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The COVID-19 pandemic has brought many countries to their knees, and the urgency to return to normalcy

has never been greater. Epidemiological models, such as the SEIR compartmental model, are indispensable

tools for, among other things, predicting how pandemic may spread over time and how vaccinations and

different public health interventions could affect the outcome. However, deterministic epidemiological models

do not reflect the stochastic nature of the actual infected populations for which the true distribution can

never be determined precisely. When embedded in an optimization model, the impact of ambiguous risk

can influence the desired outcomes of the mitigating strategy. To address these issues, we first propose a

robust epidemiological model, which provides prediction intervals that is specified by the Aumann and Ser-

rano (2008) riskiness index. With suitable approximations, the robust epidemiological optimization model

that minimizes the riskiness index can be formulated as a mixed integer linear optimization problem. We

illustrate how we can apply the robust epidemiological optimization model for strategic vaccine allocation by

minimizing the model’s riskiness indices for all the constraints on limiting infections across all time periods,

and within a given budget for vaccinations. We conduct a simulation study using parameters estimated

from open-source datasets on the COVID-19 pandemic. Simulation results illustrate that our robust vac-

cine allocation model yields solutions that outperform the benchmark models in controlling the spread of

infections.
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1. Introduction

The COVID-19 pandemic has resulted in an unprecedented volume of infections and mass mortality

within a short span of time. Countries urge to mitigate the propagation of this global pandemic

and they have employed various strict non-pharmacological intervention policies (NPIs) to control

the impacts of COVID-19 and save numerous lives. However, it has been challenging to control
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the propagation of this pandemic while maintaining an active economy. Global manufacturing

production, aviation industry, labor market, and education face the deepest crisis in 2020 (ESCAP

et al. 2020).

The pandemic has once again raised our attention to how we can better control pandemic

propagation through mass vaccinations and public health interventions such as, inter alia, isolation

and treatment of infected patients, contact tracing and dedicate quarantine facilities for potentially

infected population. As we have already witnessed in some countries, inadequate public health

interventions can lead to severe shortages of critical healthcare supplies and result in dire escalation

of morbidity and mortality. However, building a prescriptive analytics model for this purpose

is challenging due to risk and ambiguity, where risk is associated with the random nature of

the infection outcomes, while ambiguity is associated with the unobservable stochastic model for

generating the random infections. Indeed, epidemiological models have been studied since the

early 20th century (Ross 1916, Kermack and McKendrick 1927) and they are indispensable tools

for predicting infection trends during a pandemic. The SEIR compartmental model captures the

transition of the population among four different population compartments labeled by: Susceptible,

Exposed, Infectious, and Removed (i.e., either recovered or deceased). It is built on a system

of ordinary differential equations to predict the average number of individuals in each of the

four population compartments at each time epoch. As a deterministic model, the SEIR model

does not account for infection risks and its predictions on population averages are subject to

uncertainty due to, among other things, the model having unobservable parameters that could

only be estimated from data. When embedded in decision problems that could affect how the

pandemic might propagate, using a predictive model that is oblivious to risk and uncertainty may

underestimate the efforts and costs needed to achieve the desired outcomes for controlling the

pandemic (a phenomenon known as the Optimizer’s Curse by Smith and Winkler 2006).

Several variations of the SEIR compartmental model have been proposed to forecast the propa-

gation trajectory of COVID-19. For instance, Li et al. (2020) modify the SEIR model and consider

compartments for the symptomatic and asymptomatic infected individuals. Based on the data

collected from Wuhan, China, they use their model to infer various epidemiological parameters.

Chang et al. (2021) suggest that integrating the mobility network derived from mobile phone data

into the SEIR model can help better predict the pandemic spread. Bertsimas et al. (2021a) design

a data-driven framework to forecast the evolution of COVID-19. They modify the SEIR model and

consider 13 compartments rather than four. These epidemiological models focus on incorporating

more realistic states in the context of COVID-19; however, most of them are deterministic models

and they rely on accurate input parameters, which are difficult to come by, especially when we are
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dealing with new strains of virus that we are not familiar with. Stochastic SEIR models with ran-

dom epidemiological parameters (i.e., transmission rate, latency rate and recovery rate) assumed

to follow given probability distributions have been proposed (Zhang and Wang 2014, Liu et al.

2017), though these studies focus on the stochastically asymptotic stability of the solution and

the sufficient condition for disease-free equilibrium. Related to our model, Lekone and Finkenstädt

(2006) consider a stochastic SVEIR model, utilizing binomial distributions to describe the com-

partmental state variables and their transitions. While stochastic epidemiological models can be

more realistic, most of them are not analytically tractable.

The COVID-19 pandemic would likely become an endemic, hence, vaccination is possibly the

best option available to facilitate safe reopening of the economy. However, to date, vaccines are

still extremely limited resources. How vaccines should be properly distributed is thus an important

problem. It is common for countries to prioritize vaccinations for people under high transmission

and exposure risks, such as healthcare workers. However, the distribution of vaccines to the general

population is subject to multiple constraints and its impact is subject to uncertainty. For instance,

different population groups can have different exposure probabilities due to intra-group and inter-

group interactions; the number of exposures and infections are stochastic; and vaccines can have

different effectiveness to different population groups. Other realistic components such as fairness

and social welfare should also be taken into considerations. Therefore, it is critical to optimize the

vaccine distribution policy and utilize these limited resources effectively and properly.

From the operations perspective, vaccine treatment capacity management for pandemic control

has well been studied in the literature. Sun et al. (2014) present a static model to allocate different

types of patients into different hospitals with various equipment resources (e.g., ICU beds and

ventilators) for a planning horizon in which the length of stay is dependent on the types of patients.

Some literature further integrate epidemiological model into the treatment capacity management

(Liu and Zhang 2016, Büyüktahtakın et al. 2018). Long et al. (2018) focus on optimizing when

and where to allocate bed capacity across geographic regions during the outbreak’s early phases of

Ebola. Three solution approaches, namely, greedy policy, myopic linear problem and approximate

dynamic programming approach are presented to solve the non-convex model. A large proportion

of the literature focus on vaccine supply chain (Duijzer et al. 2018b), while others focus on minimiz-

ing the number of vaccines needed to reasonably control the pandemics (Hill and Longini Jr 2003,

Tanner and Ntaimo 2010, Yarmand et al. 2014, Enayati and Özaltın 2020). Duijzer et al. (2018a)

present a vaccine distribution model embedded with the SIR model to maximize the number of

individuals averting infection under a given budget of vaccines; they demonstrate that allocating

to all populations equally would reduce the effect of herd immunity. Sun et al. (2009) present a

decentralized drug allocation game among several countries, which captures the uncertainties in
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the number of initial infected individuals, the spread of pandemics, and the effect of drugs. Bert-

simas et al. (2021b) integrate an epidemiological prediction model and various fairness measures

into a novel data-driven model for a vaccination facility location model. Their epidemiological

optimization model modifies the classical SEIR model and leads to a non-convex optimization

problem, which can be solved by a coordinate descent algorithm. Mak et al. (2021) design several

dynamic stocking policies for two-dose COVID-19 vaccine administration to determine the amount

of vaccines needed to be reserved for second doses. Existing models in optimizing vaccination and

healthcare resource allocation are mostly cost-driven, i.e., they minimize the estimated total costs

associated with each infection, which can be difficult to determine precisely. Alternatively, we can

also control the total number of infections at each time point by setting intervention targets subject

to available budget, which has an effect on relieving the pressure on the healthcare system. Such

model aims to manage healthcare resource capacities by controlling the overall exposure rate in

the society.

To account for ambiguous risks in the disease propagation, we propose a robust epidemiological

model that provides prediction intervals specified by the Aumann and Serrano (2008) riskiness

index. We focus on a SVEIR compartmental model, which is an extended SEIR model with an

additional compartment label for vaccinated population. With suitable approximations, the robust

epidemiological optimization model that minimizes the riskiness index can be formulated as a

mixed integer linear optimization problem. This robust epidemiological model is closely related to

the robustness optimization framework (Brown and Sim 2009, Zhou et al. 2021, Long et al. 2021).

We illustrate how we can apply the robust epidemiological optimization model for strategic vac-

cine allocation by lexicographically minimizing the model’s riskiness indices for all the constraints

on limiting infections across all time periods, and within a given budget for vaccinations. The

optimal solutions of this robustness optimization model can be reliably obtained using state-of-

the-art solvers such as CPLEX and Gurobi. Our model aims to satisfy a prescribed capacity of the

healthcare system under uncertainty. Specifically, we restrict the number of infections at any time

point to be below a prescribed capacity as much as possible under uncertainty. Such an objective

can effectively spread out the peak of infection to alleviate the pressure on the healthcare system.

The optimization model can incorporate realistic considerations in the pandemic progression and

is formulated as a mixed-integer linear optimization model, where the solutions can be obtained

by solving a sequence of mixed-integer linear optimization problems. In the simulation study, we

elucidate that our proposed model is practically solvable and provides new insights on vaccine

distribution. The average infection level of our robust optimization model outperforms benchmarks

in most of the tests and achieves the lowest number of cumulative infections with high confidence.
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With parameters estimated from real data, the elderly is prioritized for vaccination, which is con-

sistent with the policy implemented in the New York City. When we vary the contact rates of

different age groups, the vaccination distribution strategy also changes in a reasonable manner.

Notation. We typically use boldface lowercase letters for vectors (e.g., θ), and calligraphic letters

for sets (e.g., X ). We use [N ] to denote the running index {1,2,3, . . . ,N} for N a known integer,

and we use [0,N ] to denote {0} ∪ [N ]. We adopt the convention that inf ∅= +∞, where ∅ is the

empty set. A random variable ṽ is denoted with a tilde sign such as ṽ ∼ P,P ∈ P0, where P0 to

represent the set of all possible distributions. We use EP[·] to signify the corresponding expectation.

2. Epidemiological prediction models

In this section, we demonstrate how we can extend a deterministic epidemiological compartmental

model to address risk and uncertainty. We will focus on a SVEIR model, which is an extension of

the celebrated SEIR model and is governed by a system of nonlinear ordinary differential equations

across the following five population compartments labeled by: Susceptible, Vaccinated, Exposed,

Infectious, and Removed. The population is also segmented into J different groups, and the inter-

actions within and among the groups can lead to spread of infections.

Deterministic SVEIR model

In its discrete time form, the deterministic SVEIR forecasts the average populations segmented

by compartments and groups over the time horizon of t∈ [T ] based on their initial populations at

time t = 1. As a simplified model, we assume that recovered individuals become immune to the

disease, at least for a substantial amount of time greater than T . Hence, the recovered individuals

do not re-enter the population of susceptible individuals, and we take the recovered population

and deaths collectively as the removed population. For the purpose of modeling the impact of

vaccination, we also include the decision variables xj,t ≥ 0, j ∈ [J ], t ∈ [T ] that denote the number

of scheduled vaccinations for the jth group at period t. The vaccinated population would be less

likely to be exposed in subsequent periods. To account for different vaccinations and their efficacy

with doses, we have to introduce new population compartments, which we can easily incorporate

in an extended epidemiological compartmental model (see Section 4).

For a given vaccination allocation decision xj,t ∈ {0,1, . . . , S̄j,t}, j ∈ [J ], t ∈ [T ], the populations

of different compartments in groups j ∈ [J ] at time period t∈ [T − 1] are as follows:

S̄j,t+1 :=(S̄j,t−xj,t) (1− q̂j,t) (1a)

V̄j,t+1 :=V̄j,t (1− ω̂j q̂j,t) +xj,t (1b)

Ēj,t+1:=(1− α̂j)Ēj,t + (S̄j,t−xj,t)q̂j,t + V̄j,tω̂j q̂j,t (1c)

Īj,t+1 :=α̂jĒj,t + (1− γ̂j)Īj,t (1d)
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R̄j,t+1:=R̄j,t + γ̂j Īj,t. (1e)

Equations (1a) and (1b) of the SVEIR model characterize how the average susceptible and vac-

cinated populations would evolve over time, respectively. The estimated contraction rate for the

jth group at time t for the susceptible population is denoted by q̂j,t. Because a vaccinated person

is less likely to be infected than a susceptible person, the corresponding estimated contraction

rate for the vaccinated population would be ω̂j q̂j,t, where ω̂j ∈ [0,1] relates to the inefficacy of the

vaccination for the jth group. Equation (1c) describes the average exposed population, where α̂j

denotes the incubation rate for a person in the jth group. Equation (1d) governs the dynamics of

the average infectious population, where γ̂j represents the recovery rate for the patients in the jth

group. Finally, Equation (1e) models the average removed population.

The main complexity of SVEIR model is due to the fact that the estimated contraction rate of

an individual in any population group is a function of his interaction with his own group as well

as infectious individuals in other groups as follows,

q̂j,t := η

∑
k∈[J]

ζ̂k,j Īk,t

 .

Specifically, the parameter ζ̂k,j relates to the estimated interaction-transmission rate between

groups k and j, which can be expressed as ζ̂k,j =
β̂kŵk,j
Nk

, where β̂k is the transmission rate of group

k with total population Nj, and the interaction rate with the jth group is represented by ŵk,j. Sev-

eral studies suggest using track records derived from mobile data to estimate the interaction rate

(Birge et al. 2020, Chang et al. 2021). Hence,
∑

k∈[J] ζ̂k,j Īk,t represents the estimated interaction-

transmission rate within the jth group and among other groups. In practice, the contraction rate

may not necessarily be a linear function of the interaction-transmission rate, which can be due to,

among other things, the complex dynamics involving public and governmental interventions. We

cater for this flexibility by introducing the non-decreasing function η, which can be determined

empirically to provide a more flexible mapping to the estimated contraction rate, q̂j,t as a func-

tion of the interaction-transmission rate for the jth group. As we will reveal, for the optimization

problem, we will also confine η to step functions to facilitate modeling as a mixed-integer linear

optimization problem.

2.1. Stochastic SVEIR model

As a deterministic model, the SEIR model does not account for infection risks and prediction

uncertainty. The next step is to extend to more realistic stochastic epidemiological models. We first

introduce a stochastic SVEIR model that captures the populations as random variables instead
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of deterministic averages. We use S̃j,t, Ṽj,t, Ẽj,t, Ĩj,t and R̃j,t, j ∈ [J ], t ∈ [T ] to respectively char-

acterize the random populations of the susceptible, vaccinated, exposed, infectious, and removed

compartments, which are stochastic processes that depend on the vaccination decision, x. Based on

binomial distributions (see Lekone and Finkenstädt 2006), the following stochastic SVEIR model

(S-SVEIR) is a natural extension that captures the random populations of different compartments

in groups j ∈ [J ] at time period t∈ [T − 1],

S̃j,t+1 := Bin
(
S̃j,t−min

{
xj,t, S̃j,t

}
,1− q̃j,t

)
(2a)

Ṽj,t+1 := min
{
xj,t, S̃j,t

}
+ Bin

(
Ṽj,t,1− ω̂j q̃j,t

)
(2b)

Ẽj,t+1 := Bin
(
Ẽj,t,1− α̂j

)
+ Bin

(
S̃j,t−min

{
xj,t, S̃j,t

}
, q̃j,t

)
+ Bin

(
Ṽj,t, ω̂j q̃j,t

)
(2c)

Ĩj,t+1 := Bin
(
Ẽj,t, α̂j

)
+ Bin

(
Ĩj,t,1− γ̂j

)
(2d)

R̃j,t+1 := R̃j,t + Bin
(
Ĩj,t, γ̂i

)
, (2e)

where

q̃j,t := η

∑
k∈[J]

β̂kŵk,j
Nk

Ĩk,t

 ,

and Bin(ṽ, p) describes a composite random variable that is drawn from a binomial distribution with

success trial probability p over ṽ independent Bernoulli trials. The stochastic population dynamics

(2a)—(2e) describes the complex joint distributions of the populations in the various compartments

in different groups over the different time periods. Unfortunately, the S-SVEIR model is complex

to analyze; even to evaluate the average population would require numerical simulation, which

inevitably introduces additional simulation uncertainty to the model. It is also not a particularly

useful model for prescriptive analytics, especially when the feasible set of decisions is exponential

in size or even infinite.

2.2. Robust SVEIR model

To motivate the robust prediction model, we first consider how we would evaluate the riskiness

of a constraint under distributional ambiguity imposed on a random number of infected popula-

tion denoted by Ĩ ∼ P̂ to be held below the intervention capacity H. In evaluating riskiness under

ambiguity, we would typically examine how likely the infected population would exceed the inter-

vention capacity under the actual distribution, P∗, which is not observed but could be proximal to

P̂. Although we may use the feasibility probability, P̂
[
Ĩ ≤H

]
, the distribution P̂ generated by a

stochastic SVEIR model would likely deviate from the true distribution, P∗.

We propose using the riskiness index of Aumann and Serrano (2008) to evaluate the riskiness

of a constraint under distributional ambiguity. Let L be the space of all bounded discrete random
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variables. For a given random variable ṽ ∈ L with discrete probability distribution, P̂, ṽ ∼ P̂ and

support

V =
{
v ∈R

∣∣∣P̂ [ṽ= v]> 0
}
,

the Aumann and Serrano (2008) riskiness index is a functional, ρ :L 7→ [0,∞] defined as follows

ρ [ṽ] := min{θ |µθ [ṽ]≤ 0, θ≥ 0}

where µθ :L 7→R, θ ∈ [0,∞] is the certainty equivalent under the exponential disutility as follows

µθ [ṽ] :=


θ logEP̂ [exp (ṽ/θ)] if θ ∈ (0,∞)

EP̂ [ṽ] if θ=∞

max{v | v ∈ V} if θ= 0.

Theorem 1. Let ṽ ∈L be a discrete random variable with support V over the distribution P̂ and

θ= ρ[ṽ]. Suppose the true distribution P∗ is absolutely continuous with respect to P̂ then

1.

EP∗ [ṽ]≤ µθ [ṽ] + θφKL(P∗‖P̂)

where φKL(Q‖P̂) is the KL-divergence as follows

φKL(Q‖P̂) =
∑
v∈V

(
Q [ṽ= v] log

(
Q [ṽ= v]

P̂ [ṽ= v]

))
.

2. For all a≥ 0

P∗
[
ṽ > θ

(
a+ ∆

(
P∗||P̂

))]
≤ exp(−a),

where

∆
(
P∗||P̂

)
= max

v∈V
log

(
P∗ [ṽ= v]

P̂ [ṽ= v]

)
.

Hence, from Theorem 1, when estimating the average of a random variable, ṽ, for a given riskiness

index θ, µθ [ṽ] provides an upper estimate of EP∗ [ṽ] and the violation of the upper estimate dimin-

ishes with the product of the riskiness index and how far the true distribution, P∗ may deviate from

the estimated distribution, P̂. Moreover, the riskiness index can also provide a probability guar-

antee in the situation where the true distribution is unobservable, but is proximal to the estimate

distribution. Specifically, ρ
[
Ĩ −H

]
is associated with the probability of violations that diminishes

exponentially in the magnitude of the violation as follows

P∗
[
Ĩ >H + aρ[Ĩ −H]

]
≤ exp

(
−
(
a−∆

(
P∗||P̂

)))
,
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for all a >∆
(
P∗||P̂

)
, so that larger violations would become more unlikely. The strength of the

bound also depends on how close the estimated distribution is with respect to the true distribution.

If P∗ and P̂ are identical distributions, then ∆
(
P∗||P̂

)
= 0 and we have for all a> 0,

P∗
[
Ĩ >H + aρ[Ĩ −H]

]
≤ exp (−a) .

A lower riskiness index is associated with a lower risk of constraint violation even under an ambigu-

ous distribution. If this index is zero, there will be no risk of violating the constraint at all.

Observe that for an uncertain constraint Ĩ ≤ H, with riskiness index θ, we have µθ

[
Ĩ
]

= H.

Likewise for an uncertain constraint Ĩ ≥ L or −Ĩ ≤−L with the same riskiness index, we would

have −µθ
[
−Ĩ
]

= L. Therefore, the robust prediction interval of Ĩ for a given riskiness index θ is

define as [L,H] or
[
−µθ

[
−Ĩ
]
, µθ

[
Ĩ
]]

.

To apply the riskiness index in the robust epidemiological predication model, we need to adopt a

tractable stochastic SVEIR model that would enable us to evaluate the certainty equivalent under

the exponential disutility. Observe that if ṽ1 and ṽ2 are independently distributed, then

µθ [ṽ1 + ṽ2] = µθ [ṽ1] +µθ [ṽ2] .

The independence property is a key idea for proposing an analytically tractable stochastic SVEIR

model (T-SVEIR) that stems from the deterministic SVEIR model. The random populations of

different compartments over the time period t∈ [T − 1] are described as follows:

S̃j,t+1 := Bin
(
S̃j,t−xj,t,1− q̂j,t

)
(3a)

Ṽj,t+1 :=Bin
(
Ṽj,t,1− ω̂j q̂j,t

)
+xj,t (3b)

Ẽj,t+1 := Bin
(
S̃j,t−xj,t, q̂j,t

)
+ Bin

(
Ẽj,t,1− α̂j

)
+ Bin

(
Ṽj,t, ω̂j q̂j,t

)
(3c)

Ĩj,t+1 := Bin
(
Ẽj,t, α̂j

)
+ Bin

(
Ĩj,t,1− γ̂j

)
(3d)

R̃j,t+1 := R̃i,t + Bin
(
Ĩi,t, γ̂i

)
. (3e)

Note that with vaccine allocation decision xj,t ∈ {0,1, . . . , S̄j,t}, it is possible for the composite

binomial distribution to evaluate a negative number of trials. In this regard, which is important

for analytical tractability, the equivalence in distributions is defined on their moment generation

functions, which would still be analytically defined. Nevertheless, we remark that vaccines are highly

limited, and the scale of daily vaccine allocation is much lower than the scale of the susceptible

population; hence, one would not encounter this issue in practice.

The distribution of the tractable stochastic SVEIR model is denoted by P̂, and observe that

S̄j,t =EP̂

[
S̃j,t

]
, V̄j,t =EP̂

[
Ṽj,t

]
, Ēj,t =EP̂

[
Ẽj,t

]
, Īj,t =EP̂

[
Ĩj,t

]
, R̄j,t =EP̂

[
R̃j,t

]
.
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Hence, the tractable stochastic SVEIR model is a natural extension to the deterministic SVEIR

model that incorporates risks in its model. The robust SVEIR (R-SVEIR) model predicts the

robust interval of populations of different compartments in the T-SVEIR model using the riskiness

index, i.e., the R-SVEIR prediction intervals for a given riskiness index θ are

Sj,t ∈
[
−µθ

[
−S̃j,t

]
, µθ

[
S̃j,t

]]
,

Vj,t ∈
[
−µθ

[
−Ṽj,t

]
, µθ

[
Ṽj,t

]]
,

Ej,t ∈
[
−µθ

[
−Ẽj,t

]
, µθ

[
Ẽj,t

]]
,

Ij,t ∈
[
−µθ

[
−Ĩj,t

]
, µθ

[
Ĩj,t

]]
,

Rj,t ∈
[
−µθ

[
−R̃j,t

]
, µθ

[
R̃j,t

]]
.

Now, we show how we can recursively evaluate these certainty equivalents of the random popula-

tions, scaled by a constant, that arises in the different population segments.

Proposition 1. Ignoring the integrity of the number of trials parameter of the composite Bino-

mial generating function, the certainty equivalent of the random populations in different compart-

ments can be calculated recursively via the following system of equations:

For v ∈R, j ∈ [J ], t∈ [T − 1],

µθ

[
vS̃j,t+1

]
= µθ

[
S̃j,tκθ(1− q̂j,t, v)

]
−xj,tκθ(1− q̂j,t, v)

µθ

[
vṼj,t+1

]
= µθ

[
Ṽj,tκθ(1− ω̂j q̂j,t, v)

]
+ vxj,t

µθ

[
vẼj,t+1

]
= µθ

[
S̃j,tκθ(q̂j,t, v)

]
−xj,tκθ(q̂j,t, v) +µθ

[
Ṽj,tκθ(ω̂j q̂j,t, v)

]
+µθ

[
Ẽj,tκθ(1− α̂j, v)

]
µθ

[
vĨj,t+1

]
= µθ

[
Ẽj,tκθ(α̂j, v)

]
+µθ

[
Ĩj,tκθ(1− γ̂j, v)

]
µθ

[
vR̃j,t+1

]
= µθ

[
vR̃j,t

]
+µθ

[
Ĩj,tκθ(γ̂j, v)

]
,

(4)

where the function, κθ(q, v) is defined as follows

κθ(q, v) := θ log (1− q+ q exp(v/θ)) .

By Proposition 1, the R-SVEIR prediction intervals can be calculated via recursion, illustrating the

practicality of the R-SVEIR model. In addition, both predictions coincide when θ→+∞ because

µθ becomes the expectation measure, illustrating that the R-SVEIR model is closely related to the

deterministic SVEIR model.

2.3. Illustrations

Now, we provide two illustrations of the predictions of the deterministic SVEIR model and the

R-SVEIR model. In Figure 1, we first plot the predictions of the size of infectious population under

the SVEIR model over 400 days, labeled as SVEIR (β), indicating that the SVEIR model assumes

a transmission rate of β. To illustrate the impact of β to the predictions, we also plot two sets of
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SVEIR predictions under transmission rates of 0.99β and 1.01β, respectively. As we can see, even

a 1% change in β could lead to a non-negligible impact to the predictions. In practice, the true

transmission rate is most likely to deviate from the estimated value β, and the mean predictions

would lie in a large range. In Figure 1, we also include the predictions of R-SVEIR with θ = 2

and θ = 5, both assuming the transmission rate is β. Note that a R-SVEIR model gives a robust

prediction interval, e.g.,
[
−µθ

[
−Ĩ
]
, µθ

[
Ĩ
]]

, it naturally hedges against the impact of inaccuracy

in estimating the transmission rate β. Specifically, if we look at the predictions under the R-SVEIR

model (θ = 5, β), the robust prediction interval could very well describe the interval of possible

mean predictions of the SVEIR model if the transmission rate was to deviate from β by 1%. The

robust prediction interval of the R-SVEIR model (θ = 2, β) accommodates great ambiguity that

might arise.
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Figure 1 Deterministic SVEIR model and robust SVEIR model.

In Figure 2, we illustrate the distribution of the number of active infections at time 160, cor-

responding to the peak number of active infections in Figure 1. This histogram is generated by

simulation under the S-SVEIR model with random transmission rate following uniform distribution

Uniform(0.99β,1.01β). Note that the number of active infections generated by S-SVEIR model

can vary from its deterministic SVEIR prediction (blue vertical line) by more than 6%, indicating

that there is non-negligible risks in the number of infections. As the riskiness index θ varies, the

robust prediction interval of the R-SVEIR model would capture the corresponding variation of the

number of infections.
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Figure 2 Histogram of the deviations of the number of active infections from its mean at time 160.

3. Robust Epidemiological Optimization

We incorporate the R-SVEIR model within a prescriptive analytics model by considering a vac-

cine allocation problem. By embedding the epidemiological prediction model in the optimization

problem, we can anticipate how the vaccination allocation decision x would affect the disease

propagation over time. First, we consider the baseline model, which incorporates the deterministic

SVEIR model in a vaccine allocation model that minimizes the total costs of vaccinations, while

ensuring that the total infections at time period t do not exceed the healthcare capacity limits Ht.

There is also a restriction on the number of vaccinations that can be carried out to at most Bt at

time period t, representing the capacity of vaccine resources. We present this optimization model

as follows:

Z0 = min
∑
j∈[J]

∑
t∈[T ]

xj,t

s.t.
∑
j∈[J]

xj,t ≤Bt ∀t∈ [T ]∑
j∈[J]

Īj,t ≤Ht ∀t∈ [T ]

q̂j,t = η

∑
k∈[J]

ζ̂k,j Īk,t

 ∀j ∈ [J ], t∈ [T − 1]

(1a)—(1d) ∀j ∈ [J ], t∈ [T − 1]

xj,t ≤ S̄j,t ∀j ∈ [J ], t∈ [T ]

S̄j,t, V̄j,t, Ēj,t, Īj,t, xj,t ≥ 0 ∀j ∈ [J ], t∈ [T ].

(5)
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The tractability of this model depends on the form of the contraction rate function η; if it is a

constant, then Problem (5) is a linear optimization problem. For practicality, we consider η being

a step function, which allows the problem to be formulated as a mixed-integer linear optimization

problem that we can solve to optimality using commercial solvers such as CPLEX and Gurobi.

Theorem 2. By restricting η to a step function

η† =


0 if v≤ v̄1
vl if v ∈ (v̄l, v̄l+1], for some l ∈ [L− 1]

vL v > v̄L

where the parameters of the step function satisfy 0 = v0 < v1 < · · ·< vL ≤ 1 and 0 = v̄0 ≤ v̄1 < · · ·<

v̄L ≤ v̄L+1 = 1, we can formulate the constraints

q̂j,t = η†

∑
k∈[J]

ζ̂k,j Īk,t

 ∀j ∈ [J ], t∈ [T − 1]

(1a)—(1d) ∀j ∈ [J ], t∈ [T − 1]

as the following set of mixed-integer linear constraints:

S̄j,t+1 = S̄j,t−xj,t− W̄j,t, ∀j ∈ [J ], t∈ [T − 1]

W̄j,t ≤ (S̄j,t−xj,t)vl +M(1− ylj,t) ∀j ∈ [J ], t∈ [T − 1], l ∈ [0,L]

W̄j,t ≥ (S̄j,t−xj,t)vl−M(1− ylj,t) ∀j ∈ [J ], t∈ [T − 1], l ∈ [0,L]

V̄j,t+1 = xj,t + V̄j,t− Ȳj,t ∀j ∈ [J ], t∈ [T − 1]

Ȳj,t ≤ ω̂jV̄j,tvl +M(1− ylj,t) ∀j ∈ [J ], t∈ [T − 1], l ∈ [0,L]

Ȳj,t ≥ ω̂jV̄j,tvl−M(1− ylj,t) ∀j ∈ [J ], t∈ [T − 1], l ∈ [0,L]

Ēj,t+1 = (1− α̂j)Ēj,t +
(
W̄j,t + Ȳj,t

)
∀j ∈ [J ], t∈ [T − 1]

Īj,t+1 = α̂jĒj,t + (1− γ̂j)Īj,t ∀j ∈ [J ], t∈ [T − 1]∑
l∈[0,L]

ylj,t = 1 ∀j ∈ [J ], t∈ [T ]

v̄l−M(1− ylj,t)≤
∑
k∈[J]

ζ̂k,j Īk,t ≤ v̄l+1 +M(1− ylj,t) ∀j ∈ [J ], t∈ [T ], l ∈ [0,L]

W̄j,t, Ȳj,t ≥ 0 ∀j ∈ [J ], t∈ [T ]

ylj,t ∈ {0,1} ∀j ∈ [J ], t∈ [T ], l ∈ [0,L].

(6)
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Hence, by restricting η to a step function as in Theorem 2, we can formulate Problem (5) as the

following mixed-integer linear optimization problem.

Z0 = min
∑
j∈[J]

∑
t∈[T ]

xj,t

s.t.
∑
j∈[J]

xj,t ≤Bt ∀t∈ [T ]∑
j∈[J]

Īj,t ≤Ht ∀t∈ [T ]

xj,t ≤ S̄j,t ∀j ∈ [J ], t∈ [T ]

Constraint set (6)

S̄j,t, V̄j,t, Ēj,t, Īj,t, xj,t, W̄j,t, Ȳj,t ≥ 0 ∀j ∈ [J ], t∈ [T ].

(7)

The deterministic optimization model is oblivious to risk and uncertainty; hence, it can under-

estimate the efforts and costs needed to control the actual number of infections below the allotted

healthcare capacities. The R-SVEIR model can also be embedded in an optimization model that is

comparable in size as the deterministic counterpart. As an extension to the deterministic SVEIR

model of Problem (5), for a given acceptable cost target τ ≥ Z0, we propose the following the

robustness optimization model that lexicographically minimizes (see, e.g., Isermann 1982, Qi 2017)

the riskiness indices associated with keeping the infection constraints below desired healthcare

capacities as follows:

lexmin θ

s.t.
∑
j∈[J]

∑
t∈[T ]

xj,t ≤ τ∑
j∈[J]

xj,t ≤Bt ∀t∈ [T ]

µθt

∑
j∈[J]

Ĩj,t

≤Ht ∀t∈ [T ]

(1a)—(1d) ∀j ∈ [J ], t∈ [T − 1]

q̂j,t = η

∑
k∈[J]

ζ̂k,j Īk,t

 ∀j ∈ [J ], t∈ [T − 1]

xj,t ≤ S̄j,t ∀j ∈ [J ], t∈ [T − 1]

S̄j,t, V̄j,t, Ēj,t, Īj,t, xj,t, θt ≥ 0 ∀j ∈ [J ], t∈ [T ].

(8)

Note that in the deterministic SVEIR model, we only need to track 5JT state variables (predic-

tions). However, in the R-SVEIR model, we are required to track more variables. For instance,

even for the susceptible population, we need to track µθ

[
vS̃j,t

]
for j ∈ [J ], t ∈ [T ] and for a large

number (finite) of possible constant multiplier values, v ∈R.
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3.1. Normal approximation

In the following, we propose a normal approximation method to reduce the complexity of the

robustness optimization model to the same level as the deterministic epidemiological optimization

model. Specifically, we consider the normal approximation of the certainty equivalent, νθ : L 7→R

as follows

νθ [ṽ] =EP̂ [ṽ] +
1

2θ
VarP̂ [ṽ] ,

so that if ṽ is normally distributed, then νθ [ṽ] = µθ [ṽ].

Observe that the random populations across different groups are stochastically independent

under the joint distribution P̂ so that

νθ

∑
j∈[J]

Ĩj,t

=
∑
j∈[J]

νθ

[
Ĩj,t

]
=
∑
j∈[J]

(
Īj,t +

1

2θ
VarP̂

[
Ĩj,t

])
.

Under the normal approximation, we consider the following robustness optimization model

lexmin θ

s.t.
∑
j∈[J]

∑
t∈[T ]

xj,t ≤ τ∑
j∈[J]

xj,t ≤Bt ∀t∈ [T ]

∑
j∈[J]

(
Īj,t +

1

2θt
VarP̂

[
Ĩj,t

])
≤Ht ∀t∈ [T ]

(1a)—(1d) ∀j ∈ [J ], t∈ [T − 1]

q̂j,t = η

∑
k∈[J]

ζ̂k,j Īk,t

 ∀j ∈ [J ], t∈ [T − 1]

xj,t ≤ S̄j,t ∀j ∈ [J ], t∈ [T − 1]

S̄j,t, V̄j,t, Ēj,t, Īj,t, xj,t, θt ≥ 0 ∀j ∈ [J ], t∈ [T ],

(9)

where difference lies in using normal approximation for evaluating the certainty equivalent of the

infection populations. It suffices to evaluate the variance terms. To ease the notation, let S†j,t,

V †j,t, E
†
j,t, I

†
j,t, R

†
j,t represent the variance terms, VarP̂

[
S̃j,t

]
, VarP̂

[
Ṽj,t

]
, VarP̂

[
Ẽj,t

]
, VarP̂

[
Ĩj,t

]
,

VarP̂

[
R̃j,t

]
, respectively. In the following proposition, we show how we can determine the variance

terms recursively.



Fu et al.: Robust Epidemiological Optimization

16

Proposition 2. The variance terms can be calculated recursively as follows:

For j ∈ [J ], t∈ [2, T ],

S†j,t = (S̄j,t−1−xj,t−1)q̂j,t−1(1− q̂j,t−1) + (1− q̂j,t−1)2S†j,t−1

V †j,t = V̄j,t−1ω̂j q̂j,t−1(1− ω̂j q̂j,t−1) + (1− ω̂j q̂j,t−1)2V †j,t−1

E†j,t = (S̄j,t−1−xj,t−1)q̂j,t−1(1− q̂j,t−1) + q̂2j,t−1S
†
j,t−1

+V̄j,t−1ω̂j q̂j,t−1(1− ω̂j q̂j,t−1) + (ω̂j q̂j,t−1)
2V †j,t−1

+Ēj,t−1(1− α̂j)α̂j + (1− α̂j)2E†j,t−1

I†j,t = Īj,t−1(1− γ̂j)γ̂j + (1− γ̂j)2I†j,t−1 + Ēj,t−1α̂j(1− α̂j) + α̂2
jE
†
j,t−1

R†j,t = R†j,t−1 + Īj,t−1(1− γ̂j)γ̂j + γ̂2
j I
†
j,t−1.

(10)

By Proposition 2, the recursive equations for the variance terms have the same complexity as

that of the recursion of the deterministic SVEIR model. More importantly, as we will reveal later,

having the normal approximation would help the robustness optimization model maintain the same

computational complexity as the deterministic optimization model.

The system of equations in Proposition 2 is analogous to the state dynamics of the deterministic

SVEIR model. Hence, they can be readily incorporated into an optimization model. In the following

theorem, we confirm that we can reformulate the constraint

∑
i∈[J]

νθ

[
Ĩj,t

]
=
∑
j∈[J]

(
Īj,t +

1

2θ
I†j,t

)
≤Ht

as a set of mixed-integer linear constraints when η is given by a step function.

Theorem 3. By restricting η to a step function

η† =


0 if v≤ v̄1
vl if v ∈ (v̄l, v̄l+1], for some l ∈ [L− 1]

vL v > v̄L

where the parameters of the step function satisfy 0 = v0 < v1 < · · ·< vL ≤ 1 and 0 = v̄0 ≤ v̄1 < · · ·<

v̄L < v̄L+1 ≤ 1, we can model the constraint
∑
j∈[J]

(
Īj,t + 1

2θt
VarP̂

[
Ĩj,t

])
≤Ht with

∑
j∈[J]

(
Īj,t +

1

2θt
I†j,t

)
≤Ht ∀t∈ [T ]
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and the following set of mixed-integer linear constraints:

I†j,t+1 = Īj,t(1− γ̂j)γ̂j + (1− γ̂j)2I†j,t + Ēj,tα̂j(1− α̂j) + α̂2
jE
†
j,t ∀j ∈ [J ], t∈ [T − 1]

S†j,t+1 ≤ (S̄j,t−xj,t)vl(1− vl) + (1− vl)2S
†
j,t +M(1− ylj,t) ∀j ∈ [J ], t∈ [T − 1], l ∈ [0,L]

S†j,t+1 ≥ (S̄j,t−xj,t)vl(1− vl) + (1− vl)2S
†
j,t−M(1− ylj,t) ∀j ∈ [J ], t∈ [T − 1], l ∈ [0,L]

V †j,t+1 ≤ V̄j,tω̂jvl(1− ω̂jvl) + (1− ω̂jvl)2V
†
j,t +M(1− ylj,t) ∀j ∈ [J ], t∈ [T − 1], l ∈ [0,L]

V †j,t+1 ≥ V̄j,tω̂jvl(1− ω̂jvl) + (1− ω̂jvl)2V
†
j,t−M(1− ylj,t) ∀j ∈ [J ], t∈ [T − 1], l ∈ [0,L]

E†j,t+1 ≤ Ēj,t(1− α̂j)α̂j + (1− α̂j)2E†j,t

+ (S̄j,t−xj,t)vl(1− vl) + v2lS
†
j,t

+ V̄j,tω̂jvl(1− ω̂jvl) + (ω̂jvl)
2V †j,t +M(1− ylj,t) ∀j ∈ [J ], t∈ [T − 1], l ∈ [0,L]

E†j,t+1 ≥ Ēj,t(1− α̂j)α̂j + (1− α̂j)2E†j,t
+ (S̄j,t−xj,t)vl(1− vl) + v2lS

†
j,t

+ V̄j,tω̂jvl(1− ω̂jvl) + (ω̂jvl)
2V †j,t−M(1− ylj,t) ∀j ∈ [J ], t∈ [T − 1], l ∈ [0,L].

(11)

We remark that the computational complexity required to evaluate this constraint is the same

as that to evaluate the corresponding constraint under the deterministic optimization model. By

Theorem 3, the robustness optimization model embedded with R-SVEIR has the same complexity

as the deterministic optimization model embedded with deterministic SVEIR model.

Theorem 4. The robustness optimization model can be reformulated as a lexicographical mini-

mization problem with only mixed-integer linear constraints. In addition, the numbers of variables

and constraints of the robustness optimization problem are of the same order as those of the deter-

ministic optimization model (7). Specifically, the robustness optimization model can be written as

the following mixed-integer linear optimization problem:

lexmin θ

s.t.
∑
j∈[J]

∑
t∈[T ]

xj,t ≤ τ∑
j∈[J]

xj,t ≤Bt ∀t∈ [T ]

∑
j∈[J]

(
Īj,t +

1

2θt
I†j,t

)
≤Ht ∀t∈ [T ]

Constraint set (6)

Constraint set (11)

xj,t ≤ S̄j,t, ∀j ∈ [J ], t∈ [T ]

S̄j,t, V̄j,t, Ēj,t, Īj,t, xj,t, W̄j,t, Ȳj,t, S
†
j,t, V

†
j,t,E

†
j,t, I

†
j,t ≥ 0 ∀j ∈ [J ], t∈ [T ].
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For tractability, we have restricted η to a step function. We remark that restricting this contrac-

tion rate to a step function is a mild and safe approximation if the true contraction rate is a linear

function. Figure 3 displays the histogram of the number of cumulative infections at the end of

the planning horizon, where the simulation is conducted based on both the T-SVEIR model with

linear and step contraction functions. The interval in the step function between any two levels is

v̄l− v̄l−1 = 1× 10−5. Note that the gap between v̄1 and v̄L is small in practice, and the number of

pieces, L, is manageable. As we can see, the two distribution well overlap, and the T-SVEIR model

with step contraction function has a slightly higher mean.

Figure 3 Linear contraction rate vs. step contraction rate

We also remark that the normal approximation is mild. It is well accepted that a binomial random

variable, Bin(N,p), can be closely approximated by a normal random variable with the same mean

and variance when Np ≥ 5 and N(1 − p) ≥ 5. This is easily true in the context of pandemics,

e.g., the number of daily infections is often high. We should expect that the predictions under

normal approximation are close to the exact predictions. In addition, the normal approximation

is a conservative approximation. As an illustration, we plot the the percentage gap between the

magnitude of νθ[Ĩt] and µθ[Ĩt] over the planning horizon in Figure 4. As we see, νθ(Ĩt) overestimates

µθ[Ĩt], indicating it is a conservative, or safe approximation while implemented in the optimization

model. The gap between µθ[Ĩt] and νθ[Ĩt] becomes larger as the value of θ becomes smaller. Although

there is a gap between µθ[Ĩt] and νθ[Ĩt], it would not lead to over-conservativeness in our robustness

optimization model. Note that the parameters θt, for all t ∈ [T ] appear in the objective function

and both µθ and νθ are monotone in θ. Because θt only appears in the robustness constraint of
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time t, the conservativeness due to the gap between µθ[Ĩt] and νθ[Ĩt] would not impact the solution

much because the model would be able to scale down θt to “compensate” the gap.
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Figure 4 Percentage increase of νθ[Ĩt] relative to µθ[Ĩt].

3.2. Solution algorithm: Bisection and lexicographical minimization

Our robustness optimization model minimizes the lexicographical order of the vector θ. The solu-

tion algorithm relies on a bisection search subroutine.

Bisection search

1. Initialize with two given input sets, T0 and T1, and values θ∗t for t∈ T0.

2. Set θ̄=M for a large number, M , and set θ= 0.

3. If θ̄ − θ ≤ ε, then we record θ∗ = (θ + θ̄)/2 and find the index set Tb ⊆ T1, such that the

robustness constraint is binding for any time index t̂ ∈ Tb, and we terminate the algorithm.

Otherwise, set θ= (θ+ θ̄)/2 and continue with the next step.

4. Solve the following mixed-integer linear feasibility problem.

min
∑
j∈[J]

∑
t∈[T ]

xj,t

s.t.
∑
j∈[J]

(
Īj,t +

1

2θ∗t
I†j,t

)
≤Ht ∀t∈ T0∑

j∈[J]

(
Īj,t +

1

2θ
I†j,t

)
≤Ht ∀t∈ T1

The rest of the constraints,

(12)

where we omit the explicit expression of the rest of the constraints (see Theorem 4) for brevity.
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5. If the objective value of the Problem (12) is less than τ , set θ̄= θ. Otherwise, set θ= θ. Repeat

from step 2.

The lexicographical minimization procedure iteratively incurs the above bisection search algo-

rithm. We summarize this procedure below.

Lexicographical minimization

1. Initialize with T0 = ∅ and T1 = [T ].

2. Solve the bisection search with input T0, T1, and values θ∗t for t∈ T0 if T0 6= ∅. Get the output

θ∗ and Tb. Let θ∗
t̂

= θ∗ for all t̂ ∈ Tb. Then, include all elements of Tb in T0 and exclude them

from T1.
3. If T1 = ∅, then we terminate the algorithm. Otherwise, repeat from step 2.

Note that each bisection search only takes log2(M/ε) number of iterations to terminate. In

practice, this is a small number. For instance, in the simulation study, we set M = 1000, and ε=

0.01; each of the bisection search terminates within ten iterations. By definition, the lexicographical

minimization procedure terminates in at most T log2(M/ε) iterations, which scales linearly in T .

4. Extensions

In this section, we briefly discuss several extensions of the robust epidemiological prediction and

optimization model.

Incorporating additional population compartments. For the ease of exposition, we only

considered five population compartments in our main model. Here, we remark that our model can

be tractably extended to incorporate more realistic population compartments such as population

groups that are vaccinated with different types of vaccines, hospitalized, isolated, asymptomatic,

infected with mutated viruses, and etc. One could refer to existing literature on examples of realistic

population compartments (Bertsimas et al. 2021b).

As a concrete example, we can consider P different types of vaccines by incorporating state

variables Ṽ
(1)
j,t , . . . , Ṽ

(P )
j,t in the T-SVEIR model. Similarly, we can model multiple variants of the

virus by incorporating state variables Ẽ
(1)
j,t , . . . , Ẽ

(R)
j,t in the T-SVEIR model. To do so, for any

t∈ [T − 1], j ∈ [J ], we modify Equations (3a)—(3d) to the following set of equations

S̃j,t+1 := Bin

S̃j,t−∑
p∈[P ]

xj,t,p,1−
∑
p∈[R]

q̂j,t,p


Ṽ

(p)
j,t+1 := Bin

Ṽ (p)
j,t ,1−

∑
r∈[R]

ω̂j,p,rq̂j,t,r

+xj,t,p ∀p∈ [P ]

Ẽ
(r)
j,t+1 := Bin

S̃j,t−∑
p∈[P ]

xj,t,p, q̂j,t,r

+ Bin
(
Ẽ

(r)
j,t ,1− α̂j,r

)
+
∑
p∈[P ]

Bin
(
Ṽ

(p)
j,t , ω̂j,p,rq̂j,t,r

)
∀r ∈ [R]

Ĩ
(r)
j,t+1 := Bin

(
Ẽ

(r)
j,t , α̂j,r

)
+ Bin

(
Ĩ
(r)
j,t ,1− γ̂j,r

)
∀r ∈ [R],
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where ω̂j,p,r denote the inefficacy of the type-p vaccine to the type-r virus, q̂j,t,r denotes the con-

traction rate of type-r virus, α̂j,r is the incubation rate of type-r virus, and γ̂j,r represents the

recovery rate of type-r virus.

The general guideline is that as long as we can describe the system of dynamics under a T-SVEIR

model in a similar form as (3a)—(3e), we can derive a counterpart of Proposition 1 and 2. Hence,

we can get the robust prediction intervals of the different population compartments and derive a

tractable reformulation of the robustness vaccine allocation optimization model. The rest of the

results also follow similarly.

Government and healthcare interventions. In practice, once the result of the PCR swab

test is positive, the tested individual has to be quarantined either at home or at some designated

facilities so that they cannot contact with the general population. In this case, we can incorporate

some decisions in q̂, e.g.,

q̂j,t := η

∑
k∈[J]

ζ̂k,j(Īk,t− yk,t)

 ,

for some quarantine decisions yj,t, j ∈ [J ], t ∈ [T ]. In other words, only non-quarantined infectious

individuals could potentially infect the susceptible population. Note that this does not affect the

system of dynamics in (3a)—(3e), except the contraction rate q̂j,t; hence, the reformulation of the

robustness optimization model follows similarly as illustrated in the main text.

Similar to Birge et al. (2020), we can also incorporate decisions on the implementation of NPIs

to control the pandemics, that is, we can let

ζ̂k,j =
∑
r∈[R]

βkwk,j,rak,t,r
Nk

,

where R denotes the number of potential NPI policies to implement. The binary NPI policy imple-

mentation decision ak,t,r equals 1 if NPI policy r is adopted in group k at time t and 0 otherwise.

Accordingly, wk,j,r denotes the interaction rate under NPI policy r. For instance, if NPI policy

r represents a complete lockdown, then wk,j,r would almost be zero. In general, each NPI policy

r can represent a bundle/set of intervention rules determined beforehand; hence, we can restrict∑
r∈[R] aj,t,r = 1 for j ∈ [J ], t ∈ [T ] without loss of generality. Based on Theorems 2 and 3, we can

incorporate such NPI implementation decisions tractably as before.

Fairness. Vaccine distribution decision may be subject to fairness considerations among pop-

ulation groups. Some examples of fairness considerations in vaccine allocation are considered in

Bertsimas et al. (2021b). We can incorporate similar fairness constraints as they are deterministic
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mixed-integer linear constraints. For instance, the following fairness constraint ensures that the

number of vaccines distributed to group j does not deviate too much from that to group k, i.e.,

F t ≤
xj,t
Nj

− xk,t
Nk

≤ F̄t ∀t∈ [T ], ∀j, k ∈ [J ], j 6= k,

for some fairness parameters F t and F̄t. Because this is a deterministic linear constraint, it does

not affect the established tractability results of our model.

5. Numerical Study

In this section, we test the proposed robustness vaccine distribution model using open-source

datasets for COVID-19 pandemics in New York City.

5.1. Simulation setting

We consider a planning horizon of 16 days from Jan 31, 2021 (i.e., T = 16) and plan for the vaccine

allocation in the first two weeks. We define four population groups based on age. The age groups

are split into 0-14, 15-34, 35-64, and 65 years old and above. The population sizes, Nj, for j ∈ [J ],

are reported by US Census Bureau (2018).

Parameters. Age groups have different latency rates, transmission rates, and infection rates.

We assume that α̂j = α∆αj, β̂j = β∆βj and γ̂j = γ∆γj, where α, β, and γ are the reference rates,

and ∆αj, ∆βj, and ∆γj are the deviations of the respective rates of group j. Li et al. (2020)

present an inference model with mobility characteristics and use observations of reported infections

in China in the early state of the outbreak. Their estimates of reference latency period (α−1) and

reference infectious period (γ−1) during 24 January to 8 February are 3.42 days (95% credible

interval (CI): 3.30- 3.65) and 3.31 days (95% CI: 2.96-3.88), respectively. We will use these values

in our simulation.

The reference transmission rate, β, depends on the effectiveness of different non-pharmacological

interventions and can vary among different population groups. We estimate the transmission rate

by β = Rt/γ, where Rt is the effective reproduction rate at time t and is estimated in Abbott

et al. (2020). Related to the interaction rate, we define ŵj,j = 0.05 and ŵj,k = 0.4ŵj,j for j 6= k,

indicating that the intra-group interaction rate is larger than the inter-group interaction rate. For

the effectiveness of vaccines, we define ω̂j = 0.2, implying that vaccination can reduce the infection

rate by 80%. We summarize the values of all exogenous parameters in Tables 1 and 2.

For simplicity, the capacity of vaccines Bt (in thousands) in each period belongs to {20,40}. In

practice, the healthcare capacity would depend on the budget of vaccines. Hence, to ensure the

healthcare capacity limit is not loose, we first solve the deterministic SVEIR prediction model with

uniform vaccine distribution (i.e., xj,t =Bt/J) and obtain Īj,t. Then, we set Ht(Bt) =
∑

j∈[J] Īj,t,
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where we use the notation Ht(Bt) to emphasize that this value depends on Bt. In our simulation,

we present the results under Ht(20). Subsequently, we solve the deterministic model (5) to obtain

Z0 and let the cost target parameter τ in robustness model (9) equal to φZ0 for some normalized

target φ ≥ 1. Under this setup, both the deterministic and robustness optimization models are

feasible.

Parameters Values

Effective reproduction rate (Rt) 0.9

Reference latency rate (α, days−1) 1/3.42

Reference infectious rate (γ, days−1) 1/3.31

Reference transmission rate (β, days−1) Rt/γ

Contact rate (ŵj,j) 0.05

Effect of vaccine (ω̂j) 0.2

Table 1 Value of epidemiological parameters and vaccine budget

Parameters 0-14 years 15-34 years 35-64 years 65 years and above

Deviation of latency rate (∆α) 1.0 1.0 1.0 1.0

Deviation of infectious rate (∆γ) 1.2 1.1 1.0 0.8

Deviation of transmission rate (∆β) 1.0 1.4 1.2 0.6

Table 2 Value of parameters ∆α, ∆γ and ∆β

NYC Health (2020) has reported the daily confirmed cases for each county in New York City.

However, there is a reporting delay between the daily confirmed cases and the daily new infection

cases. Li et al. (2020) assume that this reporting delay follows a gamma distribution Γ(2.34,2.59).

It implies that the mean reporting delay is about one day. For simplicity, we assume that the

reporting delay is one day, and Ēj,1 can be estimated by the number of daily new infection cases

at time two divided by α̂j. We also estimate the infections at the beginning of the horizon, Īj,1

by deterministic SVEIR model Īj,t = (1− γ̂j)Īj,t−1 + α̂jĒj,t−1 ≈
∑

τ∈[T ](1− γ̂j)r−1α̂jÊj,t−r. Finally,

we assume that S̄j,1 equals to the total population size in region j, Nj, less the sum of (i) the

cumulative number of infected cases during Feb. 29, 2020 to Jan 30, 2021, and (ii) the number of

current exposed cases.

We use a step function to model the contraction rate, as in Theorem 2 and 3. We set the interval

length (i.e., v̄l+1− v̄l) equals 5× 10−6 and vl = (v̄l + v̄l+1)/2. The gap between v̄1 and v̄L is small

in practice, and the same applies in this simulation; hence, The number of infection levels L is

manageable. This number depends on transmission rate and cost budget of vaccines and is set

accordingly.
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Simulation procedure. For all performance analysis, we generate 1,000 sample paths by sim-

ulating the state transitions according to the S-SVEIR model, which reflect the true distribution

of the various state variables. The parameter values in S-SVEIR model is the same as those listed

in Table 1 and Table 2. We refer to this as the fixed parameter setting.

In reality, the transmission rate is highly dependent on effects of NPIs and population behaviours.

For example, government may reopen economic activities after there is a certain number of vacci-

nated individuals so that the transmission rate may increase. Hence, we also test our model under

misspecification of transmission rates.

5.2. Results

We first illustrate the impact of total vaccination cost target to the robustness of the model. We

illustrate how increasing total cost target could help reduce the average number of end-of-horizon

active infections and the probability of violating the healthcare capacity. Figure 5 plots these two

metrics under the instance with Bt = 40. The x-axis indicates the value of the normalized cost

target φ, i.e., the cost target τ is given by φZ0. When φ= 1, the robustness optimization model

would use at most the same amount of vaccines as the deterministic model. As we can see in

Figure 5, the average number of end-of-horizon active infections exceeds the healthcare capacity

Ht when φ= 1, and the probability of violating the healthcare capacity is remarkably high. This

indicates that the deterministic optimization model would significantly underestimate the risks

in disease propagation, and governments and healthcare planners are highly likely to suffer from

the cost of violating healthcare capacity due to vastly insufficient vaccination. This indicates the

need of robustness by increasing total cost target of vaccine allocation. As we increase φ, both

the average number of active infections and probability of exceeding healthcare capacity decrease.

Hence, the tradeoff for the planner to address is between the total cost target and the robustness

to satisfy the healthcare capacity.

At the first glance, we reduce the end-of-horizon active infections by less than 100 when we

increase φ from 1.0 to 1.5, indicating that a 50% increase in vaccination cost only leads to a

relatively small number of reduction in end-of-horizon active infections. However, we remark that

vaccination has a long-term effect that is not fully reflected within the planning horizon of T = 16.

Even a small difference within our 16-day planning horizon could lead to a significant change in

the long run. To illustrate this, we further simulate disease propagation for 100 days under a no-

vaccine policy starting from the end of our 16-day planning horizon, within which we implementing

the vaccination policies of the deterministic model and robustness optimization with different

normalized cost targets. Specifically, there are T + 100 = 116 days in the simulation, and the last

100 days are used for investigating how the differences of the 16-day vaccine allocation policies

would magnify under no additional intervention, e.g., under a no-vaccine policy.
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(b) Probability of exceeding healthcare capacity
Figure 5 Out-of-sample metrics of the deterministic and robustness optimization models (with different normal-

ized cost target φ) under Bt = 40.

Figure 6 plots that the average number and 95% quantile of active infections from time T to

T + 100 under a no-vaccine policy, under different initial states due to different vaccine allocation

policies in the planning horizon t∈ [T ]. As an additional benchmark, we also plot the trend under

a no-vaccine policy over the entire duration of T + 100 days. As we can see, the differences of daily

active infections among different models would become more significant in the long run, even when

there is no additional intervention. Hence, an increase in vaccination cost target in a planning

horizon of only 16 days can help reduce the active infections significantly in the long run. Similarly,

we also look at the average number and 95% quantile of the number of cumulative infections at

the end of planning horizon (time T ) and T + 100 in Figure 7. The result is also strong. Consider

φ = 1.05 (represented by the green bar), i.e., we only increase the total vaccination cost by 5%

compared to the deterministic model. At the end of planning horizon, T , we reduce the average

number of cumulative infections by about 30, while the reduction of average cumulative infections

increases to nearly 1,500 in the long run at no additional cost and additional intervention.

By above results and observations, we remark that our model can lead to a significantly better

long-term performance at the cost of incurring a slightly higher vaccination cost over a short

planning horizon. Note that the simulation of the additional 100 days is conducted under a no-

vaccine policy to illustrate how the performance improvement can magnify over time. In practice,

one could apply our model in a rolling horizon fashion with a sliding window, which would lead to

larger improvements.

Now, we investigate the model robustness to satisfying the healthcare capacity in Figure 8. In

Figure 8(a), we plot the probability that the number of active infections exceeds the healthcare

capacity. As we can see, bearing a small increase in the total vaccination cost can lead to a lower

probability of violating healthcare capacity in all time periods. In Figure 8(b), we focus on the end
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Figure 6 Long-term impact of the deterministic and robustness optimization models from time T to T + 100

under Bt = 40.

Average 95% quantile
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

R
ed

u
ct

io
n
 o

f 
cu

m
u
la

ti
v
e 

in
fe

ct
io

n
s 

(t
h
o
u
sa

n
d
s)

 

 

(a) Time T

Average 95% quantile
0

2

4

6

8

10

12

R
ed

u
ct

io
n
 o

f 
cu

m
u
la

ti
v
e 

in
fe

ct
io

n
s 

(t
h
o
u
sa

n
d
s)

 

 

Robustness model (φ=1.05)

Robustness model (φ=1.20)

Robustness model (φ=1.40)

(b) Time T + 100
Figure 7 Reduction of the number of cumulative infections with respect to the deterministic model at time T

and T + 100 under Bt = 40.

of planning horizon, time T . Specifically, we plot the probability that the number of active infections

at time T exceeds the healthcare capacity by the range of values on the x-axis. For the same

magnitude of violation threshold, the robustness optimization models achieve lower probabilities

of violation. From the magnitude of the violation probability, we see that the deterministic model

would severely underestimate the risks in disease propagation and use only an insufficient amount

of vaccines, which eventually leads to high risks of violating the healthcare capacity. This indicates

the inefficacy of minimizing the total vaccination cost in the deterministic model. We believe it is

more practical to use the robustness optimization model, which specifies an acceptable cost target

and finds the most robust solution to managing the healthcare capacity.

Impact of misspecification. In above analysis, we assumed that there is no misspecification

of model parameters, e.g., the true transmission rate β that generates the data is the same as
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(b) Violation of cost target at T = 16
Figure 8 Model robustness to satisfying the healthcare capacity under Bt = 20.

the one used in the model. In practice, the transmission rate cannot be estimated accurately

with limited and potentially non-stationary data. Here, we investigate the model performance

under misspecification of transmission rate. Specifically, the models assume a nominal value of

transmission rate, β̂; however, the out-of-sample test data is generated with the true transmission

rate, β̄. The true transmission rate is set as β̄ = δβ̂, where δ varies from 0.7 to 1.3. When δ = 1,

the model has no misspecification of transmission rates.

In Figure 9, we evaluate the reduction of end-of-horizon active infections at time T with respect

to the no-vaccine policy. In Figure 9(a), we focus on the reduction of the average number of end-

of-horizon active infections. We see that robustness optimization models always lead to a higher

reduction and thus fewer average active infections. Figure 9(b) plots the reduction of the 95%

quantile of the number of end-of-horizon active infections. The observations are consistent.

Similar to our discussion of Figure 5, we remark that the seemingly small improvement over

the deterministic model would magnify over time even without any additional cost and interven-

tion, due to the inherent nature that the effect of vaccination is a long-term one. In addition,

under adversarial transmission rates, e.g., δ ∈ {1.1,1.2,1.3}, the improvement would magnify more

aggressively over time. As an illustration, we provide a counterpart of Figure 7. In Figure 10, we

show how the seemingly small reduction of the cumulative infections over the deterministic model

at time T would magnify in an additional period of 100 days. Specifically, when δ= 1.3, the long-

term effect of implementing our robustness optimization in only 16 days can lead to a reduction of

nearly 12,000 cumulative infections in 100 days at no additional cost and intervention.

Next, we investigate the case where the true transmission rate, β̃, is drawn from a uniform

distribution, Uniform(δβ̂, δ̄β̂). Specifically, when generating the sample paths, we first sample a

transmission rate from this uniform distribution. We test the model under two broad scenarios. In

the first scenario, the nominal transmission rate β̂ used in the model is unbiased, i.e., (δ+ δ̄)/2 = 1.
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(b) 95% quantile
Figure 9 Effect of misspecification of transmission rate under Bt = 20 – Reduction of end-of-horizon infection

with respect to the no-vaccine policy under non-stochastic transmission rate.
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(b) Time T + 100
Figure 10 Reduction of the average number of cumulative infections with respect to the deterministic model at

time T and T + 100 under adversarial transmission rates.

In the second scenario, the nominal transmission rate β̂ is biased (consistently underestimate the

true transmission rate), i.e., δ̄ > δ = 1. The performance summary of six instances is plotted in

Figure 11. As we can see, the robustness optimization model with only 5% increase in the vacci-

nation cost would help to better reduce the number of end-of-horizon active infections compared

to the deterministic optimization model in all instances, indicating that our model improvement

is still consistent under model misspecification.

Illustration of vaccine allocation policy. Finally, we provide an illustration on the impact

of interaction rates to the vaccine allocation policy. The goal is to verify that the optimal solution

of our model is reasonable. Besides the nominal interaction rate listed in Table 1, we also consider

three particular settings: (i) High intra-interaction (we increase the value of ŵj,j by 50%, for all

j ∈ [J ]), (ii) high inter-interaction (we increase the value of ŵj,k by 50%, for all j, k ∈ [J ], j 6= k),
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(b) 95% quantile
Figure 11 Effect of misspecification of random transmission rate under Bt = 20 – Reduction of end-of-horizon

infection with respect to the no-vaccine policy under stochastic transmission rate.

and (iii) low interaction rate for the elderly (we reduce the interaction rate of people aged over 65,

ŵ1,j, by 50%, for all j ∈ [J ]).

The optimal vaccine allocation policies are summarized in Figure 12. We remark that the corre-

sponding changes in the vaccine allocation policies are reasonable. In Figure 12(b), we allocate more

vaccines to the group aged 15-34. When intra-interaction rate increases, the contraction rate would

increase more significantly in this group because it has the highest transmission rate. Hence, it is

reasonable to proioritize vaccination in this group. In Figure 12(c), we allocate more vaccines to the

elderly. This is because the high inter-interaction rate would expose groups with low transmission

rates (e.g., the elderly) to more dangers. Finally, in Figure 12(d), we reduce the vaccination to the

elderly significantly because they now have a low level of interaction and are thus considerably safe

from the disease.
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(b) High intra-interaction
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(c) High inter-interaction
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Figure 12 Vaccine distribution policies of the Robustness SVEIR model under Bt = 20 and φ= 1.02
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A. Proof of Results

Proof of Theorem 1. The first result has been observed in Long et al. (2021) using the fact (see,

e.g. Föllmer and Schied 2002) that the certainty equivalent under the exponential disutility can be

expressed as

µθ [ṽ] = sup
Q∈P̂
{EQ [ṽ]− θφKL(Q||P̂)}.

where P̂ is the set of all probability distributions that are absolutely continuous with respect to P̂.

Observe that with θ= µθ [ṽ]> 0, we have

µθ [ṽ]≤ 0

=⇒ EQ [ṽ]≤ θφKL(Q||P̂) ∀Q∈ P̂

=⇒ EQ [ṽ]≤ θφKL(Q||P∗) + θ(φKL(Q||P̂)−φKL(Q||P∗)) ∀Q∈ P̂

=⇒ EQ [ṽ]≤ θφKL(Q||P∗) + θ sup
Q†∈P̂

{
(φKL(Q†||P̂)−φKL(Q†||P∗))

}
∀Q∈ P̂

=⇒ EQ [ṽ]≤ θφKL(Q||P∗) + θ sup
Q†∈P∗

{
(φKL(Q†||P̂)−φKL(Q†||P∗))

}
∀Q∈ P̂

=⇒ EQ [ṽ]≤ θφKL(Q||P∗) + θ sup
Q†∈P∗

 ∑
v∈V:P∗[ṽ=v]>0

(
Q [ṽ= v] log

(
P∗ [ṽ= v]

P̂ [ṽ= v]

)) ∀Q∈ P̂
=⇒ EQ [ṽ]≤ θφKL(Q||P∗) + θ∆

(
P∗||P̂

)
∀Q∈ P̂

=⇒ EQ [ṽ]≤ θφKL(Q||P∗) + θ∆
(
P∗||P̂

)
∀Q∈P∗

=⇒ θ logEP∗ [exp (ṽ/θ)]≤ θ∆
(
P∗||P̂

)
=⇒ EP∗

[
exp

((
ṽ− θ∆

(
P∗||P̂

))
/θ
)]
≤ 1,

where P∗ is the set of all probability distributions that are absolutely continuous with respect to

P∗.

Therefore, from Chernoff bound, we have for all a> 0

P∗
[
ṽ > θ

(
a+ ∆

(
P∗||P̂

))]
= P∗

[
exp

((
ṽ− θ∆

(
P∗||P̂

))
/θ
)
> exp(a)

]
≤ EP∗

[
exp

((
ṽ− θ∆

(
P∗||P̂

))
/θ
)]

exp(−a)

≤ exp(−a).

�

Proof of Theorem 2 By step function, the value of contraction rate, η(vj,t) will belong to one

interval (v̄l, v̄l+1]. We define binary variable yl+1
j,t equaling 1 if η(vj,t) lies in level l in group j at

time t (i.e., η(vj,t)∈ (v̄l, v̄l+1]). Hence, we have∑
l∈[L]

ylj,t = 1 ∀j ∈ [J ], t∈ [T ]

η (vj,t)≤ v̄1 +M(1− y1j,t) ∀j ∈ [J ], t∈ [T ]
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v̄l−1−M(1− ylj,t)≤ η (vj,t)≤ v̄l +M(1− ylj,t) ∀j ∈ [J ], t∈ [T ], 2≤ l≤L

η (vj,t)≥ v̄L +M(1− yL+1
j,t ) ∀j ∈ [J ], t∈ [T ].

Hence, in Problem (5), q̂j,t can be restricted as the following functions in terms of ylj,t:

q̂j,t =
∑
l∈[L]

vly
l
j,t ∀j ∈ [J ], t∈ [T − 1]

Although the function of p̂j,t is non-linear, it can be easily linearized because y is binary variable.

Here, we first try to linearize the generality function zj,tp̂j,t (e.g., zj,t = S̄j,t − Ūj,t in dynamics

constraint involving S̄j,t, and zj,t = ω̂jV̄j,t in dynamics constraint involving V̄j,t). We also define a

new variable aj,t, for all j ∈ [J ], t∈ [T ] then we have

−M(1− y1j,t)≤ āj,t ≤M(1− y1j,t) ∀j ∈ [J ], t∈ [T − 1]

zj,tvl−1−M(1− ylj,t)≤ āj,t ≤ zj,tvl−1 +M(1− ylj,t) ∀j ∈ [J ], t∈ [T − 1], 2≤ l≤L+ 1.

Hence, Problem (5) can be reformulated as a mixed-integer linear optimization problem. For exam-

ple, dynamics constraint involving S̄j,t can be rewritten as the following set of constraints:

S̄j,t+1 = S̄j,t− Ūj,t− W̄j,t, ∀j ∈ [J ], t∈ [T − 1]

−M(1− y1j,t)≤ W̄j,t ≤M(1− y1j,t) ∀j ∈ [J ], t∈ [T − 1]

(S̄j,t− Ūj,t)vl−1−M(1− ylj,t)≤ W̄j,t ≤ (S̄j,t− Ūj,t)vl−1 +M(1− ylj,t) ∀j ∈ [J ], t∈ [T − 1], 2≤ l≤L+ 1.

�

Proof of Proposition 1. Observe that

µθ

[
vS̃j,t+1

]
= θ logEP̂

[
exp

(v
θ
S̃j,t+1

)]
= θ logEP̂

[
exp

(v
θ

Bin
(
S̃j,t−xj,t,1− q̂j,t

))]
= θ logEP̂

[
exp

(v
θ

Bin
(
S̃j,t−xj,t,1− q̂j,t

))]
= θ logEP̂

[
EP̂

[
exp

(
v

θ
Bin

(
S̃j,t−xj,t,1− q̂j,t

))∣∣∣S̃j,t]]
= θ logEP̂

[
exp

(
logEP̂

[
exp

(
v

θ
Bin

(
S̃j,t−xj,t,1− q̂j,t

))∣∣∣S̃j,t])]
= θ logEP̂

[
exp

(
(S̃j,t−xj,t)κθ(1− q̂j,t, v)/θ

)]
= µθ

[
S̃j,tκθ(1− q̂j,t, v)

]
−xj,tκθ(1− q̂j,t, v).

In addition, we have

µθ

[
vS̃j,2

]
= θ logEP̂

[
exp

(
v

θ
Bin

(
Sj,1−xj,1,1− q̂j,1

))]
= θ logEP̂ [exp ((Sj,1−xj,1)κθ(1− q̂j,1, v)/θ)]

= µθ [Sj,1κθ(1− q̂j,1, v)]−xj,1κθ(1− q̂j,1, v)

= Sj,1κθ(1− q̂j,1, v)−xj,1κθ(1− q̂j,1, v),
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where the last equality is due to the fact that Sj,1 is a known parameter. Hence, µθ

[
vS̃j,t+1

]
can

be evaluated recursively.

We now focus on the vaccinated population, µθ

[
vṼj,t+1

]
, which, because of the assumption of

independence, can be evaluated as follows:

µθ

[
vṼj,t+1

]
= θ logEP̂

[
exp

(v
θ

Bin
(
Ṽj,t,1− ω̂j q̂j,t

)
+
v

θ
xj,t

)]
= θ logEP̂

[
exp

(
v

θ
Bin

(
Ṽj,t,1− ω̂j q̂j,t

))]
+ vxj,t.

By the same reasoning as above, the first term can be evaluated recursively as

θ logEP̂

[
exp

(
v

θ
Bin

(
Ṽj,t,1− ω̂j q̂j,t

))]
= θ logEP̂

[
exp

(
logEP̂

[
exp

(
v

θ
Bin

(
Ṽj,t,1− ω̂j q̂j,t

))∣∣∣Ṽj,t])]
= θ logEP̂

[
exp

(
Ṽj,tκθ(1− ω̂j q̂j,t, v)/θ

)]
= µθ

[
Ṽj,tκθ(1− ω̂j q̂j,t, v)

]
Hence, we have

µθ

[
vṼj,t+1

]
= µθ

[
Ṽj,tκθ(1− ω̂j q̂j,t, v)

]
+ vxj,t.

Because µθ(vṼj,1) = θ logEP̂

[
exp(v

θ
Vj,1)

]
= vVj,1 is a constant parameter, the above can be evaluated

recursively.

For the exposed individuals, µθ

[
vẼj,t+1

]
, we have

µθ

[
vẼj,t+1

]
= θ logEP̂

[
exp

(
v

θ
Bin

(
S̃j,t−xj,t, q̂j,t

))]
+ θ logEP̂

[
exp

(v
θ

Bin
(
Ṽj,t, ω̂j q̂j,t

))]
+θ logEP̂

[
exp

(v
θ

Bin
(
Ẽj,t,1− α̂j

))]
.

By the same reasoning as above, the first term can be evaluated recursively as

θ logEP̂

[
exp

(
v

θ
Bin

(
S̃j,t−xj,t, q̂j,t

))]
= θ logEP̂

[
exp

(
logEP̂

[
exp

(
v

θ
Bin

(
S̃j,t−xj,t, q̂j,t

))∣∣∣S̃j,t])]
= θ logEP̂

[
exp

(
(S̃j,t−xj,t)κθ(q̂j,t, v)/θ

)]
= θ logEP̂

[
exp

(
S̃j,tκθ(q̂j,t, v)/θ

)]
−xj,tκθ(q̂j,t, v)

= µθ

[
S̃j,tκθ(q̂j,t, v)

]
−xj,tκθ(q̂j,t, v).

The second term can be evaluated as:

θ logEP̂

[
exp

(v
θ

Bin
(
Ṽj,t, ω̂j q̂j,t

))]
= θ logEP̂

[
EP̂

[
exp

(v
θ

Bin
(
Ṽj,t, ω̂j q̂j,t

))∣∣∣Ṽj,t ]]
= θ logEP̂

[
exp

(
logEP̂

[
exp

(v
θ

Bin
(
Ṽj,t, ω̂j q̂j,t

))∣∣∣Ṽj,t ])]
= θ logEP̂

[
exp

(
Ṽj,tκθ(ω̂j q̂j,t, v)/θ

)]
= µθ

[
Ṽj,tκθ(ω̂j q̂j,t, v)

]
.
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The third term can be evaluated as:

θ logEP̂

[
exp

(v
θ

Bin
(
Ẽj,t,1− α̂j

))]
= θ logEP̂

[
EP̂

[
exp

(v
θ

Bin
(
Ẽj,t,1− α̂j

))∣∣∣Ẽj,t ]]
= θ logEP̂

[
exp

(
logEP̂

[
exp

(v
θ

Bin
(
Ẽj,t,1− α̂j

))∣∣∣Ẽj,t ])]
= θ logEP̂

[
exp

(
Ẽj,tκθ(1− α̂j, v)/θ

)]
= µθ

[
Ẽj,tκθ(1− α̂j, v)

]
.

Hence, we have

µθ

[
vẼj,t+1

]
= µθ

[
S̃j,tκθ(q̂j,t, v)

]
−xj,tκθ(q̂j,t, v) +µθ

[
Ṽj,tκθ(ω̂j q̂j,t, v)

]
+µθ

[
Ẽj,tκθ(1− α̂j, v)

]
.

Because µθ

[
vẼj,1

]
= θ logEP̂

[
exp

(
v
θ
Ej,1

)]
= vEj,1 is a constant parameter, the above can be

evaluated recursively.

Now, we look at the infectious individuals, µθ

[
vĨj,t+1

]
:

µθ

[
vĨj,t+1

]
= θ logEP̂

[
exp

(v
θ

Bin
(
Ẽj,t, α̂j

))]
+ θ logEP̂

[
exp

(
v

θ
Bin

(
Ĩj,t,1− γ̂j

))]
.

By the same reasoning as above, the first term can be evaluated as:

θ logEP̂

[
exp

(v
θ

Bin
(
Ẽj,t, α̂j

))]
= θ logEP̂

[
exp

(
logEP̂

[
exp

(v
θ

Bin
(
Ẽj,t, α̂j

))∣∣∣Ẽj,t ])]
= θ logEP̂

[
exp

(
Ẽj,tκθ(α̂j, v)/θ

)]
= µθ

[
Ẽj,tκθ(α̂j, v)

]
.

The second term can be evaluated as:

θ logEP̂

[
exp

(v
θ

Bin
(
Ĩj,t,1− γ̂j

))]
= θ logEP̂

[
EP̂

[
exp

(v
θ

Bin
(
Ĩj,t,1− γ̂j

))∣∣∣Ĩj,t ]]
= θ logEP̂

[
exp

(
logEP̂

[
exp

(v
θ

Bin
(
Ĩj,t,1− γ̂j

))∣∣∣Ĩj,t ])]
= θ logEP̂

[
exp

(
Ĩj,tκθ(1− γ̂j, v)/θ

)]
= µθ

[
Ĩj,tκθ(1− γ̂j, v)

]
.

Hence, we have

µθ

[
vĨj,t+1

]
= µθ

[
Ẽj,tκθ(α̂j, v)

]
+µθ

[
Ĩj,tκθ(1− γ̂j, v)

]
.

Because µθ

[
vĨj,1

]
= θ logEP̂

[
exp

(
v
θ
Ij,1
)]

= vIj,1 is a constant parameter, the above can be evalu-

ated recursively.

Finally, we look at the removed individuals, µθ

[
vR̃j,t+1

]
:

µθ

[
vR̃j,t+1

]
= θ logEP̂

[
exp

(v
θ
R̃j,t

)]
+ θ logEP̂

[
exp

(
v

θ
Bin

(
Ĩj,t, γ̂j

))]
.
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By the same reasoning as above, the above can be written as:

µθ

[
vR̃j,t+1

]
= µθ

[
vR̃j,t

]
+µθ

[
Ĩj,tκθ(γ̂j, v)

]
.

Because µθ

[
vR̃j,1

]
= θ logEP̂

[
exp

(
v
θ
Rj,1

)]
= vRj,1 is a constant parameter, the above can be eval-

uated recursively. �

Proof of Proposition 2. We start with R†j,t. By the independence assumption, we have

R†j,t := VarP̂[R̃j,t] = VarP̂[R̃j,t−1] + VarP̂[Bin(Ĩj,t−1, γ̂j)]

Now, by the law of total variance, we have

VarP̂[Bin(Ĩj,t−1, γ̂j)] = EP̂

[
Ĩj,t−1

]
(1− γ̂j)γ̂j + γ̂2

jVarP̂[Ĩj,t−1]

= Īj,t−1(1− γ̂j)γ̂j + γ̂2
jVarP̂[Ĩj,t−1]

= Īj,t−1(1− γ̂j)γ̂j + γ̂2
j I
†
j,t−1.

Hence, we have

R†j,t =R†j,t−1 + Īj,t−1(1− γ̂j)γ̂j + γ̂2
j I
†
j,t−1.

Then, we rewrite I†j,t as follows:

I†j,t := VarP̂[Ĩj,t] = VarP̂[Bin(Ĩj,t−1,1− γ̂j)] + VarP̂[Bin(Ẽj,t−1, α̂j)].

By the law of total variance, we have

VarP̂[Bin(Ĩj,t−1,1− γ̂j)] = EP̂

[
Ĩj,t−1

]
(1− γ̂j)γ̂j + (1− γ̂j)2VarP̂[Ĩj,t−1]

= Īj,t−1(1− γ̂j)γ̂j + (1− γ̂j)2VarP̂[Ĩj,t−1]

= Īj,t−1(1− γ̂j)γ̂j + (1− γ̂j)2I†j,t−1.

Now, we focus on VarP̂[Bin(Ẽj,t−1, α̂j)]. By the law of total variance, we have

VarP̂[Bin(Ẽj,t−1, α̂j)] = Ēj,t−1α̂j(1− α̂j) + α̂2
jVarP̂[Ẽj,t−1] = Ēj,t−1α̂j(1− α̂j) + α̂2

jE
†
j,t−1.

Hence, the variance term I†j,t can be written as:

I†j,t = Īj,t−1(1− γ̂j)γ̂j + (1− γ̂j)2I†j,t−1 + Ēj,t−1α̂j(1− α̂j) + α̂2
jE
†
j,t−1.

Now, we derive the recursive equation for E†j,t. By independence,

E†j,t

= VarP̂

[
Bin

(
S̃j,t−1−xj,t−1, q̂j,t−1

)]
+ VarP̂

[
Bin

(
Ṽj,t−1, ω̂j q̂j,t−1

)]
+ VarP̂

[
Bin

(
Ẽj,t−1,1− α̂j

)]
= (S̄j,t−1−xj,t−1)q̂j,t−1(1− q̂j,t−1) + q̂2j,t−1S

†
j,t−1

+V̄j,t−1ω̂j q̂j,t−1(1− ω̂j q̂j,t−1) + (ω̂j q̂j,t−1)
2V †j,t−1

+Ēj,t−1(1− α̂j)α̂j + (1− α̂j)2E†j,t−1.
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It remains to derive the recursive equations for S†j,t and V †j,t as follows:

S†j,t := VarP̂

[
S̃j,t

]
= VarP̂

[
Bin

(
S̃j,t−1−xj,t−1,1− q̂j,t−1

)]
= (S̄j,t−1−xj,t−1)q̂j,t−1(1− q̂j,t−1) + (1− q̂j,t−1)2S†j,t−1

V †j,t := VarP̂

[
Ṽj,t

]
= VarP̂

[
Bin

(
Ṽj,t−1,1− ω̂j q̂j,t−1

)]
= V̄j,t−1ω̂j q̂j,t−1(1− ω̂j q̂j,t−1) + (1− ω̂j q̂j,t−1)2V †j,t−1

Given that S̃j,1, Ṽj,1, Ẽj,1, and Ĩj,1 are known, constant parameters, we can calculate S†j,t, V
†
j,t, E

†
j,t,

I†j,t, and R†j,t via the above system of recursive equations. �

Proof of Theorem 3. The constraint
∑

i∈[J] νθ

[
Ĩj,t

]
≤Ht can be written as∑

i∈[J]

(
Īj,t +

1

2θ
I†j,t

)
≤Ht,

where I†j,t follows the recursive dynamics as described in (10). We need to show that the system

dynamics in (10) can be described by mixed-integer linear constraints. Hence, we only need to

focus on the recursions of S†j,t, V
†
j,t, E

†
j,t.

Note that

q̂j,t := η

∑
k∈[J]

ζ̂k,j Īk,t

 .

Without loss of generality, let v0 := 0, v̄0 := 0 and vL+1 := 1. By the definition of the step function

η, for any j ∈ [J ] and t∈ [T ], we can write

q̂j,t =
∑
l∈[0,L]

vly
l
j,t∑

l∈[0,L]

ylj,t = 1

v̄l−M(1− ylj,t)≤
∑
k∈[J]

ζ̂k,j Īk,t ≤ v̄l+1 +M(1− ylj,t) ∀l ∈ [0,L]

ylj,t ∈ {0,1} ∀l ∈ [0,L]

In other words, we can represent q̂j,t with
∑

l∈[0,L] vly
l
j,t where y is subject to some additional

mixed-integer linear constraints. With such a construction, for any functional f , note that

f(q̂j,t) =
∑
l∈[0,L]

f(vl)y
l
j,t.

Then, we can equivalently evaluate S†j,t as:

S†j,t = (S̄j,t−1−xj,t−1)q̂j,t−1(1− q̂j,t−1) + (1− q̂j,t−1)2S†j,t−1
=
∑
l∈[0,L]

(S̄j,t−1−xj,t−1)vl(1− vl)ylj,t−1 +
∑
l∈[0,L]

(1− vl)2ylj,t−1S
†
j,t−1

=
∑
l∈[0,L]

(
(S̄j,t−1−xj,t−1)vl(1− vl) + (1− vl)2S

†
j,t−1

)
ylj,t−1.
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We can equivalently reformulate the above relation using the big-M method as follows:

S†j,t ≤ (S̄j,t−1−xj,t−1)vl(1− vl) + (1− vl)2S
†
j,t−1 +M(1− ylj,t−1) ∀l ∈ [0,L]

S†j,t ≥ (S̄j,t−1−xj,t−1)vl(1− vl) + (1− vl)2S
†
j,t−1−M(1− ylj,t−1) ∀l ∈ [0,L].

Similarly, we can reformulate the dynamics of V †j,t as:

V †j,t ≤ V̄j,t−1ω̂jvl(1− ω̂jvl) + (1− ω̂jvl)2V
†
j,t−1 +M(1− ylj,t−1) ∀l ∈ [0,L]

V †j,t ≥ V̄j,t−1ω̂jvl(1− ω̂jvl) + (1− ω̂jvl)2V
†
j,t−1−M(1− ylj,t−1) ∀l ∈ [0,L],

and the dynamics of E†j,t as:

E†j,t ≤ Ēj,t−1(1− α̂j)α̂j + (1− α̂j)2E†j,t−1
+(S̄j,t−1−xj,t−1)vl(1− vl) + v2lS

†
j,t−1

+V̄j,t−1ω̂jvl(1− ω̂jvl) + (ω̂jvl)
2V †j,t−1 +M(1− ylj,t−1) ∀l ∈ [0,L]

E†j,t ≥ Ēj,t−1(1− α̂j)α̂j + (1− α̂j)2E†j,t−1
+(S̄j,t−1−xj,t−1)vl(1− vl) + v2lS

†
j,t−1

+V̄j,t−1ω̂jvl(1− ω̂jvl) + (ω̂jvl)
2V †j,t−1−M(1− ylj,t−1) ∀l ∈ [0,L].

�

Proof of Theorem 4. This follows from Theorem 3 and the proof of Theorem 2 �


