
Dealing with inequality constraints in large-scale semidefinite

relaxations for graph coloring and maximum clique problems

Federico Battista∗ Marianna De Santis†

August 2, 2024

Abstract

Semidefinite programs (SDPs) can be solved in polynomial time by interior point
methods. However, when the dimension of the problem gets large, interior point methods
become impractical in terms of both computational time and memory requirements. Cer-
tain first-order methods, such as Alternating Direction Methods of Multipliers (ADMMs),
established as suitable algorithms to deal with large-scale SDPs and gained growing at-
tention over the past decade. In this paper, we focus on an ADMM designed for SDPs
in standard form and extend it to deal with inequalities when solving SDPs in general
form. Beside numerical results on randomly generated instances, where we show that
our method compares favorably with respect to the state-of-the-art solver SDPNAL+ [29],
we present results on instances from SDP relaxations of classical combinatorial problems
such as the graph coloring problem and the maximum clique problem. Through exten-
sive numerical experiments, we show that even an inaccurate dual solution, obtained at
a generic iteration of our proposed ADMM, can represent an efficiently recovered valid
bound on the optimal solution of the combinatorial problems considered, as long as an
appropriate post-processing procedure is applied.

Keywords: Semidefinite programming, Graph coloring problem, Maximum clique problem

MSC: 90C22, 90C27, 90C06

1 Introduction

Interest on semidefinite programming has considerably grown during the last two decades and
is partly due to the fact that many practical problems in operations research and combinatorial
optimization can be modeled or approximated by semidefinite programs [18]. The purpose
of this paper is to focus on the use of augmented Lagrangian methods for dealing with
semidefinite programming relaxations of two well-known combinatorial problems: the graph
coloring problem and the maximum clique problem. Augmented Lagrangian methods are
known to be an alternative to interior point methods and currently represent the most popular
first-order algorithms used to handle large-scale semidefinite programs [2, 3, 24, 22]. As
a variant of augmented Lagrangian methods, Alternating Direction Methods of Multipliers

∗Department of Industrial and Systems Engineering, Lehigh University, Bethlehem PA 18015, USA.
E-mail: feb223@lehigh.edu

†Dipartimento di Ingegneria Informatica Automatica e Gestionale, Sapienza Università di Roma, Via Ar-
iosto, 25 00185, Roma, Italy. E-mail: mdesantis@diag.uniroma1.it

1

(ADMMs) have gained increasing attention in recent years [26, 29, 27, 6, 1]. Falling under the
class of first-order methods, their success can be attributed to the avoidance of computation,
storage, and factorization of large Hessian matrices. This in turn enables a significant increase
in scalability compared to interior point methods. On the other hand, this comes at some
cost to accuracy, which should be properly addressed in the scenario where the semidefinite
problem is a relaxation of some combinatorial problem with the goal of obtaining a valid bound
on its optimal solution. In order to overcome this issue, safe-bounding procedures have been
recently developed (see e.g. [1, 16, 4, 28]). These methods have mostly been employed to
recover a posteriori the inaccuracies that are produced by solvers and provide a valid bound
on the optimum.

In this paper, we begin by extending both an existing ADMM and a safe-bounding pro-
cedure to deal with SDPs with both equality and inequality constraints. Subsequently, we
compare their performance with SDPNAL+ [29], an established state-of-the-art solver for
large-scale SDPs that was awarded the Beale-Orchard-Hays Prize in 2018. In particular, we
present numerical experiments on randomly generated SDPs and on instances of well-known
SDP relaxations from the literature for the maximum clique problem and the graph coloring
problem. The goal is twofold. First, we demonstrate the robustness of our extended ADMM
equipped with a safe-bounding procedure compared to a state-of-the-art solver. Second, we
show that even a low-precision dual solution obtained during a generic iteration of our ADMM
can serve as a valid and efficiently recovered bound on the optimal solution of the combinato-
rial problems considered. As a byproduct, an extensive collection of noteworthy SDP bounds
for two fundamental combinatorial optimization problems are presented.

1.1 Notation and outline

Let Sn be the set of n-by-n symmetric matrices. Further, let S+n ⊂ Sn (S++
n ⊂ Sn) be the

set of positive semidefinite (positive definite) matrices and S−n ⊂ Sn be the set of negative
semidefinite matrices. In the following, we denote by ⟨X,Y ⟩ = trace(XY) the standard inner
product in Sn. Whenever a norm is used, we consider the Frobenius norm in the case of
matrices and the Euclidean norm in the case of vectors. Letting M ∈ Rm×n, we denote by
vec(M) the mn-dimensional vector formed by stacking the columns of M on top of each other
(vec−1 is the inverse operation). Letting v ∈ Rn, we denote by Diag(v) the diagonal matrix
having the elements of v on the main diagonal. We denote by ei the i-th vector of the standard
basis in Rn. Given S ∈ Sn, we denote by (S)+ and (S)− the projections of S onto the positive
semidefinite and negative semidefinite cones, respectively. Moreover we denote by λ(S) the
vector of the eigenvalues of S and by λmin(S) and λmax(S) the smallest and largest eigenvalue
of S, respectively. At last, we denote by 0n and 0n×ℓ the all-zero column vector of size n and
the all-zero n× ℓ matrix, respectively.

The paper is organized as follows. In Section 2, we succinctly review the ADMM algorithm
ADAL for solving SDPs in standard form, originally presented in [24, 22, 27]. In Section 3, we
discuss SDPs with both equality and inequality constraints and we extend the aforementioned
method to handle such problems. Starting from a low-precision dual solution, we then apply
the procedure outlined in [4] to our context to recover a valid dual bound on the optimal primal
value. In Section 4, drawing from existing literature, we review well-known SDP formulations
for relaxations of two fundamental combinatorial optimization problems: the maximum clique
and the graph coloring problems. These formulations, in addition to randomly generated
SDPs, constitute the test set for the numerical experiments we report in Section 5. At last,

2

some conclusions are drawn in Section 6.

2 ADAL: an ADMM for SDPs in Standard Form

In this section we review the basic concepts of ADAL [24, 22, 27], an Alternating Direction
Method of Multipliers (ADMM) to address SDPs in standard form:

min ⟨C,X⟩
s.t. ⟨Aj , X⟩ = bj , ∀j = 1, . . . ,m (1)

X ∈ S+n ,

where C ∈ Sn, Aj ∈ Sn, for all j = 1, . . . ,m, and b := (b1, . . . , bm) ∈ Rm. By defining
the linear operator A : Sn → Rm, with (AX)j =

〈
Aj , X

〉
for Aj ∈ Sn, Problem (1) can be

rewritten as

min ⟨C,X⟩
s.t. AX = b (PSDP-ST)

X ∈ S+n .

The dual of (PSDP-ST) is defined as

max bT y

s.t. A⊤y + Z = C (DSDP-ST)

Z ∈ S+n ,

where A⊤ : Rm → Sn is the adjoint operator of A, namely A⊤y =
∑m

i=1 yiA
i for y ∈ Rm.

Assumption 1. Slater condition holds for (PSDP-ST) and (DSDP-ST); that is, there exist
matrices X̃, Z̃ ∈ S++

n , and ỹ ∈ Rm satisfying AX̃ = b and A⊤ỹ + Z̃ = C.

Under this assumption, it is well known that strong duality holds. Hence, the following
KKT conditions are necessary and sufficient for the optimality of a triplet (X, y, Z) (see,
e.g., [23, Sec. 4.2]):

AX = b, A⊤y + Z = C, ZX = 0, X ∈ S+n , Z ∈ S+n .

The method we consider is based on the maximization of the augmented Lagrangian built over
the dual problem. Let X ∈ Sn be the Lagrange multiplier for the dual equation A⊤y+Z−C =
0 and σ > 0 be fixed. The augmented Lagrangian of (DSDP-ST) is defined as

Lσ(y, Z;X) = bT y − ⟨A⊤y + Z − C,X⟩ − σ

2
∥A⊤y + Z − C∥2.

In augmented Lagrangian methods applied to the dual (DSDP-ST) the problem

max Lσ(y, Z;X)

s.t. y ∈ Rm, Z ∈ S+n ,
(2)

3

is addressed at every iteration, where X is fixed and σ > 0 is a penalty parameter. When the
maximization of the augmented Lagrangian Lσ(y, Z;X) is performed by iteratively optimizing
with respect to y at first, and then with respect to Z, we are considering the ADMM originally
proposed in [24, 22] and then extended in [27].

We present this method following [27], in which it is referred as ADAL (Alternating Direction
Augmented Lagrangian). At each iteration of ADAL, the new point (yk+1, Zk+1, Xk+1) is
computed by the following steps:

yk+1 = argmax
y∈Rm

Lσk(y, Zk;Xk), (3)

Zk+1 = argmax
Z∈S+n

Lσk(yk+1, Z;Xk), (4)

Xk+1 = Xk + σk(A⊤yk+1 + Zk+1 − C). (5)

The update of y in (3) can be performed in closed form, as it derives from the first-order
optimality conditions of the problem on the right-hand side of (3), i.e., yk+1 is the unique
solution of

∇yLσk(y, Zk;Xk) = b−A(Xk + σk(A⊤y + Zk − C)) = 0.

That is,

yk+1 = (AA⊤)−1
(1

σk
b−A(

1

σk
Xk + Zk − C)

)
.

The update of Z in (4) is conducted by considering the equivalent problem

min
Z∈S+n

∥Z +W k+1∥2, (6)

where

W k+1 =
Xk

σk
− C +A⊤yk+1.

Solving problem (6), is equivalent to projecting W k+1 ∈ Sn onto the (closed convex) cone S−n
and computing its additive inverse (see Algorithm 1). Such a projection is computed via the
spectral decomposition of the matrix W k+1. Finally, it is clear to see that the update of X
in (5) can be obtained as follows:

Xk+1 = Xk + σk(A⊤yk+1 + Zk+1 − C) =

= σk(Xk/σk − C +A⊤yk+1 − (Xk/σk − C +A⊤yk+1)−) =

= σk(Xk/σk − C +A⊤yk+1)+= σk(W k+1)+.

We report in Algorithm 1 the scheme of ADAL. The method stops as soon as the following
errors related to primal feasibility (AX = b, X ≥ 0) and dual feasibility (A⊤y + Z + S = C)
are below a certain threshold defined, respectively, as the following:

rP =
∥AX − b∥
1 + ∥b∥

, rD =
∥A⊤y + Z − C∥

1 + ∥C∥
.

More precisely, the algorithm stops as soon as the quantity δ = max{rP , rD} is less than a fixed
precision ε > 0. It should be noted that the optimality conditions X ∈ S+n , Z ∈ S+n and ZX =
0 are satisfied up to machine accuracy throughout the algorithm thanks to the projections

4

Algorithm 1 Scheme of ADAL from [27]

1: Choose σ > 0, ε > 0, X ∈ S+n , Z ∈ S+n
2: δ = max{rP , rD}
3: while δ > ε do
4: y = (AA⊤)−1

(
1
σ b−A(1σX − C + Z)

)
5: W = X/σ − C +A⊤y

6: Z = −W− and X = σW+

7: δ = max{rP , rD}
8: Update σ
9: end while

employed in ADAL. In the convergence analysis proposed in [27], Algorithm 1 is interpreted
as a fixed point method, i.e., at each iteration of ADAL, the update of the primal and dual
variables (X,Z) is the result of the combination of two operators, both of which are proven to
be non-expansive. Indeed, we have that (Xk+1, Zk+1) = P(W (Xk, Zk)), where P denotes the
projection performed at Step 6 in Algorithm 1 and W (Xk, Zk) = Xk/σk−C+A⊤y(Zk, Xk),
being the update performed at Step 4 in Algorithm 1, i.e.,

y(Zk, Xk) = (AA⊤)−1
(1

σk
b−A(

1

σ

k

Xk − C + Zk)
)
.

Using the non-expansivity of P and W (see Lemma 3 and Lemma 4 in [27], respectively),
it is possible to prove the following result (see Theorem 2 in [27]):

Theorem 1. The sequence {(Xk, yk, Zk)} generated by Algorithm 1 applied to Problem (PSDP-ST)
from any starting point (X0, y0, Z0) converges to a solution (X∗, y∗, Z∗) ∈ Ω∗, where Ω∗ is
the set of primal and dual solutions of (PSDP-ST) and (DSDP-ST).

3 ADAL-ineq: applying ADAL to SDPs in general form

The aim of our work is to address SDPs that include linear inequality constraints. In order
to do so, we can still use ADAL, namely Algorithm 1, by applying it to the reformulation with
only equality constraints obtained through the introduction of slack variables. However, when
dealing with large-scale SDPs, the memory required by ADAL to solve such a reformulation
would grow substantially. In this section, we show how to rewrite the steps of ADAL in terms
of the matrices defining the original problem in a more efficient way that will reduce the
memory requirements. For clarity, we will refer to this new version of ADAL as to ADAL-ineq.
Recall that an SDP in general form can be formulated as follows:

min ⟨C,X⟩
s.t. ⟨Ai, X⟩ ≤ bi, ∀i = 1, . . . , ℓ

⟨Aj , X⟩ = bj , ∀j = ℓ+ 1, . . . ,m

X ∈ S+n ,

(7)

5

where C ∈ Sn, A
i ∈ Sn, for all i = 1, . . . ,m, and b ∈ Rm. A standard way to deal with

inequalities in problem (7) is to add slack variables si ≥ 0, for all i = 1, . . . , ℓ, and expand
the matrix variable X to X̄ ∈ Sn+ℓ:

X̄ :=

(
X 0n×ℓ

0ℓ×n Diag(s)

)
.

Recall that if B is a diagonal matrix, the constraint B ⪰ 0 boils down to B ≥ 0. In particular,
imposing X̄ ⪰ 0 is equivalent to considering X ⪰ 0 and s ≥ 0. By expanding the matrices
Ai, Aj , and C, to Āi, Āj and C̄, respectively, for all i = 1, . . . , ℓ and j = ℓ+ 1, . . . ,m, as

Āi :=

(
Ai 0n×ℓ

0ℓ×n eTi ei

)
, Āj :=

(
Aj 0n×ℓ

0ℓ×n 0ℓ×ℓ

)
, C̄ :=

(
C 0n×ℓ

0ℓ×n 0ℓ×ℓ

)
,

problem (7) can be rewritten as an SDP in standard form as follows:

min
〈
C̄, X̄

〉
s.t. ĀX̄ = b

X̄ ∈ S+n+ℓ,

(8)

where b := (b1, . . . , bm) ∈ Rm and Ā : Sn+ℓ → Rm is the linear operator (ĀX)i =
〈
Āi, X

〉
with Āi ∈ Sn+ℓ, for all i = 1, . . . ,m. The dual problem of (8) is defined as

min bT y

s.t. Ā⊤y + Z̄ = C̄

Z̄ ∈ S+n+ℓ,

(9)

where Ā⊤ : Rm → Sn+ℓ is the adjoint operator of Ā, namely Ā⊤y =
∑m

i=1 yiĀ
i for y ∈ Rm.

Note that the matrix Z̄ ∈ Sn+ℓ is a “surplus” matrix variable that can be written as

Z̄ :=

(
Z 0n×ℓ

0ℓ×n Diag(p)

)
,

with p ∈ Rℓ. In particular, the equality constraint in (9) can be rewritten as

C̄ − ĀT (y)− Z̄ =

(
C −AT y − Z 0n×ℓ

0ℓ×n Diag(−y − p)

)
= 0.

As for the SDPs in standard form, if we assume that both the primal (8) and the dual (9)
problems have strictly feasible points (i.e. Slater’s condition is satisfied) strong duality holds
and (y, Z̄, X̄) is optimal for (8) and (9) if and only if the following KKT conditions hold (see,
e.g., [23, Sec. 4.2]):

ĀX̄ = b, Ā⊤y + Z̄ = C̄, Z̄X̄ = 0, X̄ ∈ S+n+ℓ, Z̄ ∈ S+n+ℓ. (10)

In the following, we assume that the constraints formed through the operator Ā are linearly
independent.

The memory required to store the augmented matrices C̄, Āi, Āj , Z̄ and X̄ substantially
increases with the number ℓ of inequalities and even using efficient sparse matrix implementa-
tions may be insufficient to computationally deal with large-scale problems. Thus, we propose
rewriting the steps of ADAL applied to Problem (8) in terms of the original matrices C,Ai, and
X, so that one is only required to store the matrices that are actually defining the problem.

6

Proposition 1. Step 4 in Algorithm 1 applied to Problem (8), reading as

y = (ĀĀ⊤)−1
(1
σ
b̄− Ā(

1

σ
X̄ − C̄ + Z̄)

)
can be performed in terms of the matrices of Problem (7) only, namely in terms of the matrices
C,Ai, for all i = 1, . . . ,m, X and Z.

Proof. Let 1 ≤ i ≤ ℓ be a generic index of an inequality constraint and let ℓ+ 1 ≤ j ≤ m be
a generic index of an equality constraint, then the following holds:

⟨Āi, X̄⟩= ⟨Ai, X⟩+ si,

⟨Āj , X̄⟩= ⟨Aj , X⟩,
⟨C̄, X̄⟩ = ⟨C,X⟩.

The linear map applied to X̄ becomes:

Ā(X̄) =

⟨A1, X⟩
...

⟨Aℓ, X⟩
⟨Aℓ+1, X⟩

...
⟨Am, X⟩

+

(
sT

0m−ℓ

)
= A(X) +

(
sT

0m−ℓ

)
.

Similarly, the adjoint operator ĀT : Rm → Sn+ℓ of Ā is defined as

ĀT y :=
m∑
i=1

yiĀ
i =

(∑m
i=1 yiA

i 0n×ℓ

0ℓ×n Diag(y)

)
=

(
AT y 0n×ℓ

0ℓ×n Diag(y)

)
.

Using the operator vec, we can write Ā(X̄) = b as Ā vec(X̄) = b, where

Ā :=
(
vec(Ā1), . . . , vec(Ām)

)T ∈ Rm×(n+ℓ)2 .

Note that the matrix Āi, for all i = 1, . . . , ℓ, corresponding to the i-th inequality constraint,
is the unique matrix having 1 in position (n+ i, n+ i). Then, ĀĀT can be expressed in terms
of AAT as follows:

ĀĀT = AAT +Diag

(
1ℓ

0m−ℓ

)
,

where A :=
(
vec(A1), . . . , vec(Am)

)T ∈ Rm×n2
. Indeed, the zero entries of Āi do not contribute

in the row-by-column product and the 1 in position (n+ i, n+ i) contributes only to the entry
where vec(Āi) is multiplied by itself, i.e., in position (i, i) of ĀĀT . According to the notation
introduced, the update of the y variable can be rewritten as follows:

yk+1 =

(
AAT +Diag

(
1ℓ

0m−ℓ

))−1
(

1

σk
b−A vec

(
1

σk
Xk − C + Zk

)
+

(
1
σk s

kT + pk
T

0m−ℓ

))
.

7

As a consequence of Proposition 1, the spectral decomposition of the matrix W , performed
in Step 6 and needed for updating the variables X̄ and Z̄, can also be computed without
storing the augmented matrices. Indeed W k+1 can be written in a “block-wise” fashion as
follows:

W k+1 =

(
1
σkX

k − C +A⊤yk+1 0n×ℓ

0ℓ×n Diag
(

1
σk s

k + yk+1
)) .

To compute the eigenvalues and eigenvectors of W k+1, we begin by performing the spec-
tral decomposition of the matrix Xk

σk − C + AT yk+1. Then, we straightforwardly obtain the

eigenvalues and eigenvectors corresponding to the diagonal part of W k+1. Finally, we adjust
the dimension of the computed eigenvectors to ensure they belong to Rn+ℓ.

Proposition 1 and the reasoning reported above demonstrate that it is possible to apply
Algorithm 1 to Problem (8) without storing the augmented matrices by rewriting its steps in
terms of the matrices that are defining the original inequality constrained problem (7). As
already mentioned, we denote this version of ADAL as ADAL-ineq and its scheme is reported
in Algorithm 2.

Algorithm 2 Scheme of ADAL-ineq

1: Given Problem (8), choose σ > 0, ε > 0, X ∈ S+n , Z ∈ S+n , s ∈ Rℓ, p ∈ Rℓ

2: δ = max{rP , rD}
3: while δ > ε do

4: y =

(
AAT +Diag

(
1ℓ

0m−ℓ

))−1(
1
σ b−A vec

(
1
σX − C + Z

)
+

(
1
σs

T + pT

0m−ℓ

))
5: W =

(
1
σX − C +A⊤y 0n×ℓ

0ℓ×n Diag
(
1
σs+ y

))
6: Z = −W− and X = σW+

7: δ = max{rP , rD}
8: Update σ
9: end while

From the convergence of ADAL [27] we can state the following:

Theorem 2. The sequence {(X̄k, yk, Z̄k)} generated by ADAL-ineq from any starting point
(X̄0, y0, Z̄0) converges to a solution (X̄∗, y∗, Z̄∗) ∈ Ω∗, where Ω∗ is the set of primal and dual
solutions of (8) and (9).

3.1 Obtaining dual bounds

The approximation of combinatorial problems is one of the most relevant applications of
semidefinite programming. This is because the optimal solution of a semidefinite relaxation
can be computed in polynomial time and generally gives a better bound than that obtained
solving a linear relaxation (see e.g. [25]). Given a pair of primal-dual SDPs, weak and strong
duality hold under the assumption that both problems are strictly feasible. Duality results im-
ply that the objective function value of every feasible solution of the dual SDP is a valid bound
on the optimal objective function value of the primal. Therefore, every dual feasible solution,
and in particular the optimal dual solution of an SDP relaxation, gives a valid bound on the

8

solution of the related combinatorial optimization problem. Hence, being able to compute
dual feasible solutions - even of moderate quality - can be extremely useful when considering
branch-and-bound frameworks to define exact solution methods for specific combinatorial op-
timization problems. Following ideas developed in [4], we define a post-processing procedure
for ADAL-ineq on general SDPs, that allows one to obtain a feasible dual solution starting
from a positive semidefinite matrix Z̃ ∈ S+n . Let Aineq and Aeq be the linear operators defin-
ing the inequality and equality constraints in problem (7), respectively; thus Aineq =

〈
Ai, X

〉
with Ai ∈ Sn and Aeq =

〈
Aj , X

〉
with Aj ∈ Sn, for all i = 1, . . . , ℓ and j = ℓ + 1, . . . ,m.

Let bineq and beq be the right-hand-side vectors accordingly defined. Introducing the adjoint
operators of Aineq and Aeq, the dual problem (7) can be equivalently written as

max − bTineqλ+ bTeqµ

s.t. C +A⊤
ineqλ−A⊤

eqµ = Z

Z ∈ S+n , λ ≥ 0,

(11)

with λ ∈ Rℓ and µ ∈ Rm−ℓ. We can then extend the results proposed in [4] and define
a procedure to obtain feasible solutions of problem (11) along with, by weak duality, valid
bounds on the optimal objective function value of the primal (7). Let Z̃ ∈ S+n . If the linear
programming problem

max − bTineqλ+ bTeqµ

s.t. C +A⊤
ineqλ−A⊤

eqµ = Z̃

λ ≥ 0

(12)

has an optimal solution (λ̃, µ̃) ∈ Rm, then (λ̃, µ̃, Z̃) is a feasible solution for (11) and the
value −bTineqλ̃+ bTeqµ̃ yields a dual bound. If (12) is unbounded, then is (11) also unbounded,

implying that the primal (7) is not feasible. If (12) is infeasible, then the initial Z̃ ∈ S+n
permits neither a feasible dual solution nor a dual bound. From a practical viewpoint, once
problem (7) is approximately solved by ADAL-ineq, one can try to obtain a feasible solution
to problem (11) by addressing problem (12).

4 Bounding the clique number and the chromatic number of
a graph

Given an undirected graph G = (V,E), where V is the set of vertices and E is the set of
edges, a set W ⊆ V is a clique if every two vertices in W are adjacent, while it is called stable
if no two vertices in W are adjacent. The clique number ω(G) and the stability number α(G)
are the maximum cardinalities of a clique and a stable set in G, respectively. A k-coloring is
a partition of V into k stable sets. The chromatic number χ(G) is the smallest integer k for
which G has a k-coloring. Denoting with Ḡ = (V, Ē) the complementary graph of G, it holds
that

ω(Ḡ) = α(G) ≤ χ(Ḡ).

Lovász [21] introduced the so called theta number ϑ(G) that is an upper bound on the clique
number ω(Ḡ), the stability number α(G), and is also a lower bound for the chromatic number
χ(Ḡ). The important property of ϑ(G) is that it can be computed with an arbitrary precision

9

in polynomial time, as it is the optimal value of the following SDP [13]:

ϑ(G) = max ⟨J,X⟩

s.t. trace(X) = 1

Xij = 0 {i, j} ∈ E

X ∈ S+n ,

where J is the n-by-n matrix of all ones, with n = |V |. Starting from this relaxation, several
attempts for sharpening ϑ(G) as a bound for ω(Ḡ), α(G) and χ(Ḡ) have been made (see,
e.g., [8, 14, 10, 12, 11, 19, 9]). As a first way to improve ϑ(G), we consider the numbers
ϑ+(G) and ϑ̄+(G) obtained as solutions of the following SDPs, where bounds on the entries
of the matrix variables are introduced:

ϑ+(G) = max ⟨J,X⟩

s.t. trace(X) = 1

Xij = 0 {i, j} ∈ E

X ≥ 0

X ∈ S+n ,

ϑ̄+(G) = max ⟨J,X⟩

s.t. trace(X) = 1

Xij ≤ 0 {i, j} ∈ E

X ∈ S+n .

The values ϑ+(G) and ϑ̄+(G) are related to ω(Ḡ), α(G) and χ(Ḡ) as follows

ω(Ḡ) = α(G) ≤ ϑ+(G) ≤ ϑ(G) ≤ ϑ̄+(G) ≤ χ(Ḡ).

In the literature, equivalent formulations for both ϑ+(G) and ϑ̄+(G) have been proposed [18]
and for our computational experiments, we consider the following formulation for ϑ̄+(G):

ϑ̄+(G) = min t

s.t. Xii = t− 1 i ∈ V

Xij = −1 {i, j} ∈ Ē

Xij ≥ −1 {i, j} ∈ E

X ∈ S+n , t ∈ R+.

(13)

where t is an additional auxiliary variable. Problem (13) can be reformulated as (7) by
including t in the matrix variable as an additional element on the diagonal. Note that, in both
the formulations of ϑ+(G) and ϑ̄+(G), the entries of the matrix X are bounded from below.
In the context of ADMMs defined over the dual problem, bounds on the matrix variable can
be handled by introducing a further step, where a projection onto the nonnegative orthant
is performed (see e.g. [27, 4, 28]). Although these 3-block ADMMs may not theoretically
converge [5], they perform well in practice.

5 Numerical results

In this section, we present the results of our computational study, where we evaluate the per-
formance of both ADAL-ineq and SDPNAL+ [29]. The comparison is conducted on randomly

10

generated instance, as well as on SDP relaxations of both the stable set and the graph col-
oring problems. The software SDPNAL+, accessible at https://blog.nus.edu.sg/mattohkc/
softwares/sdpnalplus/, integrates an ADMM with a semismooth Newton-Conjugate Gra-
dient method. It is implemented in MATLAB, using a refined management of the matrices
exploiting their symmetry. This approach allows the optimization of a significant portion of
its C subroutines, which are provided through Mex files. ADAL-ineq is developed in MATLAB
utilizing its built-in functions, and is available at https://github.com/batt95/ADAL-ineq,
along with the instances used in our numerical experiments and an alternative Python im-
plementation.

The numerical performance of ADMMs, including ADAL-ineq, strongly depend on the
update rule used for the penalty parameter σ. As in [4, 28], we follow the strategy by
Lorenz and Tran-Dinh [20], considering at every iteration k the ratio between the norm of
the primal variable Xk and norm of the dual variable Zk. In the implementation of our
post-processing procedure, described in Section 3.1, we used Gurobi 9.1.1 [15] as the solver
for problem (12). The experiments were carried out on an Intel(R) Xeon(R) CPU E5-2698
v4 running at 2.20GHz, with 256GB of RAM, under Linux (Ubuntu 16.04.7).

We compare the performance of the algorithms using performance profiles proposed by
Dolan and Moré [7]. Given a set of solvers S and a set of problems P, the performance of
a solver s ∈ S on problem p ∈ P is compared against the best performance obtained by any
solver in S on the same problem. The performance ratio is defined as rp,s = tp,s/min{tp,s′ |
s′ ∈ S}, where tp,s is the measure we want to compare, and we consider a cumulative distri-
bution function ρs(τ) = |{p ∈ P | rp,s ≤ τ}|/|P|. The performance profile for s ∈ S is the
plot of the function ρs.

5.1 Comparison on randomly generated instances

The random SDPs considered in the first experiment are created from an adaptation of the
instance generator used in [22]. Given a triplet (n,m, p) ∈ N × N × [0, 1], the resulting SDP
consists of a matrix variable X ∈ S+n and includes m linear constraints, of which round(pm)
are inequalities. Instances are generated with values from n ∈ {200, 250, 500, 1000}, m ∈
{5000, 10000, 25000, 50000, 100000} and p ∈ {0.25, 0.5, 0.75}. For each parameter combina-
tion, we generate 5 different instances, excluding values of n and m that result in a constraint
matrix A ∈ Rm×n2

with linearly dependent rows. The final test set counts 150 random SDPs.
A time limit of 1800 seconds of CPU time is set.

In Table 5.1, we report the comparison between ADAL-ineq and SDPNAL+ in terms of
number of iterations and CPU time needed in order to reach an accuracy of 10−5. For
each solver and each combination of n, m and p, we report the number of instances solved
within the time limit along with the average running time. We notice that for n = 250 and
m = 25000, SDPNAL+ is not able to solve any instance within the time limit, while ADAL-ineq
is able to solve all of them with a precision of 10−5. For n = 500 and m = 100000, both
algorithms are not able to solve any instance within the time limit. SDPNAL+ performs better
on instances with n = 1000 andm = 10000, while for the other instances either the two solvers
show similar performances or ADAL-ineq outperforms SDPNAL+. The performance profiles of
ADAL-ineq and SDPNAL+ on random instances are reported in Figure 5.1, highlighting the
superior performance of ADAL-ineq with respect to SDPNAL+; on close to 60% of the instances
ADAL-ineq is the fastest algorithm and is also able to solve 90% of the instances whereas
SDPNAL+ is only able to solve 80% of the instances within the time limit.

11

https://blog.nus.edu.sg/mattohkc/softwares/sdpnalplus/
https://blog.nus.edu.sg/mattohkc/softwares/sdpnalplus/
https://github.com/batt95/ADAL-ineq

ADAL-ineq SDPNAL+

n m p(%) #sol CPU time #sol CPU time

200 10000 25 5 39.24 5 33.05
50 5 58.24 5 109.14
75 5 67.14 5 713.82

250 5000 25 5 7.99 5 11.05
50 5 9.87 5 15.51
75 5 11.28 5 16.93

25000 25 5 838.04 0 -
50 5 1166.45 0 -
75 5 1114.52 0 -

500 10000 25 5 15.52 5 15.54
50 5 16.49 5 22.45
75 5 28.87 5 23.94

25000 25 5 18.11 5 31.33
50 5 30.20 5 50.78
75 5 45.53 5 52.57

50000 25 5 217.61 5 106.28
50 5 260.43 5 221.66
75 5 325.71 5 250.97

100000 25 0 - 0 -
50 0 - 0 -
75 0 - 0 -

1000 10000 25 5 136.63 5 49.52
50 5 157.21 5 58.22
75 5 242.63 5 71.38

50000 25 5 57.19 5 60.96
50 5 94.09 5 109.48
75 5 110.00 5 111.29

100000 25 5 83.15 5 136.53
50 5 127.37 5 181.13
75 5 155.05 5 184.21

Table 5.1: Results on 150 random instances

12

0.0 0.5 1.0 1.5 2.0
log10()

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(
)

CPU_ADAL
CPU_SDPNAL

Figure 5.1: Performance profiles on CPU time. Comparison between ADAL-ineq and SDPNAL+

on random instances.

5.2 Comparison on instances from SDP relaxations of the maximum clique
problem

We now report the results on the SDP relaxation ϑ+(G) for bounding the clique number (or
the stability number) of a graph. We considered graphs from the second DIMACS imple-
mentation challenge [17], available at ftp://dimacs.rutgers.edu/pub/challenge/graph/
benchmarks/clique. These graphs form the standard benchmark for the maximum clique
problem. Hence, we considered the complement of these graphs to convert the maximum
clique instances into stable set problem instances. For this experiment, a time limit of 3600
seconds was set.

In addition to employing ADAL-ineq and SDPNAL+ to determine ϑ+(G) and stopping the
algorithms when the termination criteria were satisfied with a precision of 10−6, we equipped
ADAL-ineq with the post-processing procedure detailed in Section 3.1, applied every 200
iterations and after termination. Every time the post-processing procedure is called, we give
as input the matrix Zk obtained by ADAL-ineq at the corresponding iteration k and solve the
linear programming problem (11) using Gurobi [15]. Along with the iterations of ADAL-ineq,
we also store in memory the best dual bound found by the post-processing procedure, together
with the CPU time needed to detect it. Note that every dual bound computed by the post-
processing procedure and, in particular, the best dual bound are valid upper bounds on the
stability number.

Table 5.2 is organized as follows: for each instance we report the name (Graph), values of
ϑ+(G) arising from, respectively, the dual objective function values returned by ADAL-ineq,
SDPNAL+ and the best dual bound found (BestBound) throughout the iterations of ADAL-ineq,
along with the CPU times needed by ADAL-ineq and SDPNAL+ to reach the stopping criterion,
to identify the BestBound and the total time spent by the post-processing procedure. Note
that the BestBound reported in the table is, in general, obtained in one of the post-processing
calls when running ADAL-ineq and is not necessarily the one arising from the last call of the

13

ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique
ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique

post-processing. We highlight in bold the values of the bounds found on the instances in
which they differ.

It should be noted that the post-processing procedure applied within ADAL-ineq is able
to compute valid dual bounds on every instance but on keller6, where ADAL-ineq shows a
failure. On p hat1500-2, even if both ADAL-ineq and SDPNAL+ did not converge within 3600
seconds, the post-processing procedure was able to compute a valid dual bound. In order
to understand the quality of this bound, we ran SDPNAL+ on the p hat1500-2 instance until
convergence. Interestingly, it turns out that the BestBound and the optimal value match.
By providing a valid dual bound, our procedure overcomes the impossibility of the solvers
to reach termination criteria although the solution they achieve is close to an optimal one.
Consider that for huge graphs the time needed to find the best dual bound may be greater
than the time needed by ADAL-ineq to converge. This comes from the fact that the best
dual bound can be recovered at the last iteration computed. We also wish to highlight that
the overall time needed to apply the post-processing procedure in ADAL-ineq is small with
respect to the overall time needed by the algorithm, and clearly it may be lowered by seldom
applying the procedure.

In Figure 5.2, we report the performance profiles obtained with respect to the CPU time
needed by SDPNAL+ and the CPU time to identify the value of the BestBound. It is clear
that SDPNAL+ outperforms ADAL-ineq on these instances. However, we wish to highlight the
superior performances of ADAL-ineq on the p-hat graphs, where we are often able to get the
same bound as the optimal dual objective of SDPNAL+ in a much lower CPU time.

0.0 0.5 1.0 1.5 2.0
log10()

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(
)

CPU_BestBound
CPU_TH+_sdpnal

Figure 5.2: Performance profiles on CPU time. Comparison between BestBound and SDPNAL+

on the computation of ϑ+(G).

5.3 Comparison on instances from SDP relaxations of the coloring problem

We now report the results on the SDP relaxation ϑ̄+(G) for bounding the chromatic number
of a graph. As before, we considered graphs from the second DIMACS implementation chal-
lenge [17], available at https://sites.google.com/site/graphcoloring/downloads. We

14

https://sites.google.com/site/graphcoloring/downloads

ϑ+(G) CPU times

Graph ADAL-ineq SDPNAL+ BestBound ADAL-ineq SDPNAL+ BestBound post-proc

DSJC125.1 38.04 38.04 38.04 2.89 3.52 2.56 0.12
DSJC125.5 11.40 11.40 11.40 1.93 0.77 1.70 0.09
DSJC125.9 4.00 4.00 4.00 2.41 1.17 2.44 0.09
DSJC500-5 22.57 22.57 22.57 6.83 4.85 7.30 0.48
DSJC1000-5 31.67 31.67 31.67 41.60 34.32 43.69 3.59
C125-9 37.55 37.55 37.55 2.88 0.99 2.73 0.11
C250-9 55.82 55.82 55.82 7.82 3.12 7.15 0.43
C500-9 83.58 83.58 83.58 30.55 8.32 31.03 1.48
C1000-9 122.60 122.60 122.60 159.79 34.93 147.00 9.74
C2000-5 44.56 44.56 44.56 389.59 534.67 398.86 22.42
C2000-9 177.73 177.73 177.73 1238.53 278.60 1247.62 68.30
brock200 1 27.20 27.20 27.20 3.45 1.06 3.12 0.24
brock200 2 14.13 14.13 14.13 1.91 1.08 1.98 0.15
brock200 3 18.67 18.67 18.67 2.24 1.07 2.31 0.15
brock200 4 21.12 21.12 21.12 2.83 0.96 2.92 0.18
brock400 1 39.33 39.33 39.33 7.81 3.84 8.09 0.53
brock400 2 39.20 39.20 39.20 8.30 4.02 8.58 0.50
brock400 3 39.16 39.16 39.16 8.64 3.59 8.92 0.48
brock400 4 39.23 39.23 39.23 7.99 3.53 8.27 0.49
brock800 1 41.87 41.87 41.87 24.31 11.67 20.96 2.66
brock800 2 42.10 42.10 42.10 23.94 12.88 20.49 2.59
brock800 3 41.88 41.88 41.88 24.52 13.02 25.87 2.57
brock800 4 42.00 42.00 42.00 23.91 12.80 20.28 2.50
p hat300-1 10.02 10.02 10.02 18.45 16.72 8.85 0.95
p hat300-2 26.71 26.71 26.71 211.40 161.90 28.17 11.20
p hat300-3 40.70 40.70 40.70 35.69 36.28 16.91 1.78
p hat500-1 13.01 13.01 13.01 34.11 14.71 22.55 2.04
p hat500-2 38.56 38.56 38.56 580.86 537.38 92.52 32.79
p hat500-3 57.81 57.81 57.81 99.65 33.72 61.56 5.03
p hat700-1 15.05 15.05 15.05 59.86 33.94 43.15 4.20
p hat700-2 48.44 48.44 48.44 1161.67 295.99 218.26 71.55
p hat700-3 71.76 71.76 71.76 293.90 93.48 162.79 15.91
p hat1000-1 17.52 17.52 17.52 144.76 119.26 84.75 10.38
p hat1000-2 54.84 54.84 54.84 1815.65 697.11 487.41 121.86
p hat1000-3 83.53 83.53 83.53 473.77 243.21 293.35 28.77
p hat1500-1 21.89 21.89 21.89 606.67 479.28 471.58 41.41
p hat1500-2 - - 76.46 - - 1826.66 233.69
p hat1500-3 113.65 113.65 113.65 3014.42 879.45 1886.51 202.90
keller4 13.47 13.47 13.47 3.35 1.46 2.69 0.17
keller5 31.00 31.00 31.00 503.36 53.31 289.31 30.06
keller6 - 63.00 - - 1524.62 - 146.42
sanr200 0.7 23.63 23.63 23.63 3.44 1.26 3.21 0.25
sanr200 0.9 48.90 48.90 48.90 6.04 1.73 4.80 0.34
sanr400 0.5 20.18 20.18 20.18 6.60 3.80 6.19 0.57
sanr400 0.7 33.97 33.97 33.97 7.21 4.05 7.49 0.51
MANN a9 17.48 17.48 17.47 0.48 0.28 0.46 0.05
MANN a27 132.76 132.76 132.76 561.87 5.48 550.52 30.80
hamming6-2 32.00 32.00 32.00 1.49 0.33 1.25 0.10
hamming6-4 4.00 4.00 4.00 0.10 0.08 0.11 0.01
hamming8-2 128.00 128.00 128.00 532.92 3.96 500.17 30.03
hamming8-4 16.00 16.00 16.00 2.62 1.13 2.60 0.24
hamming10-4 42.67 42.67 42.67 97.36 31.77 93.90 7.46

Table 5.2: Results on ϑ+(G), graphs from the second DIMACS implementation challenge.

15

0.0 0.5 1.0 1.5 2.0
log10()

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(
)

CPU_BestBound
CPU_TH+_sdpnal

Figure 5.3: Performance profiles on CPU time. Comparison between BestBound and SDPNAL+

on the computation of ϑ̄+(G).

ran ADAL-ineq and SDPNAL+, halting the algorithms either upon satisfaction of the termina-
tion criteria with a precision of 10−6 or after a time limit of 3600 seconds. As for bounding
ϑ+(G), we applied the post-processing procedure detailed in Section 3.1 every 200 iterations
and after termination of ADAL-ineq. Every dual bound computed by the post-processing
procedure and, in particular, the best dual bound is a valid lower bound on the chromatic
number.

In Table 5.3 and Table 5.4, we report the same data as in Section 5.2. As previously
noted, the BestBound presented in the tables may not necessarily correspond to the result of
the last post-processing call.

We notice that the post-processing procedure fails in finding bounds on the chromatic
number for several graphs for 19 out of 113 graphs. This is due to the precision of the
dual matrix given as input as it may be too low to detect a dual feasible solution. We also
notice that, on some graphs, the bound obtained is slightly larger than the dual objective
function value obtained by ADAL-ineq. This behaviour is a consequence of the precision
required by Gurobi to solve the LP in the post-processing, where we set a feasibility precision
of 10−5. Note that requesting a higher precision may lead to failure in the post-processing
procedure. The results shown are then obtained with what, in our opinion, is a good trade off
between feasibility precision and quality of the bound. The CPU time needed to compute the
BestBound is often much lower with respect to the time needed by SDPNAL+ to converge; this
is confirmed by the performance profiles shown in Figure 5.3. In these profiles, we excluded
the instances for which the difference in absolute value of the BestBound found by ADAL-ineq

and the dual objective of SDPNAL+ is less than 0.5. In particular, we excluded all the instances
where the post-processing procedure was not able to compute a bound.

As a further comparison between ADAL-ineq and SDPNAL+ on SDP relaxations of the
chromatic number, we built instances by adding 1000, 2500 and 5000 inequalities to ϑ̄(G).
The inequalities were chosen randomly from those proposed by Dukanovic and Rendl [8] to

16

ϑ̄+(G) CPU times

Graph ADAL-ineq SDPNAL+ BestBound ADAL-ineq SDPNAL+ BestBound post-proc

DSJC125.1 4.14 4.14 4.14 69.01 22.88 1.72 0.91
DSJC125.5 11.87 11.87 11.87 1.02 1.36 0.74 0.06
DSJC125.9 37.80 37.80 37.80 1.87 2.03 1.31 0.09
DSJC250.1 4.94 4.94 4.94 6.65 6.70 2.19 0.16
DSJC250.5 16.35 16.35 16.35 1.90 2.84 2.00 0.10
DSJC250.9 55.22 55.22 55.22 4.76 3.76 3.76 0.37
DSJC500.1 6.25 6.25 6.25 8.66 16.57 5.91 0.16
DSJC500.5 22.90 22.90 22.90 5.41 9.64 5.71 0.30
DSJC500.9 84.14 84.14 84.14 17.04 16.36 17.53 1.21
DSJR500.1 12.00 12.00 12.00 35.18 10.00 23.59 0.34
DSJR500.1c 83.75 83.75 83.75 - 1231.74 190.31 294.26
DSJR500.5 122.01 122.00 122.00 198.08 16.95 181.80 6.48
DSJC1000.1 8.36 8.36 8.36 31.65 59.76 22.83 0.57
DSJC1000.5 32.11 32.11 32.11 18.30 38.11 19.46 1.17
DSJC1000.9 122.80 122.80 122.80 72.30 63.88 70.85 6.89
fpsol2.i.1 65.00 65.00 65.00 200.57 11.71 199.60 2.67
fpsol2.i.2 30.00 30.00 30.00 28.11 9.75 25.71 0.43
fpsol2.i.3 30.00 30.00 30.00 27.36 7.82 27.43 0.42
inithx.i.1 54.00 54.00 54.00 604.51 32.25 537.71 4.96
inithx.i.2 31.00 31.00 30.22 387.80 12.39 35.60 3.70
inithx.i.3 31.00 31.00 30.23 341.12 13.64 32.57 3.45
latin square 10 90.00 89.99 - 48.40 41.12 - 2.91
le450 15a 15.00 15.00 - 6.37 5.18 - 0.12
le450 15b 15.00 15.00 15.00 7.06 5.61 7.13 0.14
le450 15c 15.00 15.00 15.00 3.92 4.70 4.02 0.10
le450 15d 15.00 15.00 15.00 3.86 4.71 3.96 0.10
le450 25a 25.00 25.00 25.00 19.73 7.54 19.53 0.29
le450 25b 25.00 25.00 - 18.44 7.27 - 0.23
le450 25c 25.00 25.00 25.00 9.67 7.03 9.78 0.20
le450 25d 25.00 25.00 25.00 9.15 6.82 9.25 0.19
mulsol.i.1 49.00 49.00 - 18.89 3.48 - 0.66
mulsol.i.2 31.00 31.00 31.00 9.02 2.92 9.04 0.28
mulsol.i.3 31.00 31.00 31.00 8.13 3.12 7.47 0.19
mulsol.i.4 31.00 31.00 31.00 7.97 2.40 6.31 0.22
mulsol.i.5 31.00 31.00 31.00 9.88 3.34 9.01 0.19
school1 14.00 14.00 14.00 14.74 65.03 8.08 0.40
school1 nsh 14.00 14.00 14.00 12.12 75.97 7.29 0.30
zeroin.i.1 49.00 49.00 49.00 24.91 2.47 21.91 0.80
zeroin.i.2 30.00 30.00 30.00 14.63 2.43 14.13 0.48
zeroin.i.3 30.00 30.00 30.00 14.62 2.80 13.53 0.46
anna 11.00 11.00 - 9.97 1.16 - 0.13
david 11.00 11.00 - 2.46 0.59 - 0.08
huck 11.00 11.00 - 1.60 0.43 - 0.04
jean 10.00 10.00 - 1.35 0.53 - 0.03
games120 9.00 9.00 - 3.23 0.86 - 0.07
miles250 8.00 8.00 8.00 7.17 0.94 6.30 0.11
miles500 20.00 20.00 20.00 6.78 1.69 6.26 0.11
miles750 31.00 31.00 31.00 4.75 2.73 4.77 0.09
miles1000 42.00 42.00 42.00 7.81 1.64 7.61 0.16
miles1500 73.00 73.00 73.00 10.36 1.48 10.28 0.27

Table 5.3: Results on ϑ̄+(G), graphs from the second DIMACS implementation challenge.

17

ϑ̄+(G) CPU times

Graph ADAL-ineq SDPNAL+ BestBound ADAL-ineq SDPNAL+ BestBound post-proc

queen5 5 5.00 5.00 5.00 0.01 0.11 0.04 0.03
queen6 6 6.04 6.04 6.04 0.77 0.69 0.19 0.04
queen7 7 7.00 7.00 7.00 0.08 0.29 0.08 0.01
queen8 8 8.00 8.00 8.00 0.10 0.19 0.11 0.01
queen8 12 12.00 12.00 - 0.55 0.62 - 0.02
queen9 9 9.00 9.00 9.00 0.15 0.23 0.16 0.01
queen10 10 10.00 10.00 10.00 0.23 0.44 0.24 0.01
queen11 11 11.00 11.00 11.00 0.46 0.47 0.47 0.01
queen12 12 12.00 12.00 12.00 0.67 0.68 0.71 0.04
queen13 13 13.00 13.00 13.00 0.76 0.64 0.80 0.04
queen14 14 14.00 14.00 14.00 1.27 0.82 1.32 0.04
queen15 15 15.00 15.00 - 1.38 1.26 - 0.04
queen16 16 16.00 16.00 16.00 1.84 1.46 1.90 0.06
myciel3 2.40 2.40 2.40 0.01 0.13 0.04 0.03
myciel4 2.53 2.53 2.53 0.04 0.18 0.04 0.01
myciel5 2.64 2.64 2.64 0.41 0.41 0.23 0.02
myciel6 2.73 2.73 2.73 1.73 1.16 0.51 0.04
myciel7 2.82 2.82 2.82 7.35 7.60 1.34 0.24
mug88 1 3.00 3.00 3.00 11.78 29.45 0.35 0.24
mug88 25 3.00 3.00 3.00 20.81 47.43 0.35 0.43
mug100 1 3.00 3.00 3.00 19.59 84.51 0.46 0.31
mug100 25 3.00 3.00 3.00 26.20 84.97 0.46 0.39
abb313GPIA 8.00 8.00 8.01 615.04 2949.22 55.61 4.48
ash331GPIA 3.38 3.38 3.38 125.34 17.85 38.24 1.01
ash608GPIA 3.33 3.33 3.31 265.72 41.34 129.25 1.34
ash958GPIA 3.33 3.33 - 529.68 124.35 0.00 2.51
will199GPIA 6.10 6.10 6.10 156.39 32.11 124.61 1.22
1-Insertions 4 2.23 2.23 2.23 1.93 1.01 0.34 0.07
1-Insertions 5 2.28 2.28 2.28 19.71 15.04 2.64 0.56
1-Insertions 6 2.31 2.31 2.31 337.22 100.65 22.80 3.29
2-Insertions 3 2.10 2.10 2.10 0.38 0.57 0.18 0.04
2-Insertions 4 2.13 2.13 2.13 25.27 9.06 1.59 0.36
2-Insertions 5 2.16 2.16 2.16 544.91 109.90 52.67 4.99
3-Insertions 3 2.07 2.07 2.07 1.22 1.00 0.31 0.06
3-Insertions 4 2.09 2.09 2.09 125.48 29.79 8.39 2.37
3-Insertions 5 - 2.10 2.11 - 3568.47 130.38 17.94
4-Insertions 3 2.05 2.05 2.05 2.39 2.75 0.38 0.08
4-Insertions 4 2.06 2.06 2.06 563.58 130.23 8.89 6.64
1-FullIns 3 3.06 3.06 3.06 0.32 0.35 0.13 0.05
1-FullIns 4 3.12 3.12 3.12 4.37 2.45 1.39 0.10
1-FullIns 5 3.18 3.18 3.18 71.27 17.55 18.65 1.52
2-FullIns 3 4.03 4.03 4.03 1.34 0.39 0.74 0.08
2-FullIns 4 4.06 4.06 4.06 57.51 9.21 26.76 1.64
2-FullIns 5 4.08 4.08 4.08 2670.31 184.26 381.59 19.29
3-FullIns 3 5.02 5.02 5.02 6.12 1.18 4.47 0.15
3-FullIns 4 5.03 5.03 5.03 329.51 24.03 58.31 4.94
3-FullIns 5 - 5.05 5.04 - 1769.01 2965.54 18.40
4-FullIns 3 6.01 6.01 6.01 21.19 2.30 1.65 0.32
4-FullIns 4 6.02 6.02 6.02 1979.86 88.40 283.54 16.15
4-FullIns 5 - - - - - - 14.11
5-FullIns 3 7.01 7.01 7.00 61.22 2.72 12.48 0.71
5-FullIns 4 - 7.01 7.01 - 207.83 137.49 21.11
wap01a - 41.00 40.38 - 309.86 3575.61 20.34
wap02a 40.00 40.00 - 538.62 473.42 - 3.29
wap03a 40.00 40.00 40.00 1594.69 2668.31 1507.80 10.12
wap04a 40.00 40.00 40.00 2175.13 2658.54 2179.94 13.84
wap05a 50.00 50.00 50.00 1099.11 24.19 918.93 11.72
wap06a 40.00 40.00 - 63.35 69.47 - 0.74
wap07a 40.00 40.00 40.00 309.93 426.97 145.89 3.00
wap08a 40.00 40.00 - 278.67 224.35 - 2.26
qg.order30 30.00 30.00 - 32.22 21.30 - 0.30
qg.order40 40.00 40.00 - 153.25 82.68 - 1.08
qg.order60 60.00 60.00 - 1684.60 496.86 - 9.74

Table 5.4: Results on ϑ̄+(G), graphs from the second DIMACS implementation challenge.

18

strengthen ϑ̄(G)+ by including to (13) the following:

Xij +Xik −Xjk ≤ t− 1, ∀ i, j, k ∈ V .

Note that the main goal of this experiment is to measure the behavior of the solvers on
SDPs with an increasing number of inequalities, rather than to evaluate the improvement
that these valid inequalities yield over ϑ̄(G)+. In Table 5.5, we report the results on some
classes of graphs where the CPU time needed to compute the BestBound is often lower with
respect to the time needed by SDPNAL+ to converge with a precision of 10−6.

6 Conclusions

In this paper, we propose a numerical comparison between ADAL-ineq, an enhanced version
of ADAL where the presence of linear inequality constraints is smartly handled, and SDPNAL+,
the state-of-the-art method for solving large-scale SDPs that has been awarded the Beale-
Orchard-Hays Prize in 2018. We consider random instances as well as instances from the
SDP relaxations of the graph coloring problem and the maximum clique problem. The post-
processing procedure used is developed to obtain a dual feasible solution which in turn gives
a bound on the optimal primal value. From a practical standpoint, as long as we use SDPs
to address combinatorial optimization problems, the post-processing procedure allows to stop
the execution of the ADMM as soon as a “good” bound is obtained, even if the convergence
criterion is far from being met. Furthermore, the fact that a dual feasible solution is detected,
allows to use re-optimization techniques within branch-and-bound frameworks and is what
we plan to focus on in the near future.

Acknowledgements

The authors acknowledge support within the project RM120172A2970290 which has received
funding from Sapienza, University of Rome. They are also indebted to Fabrizio Rossi and
Stefano Smriglio for their useful suggestions and to Griffin D. Kent for his precious help in
proof reading this manuscript. Last but not least, they are grateful to two anonymous referees
for the careful reading of the manuscript and the valuable comments that helped to improve
the paper.

Declarations

Conflict of interest The authors declare no conflict of interest

19

bounds on χ(G) CPU times

Graph ADAL-ineq SDPNAL+ BestBound ADAL-ineq SDPNAL+ BestBound post-proc

ϑ̄(G) + 1000 inequalities from [8]

DSJC500.5 22.90 22.90 22.90 15.97 38.73 13.77 0.54
DSJC1000.1 8.36 8.36 8.36 34.43 154.79 25.85 0.56
DSJC1000.5 32.11 32.11 32.11 33.33 154.82 34.50 1.18
myciel7 2.85 2.85 2.85 255.84 13.77 13.39 6.77
mug88 25 3.00 3.00 - 17.81 33.92 - 0.25
mug100 25 3.00 3.00 - 22.33 97.57 - 0.28
abb313GPIA 8.00 8.00 8.00 661.22 3466.57 178.77 4.49
1-Insertions 6 2.33 2.33 2.33 1001.29 233.15 65.62 8.98
2-Insertions 5 2.18 2.18 2.18 850.44 373.95 100.30 7.21
3-Insertions 5 - - 2.11 - - 415.32 18.32
4-Insertions 4 2.07 2.07 2.07 632.60 363.73 87.32 6.53
1-FullIns 5 3.19 3.19 3.19 1955.97 141.02 59.14 35.67
5-FullIns 4 - 7.01 7.01 - 257.83 132.12 21.35
wap03a 40.00 - 40.00 1629.48 - 1496.25 11.16
wap04a 40.00 - 40.00 2297.75 - 2302.30 13.66

ϑ̄(G) + 2500 inequalities from [8]

DSJC500.5 22.90 22.90 22.90 79.62 43.81 79.92 0.60
DSJC1000.1 8.36 8.36 8.36 38.74 167.61 29.44 0.57
DSJC1000.5 32.11 32.11 32.11 100.35 157.33 91.06 2.39
myciel7 2.87 2.87 2.87 341.20 13.80 63.14 3.51
mug88 25 3.00 3.00 3.00 83.45 81.22 36.93 1.22
mug100 25 3.00 3.00 3.00 91.18 97.93 85.68 1.43
abb313GPIA 8.00 8.00 8.00 685.60 2611.71 250.42 4.60
1-Insertions 6 2.34 2.34 2.34 827.90 553.82 111.23 6.91
2-Insertions 5 2.19 2.19 2.19 790.06 576.61 157.16 5.79
3-Insertions 5 - 2.13 2.12 - - 1133.88 18.54
4-Insertions 4 2.08 2.08 2.08 625.78 537.75 143.96 4.82
1-FullIns 5 - 3.19 3.19 - 145.95 270.64 34.75
5-FullIns 4 - 7.01 7.01 - 308.79 149.04 20.10
wap03a 40.00 - 40.00 1932.11 - 1935.99 10.83
wap04a 40.00 - 40.00 2629.88 - 2011.30 14.42

ϑ̄(G) + 5000 inequalities from [8]

DSJC500.5 22.90 22.90 22.90 464.82 46.24 456.20 1.14
DSJC1000.1 8.36 8.36 8.36 63.50 163.05 48.59 0.70
DSJC1000.5 32.11 32.11 32.11 589.69 168.79 590.91 2.12
myciel7 2.89 2.89 2.89 583.55 15.44 132.16 3.90
mug88 25 3.00 3.00 3.00 199.32 116.73 78.35 1.56
mug100 25 3.00 3.00 3.00 216.21 154.84 190.52 1.39
abb313GPIA 8.00 - 8.00 744.60 - 356.07 4.36
1-Insertions 6 2.36 2.36 2.36 1351.80 258.02 218.89 8.25
2-Insertions 5 2.19 2.19 2.19 904.85 572.94 274.81 5.39
3-Insertions 5 - - 2.12 - - 1737.21 15.49
4-Insertions 4 2.09 2.09 2.09 736.69 831.07 315.23 4.01
1-FullIns 5 - 3.19 3.19 - 179.80 554.77 22.29
5-FullIns 4 - 7.01 7.01 - 344.28 293.47 17.54
wap03a 40.00 - 40.00 2591.76 - 2383.76 15.00
wap04a - - 40.00 - - 3129.61 18.72

Table 5.5: Results on bounds on χ(Ḡ).

20

References

[1] Federico Battista. On semidefinite lift-and-project of combinatorial optimization prob-
lems. PhD thesis, Università di Roma Sapienza, 2023.

[2] Samuel Burer and Renato D. C. Monteiro. A nonlinear programming algorithm for
solving semidefinite programs via low-rank factorization. Mathematical Programming,
95(2, Ser. B):329–357, 2003.

[3] Samuel Burer and Renato D. C. Monteiro. Local minima and convergence in low-rank
semidefinite programming. Mathematical Programming, 103(3, Ser. A):427–444, 2005.

[4] Martina Cerulli, Marianna De Santis, Elisabeth Gaar, and Angelika Wiegele. Improving
ADMMs for solving doubly nonnegative programs through dual factorization. 4OR,
19:415–448, 2021.

[5] Caihua Chen, Bingsheng He, Yinyu Ye, and Xiaoming Yuan. The direct extension
of ADMM for multi-block convex minimization problems is not necessarily convergent.
Mathematical Programming, 155(1-2):57–79, 2016.

[6] Marianna De Santis, Franz Rendl, and Angelika Wiegele. Using a factored dual in aug-
mented Lagrangian methods for semidefinite programming. Operations Research Letters,
46(5):523 – 528, 2018.

[7] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with per-
formance profiles. Mathematical programming, 91:201–213, 2002.

[8] Igor Dukanovic and Franz Rendl. A semidefinite programming-based heuristic for graph
coloring. Discrete Applied Mathematics, 156(2):180–189, 2008.

[9] Elisabeth Gaar and Franz Rendl. A bundle approach for SDPs with exact subgraph
constraints. In Andrea Lodi and Viswanath Nagarajan, editors, Integer Programming and
Combinatorial Optimization, pages 205–218. Springer International Publishing, 2019.

[10] Monia Giandomenico, Adam N. Letchford, Fabrizio Rossi, and Stefano Smriglio. An
application of the Lovász–Schrijver m (k, k) operator to the stable set problem. Mathe-
matical programming, 120(2):381–401, 2009.

[11] Monia Giandomenico, Adam N. Letchford, Fabrizio Rossi, and Stefano Smriglio. Ellip-
soidal relaxations of the stable set problem: Theory and algorithms. SIAM Journal on
Optimization, 25(3):1944–1963, 2015.

[12] Monia Giandomenico, Fabrizio Rossi, and Stefano Smriglio. Strong lift-and-project cut-
ting planes for the stable set problem. Mathematical Programming, 141(1):165–192, 2013.

[13] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2. Springer Science & Business Media, 2012.

[14] Gerald Gruber and Franz Rendl. Computational experience with stable set relaxations.
SIAM Journal on Optimization, 13(4):1014–1028, 2003.

[15] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2022.

21

[16] Christian Jansson, Denis Chaykin, and Christian Keil. Rigorous error bounds for the opti-
mal value in semidefinite programming. SIAM Journal on Numerical Analysis, 46(1):180–
200, 2007/08.

[17] David J. Johnson and Michael A. Trick, editors. Cliques, Coloring, and Satisfiability:
Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993. American
Mathematical Society, 1996.

[18] Monique Laurent and Franz Rendl. Semidefinite programming and integer programming.
In K. Aardal, G.L. Nemhauser, and R. Weismantel, editors, Discrete Optimization, vol-
ume 12 of Handbooks in Operations Research and Management Science, chapter 8, pages
393–514. Elsevier, Amsterdam, The Netherlands, 2005.

[19] Marco Locatelli. Improving upper bounds for the clique number by non-valid inequalities.
Mathematical Programming, 150(2):511–525, 2015.

[20] Dirk A. Lorenz and Quoc Tran-Dinh. Non-stationary Douglas–Rachford and alternating
direction method of multipliers: adaptive step-sizes and convergence. Computational
Optimization and Applications, 74(1):67–92, Sep 2019.

[21] László Lovász. On the Shannon capacity of a graph. IEEE Transactions on Information
theory, 25(1):1–7, 1979.

[22] Jérôme Malick, Janez Povh, Franz Rendl, and Angelika Wiegele. Regularization methods
for semidefinite programming. SIAM Journal on Optimization, 20(1):336–356, 2009.

[23] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex
programming, volume 13 of SIAM Studies in Applied Mathematics. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1994.

[24] Janez Povh, Franz Rendl, and Angelika Wiegele. A Boundary Point Method to solve
Semidefinite Programs. Computing, 78:277–286, 2006.

[25] Franz Rendl. Matrix relaxations in combinatorial optimization. In Jon Lee and Sven
Leyffer, editors, Mixed Integer Nonlinear Programming, pages 483–511. Springer New
York, 2012.

[26] Defeng Sun, Kim-Chuan Toh, and Liuqin Yang. A convergent 3-block semiproximal al-
ternating direction method of multipliers for conic programming with 4-type constraints.
SIAM Journal on Optimization, 25:882–915, 2015.

[27] Zaiwen Wen, Donald Goldfarb, and Wotao Yin. Alternating direction augmented La-
grangian methods for semidefinite programming. Mathematical Programming Computa-
tion, 2(3):203–230, 2010.

[28] Angelika Wiegele and Shudian Zhao. SDP-based bounds for graph partition via extended
ADMM. Computational Optimization and Applications, 82(1):251–291, 2022.

[29] Liuqin Yang, Defeng Sun, and Kim-Chuan Toh. SDPNAL+: a majorized semismooth
Newton-CG augmented Lagrangian method for semidefinite programming with nonneg-
ative constraints. Mathematical Programming Computation, 7(3):331–366, 2015.

22

	Introduction
	Notation and outline

	ADAL: an ADMM for SDPs in Standard Form
	ADAL-ineq: applying ADAL to SDPs in general form
	Obtaining dual bounds

	Bounding the clique number and the chromatic number of a graph
	Numerical results
	Comparison on randomly generated instances
	Comparison on instances from SDP relaxations of the maximum clique problem
	Comparison on instances from SDP relaxations of the coloring problem

	Conclusions

