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Abstract

In this work, we extend the regularization framework from Kronqvist et al. [33] by in-
corporating several new regularization functions and develop a regularized single-tree search
method for solving convex mixed-integer nonlinear programming (MINLP) problems. We
propose a set of regularization functions based on distance-metrics and Lagrangean ap-
proximations, used in the projection problem for finding new integer combinations to be
used within the Outer-Approximation (OA) method. The new approach, called Regular-
ized Outer-Approximation (ROA), has been implemented as part of the open-source Mixed-
integer nonlinear decomposition toolbox for Pyomo - MindtPy. We compare the OA method
with seven regularization function alternatives for ROA. Moreover, we extend the LP/NLP
Branch & Bound method proposed by Quesada and Grossmann [47] to include regulariza-
tion in an algorithm denoted RLP/NLP. We provide convergence guarantees for both ROA
and RLP/NLP. Finally, we perform an extensive computational experiment by considering
all convex MINLP problems in the benchmark library MINLPLib. The computational results
show clear advantages of using regularization in combination with the OA method.

1 Introduction

Optimization problems whose objective and constraints can be represented by algebraic linear and
nonlinear functions of both continuous and discrete variables are commonly referred to as mixed-
integer nonlinear programs (MINLP). MINLP is a highly versatile modeling paradigm, allowing
even Universal Turing Machines to be encoded via a Minsky’s register machine [42]. There is a
large variety of practical applications and optimization tasks that can be modeled using MINLP,
see e.g., [8, 20, 38, 53].

Although MINLPs are non-convex optimization problems because of some variables’ discrete-
ness, the term convex MINLP is used to denote problems where the continuously relaxed feasible
region described by the constraints and the objective function are convex [34]. Convex MINLP
problems are an important class of problems, as the convex properties can be exploited to derive
efficient decomposition algorithms. These decomposition algorithms rely on the solution of dif-
ferent subproblems derived from the original MINLP. Among these decomposition algorithms for
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MINLP, we have Branch & Bound (B&B) [14], Generalized Benders Decomposition [21], Outer-
Approximation (OA) [17], Partial Surrogate Cuts [47], Extended Cutting Plane (ECP) [56], Fea-
sibility Pump [4, 7] Extended Supported Hyperplanes (ESH) [36], and the center-cut [35] method.
Moreover, the OA method has been extended in several pieces of work, such as the single-tree
OA [47], Quadratic-cuts OA [50], conic-based OA [12], Decomposition-based OA [44], and Proxi-
mal OA [15] methods. Most of these methods exploit the properties of convex MINLP to derive
linearizations of the nonlinear constraints based on their gradients. These linearizations are equiv-
alent to first-order Taylor expansions of the nonlinear inequalities. They define a linear region
that overestimates the problem’s nonlinear feasible region because of the convexity property.

OA has proven to be one of the most efficient algorithms for convex MINLP [34], and several
state-of-the-art solvers build upon the OA method. Recent benchmarks [34, 43] have also shown
good performance with so-called singe-tree search methods based on an OA approach. Single-tree
methods only constructs a single B&B tree where the linear relaxation is dynamically updated,
and these are implemented in several state-of-the-art solvers,e.g., AOA [27], BARON [30], BON-
MIN [6], FilMint [1], SHOT [43], and Pajarito [12].

Methods such as OA, ECP, and ESH all rely on the successive solution of MILP relaxations
for solving convex MINLP problems. Given that each MILP relaxation problem is solved via a
B&B seach tree, these methods are known as multi-tree methods [12, 43]. With these methods, the
linear relaxation is used in the same fashion as in Kelley’s cutting plane method [29], i.e., to derive
the following trial solutions for either all variables or only the integer variables. Kelley’s method,
relying on the iterative solution on linear programming (LP) problems arising from the gradient-
based linearizations at previous minimizers, is known to be unstable given its large jumps in the
search space [25]. It has been proven that Kelley’s cutting plane method has a poor complexity
bound and is also not practically efficient at handling nonlinearities, see, e.g., [45]. Stabilization
techniques through regularization of the step-size and trust-region approaches [2, 13] have been
proposed to tackle this shortcoming. In the continuous setting, the level bundle method [31, 39] has
proven to work well in stabilizing cutting-plane methods for nonsmooth problems. This method
derives the following trial solutions by projecting the current solution (or stabilization center) onto
a specific level of the linearly approximated objective function.

Directly using a trust-region or regularization for convex MINLP is nontrivial as neighboring
solutions can be far apart in the search space due to the discrete space. For nonsmooth convex
MINLP de Oliveira [46] proposed a regularized algorithm based on the ECP method. Combining
OA and bundle methods, Delfino and de Oliveira [16] derived a method for nonsmooth convex
MINLP. Kronqvist et al. [33] showed that using ideas from the level method makes it possible
to integrate regularization and second-order derivatives in an OA framework efficiently. Using a
second-order Taylor expansion of the Lagrangean within a level-based OA, the Q-OA method [33]
significantly reduced the number of iterations for highly nonlinear convex MINLP problems.

In this paper, we build upon the work by Kronqvist et al. [33] and present a general regulariza-
tion framework for OA. We refer to the new method as Regularized Outer-Approximation (ROA),
which enables different regularization functions to be used while guaranteeing global convergence.
We propose a set of regularization functions based on both distance metrics and the Lagrangean.
The motivation behind the Lagrangean-based regularization functions is to incorporate more in-
formation from both the objective and constraint function.

Moreover, there has been a recent interest in algorithm developers for MINLP in solving these
problems in a Branch & Cut scheme. First proposed by Quesada and Grossmann [47] in a method
called LP/NLP B&B, the OA linearizations are added at every incumbent solution found while
solving a single MILP problem using a B&B procedure. This method addresses a key weakness of
the multi-tree methods, where MILP problems solved in each iteration are similar to one another,
requiring repeated search effort. This method has been further improved on several fronts. Leyffer
[40] integrate it to a Sequential Quadratic Programming (SQP) for the NLP problems, Tawar-
malani and Sahinidis [51] derive a Brnach & Cut algorithm based on polyhedral relaxations of
non-convex functions for global optimization to implemente the global solver BARON, which was
later improved upon by Khajavirad and Sahinidis [30] who incorporate techniques to derive valid
linearizations for non-convex constraints, and Coey et al. [12] take advantage of conic program-
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ming techniques to provide certificates for convex mixed-integer programs. This idea, denoted
as single-tree approach, has been implemented by several MINLP solvers such as BONMIN [6],
FilMint [1], AOA [27], SHOT [43], Pajarito [12], and BARON [30]. We also integrate the regular-
ization framework with the single-tree search algorithm in a method we denominate as regularized
LP/NLP (RLP/NLP).

1.1 Contributions and outline

In this paper, we propose a general framework for integrating regularization mixed-integer sub-
problems in the OA method in the multi-tree and single-tree setting for solving convex MINLP
problems. We prove that these methods are guaranteed to converge to the optimal solution of
MINLP problems, regardless of the choice of regularization function. Seven different regulariza-
tion functions are proposed as objectives in this work, three of them coming from distance metrics
to the incumbent solutions, and the other four with approximations of the Lagrangean function
around the best-found solution. We implemented these methods in the open-source Mixed-integer
nonlinear decomposition toolbox for Pyomo - MindtPy [3], making the methods readily available.
With this implementation, we perform a comprenhensive computational study by solving all con-
vex MINLP problems available in the benchmark library MINLPLib [11].

The remaining manuscript is organized as follows. In Section 2 we provide the neces-
sary background on the OA and LP/NLP methods.Section 3 introduces the Regularized
Outer-Approximation (ROA) method and proposes the norm-based objective functions for
the regularization subproblem. Next, we introduce four objective functions obtained through
approximations of the Lagrangean function in Section 4. We provide a convergence analysis
of the proposed methods in Section 5. The single-tree extension of the regularization method
as the Regularization LP/NLP Branch & Bound (RLP/NLP) method and its implementation
are presented in Section 6. Finally, the computational results of the methods’ benchmarking in
presented in Section 7.

2 Background

The MINLP problems considered in this paper are of the form,

min
x,y

fpx,yq

s.t. gjpx,yq ď 0 @j “ 1, . . . , l,

Ax`By ď b,

x P Rn, y P Zm.

(MINLP)

Later in the algorithms, the (nonlinear) objective function is transformed into a constraint by the
epigraph formulation, fpx,yq ď µ, where the continuous variable µ represents the objective value.
To guarantee global convergence for OA-type algorithms typically requires convexity assumptions,
a bounded search space, and some form of constraint qualification for problem MINLP [6, 17, 19].
Throughout this paper, we rely on the following assumptions:

Assumption 1. The nonlinear functions f, g1, . . . , gl : Rn ˆ Rm Ñ R are convex and continuously
differentiable.

Assumption 2. The linear constraints define a nonempty compact set.

Assumption 3. For each feasible integer combination y, an integer combination such that there
exist x variables for which the problem is feasible, a constraint qualification holds, e.g.,
Slater’s condition [49].

We begin by presenting the Outer-Approximation method’s main steps, on which the other
algorithms build upon. The OA method uses a linear approximation (or relaxation) of the MINLP
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problem to obtain trial solutions for the integer variables and derives improving lower bounds
on the optimal objective value. The linear approximation at each iteration is refined by using

the previously obtained trial solutions
 

pxi,yiq
(k

i“0
as expansion points for first-order Taylor

approximations of the nonlinear constraints

fpxk,ykq `∇fpxk,ykqJ
„

x´ xk

y ´ yk



ď µ,

gjpx
k,ykq `∇gjpxk,ykqJ

„

x´ xk

y ´ yk



ď 0 @j P Ik,
(1)

forming a polyhedral outer approximation of the feasible set of problem MINLP. The linear in-
equality constraints in (1) are often referred to as cuts, as they refine the outer approximation by
cutting off infeasible parts of the search space.

Using an accumulation of cuts given by (1) over k iterations, an approximation of the nonlinear
constraints, the next integer combination yk`1 is obtained by solving the following MILP problem

min
x,y,µ

µ

s.t. fpxi,yiq `∇fpxi,yiqJ
„

x´ xi

y ´ yi



ď µ @i “ 1, . . . , k,

gjpx
i,yiq `∇gjpxi,yiqJ

„

x´ xi

y ´ yi



ď 0 @i “ 1, . . . k,@j P Ii,

Ax`By ď b,

x P Rn, y P Zm, µ P R,

(OA-MILP)

which is often referred to as the master problem. Here Ii are index sets containing the indices of the
nonlinear constraint active at the trial solution pxi,yiq [19]. From the convexity assumption, it is
clear that the feasible set is overestimated and that the objective function will be underestimated,
see, e.g., [17]. Therefore, the optimum of problem OA-MILP provides a valid lower bound (LB)
to the MINLP problem, referred to as LBk`1, and the minimizer gives a new integer combination
yk`1. Next, the corresponding continuous variables xk`1 are determined by solving the following
convex NLP subproblem,

min
x

fpx,yk`1q

s.t. gjpx,y
k`1q ď 0 @j “ 1, . . . l,

Ax`Byk`1 ď b,

x P Rn,

(NLP-I)

which is the original MINLP problem with all the integer variables fixed. In case problem NLP-I
is feasible, then xk`1 is given by the minimizer and fpxk`1,yk`1q gives a valid upper bound
(UB) UBk`1 to the MINLP problem. If problem NLP-I is infeasible, then the current integer
combination is infeasible for all feasible values of the continuous variables.This situation can be
handled by solving a feasibility problem, that typically minimizes a norm of the constraint violation
s with the current choice of y variables as follows,

min
x,r

}s}p

s.t. gjpx,y
k`1q ď sj @j “ 1, . . . l,

Ax`Byk`1 ď b,

x P Rn, s P Rl`.

(NLP-f)

Common choices of the norm for the constraint violations are the `8 and the `1 norms.Solving
the feasibility problems yields the values of the continuous variables xk`1. Notice that in this
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case pxk`1,yk`1q is not a feasible solution; therefore, it does not provide an UB on the optimal
objective. Problem NLP-f always satisfies Slater’s condition, and due to Assumptions 1 and 2, it
is always feasible and tractable.

In case the difference between the UB and LB is not within the desired tolerance, the procedure
is repeated in the next iteration, and the outer approximation in problem OA-MILP is improved
by including new cuts. With the new cuts, the master problem returns a new integer combination
and an improved LB. Due to convexity, the cuts will not exclude any feasible solutions from the
search space [9]. However, the cuts are sufficient to ensure that the integer combination yk`1

will not be obtained in a consecutive iteration unless it is the optimal integer solution. Due to
Assumption 2, the search space only contains a finite number of different integer combinations.
Finite convergence follows from the fact that each iteration either finds a new integer combination
or verifies optimality. For more details of OA, see [17, 19, 54]. In the Appendix, the pseudo-code
presented in Algorithm 3 summarizes the OA algorithm’s main steps.

Every iteration of the OA algorithm solves a new MILP problem OA-MILP. Note that the
master problem solved in iteration k only differs from the one in iteration k´ 1 by the cuts added
in that iteration. Solving each one of the MILP master problems can be computationally chal-
lenging. To avoid solving a large number of similar MILP problems, Quesada and Grossmann [47]
proposed the LP/NLP-based B&B algorithm that combines OA and B&B. The LP/NLP-based
B&B algorithm dynamically updates the master problem and only builds a single B&B tree. Each
node, or leaf, of the search tree forms a continuous linear programming (LP) problem where the
integer variables are relaxed as continuous, and the cuts in (1) are used to approximate the non-
linear constraints. Integer solutions are obtained through branching on the LP problems. Once
an integer solution is found in the search tree, it is used as a new integer combination in the OA
algorithm resulting in new cuts by solving the corresponding NLP subproblem. The best-found
feasible solution to the original problem is known as the incumbent solution. It provides the UB
used in the search tree. The new cuts, derived from the new integer combination, are added to all
open nodes of the B&B tree, and the linear B&B procedure continues with an improved approxi-
mation of the nonlinear constraints. Nodes are pruned as usual in a B&B method: if it becomes
infeasible or its objective value exceeds the current UB. The LP/NLP-based B&B technique is
also known in the literature as single-tree OA [12, 43] to differentiate it from the traditional OA
methods, where each problem OA-MILP is solved individually and sequentially through its own
B&B tree, hence the name multi-tree OA.

The main steps in the LP/NLP B&B are outlined in Algorithm 4 in the Appendix.
We consider the following illustrative example to highlight the features of the presented meth-

ods and show how they differ from OA.

minimize x´ y{4.5` 2

s.t. x2{20` y ď 20

px´ 1q2{40´ y ď ´4

0.275y1.5 ´ 10px` 0.1q0.5 ď 0

0 ď x ď 20, 0 ď y ď 20, x P R, y P Z.

(Ex 1)

The basic features of problem Ex 1 are illustrated in Figure 1, showing the constraints, objec-
tive, and the optimal solution px‹, y‹q “ p0.65625, 10q.

We use the feasible point, px0, y0q “ p1, 4q, as the starting point for all the methods instead of
solving the continuous relaxation. OA requires five iterations to solve this problem, of which the
first four iterations are shown in Figure 2. In this specific problem, the first iteration results in
an infeasible solution. The optimal solution is obtained in iteration four, and verifying optimality
requires an additional iteration.
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Figure 1: Left: Feasible regions of each constraint in problem Ex 1. Right: integer relaxed
feasible region, optimal solution of the problem (‹), initialization point (˛), and the contours of
the objective.

5 10 15 20
x

5

10

15

20
y

5 10 15 20
x

5

10

15

20
y

5 10 15 20
x

5

10

15

20
y

5 10 15 20
x

5

10

15

20
y

Figure 2: Progress of OA in problem Ex 1, with each figure being an iteration. The feasible
region defined by the nonlinear constraints (dark gray), the outer approximation obtained by the
generated cuts (light gray), the MILP master problem solution (‚), and NLP subproblem solution
(‚) are included.

3 Regularized Outer-Approximation

The level-based OA (L-OA) method was presented by Kronqvist et al. [33], where the authors
used a squared `2-regularization to the subproblem of obtaining new integer assignments. It was
shown in the paper that the regularization technique is equivalent to adding a trust region, given
by squared `2-norm, with a center at the incumbent solution. We give a brief overview of the L-OA
algorithm since the other regularization techniques in this paper are also based on this framework.
For more details, we refer to [33].

At iteration k, the master problem OA-MILP is solved to obtain a LB LBk on the optimal
objective value. Given an incumbent solution px̄, ȳq and the UB resulting from fpx̄, ȳq, we estimate
the optimal objective value of the MINLP problem f‹ “ fpx‹,y‹q as

f̂‹k “ p1´ αqfpx̄, ȳq ` αLB
k, (2)

where α P p0, 1s. The estimated optimum f̂‹k is chosen as an interpolation between the UB and
LB, where α is the interpolation parameter representing how much the linear approximation, i.e.,
the master problem, is trusted. For the continuous setting, within the level method proposed
by Lemaréchal et al. [39], a value of α “ 1´

?
2{2 « 0.29 is found to be optimal. The proof does

not generalize for the mixed-integer case, meaning that an ideal value for α is not known a-priori.
As in [33], in this work we use α “ 0.5. The next integer assignment yk`1 is now determined by
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projecting x̄, ȳ onto the f̂‹k level set of the linearly approximated objective function intersected
with the current outer approximation of the feasible set. The projected solution is obtained as the
minimizer of the following MIP problem,

min
x,y,µ

φhx̄,ȳpx,yq

s.t. µ ď f̂‹k

fpxi,yiq `∇fpxi,yiqJ
„

x´ xi

y ´ yi



ď µ @i “ 1, . . . , k,

gjpx
i,yiq `∇gjpxi,yiqJ

„

x´ xi

y ´ yi



ď 0 @i “ 1, . . . , k,@j P Ii,

Ax`By ď b,

x P Rn, y P Zm, µ P R,

(MIP-Proj)

where φhx̄,ȳ : Rn ˆ Rm Ñ R is a convex regularization function represent by the symbol h. The
L-OA algorithm in [33] use the regularization function

φ
`22
x̄,ȳpx,yq :“

›

›

›

›

x´ x̄
y ´ ȳ

›

›

›

›

2

2

, (3)

and the authors mention that the convergence guarantees of the algorithm are independent of the
choice of objective function in MIP-Proj. The regularization problem MIP-Proj must contain all
the cuts accumulated in problem OA-MILP to ensure convergence. The regularization role is to
favor solutions close to the incumbent solution with regards to a specific metric. The new integer
assignment yk`1 is chosen as a point as close as possible to the incumbent solution, such that
the linearly approximated objective is reduced to at most f̂‹k . By construction, the regularization
problem MIP-Proj is always feasible, e.g., the minimizer of problem OA-MILP will satisfy all
the constraints, and it is used to derive the next integer assignment yk`1. Once the new integer
combination is obtained, the corresponding continuous variables can be determined using the same
technique as in the OA method. The difference between the L-OA and OA methods is how the
new integer assignments are obtained. Otherwise, both methods use the same techniques for
determining the continuous variables and improving the outer approximation of the feasible set.

Since finite convergence of L-OA holds for any objective function in the regularization prob-
lem [33], other regularization techniques can easily be incorporated into the L-OA framework. A
general framework based on the L-OA concept, where the regularization function is not speci-
fied, is summarized as a pseudo-code in Algorithm 1. We refer to this algorithm as Regularized
Outer-Approximation (ROA).

Two alternative regularization functions that fits directly into the L-OA are

φ`1x̄,ȳpx,yq :“

›

›

›

›

x´ x̄
y ´ ȳ

›

›

›

›

1

, (4)

φ`8x̄,ȳpx,yq :“

›

›

›

›

x´ x̄
y ´ ȳ

›

›

›

›

8

. (5)

A benefit of using a regularization based on either the `1-norm or `8-norm is that the regularization
problem can be encoded as a MILP problem. We define for the remaining of the paper the L-OA
approach from [33] as ROA-`22, and the proposed linear regularization approaches that use (4)
and (5) as regularization functions as ROA-`1 and ROA-`8, respectively.

As shown in [33], L-OA finds the same integer solutions as the master problems in OA with
specific trust-region constraints. In fact, the equivalence to a trust region still holds with the
regularization given by any p-norm. This property is stated in Theorem 3. The proof uses the
same argumentation as in [33] but is included for the sake of completeness. With the regularization
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Algorithm 1 An algorithm summarizing the Regularized Outer-Approximation (ROA) method.

Define accepted optimality gap ε ě 0, the regularization function φhx̄,ȳ, and choose the parameter
α P p0, 1s.

1. Initialization.

1.1 Obtain a relaxed solution x̃, ỹ by solving an integer relaxation of the MINLP problem.

1.2 Generate cuts at x̃, ỹ according to (1) and construct problems OA-MILP.

1.3 Set iteration counter k “ 1, UB0 “ 8 and LB0 “ ´8.

2. Repeat until UBk´1 ´ LBk´1 ď ε.

2.1 Solve problem OA-MILP to obtain yk and LBk.

2.2 If a feasible solution x̄, ȳ has been found, calculate the estimated optimal value f̂‹k
according to (2) and solve problem MIP-Proj to update yk.

2.3 Solve problem NLP-I with integer variables fixed as yk to obtain xk.

2.3.1 If problem NLP-I is feasible, set UBk “ mintfpxk,ykq, UBk´1u.

2.3.1.1 If fpxk,ykq ď fpx̄, ȳq, set x̄, ȳ “ xk,yk.

2.3.2 If problem NLP-I is infeasible, obtain xk by solving feasibility problem NLP-f and
set UBk “ UBk´1.

2.4 Generate cuts at xk,yk according to (1) and add these to problems OA-MILP and MIP-
Proj.

2.5 (Optional) Generate no-good cuts at yk and add these to problems OA-MILP.

2.5 Increase iteration counter, k “ k ` 1,

3. Return x̄, ȳ as the optimal solution x‹,y‹.

given by a p-norm, the procedure of solving problems OA-MILP and MIP-Proj in ROA results in
solution equivalent to adding the trust region constraint

›

›

›

›

x´ x̄
y ´ ȳ

›

›

›

›

p

ď rk (6)

to problem OA-MILP in OA, where rk is chosen as the optimum of problem MIP-Proj.
As mentioned earlier, MIP-Proj is always feasible and and we denote the minimizer by

xMIP-Proj,yMIP-Proj, µMIP-Proj. The radius of the equivalent trust region constraint is then given
by

rk “

›

›

›

›

xMIP-Proj ´ x̄
yMIP-Proj ´ ȳ

›

›

›

›

p

(7)

Solving problem OA-MILP, with the trust region constraint, gives the solution xMILP,yMILP, µMILP.
Now, assume this solution is not an optimal solution to problem MIP-Proj. Since
xMILP,yMILP, µMILP is not an optimal solution, it follows that

rk ą

›

›

›

›

xMILP ´ x̄
yMILP ´ ȳ

›

›

›

›

p

. (8)

Since OA-MILP minimizes µ, we know that µMILP ď µMIP-Proj ď f̂‹k . This leads to a contradiction
since xMILP,yMILP, µMILP is a feasible solution to problem MIP-Proj with an objective value
strictly lower than the solution obtained by solving the minimization problem. Therefore, the
solution to problem OA-MILP, with the trust-region constraint, must also be an optimal solution
to problem MIP-Proj.
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Figure 3: First iteration of ROA for problem Ex 1 with the three level norms presented in this
work. The format from Figure 2 is used here, with the additional features that the regularization
objective contours, the regularization problem solution (Ĳ), the incumbent solution (‚), and the
level constraint (2) with α “ 0.5 (red line) are included. Left: ROA-`22. Center: ROA-`1. Right:
ROA-`8.

Depending on which function φhx̄,ȳ is used in the ROA method, we obtain different variants of
the algorithm. These variants are denoted as ROA-h, e.g., we refer to ROA-`1 when (4) is used
as the objective for the regularization problem. Next, we illustrate the difference between these
variants with example Ex 1.

For example Ex 1, the three level regularization norms presented here; ROA-`22, ROA-`1, and
ROA-`8; converge to the optimal solution in three iterations. Thanks to the regularization, all
three approaches find the optimal solution in the first iteration as observed in Figure 3. Although
the simple example does not show this behavior, the regularization objective’s choice might affect
which integer combination gets chosen to solve problem NLP-I. In every case, the regularization
tries to keep this integer combination close to the incumbent solution. Moreover, the choice of
the objective may impact the computational time required to solve the regularization problem.
As mentioned above, choosing the squared `2 norm as in L-OA [33] leads to the regularization
problem becoming an MIQP. On the other hand, the `1 and `8 norms in the objectives can be
modeled using linear inequalities and auxiliary variables, as presented in the Appendix, leading
to MILP regularization subproblems. For all approaches, it takes two more iterations to close the
LB.

In the next section, we present two new regularization strategies that also fit within the ROA
framework and incorporate information from the Lagrangean function.

4 Lagrangean based regularization

To take advantage of second-order derivatives for selecting the new integer assignment yk`1, Kro-
nqvist et al. [33] proposed a technique they refer to as Quadratic Outer-Approximation (Q-OA).
Instead of a regularization function, Q-OA uses a second-order Taylor series expansion of the
Lagrangean function as the objective function in MIP-Proj. Thus, the new integer assignment is
chosen by minimizing a quadratic approximation of the Lagrangean within an outer approximation
of the feasible set subject to a level constraint, i.e., µ ď f̂‹k . Except for the level constraint, there
is an apparent similarity with the sequential quadratic programming (SQP) approach [5].

The Lagrangean function L : Rn ˆRm ˆRk Ñ R associated with the MINLP problem can be
written as

Lpx,y, λq “ fpx,yq ` λJg̃px,yq, (9)

where g̃ : RnˆRm Ñ Rk contains all the constraints in the form g̃px,yq ď 0, linear and nonlinear.
From the fixed NLP problem giving the incumbent solution (x̄, ȳ), the corresponding dual variable

9



λ̄ is also obtained. Now, by defining the regularization function φhx̄,ȳ as

φL2
x̄,ȳpx,yq :“ ∇x,yLpx̄, ȳ, λ̄qJ

„

x´ x̄
y ´ ȳ



`
1

2

„

x´ x̄
y ´ ȳ

J

∇2
x,yLpx̄, ȳ, λ̄q

„

x´ x̄
y ´ ȳ



, (10)

the ROA method in Algorithm 1 will result in the Q-OA algorithm. Note that φhx̄,ȳ in (10) can be
considered a regularizer with a stabilization center at the minimizer of the quadratic approximation
of the Lagrangean. In case the Hessian of the Lagrangean is not positive definite (only positive
semidefinite), the stabilization center may not be a unique point but a subspace. With the integer
variables fixed as ȳ, the point px̄, ȳ, λ̄q is a stationary point of the Lagrangean and, therefore, all
partial derivatives corresponding to the continuous variables will be zero in ∇x,yLpx̄, ȳ, λ̄q. This
follows directly from the KKT conditions of the NLP problem NLP-I.

Next, we derive two new regularization functions based on the Lagrangean that can be directly
implemented in Algorithm 1. Using the Hessian of the Lagragian, we can define a norm as

›

›

›

›

x
y

›

›

›

›

Lpx̄,ȳ,λ̄q
:“

d

„

x´ x̄
y ´ ȳ

J

∇2
x,yLpx̄, ȳ, λ̄q

„

x´ x̄
y ´ ȳ



, (11)

which is a proper norm if in the Hessian is positive definite or a semi norm if the Hessian is positive
semidefinite [32]. Based on this (semi) norm, we define a new regularization function as

φ∇
2L

x̄,ȳ px,yq :“

›

›

›

›

x
y

›

›

›

›

2

Lpx̄,ȳ,λ̄q
“

„

x´ x̄
y ´ ȳ

J

∇2
x,yLpx̄, ȳ, λ̄q

„

x´ x̄
y ´ ȳ



. (12)

This regularization function’s motivation is to favor search directions in which the Lagrangean has
a locally linear behavior. This regularization, therefore, favors regions of the search space where
the outer approximation is expected to be more accurate. In case the Hessian has at least one
zero eigenvalue, the equivalent trust-region will be unbounded in directions in which the quadratic
approximation of the Lagrangean changes linearly.

There are situations in which the Hessian is not known or too expensive to compute. One of the
simplest approximations of the Hessian is a scaled identity matrix ρI. The BFGS algorithm [18],
for example, uses the scaled identity as the first estimate of the Hessian of the Lagrangean. Using
this trivial approximation of the Hessian in the quadratic approximation of the Lagrangean, gives
us the following regularization function

φ
L1{`

2
2

x̄,ȳ px,yq :“ ∇x,yLpx̄, ȳ, λ̄qJ
„

x´ x̄
y ´ ȳ



` ρ

„

x´ x̄
y ´ ȳ

J

I

„

x´ x̄
y ´ ȳ



, (13)

where ρ P R` is a scaling factor. This gives a regularization function with a stabilization center
shifted in the direction of the negative gradient of the Lagrangean. Since the gradient is zero
for all the continuous variables, the stabilization center is only shifted for the discrete variables.
The stabilization center pxc,ycq can easily be determined from the stationary conditions of the
regularization function, and is given by

„

xc
yc



“

„

x̄
ȳ



´
∇x,yLpx̄, ȳ, λ̄q

2ρ
. (14)

Depending on the magnitude of both ∇x,yLpx̄, ȳ, λ̄q and ρ, the stabilization center might be far
from the incumbent solution and even outside of the variable bounds. However, we can directly
control how far from the incumbent solution the stabilization center lies by scaling ρ. By selecting
ρ as

ρ “

›

›

›

›

∇x,yLpx̄, ȳ, λ̄q
2d

›

›

›

›

2

, (15)

the euclidean distance between the stabilization center and the incumbent solution becomes d.
We can, thus, use the parameter d to determine how far the stabilization center is shifted.

10



If we completely remove the quadratic term from the Lagrangean approximation, we are left
with the linear approximation function

φL1
x̄,ȳpx,yq :“ ∇x,yLpx̄, ȳ, λ̄qJ

„

x´ x̄
y ´ ȳ



. (16)

Note that function (16) will not result in a regularization in ROA! However, since the linear
approximation function combines the gradients of both the constraints and the objective, it could
provide a direction more favorable for finding feasible solutions. Based on the computational results
in Section 7, we observe that using (16) as the objective function in the regularization subproblem
is not advantageous compared to the other approaches presented in this paper; supporting the use
of a regularizer.

Similarly to the level-based approaches, we use the following notation for the regularization
methods derived using the Lagrangean: The Q-OA method presented in [33] is presented as
ROA-L2. We denote ROA-L1 the method using the first-order approximation of the Lagrangean
as in (16), and following that notation the regularization methods involving (12) and (13) are
denoted ROA-∇2L and ROA-L1{`

2
2, respectively.

Next, we illustrate the differences between these regularization functions derived from the La-
grangean in ROA with example Ex 1. In Figure 4 we observe the first three iterations of the ROA
methods with objective functions for problem MIP-Proj given by the second-order Taylor approx-
imation, the Hessian of the Lagrangean based norm, and the first-order Taylor approximations of
the Lagrangean function. Notice that the second-order Taylor approximation of the Lagrangean,
proposed initially as Q-OA in [33], has a regularization objective equivalent to the sum of the two
other methods presented in Figure 4. This can be observed as the contours of the regularization
objective in the ROA-L2 method have a stabilization center (sometimes beyond the domain of
the figure) specified by the ROA-∇2L with a shift given by ROA-L1 corresponding objective in
the direction of the discrete variable. This observation corresponds with Remark 4. Moreover,
the gradient of the Lagrangean switches from pointing up or down depending on whether the
incumbent solution is below or above the optimal solution, respectively. Although all the methods
shown in Figure 4 can find the optimal solution following an infeasible first iteration, the number
of iterations required to close the gap between UB and LB and guarantee optimality varies. It
takes ROA-L2 five iterations, ROA-∇2L six iterations, and ROA-L1 seven iterations to guarantee
the optimality of the solution, after finding the optimal solution in the last iteration for the first
method and in the second-to-last iteration for the other two methods.

The progress of the ROA-L1{`
2
2 method is shown in Figure 5. This Figure exemplifies how the

`22 norm stabilization center is shifted from the incumbent solution in the direction of the gradient
of the Lagrangean. This distance of the shifting is given by parameter d, equal to one in this
example. It can be seen from the smallest contour, representing a regularization objective of zero,
on which the incumbent solution lies. In terms of the number of iterations, ROA-L1{`

2
2 is the most

efficient method among all the ones presented here at solving problem Ex 1, finding the optimal
solution on its first iteration and closing the gap between UB and LB in three iterations.

5 Convergence properties

The convergence proof of the L-OA algorithm presented in [33] is entirely independent of the
objective function of the regularization problem MIP-Proj. Therefore, finite convergence of ROA,
for any function φhx̄,ȳ, directly follows from the convergence proofs of L-OA. For completeness, we
outline the main convergence property of ROA. For more details, we refer the reader to Section 5
in [33].

From the start, we assumed that all the nonlinear functions are convex (Assumption 1). This
assumption is crucial since it ensures that the ROA methods’ cuts do not cut off any feasible
integer solution and that the master problem OA-MILP gives a valid LB. For a complete proof
that the master problem OA-MILP gives a valid LB, see [17, 19, 33]. With all the ROA methods,
the regularization problem will be feasible in each iteration. The feasibility of the regularization
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Figure 4: First three iterations (from left to right) for proposed Lagrangean-based regularization
methods for problem Ex 1. The format from Figure 3 is used here. Top: ROA-L2. Center:
ROA-∇2L. Bottom: ROA-L1.

problem is given by the fact that the constraints in the regularization problem MIP-Proj are the
same as in OA-MILP, besides the reduction constraint controlled by the confidence parameter α,
for more details, see Lemma 4 in [33]. As stated in Lemma 3 in [33], it is clear that each infeasible
integer combination obtained in the search will be excluded from the search space by the generated
cuts. An essential property of the ROA methods is that, as long as the UB and LB of the optimal
objective function are different, the regularization problem will provide a new integer combination
in each iteration. This property is formally stated in the following theorem.

If the lower bound is not equal to the upper bound, then the minimizer of regularization
subproblem MIP-Proj provides a new integer combination. By Lemma 3 in [33], it is clear that
each infeasible integer combination encountered will be excluded from the search space by the cuts
generated in the ROA algorithm. As proven in Theorem 5 in [33], all feasible integer combinations
found by the ROA algorithm will also be excluded from the search space as long as there is a gap
between the upper and lower bound.

The main convergence property of ROA is summarized in the following theorem. The ROA
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Figure 5: First two iteration of ROA-L1{`
2
2 for problem Ex 1. The format from Figure 3 is used

here, considering the scaling factor ρ such that the shifting of the stabilization center is d “ 1.

algorithm will terminate after a finite number of iterations, either by proving the best-found
solution’s optimality or by verifying that the MINLP problem is infeasible. By Theorem 5, it
is clear that problem MIP-Proj will in each iteration find a new, previously unexplored integer
assignment, as long as the UB is not equal to the LB. As stated in Lemma 1 in [33], the LB is
valid in each iteration of the algorithm. Due to Assumption 2, the search space only contains a
finite number of different integer assignments. Therefore, the algorithm must terminate after a
finite number of iterations with either the UB equal to the LB or by proving infeasibility by the
master problem being infeasible. For more details and a complete convergence proof, we refer the
reader to Section 5 in [33].

6 Regularization in LP/NLP Branch & Bound algorithm

Solvers based on a single-tree search or LP/NLP-based B&B algorithms have shown outstanding
performance in recent benchmarks [34, 43]. A natural extension of the regularization framework
from the previous section is, thus, the integration of regularization in LP/NLP-based B&B. This
is also suggested in the conclusions and future work section of [33].

To introduce regularization into the LP/NLP-based B&B framework, we use the regularization
problem MIP-Proj for each node in the search tree where an integer feasible solution is found.
The regularization problem intends to choose new integer combinations close to the incumbent
solution. To ensure convergence, it is also necessary to generate cuts at the nodes’ variable values
in the search tree with integer feasible solutions. Otherwise, an infeasible integer combination
encountered in the search tree might not be excluded as the regularization might result in a dif-
ferent integer combination. Except for these two modifications, the algorithm follows the same
procedure as the standard LP/NLP-based B&B algorithm. The regularized LP/NLP-based B&B
algorithm is summarized as a pseudo-code in Algorithm 2. We denote all the algorithms imple-
menting regularization approaches on the LP/NLP-based B&B method as RLP/NLP. Similarly
to ROA, depending on the objective function used in the regularization subproblem, φhx̄,ȳpx,yq,
we denominate the approach as RLP/NLP-h, e.g., the single-tree approach using (5) is denoted
RLP/NLP-`8.

A significant difference compared to ROA is that the optimum of the linear approximation OA-
MILP is not available during the search. This is an important detail and is described further
in the following remark. During the B&B tree search, the minimum of the current linear
approximation OA-MILP is not known. Only a lower bound to problem OA-MILP is available,
and all integer feasible solutions to OA-MILP may have a larger objective function value. Using
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Algorithm 2 An algorithm summarizing the regularized LP/NLP (RLP/NLP) method.

Define accepted optimality gap ε ě 0 and choose the parameter α P p0, 1s.

1. Initialization.

1.1 Obtain a relaxed solution x̃, ỹ by solving an integer relaxation of the MINLP problem.

1.2 Generate cuts at x̃, ỹ according to (1) and construct problems OA-MILP.

1.3 Set node counter k “ 1, UB0 “ 8 and LB0 “ ´8.

2. Begin B&B search for problem OA-MILP and continue until UBk´1 ´ LBk´1 ď ε.

2.1 If a new solution x̂, ŷ is found, then generate cuts at x̂, ŷ, set yk “ ŷ and update LBk

according to current B&B tree. Add the new cuts to open nodes of the B&B tree and
to problem MIP-Proj.

2.2 If a feasible solution has been found or provided

2.2.1 Calculate the estimated optimal value f̂‹k according to (2).

2.2.2 Solve problem MIP-Proj to update yk. If the regularization problem is infeasible,
keep yk unchanged.

2.3 Solve problem NLP-I with integer variables fixed as yk to obtain xk and λk.

2.3.1 If problem NLP-I is feasible, set UBk “ mintfpxk,ykq, UBk´1u.

2.3.1.1 If fpxk,ykq ď fpx̄, ȳq, set x̄, ȳ, λ̄ “ xk,yk, λk.

2.3.2 If problem NLP-I is infeasible, obtain xk by solving feasibility problem NLP-f.

2.4 Generate cuts at xk,yk according to (1) and add these to problem MIP-Proj, and add
these as global lazy constraints to the B&B tree.

2.5 (Optional) Generate no-good cuts at yk and add these as global lazy constraints to the
B&B tree of problem OA-MILP.

2.6 Increase node counter, k “ k ` 1

3 Return x̄, ȳ as the optimal solution x‹,y‹.

the available LB to calculate the estimated optimum f̂‹k may, therefore, result in an infeasible level
constraint, i.e., there does not exist an integer feasible solutions to problem OA-MILP with an
objective value less than or equal to f̂‹k . In such a situation, the regularization problem MIP-Proj
will also be infeasible. In case the regularization is infeasible, the RLP/NLP algorithm continues
by using the integer combination obtained at the current node. Note that each integer feasible
node of the search tree involves a possibly expensive regularization problem. Therefore, to be
competitive, the additional regularization problem must significantly reduce the number of integer
combinations explored. As shown in [33] the regularization can lead to a drastic reduction of
iterations and explored integer combinations.

Since f̂‹k is not necessarily a valid LB to the current linear approximation OA-MILP, the
convergence proofs from the previous section do not hold. However, the convergence can still be
guaranteed as cuts are generated for each node’s variable values with an integer feasible solution.
Therefore, the convergence is guaranteed due to the convergence of the ECP algorithm, see [1] for
details of a single-tree ECP algorithm.

7 Computational results

This section introduces our implementation details of the seven ROA methods and analyzes their
performance through benchmark tests. The OA method is selected as the baseline. As a general
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observation, we notice that the regularization methods are able to handle highly nonlinear convex
MINLP problems more efficiently than OA. This aligns well with the observations of the two
regularization methods in [33]. Using regularization methods induces a more careful choice of
the integer combination to be evaluated, having that trial solution to lie preferably close to the
best found feasible solution. In general, these regularization methods favor the choice of the
next integer combination close to an stabilization center. This center is constructed using the
incumbent solution and the curvature of the constraints, using information from the Lagrangean
of the problem or a p-norm. The choice of the new integer solution comes at the expense of solving
a mixed-integer regularization subproblem. This extra step might become exorbitant for mostly
linear instances, where tight outer-approximations of the nonlinear feasible region can be obtained
with only a few gradient-based cuts.

To test the performance of the proposed methods, we use test instances from the problem
library MINLPLib1 [11]. There are 536 convex problems in MINLPLib, from which we select the
438 instances that have at least one discrete variable and at least one continuous variable. We
denote the 438-instances set as Problem Set 1. Compared to the OA method, ROA methods
use regularization to keep the trial solutions close to the incumbent solution and the feasible
set. Favouring solutions close to the incumbent, also favours areas close to a linearization point,
i.e., areas where the outer approximation is accurate. In theory regularization-based methods
lead to a higher efficiency gain with respect to OA in highly nonlinear instances. This has been
corroborated experimentally [33]. Therefore, we establish Problem Set 2 with highly nonlinear
instances selected from Problem Set 1 according to the following criterion:

nnonlin
n`m

ą 0.4, (17)

where nnonlin is the number of variables present in some nonlinear term, and m`n is the total
number of discrete and continuous variables. There are in total 135 convex MINLP problems in
MINLPLib that satisfy (17). The instances in Problem Set 1 have between 2 to 4530 variables
and 0 to 5329 constraints, while the instances in Problem Set 2 range from 6 to 4530 variables
and 0 to 4650 constraints.

7.1 Implementation details

The OA methods and seven ROA methods are implemented as part of the Mixed-integer nonlinear
decomposition toolbox for Pyomo - MindtPy [3]. This toolbox presents an open-source2 imple-
mentation of several solution techniques for MINLP based on problem decomposition. Through
a Python implementation relying on the algebraic modeling language Pyomo [24], MindtPy can
easily access a wide range of solvers to address the subproblems arising from the decomposition.
The methods implemented in MindtPy for the solution of convex MINLP include OA [17] and
ECP [56]. These are complemented with other decomposition methods such as the feasibility
pump [4, 7] and the center cut algorithm [35]. Besides, MindtPy includes an implementation of
the LB/NLP B&B method [47]. Its flexible framework allows users to easily tailor the algorithm
to fit their particular application i.e., by using different initialization procedures, feasibility norms,
cutting planes generators, and call-back procedures.

For the results presented herein, we use CPLEX 20.1.0.0 [28] as the solver for the MILP/MIQP
subproblems and IPOPT 3.12 [55] for the NLP subproblems using the Harwell Subroutine Library
(HSL) MA27 [26] as a solver for linear systems. The level parameter in ROA methods is set
to α “ 0.5 for all approaches. Moreover, for ROA-L1{`

2
2 we use as shifting radius d “ 1. We

implement the multi-tree and single-tree approaches, described in Algorithms 1 and 2 respectively.
We consider the zero tolerance for checking if a constraint is active as 10´8; hence we set the IPOPT
parameter constr viol tol to that value.

According to Theorem 5, it is not necessary to solve the regularization subproblems to op-
timality. As noted in [33], any feasible solution for the regularization problems is sufficient to

1Retrieved on May 7 2021 from http://www.minlplib.org/
2https://pyomo.readthedocs.io/en/stable/contributed_packages/mindtpy.html
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guarantee the convergence of the ROA methods. These regularization problems are of the same
size as the master OA-MILP, and solving them might be a limiting factor in ROA, as observed
by [33] previously. The performance was improved by not solving the regularization problem to
optimality, by using the setting the MIP solution limit parameter, mip limits solutions, to 10.
If CPLEX uses multiple threads, the number of MIP solutions found by CPLEX might slightly
greater than the mip limits solutions given that if the limit is reached, the nodes being pro-
cessed in other threads will not be interrupted. CPLEX will stop after all the current working
threads are completed.

Since the problems we consider are all convex, the Hessian of the Lagrangean is always positive
semidefinite, and the regularization subproblems are always convex. However, due to numerical
accuracy, the regularization problem ended up nonconvex for a few cases, e.g., the smallest eigen-
value of the Hessian was slightly negative. Therefore, we set the optimalitytarget parameter
to 3 to enable CPLEX to solve nonconvex MIQPs in the ROA-L2 and ROA-∇2L methods. An-
other approach to deal with the nonconvexities induced by numerical accuracy is to add small
perturbations to the diagonal of the Hessian [33].

The solution procedure is initialized by solving the continuous relaxation of problem MINLP,
which provides a valid LB of the optimal objective function. In each iteration k, the problem OA-
MILP is initialized with the NLP subproblem solution in iteration k´1. Since the solution of OA-
MILP is feasible to the problem MIP-Proj, we use its optimal value to initialize the regularization
subproblems. Along this line, as problem NLP-I is solved for the integer combination of the
regularization problem, we use the solution to MIP-Proj to initialize the nonlinear subproblems.
All the other settings in MindtPy, CPLEX, and IPOPT are the same as the default.

As termination criteria, we use the standard criteria of both an absolute optimality tolerance
ε and a relative optimality tolerance εrel. The search is, thus terminated if either

fpx̄, ȳq ´ LB ď ε or
fpx̄, ȳq ´ LB

|fpx̄, ȳq| ` 10´10
ď εrel

are satisfied. All tests ran on an Intel® Xeon® CPU (24 cores) 2.67 GHz server with 128GB
of RAM running Ubuntu. For the termination criteria, we set the tolerances ε “ 10´5 and
εrel “ 10´3, and a time limit of 900s. The multi-tree results are run with up to 8 threads, while
the single-tree results are run with a single thread.

The LP/NLP-based B&B algorithm can be implemented through so-called call-backs to the
MILP solver in the B&B process, both for solving the continuous nonlinear subproblems and
adding new cuts to the LP problems in the B&B search. The initialization procedure is the same
as in traditional OA to set up the first master problem. For each feasible integer solution ŷ found
in the B&B process, it is checked whether that specific integer combination has been found earlier
in the search, i.e., ŷ P tyi|i “ 1, . . . , k ´ 1u. If ŷ R tyi|i “ 1, . . . , k ´ 1u, then the xk variables
can be obtained by solving NLP-I using that integer combination. If NLP-I is infeasible, the
feasibility problem NLP-f is solved to determine the continuous variables. Cuts are generated
according to (1) and added to all open nodes in the search tree, and practically implemented
as lazy constraints. If ŷ P tyi|i “ 1, . . . , k ´ 1u, then there is no need to again solve NLP-I as
the cuts already added for this integer combination is sufficient for the linear approximation to
be tight for this integer combination [6]. This situation can, for example, occur if two different
feasible solutions of the original problem only differ in the values of the continuous variables. This
situation can be avoided by adding no-good cuts at every found solution [4].

7.2 Detailed examples

We first present detailed results for six particular instances of the selected test set. These
problems were chosen to illustrate in detail the advantage of the ROA methods. The selected
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Figure 6: Bound profiles for instance cvxnonsep psig40 against (a) solution time and (b) itera-
tions using the multi-tree ROA method as described in Algorithm 1. The figure shows the upper
and lower bounds obtained by the different regularization methods.

instances are cvxnonsep normcon203, cvxnonsep psig404, nvs115, nvs126, slay08m7, and
smallinvDAXr1b150-1658 .

The statistics of these instances and their solution details are presented in Table 1. slay08m

corresponds to the Big-M formulation of a safety layout problem, introduced in [48]. This in-
stance is a Mixed-binary Quadratically Constrained Program (MBQP). cvxnonsep normcon20

and cvxnonsep psig40 are numerical instances proposed by Kronqvist et al. [37]. The first
one considers a single norm-2 constraint of 10 integer and 10 continuous variables. The sec-
ond one minimizes a signomial function in terms of integer and continuous variables, making
them a Mixed-integer Quadratically Constrained Program (MIQCP) and a general MINLP, re-
spectively. The cvxnonsep instances are designed to be particularly difficult for OA type meth-
ods. nvs11 and nvs12 instances proposed by Gupta and Ravindran [22] that have been widely
used for benchmarking MINLP solver, see e.g., [52]. They contain only integer variables, and
quadratic constraints and objective function; making them Integer Quadratically Constrained
Quadratic Programs (IQCQP). smallinvDAXr1b150-165 models an Extension of the Markovitz
Mean-Variance-Optimization model by constraints for small investors. These problems belong to
MIQCP.

To illustrate how the methods differ for these problems, we first show the upper and lower
bounds obtained by each method in Figures 6 and 7. Each figure shows the percentage gap with
the known optimal solution with respect to time and iterations. These plots have a semi-log
vertical axis, where the values within r´εrel, εrels are presented in a linear scale, while values
beyond that are presented in a logarithmic scale.

Figure 6 shows the progress of the bounds as a function of time and iterations for problem
cvxnonsep psig40 in the multi-tree setting. We observe that the UB is quickly reduced to the
optimal solution by the regularization methods compared to OA, except for ROA-L1 corresponding
to the previous observation that the gradient of the Lagrangean does not provide a stabilization
center, hence performing worse than the other methods. This was the only approach unable
to converge within the time limit in the multi-tree setting. The LB is then improved to reach

3http://minlplib.org/cvxnonsep_normcon20.html
4http://www.minlplib.org/cvxnonsep_psig40.html
5http://www.minlplib.org/nvs11.html
6http://www.minlplib.org/nvs12.html
7http://minlplib.org/slay08m.html
8http://minlplib.org/smallinvDAXr1b150-165.html
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Figure 7: Bound profiles for instance cvxnonsep normcon20 against (a) solution time and (b)
NLP problems solved using the single-tree RLP/NLP methods as described in Algorithm 2. The
figure shows the upper and lower bounds obtained by the different regularization methods.

convergence within the specified optimality tolerances. When observing the bounds progress
with respect to the iterations, the difference is even more drastic, showing the positive effect of
regularization for this problem.

The bounds profiles for all the presented methods through a single-tree implementation
when solving problem cvxnonsep normcon20 are presented in Figure 7. Contrary to problem
cvxnonsep psig40, the optimal solution is found by all methods in the first iteration, leaving the
remaining of the task to improve the LB until the gap is within the specified tolerance. Although
the regularization problems address the UB improvement part of OA directly by providing integer
combinations close to stabilization centers defined by the incumbent solutions, we see that they
also favor the more efficient convergence of the LB. This effect is best observed in the bounds plot
against the number of NLPs solved, considered for the single-tree as a measure of iterations. The
regularization methods require only a fraction of the NLP subproblems to obtain a LB within
the optimality tolerance. This difference is not as prominent in terms of computational time.
However, for this problem, the most efficient regularization method ROA-`8 reduces the run time
by approximately a third.

Table 1 presents a more detailed view of the results for the different examples. Here we notice
that, although the ROA method spends extra time to solve the regularization problem, this eventu-
ally leads to a reduction in the total solution time compared to OA. Instance cvxnonsep normcon20

shows a positive effect of the regularization methods, where the number of infeasible NLP prob-
lems is drastically reduced from 175 and 20 in the multi-tree and single-tree cases, respectively, to
zero in all regularization cases. This leads to an advantage of the regularization methods against
OA for this instance. A similar situation happens with instances nvs11 and nvs12, where all
regularization methods reduce the number of infeasible NLPs compared to OA, with the excep-
tion of ROA-L1. This supports the notion that the gradient of the Lagrangean does not define
a stabilization center in the regularization objective; therefore, it is not a regularization per se.
Moreover, using the gradient of the Lagrangean as a regularization objective (16) fails to con-
verge to the optimal solution of examples slay08m and smallinvDAXr1b150-165 in the single-tree
implementation and of cvxnonsep psig40 in the both single- and multi-tree implementations.
However, OA converged in a little under 8 minutes. This highlights the advantages of flexible
implementation that allow these different approaches to be simply activated or deactivated.

As a general observation, the regularization methods reduce the respective number of iter-
ations (number of NLP subproblems) required for convergence compared to the case without a
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regularization. The time spent in solving those mixed-integer subproblems leads to reducing the
total algorithm time in most cases. These methods also tend to more quickly find the optimal
solutions, having a practical effect if the time limit exceeds the time required to solve the problems.
Besides, finding reasonable feasible solutions early in the search leads to tighter linearizations to
the polyhedral approximation of the continuously relaxed nonlinear feasible region, leading to a
better LB and faster convergence of the methods.

7.3 Numerical results

Based on the ROA method’s good performance in the previous section, we perform a benchmark
on Problem Set 1 and Problem Set 2. The software Paver 2 [10] is used to analyze the performance
of the different methods proposed in this work. We decide to present our results in the form of
absolute performance profiles, as seen in Figures 8, 9, 10 and 11. These plots show the total
number of instances found to be solved within 0.1% of the known optimal solution of the problem
against a measure of algorithmic effort, either solution time or iterations. Two extra lines are
included in these figures, where the “Virtual best” and “Virtual worst” alternatives are included.
These cases are constructed with the best and worst solver for each instance, respectively. Notice
that we define iterations in the single-tree context as the number of NLP-I problems solved.
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Figure 8: Time performance profile for highly nonlinear instances for multi-tree ROA method as
described in Algorithm 1.

Figures 8 and 9 show the performance of the multi-tree implementation of the different meth-
ods for the highly nonlinear instances, defined according to (17). In general, the regularization
methods achieve a better performance in terms of solution time and iterations than OA. For simple
examples, highlighted on the left side of the profiles and given by instances solvable in less than 10
seconds or requiring fewer than ten iterations, OA seems to outperform most of the regularization
methods, except for ROA-L2. This method, called Q-OA in [33] performs almost as the Virtual
best solver in terms of iterations, demonstrating the value of incorporating the constraint curvature
information in the regularization via the second-order Taylor approximation of the Lagrangean.
In terms of solution time, the advantages of this approach are reduced given the complexity asso-
ciated with obtaining the Hessian of the Lagrangean and, more importantly, addressing an MIQP
regularization problem. Toward the end of the time limit, the other regularization methods catch
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Figure 9: Iteration performance profile for highly nonlinear instances for multi-tree ROA method
as described in Algorithm 1.

up to the performance of ROA-L2, with ROA-∇2L being able to solve 104 problems, the most
among all the methods, after 15 minutes. Note that the worst method is ROA-L1, which, as men-
tioned above, is not an actual regularization method given that its projection objective function
does not induce a stabilization center. Traditional OA can solve 97 of the 135 problems to 0.1%
of the optimal solution in the Problem Set 2 within 900 seconds.

When considering all convex MINLP in MINLPLib, Problem Set 1, the gap between
regularization-based methods and OA reduces, mainly since most of these instances have low
nonlinearity. Some alternatives of regularization methods solve more instances than OA, with
ROA-`1 solving 330 out of the 438 instances within the time limit, 10 more than OA. The
performance profiles for the instances in Problem Set 1 are included in the Appendix in Figures 12
and 13.

The performance profiles for the Problem Set 2 of RLP/NLP are shown in Figures 10 and 11.
In terms of NLP subproblems solved, the OA method is almost equivalent to the virtual worst,
demonstrating that the regularization approaches lead to a more meaningful solution of NLP
problems in the solution procedure. This observation is not directly translated into the time
profiles, considering that solving an extra mixed-integer program for every incumbent solution in
the tree is an expensive step, although justifiable with reducing iterations. Considering Problem
set 2, the most successful approach is RLP/NLP-`22 being able to solve 117 instances, 15 more
than OA.

When considering Problem Set 1, the single-tree implementation of RLP/NLP-L2 solves the
least number of instances within the time limit. This contrasts with the good performance this
regularization had for the multi-tree implementation. Both in multi-tree and single-tree, when
considering all the convex MINLP instances from MINLPLib, the most successful regularization
type was `1. This demonstrates the potential that linearly representable regularizations have in
terms of performance.

Out of Problem Set 2, 114 problems out of 135 could be solved by all methods, and 21 could
not be solved using the multi-tree methods. All single-tree methods were able to solve 119 of
these instances, and none could solve 16 of those instances. For the whole test set, Problem Set 1,
342 instances of 438 were solved by all methods, and 96 were not solved by any in the multi-tree

21
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Figure 10: Time performance profile for highly nonlinear instances for single-tree RLP/NLP meth-
ods as described in Algorithm 2.

Table 2: Details for each method infeasible subproblems when solving Problem Set 1 (438 in-
stances).

ROA RLP/NLP

Regularization
method

# of instances with
infeasible NLP-I

Fraction of
infeasible NLP-I

# of instances
with infeasible NLP-I

Fraction of
infeasible NLP-I

# of instances with
infeasible MIP-Proj

Fraction of
infeasible MIP-Proj

None 111 3743/15671=23.9% 122 4211/26832=15.7% - -
`22 104 2395/8278=28.9% 110 2067/7544=27.4% 290 2540/6765=37.5%
`1 104 2670/9031=29.6% 114 1980/8384=23.6% 348 3084/8203=37.6%
`8 101 2671/10517=25.4% 109 2469/8559=28.8% 344 2752/7989=34.4%
L2 103 2359/6749=35.0% 112 1558/5974=26.1% 283 2157/5161=41.8%
∇2L 104 2435/7101=34.3% 110 1539/6171=24.9% 284 2270/5437=41.8%
L1{`

2
2 100 2210/7731=28.6% 112 1501/6400=23.5% 278 2140/5556=38.5%

L1 110 2878/17041=16.9% 118 1459/7176=20.3% 262 2429/6311=38.5%

implementation. The single-tree methods were slightly more successful, with 351 instances being
solved by all and 87 by none.

As similarly found in [33], the number of infeasible NLP-I problems encountered diminished
when using regularization methods. Both in the multi- and single-tree implementations, the
regularization approaches were able to solve fewer instances requiring the solution of problem NLP-
f compared to OA.

An exciting finding of Table 2 is that the fraction of problems NLP-I that were infeasible
was larger for the regularization methods! This result was surprising given the hypothesis that
choosing an integer combination close to a feasible solution results in trial solutions close to the
feasible region, resulting in fewer infeasible trial solutions. The explanation for this behavior has to
do with the total number of NLP-I problems solved by each method. Being the OA iterations less
time-consuming more could be performed within the time limit. This would set the denominator
in the fraction to be large, making the fraction smaller than for the other methods. This is not a
measure to be considered independently from the previous results. The fewer iterations a problem
requires to converge, the fewer NLP-I problem it needs to solve. Therefore, the large number of
solved NLPs indicates inefficient methods, although it would decrease the fraction of infeasible
subproblems encountered. This can be observed with ROA-L1, whose fraction of infeasible NLPs
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Figure 11: Iteration performance profile for highly nonlinear instances for single-tree RLP/NLP
methods as described in Algorithm 2.

is the lowest among all the tested methods. However, it was the weakest alternative considered in
this manuscript.

For the single-tree implementation, we observed that Remark 6 often appeared in practice,
with three-quarters of the instances presenting at some point infeasible MIP-Proj problems. These
infeasible problems arise from the weak LB coming from the B&B tree, leading to an average of
40% of all MIP-Proj problems being infeasible in the single-tree setting.

8 Conclusions and future work

This manuscript presents a new solution framework for multi-tree and single-tree Outer-
Approximation based on regularizations for solving convex MINLP problems. We present
seven different regularization methods for OA through this framework, including two that were
presented earlier in [33]. These regularizations can be classified into two groups: those based on
distance minimization around an incumbent solution, and those based on approximations of the
Lagrangean function around that incumbent solution. The regularization approach relies on the
solution of an auxiliary mixed-integer program, which, based on the objective function’s choice,
can be a mixed-integer linear program or a mixed-integer quadratic program. We show that
the convergence proofs from [33] directly applies to these methods as well, thus, guaranteeing
convergence to the optimal solution. Moreover, the regularization ideas are integrated with
the LP/NLP Branch & Bound method [47] leading to a single-tree regularization algorithm for
convex MINLP. The implementation of these methods was done on top of the Mixed-Integer
Decomposition Toolbox for Pyomo - MindtPy [3] in open-source code. We evaluated these
approaches experimentally and compared them to OA by solving a large set of convex MINLP
problems. We observed that the regularization approaches are especially well-fitted for highly
nonlinear problems, achieving performance improvements compared to OA. This confirms the
hypothesis that staying close to the feasible solutions ensures the integer combinations found
by the linearizations to stay close to the convex set defined by the nonlinear constraints. For
almost linear instances, the benefits of the regularization technique are sometimes lost due to
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the cost of solving auxiliary projection problem, which also aligns well with the results in [33].
However, our results demonstrate that using linearly representable regularizations do improve the
average performance for all the convex MINLP instances at the benchmarking library MINLPLib,
including the highly linear ones.

As future work, we consider an interesting avenue to perform updates in the Hessian of the
Lagrangean estimate. As in the BFGS algorithm [18], the Hessian of the Lagrangean needs not
to be computed exactly, and its approximation can be iteratively refined with the first estimate
of it being a scaled identity matrix. This technique has proved extremely useful in trust-region
methods for continuous NLP problems, such as Sequential Quadratic Programming (SQP) [13, 23].
Moreover, the two extra parameters introduced in the regularization methods α and d have been
maintained constant throughout these experiments. These hyperparameters represent a trade-off
between how trustworthy the incumbent solution is compared to the optimal solution and how
much exploration far from that incumbent solution is required. One can imagine a dynamic update
policy for these parameters, balancing the incumbent solutions’ exploration and exploitation as a
future research direction. 9
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9 Appendix

9.1 Algorithmic description of OA and LP/NLP Branch & Bound

This section presents the algorithmic description of the Outer-Approximation method [17, 19], in
Algorithm 3, and the LP/NLP Branch & Bound method [6, 47], in Algorithm 4.

Algorithm 3 An algorithm summarizing the Outer-Approximation method.

Define accepted optimality gap ε ě 0.

1. Initialization.

1.1 Obtain a relaxed solution x̃, ỹ by solving an integer relaxation of the MINLP problem.

1.2 Generate cuts at x̃, ỹ according to (1) and construct problem OA-MILP.

1.3 Set iteration counter k “ 1, UB0 “ 8 and LB0 “ ´8.

2. Repeat until UBk´1 ´ LBk´1 ď ε.

2.1 Solve problem OA-MILP to obtain yk and LBk

2.2 Solve problem NLP-I with integer variables fixed as yk to obtain xk.

2.2.1 If problem NLP-I is feasible, set UBk “ mintfpxk,ykq, UBk´1u.

2.2.2 If problem NLP-I is infeasible, obtain xk by solving feasibility problem NLP-f and
set UBk “ UBk´1.

2.3 Generate cuts at xk,yk according to (1) and add these to problem OA-MILP.

2.4 (Optional) Generate no-good cuts at yk and add these to problems OA-MILP.

2.5 Increase iteration counter, k “ k ` 1

3. Return the best found solution.

9.2 Representing `1 and `8 norms using Linear Programming

This section shows the valid reformulations of optimization problems with norms 1 and infinity
in the objective function using auxiliary variables and linear constraints. This reformulation is
exact in the sense that they preserve the local and global optima from the original problem [41].
These reformulations are particularly interesting since they allow the regularization problem MIP-
Proj to be written as Mixed-Integer Linear Programming (MILP) problems, instead of Mixed-
Integer Quadratic Programming (MIQP) problems, as in the work byKronqvist et al. [33]. MILP
solution methods’ maturity compared to MIQP allows these problems to be more quickly solvable
in practice.

The norm-1 of a vector v P V Ď RN whose components might be negative or positive, `1pvq “

}v}1 “
řN
i“1 |vi| can be reformulated in the case that this term appears in the objective function

with a set of linear constraints. Through the addition of 2N non-negative slack variables s`, s´ P
RN` , and N linear equality constraints the following reformulation is valid:

min
v

}v}1

s.t. v P V Ď RN
ô

min
v,s`,s´

N
ÿ

i“1

s`i ` s
´
i

s.t. s` ´ s´ “ v

v P V Ď RN , s` P RN` , s´ P RN`

(18)

This reformulation is applied to the regularization problem MIP-Proj when considering the
`1 regularization function as in (4), resulting in problem MIP-Proj-`1. It can also be potentially
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Algorithm 4 An algorithm summarizing the LP/NLP based Branch & Bound algorithm.

Define accepted optimality gap ε ě 0 and choose the parameter α P p0, 1s.

1. Initialization.

1.1 Obtain a relaxed solution x̃, ỹ by solving an integer relaxation of the MINLP problem.

1.2 Generate cuts at x̃, ỹ according to (1) and construct problems OA-MILP.

1.3 Set node counter k “ 1, UB0 “ 8 and LB0 “ ´8.

2. Begin Branch & Bound for problem OA-MILP and terminate until UBk´1 ´ LBk´1 ď ε.

2.1 If a new incumbent integer solution x̂, ŷ is found, check if ŷ P tyi|i “ 1, . . . , k ´ 1u.

2.1.1 if ŷ P tyi|i “ 1, . . . , k ´ 1u, then skip this iteration and continue the Branch &
Bound process.

2.1.2 if ŷ R tyi|i “ 1, . . . , k ´ 1u, set yk “ ŷ and set LBk to the lower bound of current
B&B tree.

2.2 Solve problem NLP-I with integer variables fixed as yk to obtain xk.

2.2.1 If problem NLP-I is feasible, set UBk “ mintfpxk,ykq, UBk´1u.

2.2.2 If problem NLP-I is infeasible, obtain xk by solving feasibility problem NLP-f and
set UBk “ UBk´1.

2.3 Generate cuts at xk,yk according to (1) and add these as global lazy constraints to the
B&B tree of problem OA-MILP.

2.4 (Optional) Generate no-good cuts at yk and add these as global lazy constraints to the
B&B tree of problem OA-MILP.

2.5 Increase node counter, k “ k ` 1.

3 Return the best found solution.

applied to the feasibility NLP problem NLP-f.

min
x,y,µ,s`,s´

n`m
ÿ

j“1

s`j ` s
´
j

s.t. s`j ´ s
´
j “ xj ´ x̄j @j “ t1, . . . , nu

s`n`j ´ s
´
n`j “ yj ´ ȳj @j “ t1, . . . ,mu

µ ď f̂‹k

fpxi,yiq `∇fpxi,yiqJ
„

x´ xi

y ´ yi



ď µ @i “ 1, . . . , k,

gjpx
i,yiq `∇gjpxi,yiqJ

„

x´ xi

y ´ yi



ď 0 @i “ 1, . . . k,@j P Ii,

Ax`By ď b,

x P Rn, y P Zm, µ P R, s`, s´ P Rn`m`

(MIP-Proj-`1)

The norm-8 of a vector v P V Ď RN whose components might be negative or positive,
`8pvq “ }v}8 “ maxi“t1,...,Nu |vi| can be reformulated in the case that this term appears in the
objective function with a set of linear constraints. Through the addition of one non-negative slack
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variable s P R`, and 2N linear inequality constraints, the following reformulation is valid:

min
v

}v}8

s.t. v P V Ď RN
ô

min
v,s

s

s.t. s ě v

s ě ´v

v P V Ď RN , s P R`

(19)

This is the usual choice for reformulating problem NLP-f, and can also be used to reformu-
late problem MIP-Proj with `8 regularization objective function, as in (5). This last problem
formulation is:

min
x,y,µ,s

s

s.t. s ě xj ´ x̄j @j “ t1, . . . , nu

s ě x̄j ´ xj @j “ t1, . . . , nu

s ě yj ´ ȳj @j “ t1, . . . ,mu

s ě ȳj ´ yj @j “ t1, . . . ,mu

µ ď f̂‹k

fpxi,yiq `∇fpxi,yiqJ
„

x´ xi

y ´ yi



ď µ @i “ 1, . . . , k,

gjpx
i,yiq `∇gjpxi,yiqJ

„

x´ xi

y ´ yi



ď 0 @i “ 1, . . . k,@j P Ii,

Ax`By ď b,

x P Rn, y P Zm, µ P R, s P R`

(MIP-Proj-`8)

9.3 Performance profiles for Problem Set 1

In this section of the Appendix, we present the performance profiles for the multi-tree and single-
tree implementation of the methods included in this manuscript when solving all 358 convex
MINLP problems in Problem Set 1. Figures 12 and 13 include the time and iteration performance
profiles for the multi-tree implementation, respectively. Figures 14 and 15 include the time and
iteration performance profiles for the single-tree implementation, respectively. Notice that we
define iterations in the single-tree context as the number of NLP-I problems solved.
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Figure 12: Time performance profile for multi-tree ROA method as described in Algorithm 1.
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Figure 13: Iteration performance profile for multi-tree ROA method as described in Algorithm 1.
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Figure 14: Time performance profile for single-tree RLP/NLP methods as described in Algo-
rithm 2.
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Figure 15: Iteration performance profile single-tree RLP/NLP methods as described in Algorithm 2
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