polygon given by its vertices coordinates (x,y). One can also find an
algorithm developed in [16] to find an estimate of the maximal area of a small n-gon when n ≥ 6 is
even.

Table 1 shows the perimeters of An, along with the upper bounds Ln, the perimeters of the regular
polygons Rn and Mossinghoff polygons Mn. When n = 2s and s ≥ 4, An provides a tighter lower
bound on the maximal perimeter `∗n compared to the best prior convex equilateral small n-gon Mn. As
n increases, it is not surprising that the fraction L(An)−L(Mn)

Ln−L(Mn)
of the length of the interval [L(Mn), Ln]

containing L(An) approaches 2
3
since L(An)− L(Mn) ∼ 2π4

n4 and Ln − L(Mn) ∼ 3π4

n4 for large n.

Table 1: Perimeters of An

n L(Rn) L(Mn) L(An) Ln
L(An)−L(Mn)

Ln−L(Mn)

16 3.1214451523 3.1347065475 3.1352878881 3.1365484905 0.3156
32 3.1365484905 3.1401338091 3.1402460942 3.1403311570 0.5690
64 3.1403311570 3.1412623836 3.1412717079 3.1412772509 0.6272
128 3.1412772509 3.1415127924 3.1415134468 3.1415138011 0.6487
256 3.1415138011 3.1415728748 3.1415729180 3.1415729404 0.6589

4 Improved triacontadigon and hexacontatetragon
It is natural to ask if the polygon constructed An might be optimal for some n. Using constructive
arguments, Proposition 1 and Proposition 2 show that A32 and A64 are suboptimal.

Proposition 1. There exists a convex equilateral small 32-gon whose perimeter exceeds that of A32.

Proof. Consider the 32-gon Z32, illustrated in Figure 7a. Its diameter graph has the edge v0 − v16 as
axis of symmetry and can be described by the 4-length half-path v0 − v11 − v24 − v10 − v23 and the
pendant edges v0 − v15, . . . , v0 − v12, v11 − v31, . . . , v11 − v25.

Place the vertex v0 at (0, 0) in the plane, and the vertex v16 at (0, 1). Let t = ∠v16v0v15 ∈ (0, π/32).
We have, from the half-path v0 − . . .− v23,

x10 = sin 5t− sin 13t+ sin 14t = −x22, y10 = cos 5t− cos 13t+ cos 14t = y11,

x23 = x10 − sin 15t = −x9, y23 = y10 − cos 15t = y9.

Finally, t is chosen so that ‖v10 − v9‖ = 2 sin(t/2), i.e.,

(2(sin 5t− sin 13t+ sin 14t)− sin 15t)2 + cos2 15t = 4 sin2(t/2).

We obtain t = 0.0981744286 . . . and L(Z32) = 64 sin(t/2) = 3.1403202339 . . . > L(A32). One can
verify that Z32 is small and convex.

Proposition 2. There exists a convex equilateral small 64-gon whose perimeter exceeds that of A64.

Proof. Consider the 64-gon Z64, illustrated in Figure 7b. Its diameter graph has the edge v0 − v32 as
axis of symmetry and can be described by the 23-length half-path v0− v31− v63− v30− v61− v29−
v60−v28−v58−v27−v57−v26−v56−v25−v55−v24−v54−v23−v53−v21−v52−v19−v51−v16,
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the pendant edges v30 − v62, v28 − v59, v53 − v22, v52 − v20, v51 − v18, v51 − v17, and the 4-length
path v15 − v50 − v14 − v49.

Place the vertex v0 at (0, 0) in the plane, and the vertex v32 at (0, 1). Let t = ∠v32v0v31 ∈ (0, π/64).
We have, from the half-path v0 − . . .− v31,

x51 = sin t− sin 2t+ sin 3t− sin 5t+ sin 6t− sin 7t+ sin 8t

−
20∑

k=10

(−1)k sin kt+ sin 22t− sin 23t+ sin 25t− sin 26t = −x13,

y51 = cos t− cos 2t+ cos 3t− cos 5t+ cos 6t− cos 7t+ cos 8t

−
20∑

k=10

(−1)k cos kt+ cos 22t− cos 23t+ cos 25t− cos 26t = y13,

x16 = x51 + sin 29t = −x48,
y16 = y51 + cos 29t = y48,

and, from the path v15 − . . .− v49,

x50 = −1/2 = −x14, y50 = y = y14,

x15 = x50 + cos t = −x49, y15 = y50 + sin t = y49.

Finally, t and y are chosen so that ‖v51 − v50‖ = ‖v16 − v15‖ = 2 sin(t/2). We obtain t =
0.0490873533 . . . and L(Z64) = 128 sin(t/2) = 3.1412752155 . . . > L(A64). One can verify that Z64
is small and convex.

Polygons Z32 and Z64 offer a significant improvement to the lower bound of the optimal value. We
note that

`∗32 − L(Z32) < L32 − L(Z32) = 1.09 . . .× 10−5 < L32 − L(A32) = 8.50 . . .× 10−5,

`∗64 − L(Z64) < L64 − L(Z64) = 2.03 . . .× 10−6 < L64 − L(A64) = 5.54 . . .× 10−6.

Also, the fractions
L(Z32)− L(A32)
L32 − L(A32)

= 0.8715 . . . ,

L(Z64)− L(A64)
L64 − L(A64)

= 0.6327 . . .

indicate that the perimeters of the improved polygons are quite close to the maximal perimeter. This
suggests that it is possible that another family of convex equilateral small polygons might produce an
improvement to Theorem 1.

5 Conclusion
Lower bounds on the maximal perimeter of convex equilateral small n-gons were provided when n is
a power of 2 and these bounds are tighter than the previous ones from the literature. For any n = 2s

with integer s ≥ 4, we constructed a convex equilateral small n-gon An whose perimeter is within
π4/n4+O(1/n5) of the optimal value. For n = 32 and n = 64, we propose solutions with even larger
perimeters.
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(a) (Z32, 3.140320) (b) (Z64, 3.141275)

Figure 7: Improved convex equilateral small n-gons (Zn, L(Zn)): (a) Triacontadigon Z32 with larger
perimeter than A32; (b) Hexacontatetragon Z64 with larger perimeter than A64
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