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Abstract

A conic optimization problem is a problem involving a constraint that the optimiza-
tion variable be in some closed convex cone. Prominent examples are second order
cone programs (SOCP), semidefinite problems (SDP), and copositive problems. We
survey recent progress made in this area. In particular, we highlight the connections
between nonconvex quadratic problems, binary quadratic problems, and copositive
optimization. We review how tight bounds can be obtained by relaxing the coposi-
tivity constraint to semidefinitness, and we discuss the effect that different modelling
techniques have on the quality of the bounds.
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1 Introduction

A conic optimization problem is a problem involving a constraint that the optimization
variable be in some closed convex cone. The field of conic optimization is a broad one, as
any convex optimization problem can be cast as a conic problem, see [82]. In this paper, we
will focus on more specific conic problems which appear naturally when solving quadratic
or combinatorial optimization problems. In particular, we will highlight developments in
second order cone programming (SOCP), semidefinite programming (SDP), and copositive
optimization.

1.1 The general linear conic problem and its dual

Consider a proper cone K, i.e., a closed convex and full dimensional cone which is also
pointed, meaning that K does not contain a straight line, or equivalently, that K∩ (−K) =
{0}. Then a linear conic optimization problem over K is a problem of the form

p∗ = min 〈C,X〉
s. t. 〈Ai, X〉 = bi (i = 1, . . . ,m)

X ∈ K,
(P)
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where C,X,Ai are matrices (or vectors) of suitable dimension, and bi ∈ R for all
i = 1, . . . ,m. In case of matrices, 〈·, ·〉 denotes the Frobenius inner product 〈A,B〉 :=
trace(ATB), in case of vectors, it denotes the Euclidean inner product. Problem (P)
therefore aims to minimize a linear function over the intersection of a proper cone and an
affine subspace.

As in linear programming, a primal problem of the form (P) always comes with a dual
problem which involves the dual cone: given an arbitrary cone K ⊆ Rm×n, the dual cone K∗
is defined as

K∗ := {X ∈ Rm×n | 〈X,K〉 ≥ 0 for all K ∈ K}.
As usual, the Lagrangian function L : K × Rm → R is defined as

L(X, y) := 〈C,X〉+
m∑
i=1

yi(bi − 〈Ai, X〉).

This gives the dual problem

max
y∈Rm

min
X∈K

L(X, y) = max
y∈Rm

[
〈b, y〉+ min

X∈K
〈C −

m∑
i=1

yiAi, X〉

]
.

For the inner minimization problem to be finite, we require that 〈C −
∑m

i=1 yiAi, X〉 ≥ 0
for all X ∈ K, in other words, we require C −

∑m
i=1 yiAi ∈ K∗. Therefore, we arrive at the

dual problem
d∗ = max 〈b, y〉

s. t.
m∑
i=1

yiAi + Z = C

Z ∈ K∗, y ∈ Rm.

(D)

It is easy to see that the duality gap 〈C,X〉 − 〈b, y〉 equals the inner product of the
primal and dual variables: 〈C,X〉 − 〈b, y〉 = 〈Z,X〉. Since 〈Z,X〉 ≥ 0 for any pair of
primal/dual feasible points X ∈ K, Z ∈ K∗, we immediately get weak duality.

Clearly, if the duality gap is zero for a pair of primal/dual feasible points X ∈ K and
(y, Z) ∈ Rm × K∗, then X is optimal for (P) and (y, Z) is optimal for (D). The converse
is, however, not true in general: a positive duality gap may exist, or the optimal value
of (P) or (D) may not be attained. Examples for this phenomenon in second order cone
programming can be found in [3] or in [13, Section 2.4.1]. For the SDP case, examples can
be found in [55], and a thorough analysis of this behavior can be found in [89].

In order to get strong duality, we need constraint qualifications:

Definition 1.1. A point X is called strictly feasible for (P) if X is feasible for (P) and
X ∈ intK. A pair (y, Z) is called strictly feasible for (D) if (y, Z) is feasible for (D) and
Z ∈ intK∗. If such points exist, then we say that the problem fulfills the primal (resp. dual)
Slater condition.

Note that strict feasibility can always be enforced by considering the so called skew-
symmetric embedding of the original problem, see [32]. Assuming strict feasibility gives us
strong duality:

Theorem 1.2 (Strong Duality Theorem). Assume that problem (D) has a strictly feasible
solution (y, Z). Then the primal and dual optimal values are equal: p∗ = d∗, and if p∗ <
+∞, then p∗ is attained, i.e., there exists a primal feasible solution X∗ with p∗ = 〈C,X∗〉.

Conversely, assume that problem (P) has a strictly feasible solution X. Then the primal
and dual optimal values are equal: p∗ = d∗, and if d∗ > −∞, then d∗ is attained, i.e., there
exists a dual feasible solution (y∗, Z∗) with d∗ = 〈b, y∗〉.
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A proof of this theorem along with a thorough discussion of conic duality can be found
for example in [13]. It has been shown in [43] that the Slater condition (and hence strong
duality) is a generic property of conic problems which loosely speaking means that Slater’s
condition is fulfilled (and hence strong duality holds) for almost all feasible conic problems.

Note that existence of strictly feasible points is important not only for theoretical pur-
poses to ensure strong duality, but also many optimization algorithms require this prop-
erty. In the absence of strictly feasible points, a solver may not terminate or may produce
a “solution” with no useful meaning. This is a feature that distinguishes general conic op-
timization from linear programming. Consequently, very careful modelling is needed, since
often existence of strictly feasible points can be guaranteed if the problem is modelled in
a proper way. We will return to this point in Section 5.

We stress that a constraint qualification is unnecessary if the cone K is polyhedral
like in linear programming, where K = Rn

+. The reason why a positive duality gap may
occur in general conic programming lies in the geometry of the problem and happens if
the feasible set is contained in a face of the cone. Two approaches have been developed
to tackle conic problems that fail to fulfill a constraint qualification: (i) Facial reduction
attempts to identify the so called minimal cone Fmin for problem (P), such that problem (P)
with K replaced by Fmin is strictly feasible and has the same optimal solution as (P).
This facial reduction technique goes back to Borwein and Wolkowicz [22, 23]. (ii) Other
approaches (e.g. [96]) work on the dual side and construct an extended dual which achieves
strong duality without assuming a constraint qualification. A good exposition of these two
approaches can be found in [88].

1.2 LP, SOCP, and SDP

Depending on which cone K is considered, conic optimization includes various classes of
problems: If K = Rn

+, then (P) is a linear problem, a well studied class which appears in
numerous applications. LPs are used to model not only straightforward linear constraints,
but also constraints involving `1- or `∞- norms or absolute values.

If the cone K in (P) is the second order cone, then (P) is called a second order cone
problem (SOCP). The second order cone in Rn (sometimes also called Lorentz cone or ice
cream cone) is defined as Ln := {(x0, x) ∈ Rn | x0 ≥ ‖x‖2}. It appears in optimization
problems involving Euclidean norms: for example, the constraint ‖Ax+ b‖2 ≤ cTx+ d can
be written as (cTx+ d,Ax+ b) ∈ Ln+1. This is often used in robust optimization when an
ellipsoidal uncertainty set is used [12]. Other applications of SOCP can be found in [3, 73].
Certain risk measures in stochastic optimization may also lead to optimization problems
over the so called p-order cone Lpn := {(x0, x) ∈ Rn | x0 ≥ ‖x‖p} with p ≥ 1, see e.g. [102].

A third prominent setting is semidefinite programming (SDP), where K is considered
to be the cone of symmetric positive semidefinite matrices S+n := {X ∈ Rn×n | X =
XT , X � 0}. SDPs are used to model problems with linear matrix inequalities. They
appear in eigenvalue optimization and control theory, see [101, 55]. Arguably the two most
important areas of application for SDP are robust and combinatorial optimization. For
an in depth discussion of SDP in robust optimization, we refer to the book [12] ant the
recent survey paper [106]. The role of SDP in relaxations of combinatorial problems will
be covered in more detail below.

The cones Rn
+, Ln, and S+n are self-dual, whereas the dual of Lpn is Lqn with q such that

1
p + 1

q = 1. We mention that Rn
+, Ln, and S+n are instances of so called symmetric cones

that can be studied in the unifying framework of Euclidean Jordan algebras, see [47] and
references therein.

These three problem classes have been studied for decades because of their countless
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applications and because they can be solved efficiently: it has been shown in the vast
literature on interior point methods pioneered by [83] (see also [97]) that these algorithms
are able to solve LPs, SOCPs, and SDPs in polynomial time. A different class of algorithms
that solves SDPs is conic bundle methods, see [57, 56]. Numerous software implementations
are available, and we refer the reader to Hans Mittelmann’s website [79] for an up-to-date
list of the various packages.

1.3 Variants of SDP and SOCP

So far, we discussed linear conic optimization problems. However, the enormous modelling
power of semidefinite and second order cone programming only unfolds if we allow for
nonlinearities or integer variables:

Mixed integer conic optimization problems are linear conic problems with a constraint
that some of the variables are integer valued:

min 〈C,X〉
s. t. 〈Ai, X〉 = bi (i = 1, . . . ,m)

X ∈ K,
Xij ∈ Z ((i, j) ∈ J).

Sometimes binary constraints Xij ∈ {0, 1} for (i, j) ∈ J are used instead.
Nonlinear conic problems are nonlinear problems that involve a cone constraint, mostly

a semidefinitness constraint (K = S+n ) or an SOCP constraint (K = Ln). Naturally, mixed
integer nonlinear conic problems have been studied likewise.

It would be beyond the scope of this paper to discuss the development in mixed integer
nonlinear conic optimization here. We mention just a few applications:

Nonlinear SOCPs appear for example in facility location [28]. Mixed integer SOCPs
appear in engineering (e.g. turbine balancing problems), in service system design [51],
in finance (e.g. cardinality-constrained portfolio optimization), or in combinatorial prob-
lems like the Euclidean Steiner Tree Problem, see [49] and references therein. Solution
approaches for these problems include semismooth Newton methods [28], outer approxi-
mation algorithms [41], cutting plane algorithms [9, 40, 61], and Branch-and-Bound algo-
rithms [49].

Mixed integer SDPs have applications in truss topology optimization [49], in certain
clustering problems [4], or in sparse principal component analysis [71]. References to
numerous fields of application of nonlinear SDPs in engineering, (robust) control, finance
and others can be found in [5] and [105].

Solution algorithms for these problems include augmented Lagrangian methods, se-
quential SDP methods, and primal-dual interior point methods, see e.g., [5, 62, 105]. For
pointers to software implementations, we refer again to Hans Mittelmann’s website [79].

2 Conic reformulations of quadratic problems

Conic optimization problems play a particularly fruitful role in the theory of quadratic
and binary quadratic optimization problems. This is accomplished by a technique called
lifting, which was pioneered by [99] and [75]. The main idea can be seen as follows:
consider a quadratic expression xTQx with a symmetric matrix Q ∈ Rn×n and x ∈ Rn. If
we introduce a new variable X ∈ Rn×n to represent the rank-1 matrix xxT , then we get

xTQx = trace(xTQx) = trace(Q · xxT ) = 〈Q, xxT 〉 = 〈Q,X〉. (1)
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By this technique, quadratic terms in x ∈ Rn become linear terms in X ∈ Rn×n. Since
many optimization problems considered in the sequel contain nonnegativity constraints
x ≥ 0, this leads to the definition of a convex matrix cone that turns out very useful for
modelling purposes: The cone of completely positive matrices is defined as

CP := conv{xxT | x ≥ 0},

and its dual cone, the cone of copositive matrices, is defined as

COP := {X ∈ S | zTXz ≥ 0 for all z ≥ 0}.

For the ease of notation, we will omit the index n in notations like COPn or CPn unless it is
necessary to stress the dimension. Both COP and CP have been studied for decades in the
linear algebra literature, see [15] and references therein. They have numerous interesting
properties but are still not fully understood, cf. [14]. Note that the two cones are given
in different form: CP is given by its extreme rays which are precisely the rank-1 matrices
xxT with x ≥ 0, whereas COP is given as the solution set of (infinitely many) inequalities.
This fact plays a role when considering approximations of these cones, see Section 3. A
characterization of the extremal rays of COPn has only been given for n ≤ 6, cf. [1].
Likewise, only limited knowledge is available about the facial structure of CP and COP,
cf. [34].

The earliest use of these cones in optimization was a paper by Preisig [94] who studied a
particular fractional quadratic problem, and by Quist, de Klerk, Roos and Terlaky [95], who
were the first to introduce a conic optimization perspective while deriving relaxations for
general quadratic optimization problems. Bomze et al. [20] introduced the term “copos-
itive optimization” and showed for the first time equivalence of a nonconvex quadratic
optimization problem and a linear problem over CP resp. COP: They considered standard
quadratic optimization problems, i.e., nonconvex quadratic problems over the standard
simplex ∆ := {x ∈ Rn | eTx = 1} where e ∈ Rn denotes the all-ones vector. Given a
symmetric matrix Q ∈ Rn×n, a standard quadratic problem is of the form

min xTQx
s. t. eTx = 1

x ≥ 0.
(StQP)

In spite of its simple structure, (StQP) is an NP-hard problem if Q has a negative eigen-
value, see [86]. Alternatively, NP-hardness of (StQP) can be seen from the fact that the
maximum clique problem can be formulated as (StQP): consider a graph with n vertices.
Denote its adjacency matrix by A, its clique number by ω, and define J := eeT . It was
shown by Motzkin and Straus [80] that

1

ω
= min{xT (J −A)x : x ∈ ∆}. (2)

The max clique problem is a particularly difficult NP-hard problem, and even computing an
approximation of any reasonable quality is NP-hard [54]. We will see below how copositive
optimization can be used to tackle this and other NP-hard problems.

By squaring the constraint in (StQP) and applying the lifting transformation outlined
in (1), it is easy to see that the following problem is a relaxation of (StQP):

min 〈Q,X〉
s. t. 〈J,X〉 = 1

X ∈ CP,
(3)
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as is its dual problem
max{λ ∈ R | λJ −Q ∈ COP}. (4)

It is easy to verify that Slater’s condition and hence strong duality holds for (3)–(4). Since
the objective function of (3) is linear and the feasible set is convex, it follows that the
optimal solution is attained at an extreme point of the feasible set, which can be shown to
be the matrices of the form xxT with x ∈ ∆, cf. [20]. This implies that (3) and (4) are not
merely relaxations but exact reformulations of (StQP) in the sense that all three problems
have the same optimal value. The optimal solutions of (StQP) and (3) fulfill the following
relation: if x∗ is optimal for (StQP), then X∗ := x∗(x∗)T is optimal for (3). Conversely, if
X∗ is optimal for (3), then it can be decomposed as X∗ =

∑p
i=1 xi(xi)

T for some xi ∈ Rn
+

(i = 1, . . . , p). Then each x∗i := 1
eT xi

xi is an optimal solution of (StQP).
These reformulations (3)–(4) are interesting because they show that the NP-hard

(StQP) can be reformulated equivalently as a linear problem over the convex cones CP
or COP. In these formulations, all local minima vanish, and the complexity of the prob-
lem is entirely moved into the cone constraint. This indicates that CP and COP must be
intractable. Indeed, it was shown in [36], that checking membership in CP is NP-hard.
Checking membership in COP is co-NP-complete, as was shown in [81]. Whether or not
checking membership in CP is also in NP is still one of the many open problems related
to these cones, cf. [14].

Returning to the maximum clique problem for a graph with adjacency matrix A, it fol-
lows from [20] that the clique number ω equals the optimal value of the following copositive
problem:

ω = min{λ | λ(J −A)− J ∈ COP}.

Many other graph parameters have a representation as a copositive or completely positive
problem. We refer to [42] for references.

Copositive optimization experienced a breakthrough with Burer’s 2009 paper [25]. He
showed that every quadratic problem with linear and binary constraints can be rewritten
as such a problem. More precisely, he showed that a quadratic binary problem of the form

min xTQx+ 2cTx
s. t. aTi x = bi (i = 1, . . . ,m)

x ≥ 0
xj ∈ {0, 1} (j ∈ B)

(5)

with Q ∈ Sn, c, ai ∈ Rn (i = 1, . . . ,m), b ∈ Rm, and B ⊆ {1, . . . , n} can equivalently be
reformulated as the following completely positive problem:

min 〈Q,X〉+ 2cTx
s. t. aTi x = bi (i = 1, . . . ,m)

〈aiaTi , X〉 = b2i (i = 1, . . . ,m)
xj = Xjj (j ∈ B)(
X x
xT 1

)
∈ CP,

(6)

provided that (5) satisfies the so-called key condition, i.e., aTi x = bi for all i and x ≥ 0
implies xj ≤ 1 for all j ∈ B. As noted by Burer, this condition can be enforced without
loss of generality. Doing so may, however, have consequences when relaxing the cone
constraint [21, 60, 18].

Similar techniques can be used to derive copositive or completely positive formulations
for problems involving quadratic constraints or replacing the constraint x ∈ Rn

+ in (5)
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by other closed convex cones. This leads to reformulations involving so called generalized
copositive and completely positive cones: given a closed convex cone K ⊂ Rn, one can
define

CPK := conv{xxT | x ∈ K},

and its dual cone of generalized copositive matrices

COPK := {X ∈ S | zTXz ≥ 0 for all z ∈ K}.

These cones were introduced in [95] and studied also in [44]. As shown by Burer [26], the
problem where the nonnegativity constraints in (5) are replaced by the constraint x ∈ K
is (under mild conditions) equivalent to a linear conic program over the cone of matrices
which are completely positive over R+ × K, i.e., over the cone conv{yyT | y ∈ R+ × K}.
Eichfelder and Povh [45, 35] generalize this even more to the case where K is an arbitrary
set, and they also give a formulation for problems involving one quadratic constraint.

When considering quadratic constraints, reformulating the problem as a conic problem
becomes more involved. Burer [25] already considered certain special cases, namely binary
constraints (which can be viewed as quadratic equations x2i = xi), and complementarity
constraints. For more general quadratically constrained quadratic problems, similar refor-
mulations have been obtained: consider a quadratically constrained quadratic problem of
the form

min xTQ0x+ 2(c0)Tx
s. t. xTQix+ 2(ci)Tx ≤ bi (i = 1, . . . ,m)

(QCQP)

with Qi ∈ Sn, ci ∈ Rn (i = 0, . . . ,m), and b ∈ Rm. Burer and Dong [27] show two different
ways of formulating a (QCQP) as such a generalized completely positive problem over CPK:
one where K is a direct product of Rn

+ and second-order cones, and another where K is the
direct product of Rn

+ and semidefinite cones (viewed as vectors by stacking the columns
on top of each other). Bai et al. [10] and Arima et al. [8] derive similar formulations under
milder assumptions.

We remark that a different generalization of CP is the cone of completely positive
semidefinite matrices, i.e., the cone consisting of all n×n matrices that admit a Gram rep-
resentation by positive semidefinite matrices. This cone appears when studying quantum
analogues of graph parameters like the stability or chromatic numbers. We refer to [70] for
an in-depth discussion.

It goes without saying that generalized completely positive and copositive cones are
even harder to work with than CP or COP. The appeal of the formulations discussed above
lies in the fact that by this technique difficult, NP-hard problems can be reformulated as
linear problems over a convex cone. Hence these reformulations are convex problems which
do not possess local minima, and the hardness of the problem is completely captured by the
cone constraint. Therefore, any progress made in understanding the cones can be used to
help solving a whole range of different problems. As a first step, the approximation schemes
for COP and CP discussed in Section 3 can be extended to COPK and CPK. However, more
research on algorithmic approaches for problems over generalized copositive and completely
positive cones is needed to make these approaches work numerically for bigger problems.

2.1 Extensions: Polynomial optimization and infinite dimensional conic
problems

It is easy to see that any polynomial optimization problem can be rewritten as a quadratic
problem by introducing extra variables and constraints. For example, by defining an ex-
tra variable and constraint y = xjxk, the cubic term xixjxk becomes the quadratic term
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xiy. So the reformulations discussed above can in principle be applied to polynmial prob-
lems, as well. A different line of research has worked with the cone of completely positive
tensors. This concept was originally introduced by Dong [39] and consititutes another nat-
ural extension of CP. Peña et al. [91] consider optimization problems involving n-variate
polynomials and show that under certain assumptions these can be reformulated as linear
problems over the cone of completely positive tensors of order d and dimension n+1. They
also show that in case of a compact feasible set order d = 4 is sufficient. The approach
has been extended in [63, 104]. We also refer to [7] for more discussion on the connection
between conic and polynomial optimization.

We mentioned above that the maximum clique problem (and, equivalently, the stable
set problem) on a graph with vertex set V = {1, . . . , n} can be formulated as an (StQP) and
consequently as a copositive or completely positive problem (3)–(4). This can be general-
ized to infinite graphs, i.e., to the setting where the vertex set is not finite but a compact
metric space V equipped with a probability measure ω. The problem of determining the
stability number of an infinite graph appears e.g. in the kissing number problem [37] and
other packing problems, see [33]. Dobre et al. [37] generalized the concept of copositive
matrices to the infinite dimensional setting by defining copositive kernels: a kernel is a
continuous function K : V × V → R. Such a kernel K is called a copositive kernel if for
all continuous nonnegative functions f : V → R+ we have∫

V

∫
V
K(x, y)f(x)f(y)dω(x)dω(y) ≥ 0.

It can be shown that the cone of copositive kernels is independent of the choice of ω. This
cone as well as its dual (the cone of completely positive measures) can be used to derive
exact copositive and completely positive reformulations of the stability number problem
for infinite graphs, see [37]. Since these cones are intractable, approximations have been
proposed in [65, 64]. This in turn has been used to derive good bounds for the underlying
problems.

3 Approximation hierarchies for COP and CP
Since the cones COP and CP are computationally intractable, approximations have to
be used in order to solve an optimization problem over one of these cones. As outlined
in (1), the motivation to introduce the cone CP was by introducing a symmetric matrix X
to represent the rank-1 matrix xxT . So a first straightforward relaxation is to replace
the constraint X = xxT by X � xxT (meaning that X − xxT ∈ S+n ), which by Schur’s
complement lemma is equivalent to (

X x
xT 1

)
∈ S+n+1.

This relaxation goes back to Shor [99] and corresponds to the simple fact that S+n ⊆ COPn

for any n. It is interesting to note that the SDP-relaxation of a quadratic problem cor-
responds to the Lagrangian dual of that problem, whereas considering partial Lagrangian
duals (i.e., dualizing the problem only with respect to a subset of the constraints) leads
to various copositive relaxations, cf. [17]. The Shor relaxation can be improved by adding
more constraints to the SDP, or by using some relaxation-linearization techniques, yielding
stronger SDP-relaxations. This has been discussed in detail in [11].

Shor’s approximation can be strengthened by using better approximations to COP:
Denote by Nn the set of symmetric entrywise nonnegative n × n matrices. Then it is
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obvious from the definition that Nn ⊆ COPn. We therefore get that Nn + S+n ⊆ COPn,
and by duality CPn ⊆ Nn ∩ S+n . Interestingly, both inclusions are equalities for n ≤ 4 and
are strict for n ≥ 5, cf. [78]. Matrices in Nn∩S+n are sometimes called doubly nonnegative
(both the entries and the eigenvalues are nonnegative). This cone has been frequently
used to obtain bounds for certain combinatorial problems, with the most prominent case
being the Lovász-Schrijver bound ϑ+(G) (sometimes called ϑ′(G)) on the clique number
of a graph G, see [98].

In order to get better approximations of COP and CP, a number of techniques have
been developed which often lead to so called approximation hierarchies, i.e., monotonous
sequences of inner or outer approximations of COP or CP which are, in some sense, exact
in the limit. The approximating cones are constructed in such a way that optimizing
over them amounts to solving an LP, an SOCP, or an SDP, all of which can be done in
polynomial time. Several of these hierarchies have been proposed, and we discuss the most
important ones next. Note that these hierarchies were originally designed to approximate
either COP or CP. However, it should be clear that any inner (resp. outer) approximation
hierarchy of one cone by duality yields an outer (resp. inner) approximation hierarchy for
the dual cone.

3.1 Inner approximation hierarchies for COP

Parrilo [87] was the first to propose a hierarchy approximating COP from the interior.
The basic idea is to reformulate the copositivity condition as a nonnegativity condition
for certain polynomials, and then to use the sufficient condition that a polynomial is
nonnegative if it can be represented as a sum of squares (sos) of other polynomials. Suppose
we are given a matrix A ∈ Sn and we would like to determine whether or not A ∈ COPn.
To this end, consider the polynomial

PA(x) :=
n∑

i=1

n∑
j=1

aijx
2
ix

2
j (7)

and observe that A ∈ COPn if and only if PA(x) ≥ 0 for all x ∈ Rn. A sufficient condition
for this is that PA(x) is sos. Parrilo showed that the set of matrices A for which PA(x) is
sos equals S+n +Nn.

Moreover, he was able to refine this by using a result by Pólya [92] and considering
higher order polynomials. For any r ∈ N, define the cone

Kr :=

{
A ∈ S | PA(x)

(
n∑

i=1

x2i

)r

has an sos decomposition

}
.

Parrilo showed that

S+ +N = K0 ⊂ K1 ⊂ . . . ⊂ COP and int(COP) ⊆
⋃
r∈N
Kr,

so the cones Kr approximate COP from the interior. The sos condition can be written as
a system of linear matrix inequalities (LMIs), and therefore optimizing over Kr amounts
to solving an SDP. However, it should be noted that for increasing values of r, the size of
these SDPs increases rapidly, resulting in problems that are beyond the range of current
SDP-solvers even for moderate values of r.

Ahmadi and Majumdar [2] developed a more general theory for nonnegativity of poly-
nomials which when applied in our context boils down to relaxing the sos-condition by
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requiring that PA(x) resp. PA(x)
(∑n

i=1 x
2
i

)r has a decomposition as a sum of squares of
binomials. This is clearly a weaker sufficient condition for nonnegativity of PA(x), but the
advantage is that this condition can be verified by solving an SOCP. They also consider
scaled versions and obtain hierarchies that they call rDSOSn and rSDSOSn.

An alternative sufficient condition for nonnegativity of a polynomial is that all of its
coefficients are nonnegative. Exploiting this idea, de Klerk and Pasechnik [31], cf. also
Bomze and de Klerk [19], define the cones

Cr :=

{
A ∈ S | PA(x)

(
n∑

i=1

x2i

)r

has nonnegative coefficients

}
.

They showed that

N = C0 ⊂ C1 ⊂ . . . ⊂ COP and int(COP) ⊆
⋃
r∈N
Cr.

Each of the cones Cr is polyhedral, so optimizing over one of them is solving an LP.
Peña et al. [90] refined the above approaches and derived a hierarchy of cones Qr which

in a sense sits between Cr and Kr, i.e., it fulfills Cr ⊆ Qr ⊆ Kr for all r ∈ N. These cones
can be described by LMIs as well, so optimizing over Qr is again an SDP.

Each of the above hierarchies provides a uniform inner approximation to COP. How-
ever, this may not be desirable when considering a specific optimization problem over COP.
Rather, one would like to obtain a good approximation of COP in the vicinity of the opti-
mal solutions, whereas in other parts of the feasible set a coarse approximation is sufficient.
This idea gave rise to the approach by Bundfuss and Dür [24]: It is easy to see that the
definition of COP is equivalent to COP = {A ∈ S | xTAx ≥ 0 for all x ∈ ∆}. Now [24]
consider partitions P = {S1, . . . , Sm} of ∆ into subsimplices and give conditions ensuring
nonnegativity of xTAx over each Si. Let S = conv{v1, . . . , vn} ⊆ ∆ be such a simplex.
Then x ∈ S can be written as a convex combination x =

∑n
i=1 λivi with

∑n
i=1 λi = 1 and

λi ≥ 0 for all i. Copositivity of a matrix A then means that

0 ≤ xTAx =

(
n∑

i=1

λivi

)T

A

 n∑
j=1

λjvj

 =

n∑
i,j=1

(vTi Avj)λiλj . (8)

Since λi ≥ 0 by construction, a sufficient condition for (8) is that vTi Avj ≥ 0 for all i, j.
Note that this constitutes a system of linear inequalities for the entries of A. Therefore,

IP := {A ∈ S | vTAv ≥ 0 for all vertices v of simplices in P,
uTAv ≥ 0 for all edges {u, v} of simplices in P}.

is a polyhedral inner approximation of COP. It is shown in [24] how the partition P can
be refined in order to obtain a sequence of inner approximations that can either be tailored
to yield a uniform approximation of COP or an adaptive approximation with good quality
in the vicinity of the optimal solution of the underlying copositive optimization problem.

3.2 Outer approximation hierarchies for COP

Since we can write COP = {A ∈ S | xTAx ≥ 0 for all x ∈ ∆}, outer approximations
of COP can be obtained by picking suitable subsets I ∈ ∆ and considering {A ∈ S |
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xTAx ≥ 0 for all x ∈ I}. One option studied by Yıldırım [107] is to consider regular grids
of rational points on the unit simplex defined as

δ(r) :=
r⋂

k=1

{x ∈ ∆ | (k + 2)x ∈ Nn
0}. (9)

Then the set Or := {A ∈ S | xTAx ≥ 0 for all x ∈ δ(r)} is clearly a polyhedral outer
approximation of COP for any r ∈ N, and one can show that O0 ⊃ O1 ⊃ . . . ⊃ COP and
COP =

⋂
r∈NOr. This approximation scheme gives again uniform approximations of COP

and allows for exact assessment of the quality of the approximation.
Alternatively one can use an approach developed by Lasserre in a series of papers

which makes use of the vast body of theory on positive (resp. nonnegative) polynomials
and polynomial optimization. Denote by P+

n,d the cone of n-variate polynomials of total
degree ≤ d which are nonnegative on Rn (note that such a polynomial necessarily has
even degree). Then A ∈ Sn is copositive if and only if the polynomial PA from (7) fulfills
PA ∈ P+

n,4. The Riesz-Haviland Theorem tells us that the dual of P+
n,d is the so called

moment cone. Exploiting this, one can obtain another hierarchy of cones approximating
COP resp. CP which is a special case of the Lasserre-hierarchy applied to the setting of
copositivity and complete positivity. We refer to the book by Lasserre [66] and the survey
by Laurent [69] which both give excellent introductions to the general moment approach for
polynomial optimization. The paper by Lasserre [67] explicitly describes how to construct
hierarchies of outer approximations of COP and inner approximations of CP by using this
moment approach. It should be noted that these hierarchies are based on conditions that
can be expressed as LMIs, and hence optimizaing over these hierarchies amounts to solving
SDPs.

A third option is the adaptive approximation approach by Bundfuss and Dür [24]
detailed in Section 3.1. This yields the outer approximation

OP := {A ∈ S | vTAv ≥ 0 for all vertices v of simplices in P}.

This yields a hierarchy of polyhedral approximations that can again be tailored to either
yield a uniform outer approximation of COP or a finer approximation in the vicinity of
the set of optimal solutions but only a coarse approximation in the remaining parts.

3.3 Inner approximation hierarchies for CP

Recall that CPn = conv{xxT | x ∈ Rn
+} = cone conv{xxT | x ∈ ∆}. Therefore, inner

approximations of CP can be constructed analogous to outer approximations of COP,
namely by chosing suitable subsets I ∈ ∆ and considering C(I) := cone conv{xxT | x ∈ I}.
A thorough treatment investigating properties of the approximation in dependence of the
set I is given in [108].

If the set I stems from a finite discretization of ∆, then C(I) is polyhedral. A different
approach was developed by Gouveia et al. [52] based on similar work in [2]. They consider
the cone

SDDn
+ := conv{xxT | x ∈ Rn

+, | supp(x)| ≤ 2} ⊆ CPn,

where the support of a vector x is defined as supp(x) := {i | xi 6= 0}. It can be shown
(see [2, 52] and references therein) that A ∈ SDDn

+ if and only if A is scaled diagonally
dominant, i.e., if there exists a diagonal matrix D with positive diagonal entries such that
DAD is diagonally dominant. From the definition we get that that A ∈ SDDn

+ if and only
if A can be written as A =

∑
i<j M

ij , where M ij are symmetric nonnegative and positive
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semidefinite matrices whose entries are zero everywhere except at the positions ii, ij, ji, jj.
Observe that positive semidefinitness of 2× 2 symmetric matrices can be characterized by
second order conditions. Indeed, we have(

a b
b c

)
∈ S+2 ⇐⇒ a ≥ 0, c ≥ 0,

ac− b2 ≥ 0
⇐⇒ a ≥ 0, c ≥ 0,

∥∥∥∥( 2b
a− c

)∥∥∥∥
2

≤ a+ c,

and the latter condition is equivalent to the second order cone constraint (a+c, 2b, a−c)T ∈
L3. Therefore, optimizing over SDDn

+ amounts to solving an SOCP. In [52], this approach
is further refined by considering scaled variants of SDDn

+ which can be tailored to obtain
either uniform or problem-dependent approximation schemes.

4 Examples of binary quadratic problems

In this section, we discuss a few combinatorial problems which can be formulated as binary
quadratic optimization problems. These problems are typically NP-hard, so it will be
useful to consider reformulations and relaxations which are tractable. It will turn out that
relaxations based on conic optimization are particularly useful. We will mostly focus on
relaxations in the cone of positive semidefinite matrices. Throughout this section, assume
we are given an undirected graph G = (V,E) with V = {1, . . . , n} and adjacency matrix
A ∈ Sn.

4.1 Unconstrained binary quadratic optimization and MaxCut

An unconstrained binary quadratic optimization problem takes as input a symmetric n×n
matrix Q and asks to find

min xTQx
s. t. x ∈ {0, 1}n. (10)

Since xi = x2i , a possible linear term in the objective function could be integrated in the
main diagonal of Q, so it is not necessary to explicitly include a linear term in this model.

The MaxCut Problem is defined by an edge weighted graph, given through its
adjacency matrix A. Hence A is symmetric, but we do not impose any further restrictions
to the entries of A. In particular, aij < 0 is possible. If [i, j] is not an edge of the graph,
we set aij = 0. The Laplacian matrix L associated to A is defined by

lij := −aij for i 6= j, and lii :=
∑
k

aik.

Note that Le = 0, and if A ≥ 0, then L � 0. It is a simple exercise to verify that for
y ∈ {−1, 1}n the value of the cut defined by S := {i | yi = 1} is given by∑

i<j

1
2aij(1− yiyj) = 1

4y
TLy.

Using Le = 0 and setting x := 1
2(y + e) ∈ {0, 1}n, we get that

1
4y

TLy = xTLx.

This shows that the MaxCut Problem

max 1
4y

TLy such that y ∈ {−1, 1}n
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and the binary quadratic optimization problem (10) are indeed equivalent optimization
problems. Lasserre [68] showed an even more general result: Considering the linearly
constrained binary quadratic problem

min{cTx+ xTFx | Ax = b, x ∈ {0, 1}n}, (11)

Lasserre showed that this can by reformulated as a MaxCut problem on a graph with
n+ 1 nodes that can be explicitly constructed from the data of the problem. So in a sense
MaxCut is a canonic model for linear and quadratic binary problems. Note that (11) is
s special instance of the problem (5) studied by Burer. It can therefore be formulated as
a copositive problem, and then approximation hierarchies from Section 3 can be used.

Historically, linear and then semidefinite relaxations were studied before copositivity
came into play. In a celebrated paper, Goemans and Williamson [50] took the following
approach: since yTLy = 〈L, yyT 〉 they introduce the matrix Y taking the role of yyT .
Then Y � 0 and diag(Y ) = e must hold, and this yields the semidefinite relaxation

max 1
4〈L, Y 〉 such that diag(Y ) = e, Y � 0. (12)

For graphs with nonnegative edge weights, they were able to show the celebrated result that
the optimal value of (12) is at most 13.83% higher than the optimal value of MaxCut.
In other words, the SDP relaxation has a performance guarantee of ≈ 87%.

4.2 Partition and Clustering problems

We briefly discuss various extensions of unconstrained binary quadratic optimization prob-
lems which lead to additional linear constraints on the binary variables.

k-cluster problems
The simplest extension of problem (10) consists in asking that exactly k of the variables

in (10) are set to 1. Let A ≥ 0 be a symmetric n × n matrix. We may think of aij as a
measure for the interaction between i and j. The problem

max 1
2x

TAx such that eTx = k and x ∈ {0, 1}n

asks for a subset of k vertices having maximum total pairwise interaction. Such a set may
be viewed as a “cluster” in the sense that it collects a set of k items with maximum mutual
interaction. This type of problem has found increased interest from applications in data
mining, see for instance [48]. Various SDP relaxations have been discussed in [77].

A different application of this type of problem is related to the stable set problem. Let
A be the adjacency matrix of an unweighted graph G and let k be given. Consider the
minimization problem

z(k) := min 1
2x

TAx such that eTx = k and x ∈ {0, 1}n.

If the optimal value fulfills z(k) > 0, then we have a proof that G has no stable set of
size k, so that the stability number α(G) fulfills α(G) ≤ k − 1. This idea will be further
exploited in Section 4.3.

Max-k-Cut
The MaxCut problem may also be seen as a very simple graph partition problem as it

asks to separate the vertices of the graph into two parts such as to maximize the weight of
the edges joining the two partition blocks. It is a natural generalization to consider vertex
partitions into (at most) k partition blocks for some fixed k ≥ 2.
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We represent k-partitions of V = {1, . . . , n} by 0-1 matrices X of order n×k satisfying
Xe = e. This condition simply states that (Xe)i = 1 for all i, meaning that vertex i is in
exactly one partition block, namely block j in case xij = 1. The sum of the elements of
column j of X equals the number of vertices (possibly zero) in partition block j. It is a
simple exercise to verify that the total weight of edges joining vertices in distinct partition
blocks is given by

1
2 trace(LXXT ).

Therefore, the Max-k-Cut problem may be formulated as

max 1
2 trace(LXXT ) such that Xe = e and X ∈ {0, 1}n×k.

The k-partition problem is obtained by further constraining the partitions to have
exactly k partition blocks, and to require that partition block j contains exactly mj ∈ N
vertices, where

∑
j mj = n. We collect the cardinalities mj in the vector m ∈ Nk, so that

feasible partitions are represented by matrices X ∈ {0, 1}n×k satisfying

Xe = e and XT e = m.

The special case where all the mi are equal is of special interest in certain telecommuni-
cation problems, and we refer to [72] for a discussion of these applications and relaxations
based on semidefinite optimization.

4.3 Stable sets and graph coloring

We briefly look at formulations for the stability and the chromatic number of a graph in
connection with quadratic binary optimization.

A subset S of vertices of a graph G is called stable (or independent), if the subgraph of G
induced by S is empty. The stability number α(G) denotes the cardinality of a largest stable
set in G. Determining α(G) is considered an extremely difficult combinatorial optimization
problem, cf. [54]. The following binary quadratic optimization problem determines α(G):

α(G) = max
∑

xi such that xixj = 0 for all [i, j] ∈ E(G), x ∈ {0, 1}n.

The optimal value z(k) of the following optimization problem can be used to check
whether G contains a stable set of size k. As usual, A denotes the adjacency matrix
of G.

z(k) := min 1
2x

TAx such that eTx = k, x ∈ {0, 1}n. (13)

If z(k) = 0, then G contains a stable set of size k given by S = {i | xi = 1}. On the other
hand, z(k) > 0 shows that G has no stable set of size k and therefore α(G) < k.

Let us now turn to vertex colorings of G. A k-coloring of V (G) can be seen as a
vertex partition of V (G) into k stable sets (the color classes). The chromatic number χ(G)
denotes the smallest number k such that G is k-colorable. A formulation to compute χ(G)
as the solution of a copositive problem was given in [53].

Expressing χ(G) as a binary optimization problem is usually done as follows. Let
S = {s1, s2, . . .} be the collection of characteristic vectors of stable sets in G.

χ(G) = min
∑
i

λi such that
∑
i

λisi = e, λi ∈ {0, 1}.
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This is a linear optimization problem in binary variables λi. Unfortunately, there may be
an exponential number of them. Weakening the condition λi ∈ {0, 1} to 0 ≤ λi ≤ 1 for
all i leads us to the fractional chromatic number χf (G):

χf (G) = min
∑
i

λi such that
∑
i

λisi = e, 0 ≤ λi ≤ 1 for all i.

Computing the optimal value χf (G) of this linear program is again known to be NP-hard,
see for instance [76].

Let us now consider testing whether G contains a k-coloring for some given k. We
introduce the n × k binary matrix X and require

∑k
r=1 xir = 1 for all 1 ≤ i ≤ n, which

we write in a slight abuse of notation as Xe = e. This condition asks that each row of X
contains exactly one entry equal to one, so that the columns of X provide a vertex partition
of V (G) into (at most) k partition blocks. Since each row of X has exactly one nonzero
entry we see that

∑k
r=1 xirxjr = 1 for some i 6= j is only possible if i and j both belong to

the same partition block r for some r ∈ {1, . . . , k}. As a consequence∑
[ij]∈E(G)

∑
r

xirxjr = 1
2〈X,AX〉

counts the number of edges joining vertices in the same partition block. We introduce

z(k) := min 1
2〈X,AX〉 such that Xe = e, X ∈ {0, 1}n×k. (14)

In a slight abuse of notation, we use z(k) again for the optimal value of the relaxation
with exactly k columns in X. If z(k) = 0, then the optimal X provides a partitioning of
V (G) into (at most) k stable sets and therefore χ(G) ≤ k. On the other hand z(k) > 0
implies that no k-partition exists where all partition blocks are stable sets, and therefore
χ(G) > k.

We will come back to SDP relaxations for both k-ones problems and investigate con-
nections to the ϑ number in Section 5.2.

4.4 Quadratic set cover

The (linear) set cover problem is defined as follows. We are given a set C := {v1, . . . , vn}
of n elements and a collection S of m subsets of C such that their union equals C. Each
subset Si in S has cost qi. The task is to select subsets in S such that their union is S and
such that the cost of the selected subsets in minimized. This problem is one of Karp’s 21
NP-complete problems.

To state this problem formally, define an n×m binary matrix A with aij = 1 if vi ∈ Sj .
Row i of A indicates which subsets Sj contain vi, column j of A is the incidence vector of
subset Sj . With this, the linear set cover problem reads:

z∗ := min
m∑
j=1

qjxj such that
∑
j

aijxj ≥ 1 for all i = 1, . . . , n and x ∈ {0, 1}m.

Let us denote the largest row sum of A by f and the largest column sum of A by g.
The following approximation results go back to the 1980’s. Hochbaum [58] introduces a
primal-dual LP-rounding heuristic which gives (in polynomial time) a feasible solution to
set cover with value z at most fz∗, i.e. z ≤ fz∗. Chvátal [29] proposes a greedy rounding
heuristic which yields (in polynomial time) a feasible solution to set cover with value z at
most (1 + log(g))z∗, i.e., z ≤ (1 + log(g))z∗.
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The quadratic set cover problem differs from the linear one only in the objective function
which now also may contain quadratic terms:

m∑
i=1

m∑
j=1

qijxixj .

It is clear that if qij = 0 for all i 6= j, then we recover the linear set cover problem (as
xj = x2j ).

A good summary on complexity issues related to quadratic set cover is given by Es-
coffier and Hammer [46]. They relate quadratic set cover to deciding whether a graph
has chromatic number 3: Let G be a (nonbipartite) graph on n vertices and construct a
quadratic set cover instance as follows. The ground set is V = {1, . . . , n} and we have 3n
subsets Sir with

Sir := {i} for r = 1, 2, 3,

so each set consists of only one element, and we have three copies of each set. The n
covering conditions ask that

xi1 + xi2 + xi3 ≥ 1 for all i = 1, . . . , n.

We may think of these constraints as asking that each vertex should receive color 1 or 2
or 3. Thus we do not allow that all three of these variables are zero but more than one of
them may be set to one. Escoffier and Hammer [46] show the following theorem.

Theorem 4.1. Let G be a nonbipartite graph and consider

z∗ := min
∑

[i,j]∈E(G)

xi1xj1 + xi2xj2 + xi3xj3

s. t. xi1 + xi2 + xi3 ≥ 1 for all i = 1, . . . , n

xir ∈ {0, 1} for all i = 1, . . . , n, r = 1, 2, 3.

Then z∗ = 0 if and only if χ(G) = 3.

As a consequence, it is NP-hard to decide whether a quadratic set cover problem has
optimal value 0 or greater than 0. The covering problem in this construction is quite simple.
Each set consists of only one element (Sir = {i}), and each cover constraint involves only
three elements from the ground set. This problem would therefore be trivial to solve with
a linear objective function.

4.5 Quadratic assignment problem

The Quadratic Assignment Problem (QAP) asks to minimize a quadratic objective function
over the set of permutation matrices. It contains many prominent NP-hard problems as
special cases, see for instance [85]. We define it through three data matrices A,B and C
of order n × n and assume that A and B are symmetric. The set of n × n permutation
matrices is denoted by Πn or Π for short. The QAP then reads:

min〈AXB + C,X〉 such that X ∈ Π.

Note that Π is contained in the affine space

E := {X ∈ Rn×n | Xe = XT e = e}
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of all matrices having row and column sums equal to 1. Let the (n − 1) × n matrix V
represent a basis of e⊥, the orthogonal complement to the vector e ∈ Rn. It is well known
that any X ∈ E may be written as

X = 1
nJ + VMV T

where J := eeT and M ∈ S is an arbitrary symmetric matrix of order n − 1. Note in
particular that VMV T lies in the linear space of matrices having row and column sums
equal to 0.

Povh and Rendl [93] proposed a copositive formulation of QAP and semidefinite relax-
ations based upon it. To this end, it is useful to rewrite the objective function of QAP in
terms of x := vec(X), where vec(X) is a vector obtained from the matrix X by stacking
the columns of X on top of each other. Using the Kronecker product B⊗A of the matrices
B and A, it is not difficult to see that

〈AXB,X〉 = xT (B ⊗A)x

We also set c := vec(C) and derive

〈AXB + C,X〉 = xT (B ⊗A)x+ cTx.

We are now interested in the set

P := conv{xxT : x = vec(X), X ∈ Π}.

We have just seen that

x = vec(X) = vec( 1
nJ + VMV T ) = 1

ne⊗ e+ (V ⊗ V )m

using m := vec(M). Let z :=
(
1
m

)
and set W := ( 1

ne ⊗ e, V ⊗ V ). Then x = Wz and
xxT = WzzTW T . The definition of z implies (zzT )1,1 = 1. The SDP relaxation of QAP is
now obtained by allowing any semidefinite matrix R with (R)1,1 = 1 in place of zzT . For
ease of notation we introduce Y := WRW T and get the following semidefinite relaxation
of QAP:

min〈B ⊗A+ diag(c), Y 〉 such that Y = WRW T , (R)1,1 = 1, y = diag(Y ), Y − yyT � 0.

Since Y takes the role of xxT we may think of the n2×n2 matrix Y as being partitioned into
n× n matrices Y i,j such that Y i,j corresponds to the matrix X.,i ·XT

.,j . Since Xi,kXi,l = 0

for k 6= l, it follows immediately that the submatrix Y i,i is 0 outside its main diagonal,
i.e., (Y i,i)k,l = 0 for all k 6= l. In a similar way we conclude that diag(Y i,j) = 0 for i 6= j.
We refer to [93] for further details.

5 Modelling linear equalities and inequalities in SDP relax-
ations

In this section we take a closer look at modelling issues related to combinatorial optimiza-
tion problems. We stress that formulations which are equivalent in the binary setting may
give different results when we move to conic relaxations. For instance, suppose we have
binary variables xi ∈ {0, 1} and we would like to express the constraint that for a given
pair i, j at most one of the associated variables xi and xj is allowed to be equal to 1. This
could be done either by imposing the linear inequality xi + xj ≤ 1 or by requiring the
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quadratic equation xixj = 0 to hold. In the binary setting, both conditions are equivalent,
but once we move to relaxations, they may yield different results.

Moreover, various ways of constructing SDP relaxations have been proposed in the
literature which may also lead to bounds of varying quality. We refer to [6] for a recent
discussion of various SDP models related to the stable set problem.

Finally, the idea of SDP hierarchies has recently found increased scientific interest. Ap-
plied to combinatorial optimization problems, these hierarchies typically have the property
that the quality of the relaxation gets tighter as one moves up in the hierarchy, yielding
the integer optimum as one moves up high enough in the hierarchy. Unfortunately, it is
computationally challenging to tackle even the first few levels in these hierarchies. If the
initial problem has n binary variables, the SDP in the first level of the hierarchy is formu-
lated in matrices of order n + 1, but already the second level uses matrices of order

(
n
2

)
which is prohibitive once n is much larger than 100.

5.1 Lifting linear constraints

Here we focus on the first question and investigate how linear constraints may be lifted
into the SDP relaxation. For given a0 > 0, we consider the SDP relaxation of

maxxTCx such that x ∈ {0, 1}n, aTx = a0.

This is an binary quadratic optimization problem with a single linear equality constraint
aTx = a0. How should this equation be included in the SDP relaxation?

The semidefinitness constraint X−xxT � 0 with diag(X) = x immediately shows that

aTXa ≥ (aTx)2.

Since we should have equality it seems plausible to optimize over the set

F1 := {(X,x) |
(
X x
xT 1

)
� 0, diag(X) = x, aTx = a0, a

TXa = a20}.

Unfortunately, this construction makes feasible matrices singular, as we show in the next
lemma:

Lemma 5.1. Let (X,x) ∈ F1. Then the matrix
(
X x
xT 1

)
is singular and Xa = a0x.

Proof. We first note that(
a
−a0

)T (
X x
xT 1

)(
a
−a0

)
= aTXa− 2a0a

Tx+ a20 = 0.

Since
(
X x
xT 1

)
� 0, this implies

(
X x
xT 1

)(
a
−a0

)
= 0, and therefore Xa = a0x.

As a consequence, we se that if we work with the set F1 in an SDP-relaxation, then
the Slater condition is necessarily violated, and we already saw that this is disadvantagous
both from a theoretical perspective (strong duality may not hold) and from a practical
perspective (solvers ma not be able to handle the problem). As an alternative, we propose
the set

F2 := {(X,x) | X � 0, diag(X) = x, aTx = a0, Xa = a0x}.

We next show that the two sets are actually equal:
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Lemma 5.2. We have that F1 = F2.

Proof. We first take (X,x) ∈ F1. Then X � 0, diag(X) = x and aTx = a0. Lemma 5.1
shows that Xa = a0x and therefore (X,x) ∈ F2.

Conversely, let (X,x) ∈ F2. We immediately get that aTx = a0 and aTXa = a20. It
remains to show that

Y :=

(
X x
xT 1

)
=

(
X 1

a0
Xa(

1
a0
Xa
)T

1

)
� 0.

Let Xv = 0. Then w :=
(
v
0

)
is in the null-space of Y , as Y w =

(
Xv

1
a0

aTXv

)
= 0. This shows

that the null-space of X (extended with an additional component equal to 0) is contained
in the null-space of Y . We also have Y

(
a
−a0

)
= 0, so that X and Y have the same rank. If

X � 0 then all nonzero eigenvalues of Y are positive by the interlacing property between
the eigenvalues of X and Y .

Remark 5.3. The matrix Y above is sometimes called a flat extension of X. It is a well
known fact that flat extensions of semidefinite matrices are also semidefinite.

Next we investigate the situation where a linear term aTx is required to be contained in
some interval, say |aTx| ≤ a0, with a0 > 0. The constraints X−xxT � 0 and diag(X) = x
imply

aTXa ≥ (aTx)2.

We conclude that a20 ≥ aTXa is at least as strong as the original inequality |aTx| ≥ a0.
Finally, we observe that the situation is different for one-sided linear inequalities of the

form
aTx ≥ a0

with a0 > 0. Arguing as before we see that

aTXa ≥ (aTx)2,

hence the original original inequality aTx ≥ a0 is at least as strong as aTXa ≥ a20.

5.2 Stable set and coloring relaxations

We recall the formulation for the stability number α(G) for a graph G:

α(G) := max{eTx | xixj = 0 for all [ij] ∈ E(G), x ∈ {0, 1}n}.

One of its first relaxations using SDP was introduced in a seminal paper by Lovász [74].
It may be derived from nonzero binary vectors x by introducing X := 1

xT x
xxT . Note that

eTx = eTXe holds for any feasible x. Let

ϑ(G) := max{eTXe | X � 0, xij = 0 for all [ij] ∈ E(G)}.

As any characteristic vector x of a stable set leads to a feasible matrix X for this problem,
it is clear that α(G) ≤ ϑ(G). Lovász and Schrijver [75] showed that ϑ(G) can also be
obtained as the optimal value of the following SDP:

ϑ(G) = max{eTx | x = diag(X), Xij = 0 for all [ij] ∈ E(G),

(
X x
xT 1

)
� 0}.
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We now return to the parameter z(k) from (13) and derive upper bounds on α(G)
based on it. We denote by A the adjacency matrix of our graph G. For given k ∈ N we
have

z(k) := min 1
2x

TAx such that eTx = k and x ∈ {0, 1}n.
If z(k) > 0, then clearly G has no stable set of size k and therefore α(G) < k. Computing
z(k) is an NP-complete problem, see for instance [16], so we consider the following tractable
relaxation denoted by P (t) for some t > 1:

P (t) min 1
2〈A, Y 〉 such that Y � 0, Y ≥ 0, trace(Y ) = t, Y e = t diag(Y )

Note that this is a doubly nonnegative relaxation, since the constraints Y � 0, Y ≥ 0 mean
that Y should be in the cone of doubly nonnegative matrices. we denote the optimal value
of P (t) by val(P (t)). Note that val(P (t)) > 0 implies α(G) ≤ btc, so we are interested in
finding the smallest t such that val(P (t)) > 0. It turns out that the answer to this question
is closely related to Schrijver’s refinement ϑ+ = ϑ+(G) (sometimes denoted by ϑ′(G)) of
the original theta function ϑ(G):

ϑ+ := max trace(Y )
s. t. Y − yyT � 0, diag(Y ) = y, yij = 0 for all [i, j] ∈ E(G), Y ≥ 0.

(S1)

Before we establish this connection we recall the following alternative formulation of ϑ+:

ϑ+ = max〈J,X〉
s. t. X � 0, trace(X) = 1, xij = 0 for all [i, j] ∈ E(G), X ≥ 0.

(S2)

The following property of optimal solutions to (S1) will be used later on.

Lemma 5.4. Let (Y ∗, y∗) be optimal for (S1). Then Y ∗e = ϑ+y∗.

Proof. We first note that X∗ := 1
ϑ+Y

∗ is feasible for (S2) and therefore 〈J,X∗〉 ≤ ϑ+.
This means that 〈J, Y ∗〉 ≤ (ϑ+)2. On the other hand, Y ∗ − y∗(y∗)T � 0 so that 〈J, Y ∗〉 ≥
(eT y∗)2 = (ϑ+)2. Thus we have shown that 〈J, Y ∗〉 = (ϑ+)2. This implies that eT (Y ∗ −
y∗(y∗)T )e = 0 and together with the semidefinitness of the matrix Y ∗ − y∗(y∗)T we get
(Y ∗ − y∗(y∗)T )e = 0, showing that Y ∗e = ϑ+y∗.

We are now ready to show the following result.

Theorem 5.5. Let A be the adjacency matrix of a graph G. Then val(P (t)) > 0 if and
only if t > ϑ+(G).

Proof. We first consider the problem P (t) for the value t = ϑ+ := ϑ+(G):

P (ϑ+) min 1
2〈A, Y 〉 such that Y � 0, Y ≥ 0, trace(Y ) = ϑ+, Y e = ϑ+ diag(Y ).

Now take an optimal solution (Y, y) for problem (S1), so trace(Y ) = ϑ+, Y − yyT �
0, yij = 0 for all [i, j] ∈ E(G), yij ≥ 0 for all [i, j] /∈ E(G). Lemma 5.4 shows us that
Y e = ϑ+y. We conclude that (Y, y) is feasible for problem P (ϑ+). Since yij = 0 on E(G)
we conclude that val(P (ϑ+)) = 0.

Next, suppose that val(P (t)) = 0 and consider t′ with 1 < t′ < t. Suppose that (Y, y)
is optimal vor P (t). It is a simple exercise to verify that

Y ′ :=
t′

t(t− 1)

[
(t′ − 1)Y + (t− t′) diag(Y )

]
is feasible for P (t′) with objective value 0, hence val(P (t)) = 0 for all 1 < t ≤ ϑ+.

Finally, the definition of problem (S1) shows that ϑ+ is the largest possible value for
the trace of a matrix Y which satisfies Y � 0, Y ≥ 0, yij = 0 for all [i, j] ∈ E(G), and
therefore val(P (t)) > 0 for any t > ϑ+.
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A similar approach can also be used to get lower bounds for the chromatic number χ.
We recall the binary quadratic problem from (14):

z(k) := min 1
2〈X,AX〉 such that Xe = e, X ∈ {0, 1}n×k.

If z(k) > 0 for some given k, then χ(G) > k. As before, we need a tractable relaxation for
this problem. It is obtained by first extending X with an additional row of all ones, so we
introduce

X̃ :=

(
X
eT

)
and observe that

X̃X̃T =

(
XXT e
eT k

)
.

The main diagonal of the matrix XXT clearly equals the all-ones vector, because each row
of the 0-1 matrix X has exactly one entry equal to 1. A relaxation is obtained by allowing
arbitrary matrices Y instead of XXT . We get

(P (t)) min 1
2〈A, Y 〉 such that

(
Y e
eT t

)
� 0, diag(Y ) = e, Y ≥ 0.

From val(P (t)) > 0 we may conclude that χ(G) ≥ dte. Thus we would like to find the
largest value t such that val(P (t)) > 0. It turns out that the strengthening of the ϑ number
towards the chromatic number χ(G) proposed by Szegedy [100] provides the answer to this
question. The parameter ϑ−(G) defined for the complement G of G was introduced by
Szegedy as a lower bound on the chromatic number of G:

ϑ−(G) := min t such that
(
Y e
eT t

)
� 0, diag(Y ) = e, Y ≥ 0, yij = 0 for all [i, j] ∈ E(G).

We have ϑ(G) ≤ ϑ−(G) ≤ χ(G).

Theorem 5.6. For a given graph G we have that

val(P (t)) > 0 if and only if t < ϑ−(G).

Proof. We first consider problem P (t) for t = ϑ−(G). Let Y be an optimal solution for
ϑ−(G). Then Y is also feasible for P (ϑ−(G)) with value 0, so P (ϑ−(G)) = 0. The solution
Y remains feasible for any t′ > t = ϑ−(G) so that val(P (t′)) = 0 also in this case. Finally,
the definition of ϑ−(G) shows that for any t < ϑ−(G), the system(

Y e
eT t

)
� 0, diag(Y ) = e, Y ≥ 0, yij = 0 for all [i, j] ∈ E(G)

is infeasible. Therefore, any Y satisfying
(
Y e
eT t

)
� 0, diag(Y ) = e, Y ≥ 0 will have an

entry yij > 0 for some [i, j] ∈ E(G), and hence val(P (t)) > 0.

We set n := |V (G)| and m := |E(G)|. The previous two theorems can be used to
get bounds for α(G) and χ(G). Contrary to the computation of ϑ+(G) which requires
the solution of an SDP with more than m equality constraints, the SDP relaxation P (t)
contains n + 1 equality constraints, independent of m. As a drawback, one has to guess
the proper value t which might require solving several SDPs for different values of t.
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6 Conclusions

We have seen that conic optimization is an extremely versatile tool with an abundance of
applications. Depending on the cone in question, different complexities may occur: while
linear programming, second order cone programming as well as semidefinite programming
are solvable in polynomial time, optimizing over the cones of copositive or completely
positive matrices is NP-hard. The cones COP and CP are highly useful modelling tools
nonconvex quadratic or combinatorial optimization. In many cases, it is possible to re-
formulate such problems equivalently as linear problems over COP or CP. Relaxing the
cone constraint to a semidefinitness or double nonnegativity constraints yields very good
bounds which are often provably tighter than LP-based bounds. When using approxima-
tion hierarchies, one can often show that at some finite level of the hierarchy the relaxation
gives the exact solution of the underlying combinatorial problem.

In contrast to linear programming, the existence of strictly feasible solutions plays a
crucial role in conic optimization. In the absence of strictly feasible points, strong duality
may not hold and algorithms may fail to solve the problem. This is therefore a point
that should be carefully considered when modelling the problem in question as a conic
optimization prolem.

At the moment, the main bottleneck for using SDP relaxations or conic optimization
in a broader context of applications is the lack of algorithms that can solve large scale
problems in reasonable time. Semidefinite relaxations of a problem in Rn clearly involve
matrices of order at least n×n, so the number of variables is roughly squared. If one works
with approximation hierarchies, the the SDPs get larger at each level of the hierarchy. Very
quickly, these SDPs are out of reach for current computational algorithms.

A possible remedy when the underlying combinatorial problem is highly structured is
to exploit the symmetry by using the theory of matrix C∗-algebras. Roughly speaking, the
idea is to pre-process the SDP by applying a suitable unitary transformation in such a way
that the resulting matrices in the SDP exhibit block diagonal structure. This structure can
then be exploited by interior point methods. We refer to de Klerk [30] for a survey on this
approach, and to [38] for a discussion on how it can be used in approximation hierarchies.

Unfortunately however, not many SDPs exhibit symmetries, and so there is a need for
faster algorithms. Maybe in the future first order methods will turn out to be efficient. For
example, the ADMM method has proved successful when applied to SDP relaxations of
binary quadratic problems [103], the quadratic assignment problem [84], or the quadratic
shortest path problem [59].

As we have outlined, the past decades have seen an enormous progress in understand-
ing conic problems and using them for modelling purposes. The next decades should be
particularly devoted to the numerical side.
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