
Exact Logit-Based Product Design

İrem Akçakuş
UCLA Anderson School of Management, University of California, Los Angeles, California 90095, United States,

emine.irem.akcakus.phd@anderson.ucla.edu

Velibor V. Mǐsić
UCLA Anderson School of Management, University of California, Los Angeles, California 90095, United States,

velibor.misic@anderson.ucla.edu

The share-of-choice product design (SOCPD) problem is to find the product, as defined by its attributes,

that maximizes market share arising from a collection of customer types or segments. When customers follow

a logit model of choice, the market share is given by a weighted sum of logistic probabilities, leading to the

logit-based share-of-choice product design problem. In this paper, we develop a methodology for solving this

problem to provable optimality. We first analyze the complexity of this problem, and show that this problem

is theoretically intractable: it is NP-Hard to solve exactly, even when there are only two customer types,

and it is furthermore NP-Hard to approximate to within a non-trivial factor. Motivated by the difficulty

of this problem, we propose three different mixed-integer exponential cone programs of increasing strength

for solving the problem exactly, which allow us to leverage modern integer conic program solvers such as

Mosek. Using both synthetic problem instances and instances derived from real conjoint data sets, we show

that our methodology can solve large instances to provable optimality or near optimality in operationally

feasible time frames and yields solutions that generally achieve higher market share than previously proposed

heuristics.

Key words : new product development; choice modeling; conjoint analysis; integer programming; convex

optimization.

1. Introduction

Consider the following canonical marketing problem. A firm has to design a product, which has a

collection of attributes, and each attribute can be set to one of a finite set of levels. The product

will be offered to a collection of customers, which differ in their preferences and specifically, in the

utility that they obtain from different levels of different attributes. What product should the firm

offer – that is, to what level should each attribute be set – so as to maximize the share of customers

who choose to purchase the product? This problem is referred to as the share-of-choice product

design (SOCPD) problem, and has received a significant amount of attention in the marketing

science research literature.

The SOCPD problem is a challenging problem for several reasons. First, since a product corre-

sponds to a combination of attribute levels, the number of candidate products scales exponentially

1

Author: Exact Logit-Based Product Design
2

with the number of attributes, and can be enormous for even a modest number of attributes. This,

in turn, renders solution approaches based on brute force enumeration computationally cumber-

some. Second, it is common to represent customers using discrete choice models that are built on

the multinomial logit model. Under this assumption of customer behavior, the problem becomes

more complex, because the purchase probability under a logit choice model is a nonlinear func-

tion of the product design’s utility that is neither convex nor concave. Finally, product design

problems in real life settings may also often involve constraints, arising from engineering or other

considerations, which can further constrain the set of candidate products.

In this paper, we consider the logit-based SOCPD problem. In this problem, the firm must design

a product that maximizes the expected number of customers who choose to purchase a product,

where customers are assumed to follow logit models of choice, and the probability of a customer

purchasing a product is given by a logistic response function (i.e., the function f(u) = eu/(1+eu)).

We propose an exact solution methodology for this problem that is based on modern integer, convex

and conic optimization. To the best of our knowledge, this is the first exact solution methodology

for the logit-based SOCPD problem.

We make the following specific contributions:

1. We formally define the logit-based SOCPD problem. We show that this problem is NP-Hard

in general. We further show that the problem is NP-Hard even where there are two customer

types, and that it is NP-Hard to approximate the problem to within a factor O(n1−ϵ), where n

is the number of product attributes and ϵ > 0. In the special case that the utility parameters are

integer-valued, we show that the problem can be solved in pseudopolynomial time via dynamic

programming, and we use this to show that when the number of customer types is constant,

there exists a fully polynomial-time approximation scheme for the problem. Lastly, we show that

by considering the related problem of maximizing the weighted geometric mean of the purchase

probabilities, one obtains a lower bound with a parametric approximation guarantee.

2. We develop three different mixed-integer exponential cone program formulations of the prob-

lem of increasing tightness. The first formulation relies on a characterization of logit probabilities

as being the optimal solutions to a representative agent problem, in which an agent chooses the

probability of selecting two alternatives so as to maximize a regularized expected utility. The sec-

ond formulation is derived by applying a perspective function-based convexification of the logit

probability expression. The third formulation relies on applying the reformulation-perspectification

technique (RPT) of Zhen et al. (2021) to the second formulation.

3. We demonstrate the practical tractability of our approach using synthetic problem instances,

as well as a set of problem instances derived from real conjoint data sets. Using synthetic problem

instances with up to n= 70 attributes and up toK = 30 customer types, we show that our approach

Author: Exact Logit-Based Product Design
3

can solve the logit-based SOCPD problem to within an optimality gap of 10% within two hours,

and solutions obtained by our approach outperform heuristic solutions, in some cases by as much

as 30%. On our real problem instances, we are able to solve the logit-based SOCPD problem to

provable optimality in all cases within ten minutes, and we again find that our solutions outperform

those obtained by heuristics.

The rest of this paper is organized as follows. Section 2 provides a review of the related liter-

ature. Section 3 provides a formal definition of the logit-based SOCPD problem, and all of our

complexity and approximation results. Section 4 presents our three mixed-integer exponential cone

formulations of the logit-based SOCPD problem. Section 5 presents the results of our numerical

experiments. Lastly, in Section 6, we conclude. All proofs are relegated to the electronic companion.

2. Literature Review

We divide our literature review according to four subsets: the single product design literature; the

product line design literature; the representative agent model literature; and lastly, the broader

optimization literature.

Single product design: Product design has received significant attention in the marketing science

community; we refer readers to Schmalensee and Thisse (1988) and Green et al. (2004) for overviews

of this topic. The majority of papers on the SOCPD problem assume that customers follow a

deterministic, first-choice model, i.e., they purchase the product if the utility exceeds a “hurdle”

utility, and do not purchase it otherwise. Many papers have proposed heuristic approaches for

this problem; examples include Kohli and Krishnamurti (1987, 1989) and Balakrishnan and Jacob

(1996). Other papers have also considered exact approaches based on branch-and-bound (Camm

et al. 2006) and nested partitions (Shi et al. 2001).

The main difference between our work and the majority of the prior work on the product design

problem is the use of a logit-based share-of-choice objective function. As stated earlier, when

the share-of-choice is defined as the sum of logit probabilities, the SOCPD problem becomes a

discrete nonlinear optimization problem, and becomes significantly more difficult than the SOCPD

problem when customers follow first-choice/max-utility models. To the best of our knowledge, our

approach is the first approach for obtaining provably optimal solutions to the SOCPD problem

when customers follow a logit model.

Product line design/assortment optimization: Besides the product design problem, a more gen-

eral problem is the product line design (PLD) problem, where one must select several products so

as to either maximize the share-of-choice, the expected profit or some other criterion. A number of

papers have considered the PLD problem under a first-choice model of customer behavior, where

customers deterministically select the product with the highest utility; examples of such papers

Author: Exact Logit-Based Product Design
4

include McBride and Zufryden (1988), Kohli and Sukumar (1990), Wang et al. (2009), Belloni et al.

(2008) and Bertsimas and Mǐsić (2019). Besides the first-choice model, several papers have also

considered the PLD problem under the (single-class) multinomial logit model (see, e.g., Chen and

Hausman 2000, Schön 2010). Other work has also considered objective functions corresponding to

a worst-case expectation over a family of choice models (Bertsimas and Mǐsić 2017).

Outside of the marketing literature, the PLD problem is closely related to the problem of assort-

ment optimization which appears in the operations management literature. In this problem, one

must select a set of products from a larger universe of products so as to maximize expected rev-

enue. The difference between PLD and assortment optimization arises from where the choice model

comes: in PLD, the choice model usually comes from conjoint survey data and the task is to select

a set of new products, whereas in assortment optimization, typically the set of candidate products

consists of products that have been offered in the past, and the choice model is estimated from

historical transactions. There is an extensive literature on solving this problem under a variety of

choice models, such as the single class MNL model (Talluri and Van Ryzin 2004), the nested logit

model (Davis et al. 2014) and the Markov chain choice model (Feldman and Topaloglu 2017); we

refer readers to Gallego and Topaloglu (2019) for an recent overview of the literature.

Our paper differs from the product line and assortment optimization literatures in that we focus

on the selection of a single product, and the decision variables of our optimization problem are the

attributes of the product. In contrast, virtually all mathematical programming-based approaches

to PLD/assortment optimization require one to input a set of candidate products, and the main

decision variable is a set of products from the overall set of candidate products. The attributes of

the products are only relevant in specifying problem data (e.g., in an MNL assortment problem,

one would determine the utilities of the candidate products from their attributes), but do not

directly appear as decision variables.

Representative agent model: One of our formulations (formulation RA) is based on a character-

ization of logit probabilities as solutions of a concave maximization problem where the decision

variables correspond to the choice probabilities and the objective function is the entropy-regularized

expected utility. This concave maximization problem is an example of a representative agent model,

and has been studied in a number of papers in the economics and operations management liter-

atures (Anderson et al. 1988, Hofbauer and Sandholm 2002, Feng et al. 2017). The goal of our

paper is not to contribute directly to this literature, but rather to leverage one such result so as to

obtain an exact and computationally tractable reformulation of the logit-based SOCPD problem.

To the best of our knowledge, the representative agent-based characterization of logit probabilities

has not been previously used in optimization models arising in marketing or operations; we believe

that this characterization could potentially be useful in other contexts outside of product design.

Author: Exact Logit-Based Product Design
5

Optimization literature: Lastly, we comment on the relation of our paper to the general opti-

mization literature. Our paper contributes to the growing literature on mixed-integer convex and

mixed-integer conic programming. In the optimization community, there has been an increasing

interest in developing general solution methods for this class of problems (see, for example, Lubin

et al. 2018, Coey et al. 2020) as well as understanding what types of optimization problems can

and cannot be modeled as mixed-integer convex programs (Lubin et al. 2017). At the same time,

mixed-integer convex and mixed-integer conic programming have been used in a variety of appli-

cations, such as power flow optimization (Lubin et al. 2019), robotics (Liu et al. 2020), portfolio

optimization (Benson and Sağlam 2013), joint inventory-location problems (Atamtürk et al. 2012)

and designing battery swap networks for electric vehicles (Mak et al. 2013). All of our mathemat-

ical programming formulations rely on the exponential cone, and thus our paper contributes to a

growing set of applications of exponential cone programming, which include scheduling charging

of electric vehicles (Chen et al. 2021), robust optimization with uncertainty sets motivated by

estimation objectives (Zhu et al. 2021) and manpower planning (Jaillet et al. 2018).

Outside of this literature, we note that a couple of prior papers have considered the problem

of designing a product to maximize the share-of-choice under a mixture of logit models. The first

is the paper of Udell and Boyd (2013) that considers the sum of sigmoids optimization problem,

which is an optimization problem where the objective function is a sum of sigmoid (S-shaped)

functions; the logistic response function f(u) = eu/(1 + eu) is a specific type of sigmoid function.

The paper of Udell and Boyd (2013) develops a general purpose branch-and-bound algorithm for

solving this problem when the decision variables are continuous. Our paper differs from that of

Udell and Boyd (2013) in that our paper is focused specifically on an objective that corresponds to

a sum of logistic response functions, and the main decision variables of our formulation are binary

variables, indicating the presence or absence of certain attributes. In addition, our formulation is an

exact reformulation of the problem into a mixed-integer convex problem, which can then be solved

directly using a commercial mixed-integer conic solver (such as Mosek). In contrast, the approach

of Udell and Boyd (2013) requires one to solve the problem using a custom branch-and-bound

algorithm.

The second is the paper of Huchette and Vielma (2017), which develops a mixed-integer linear

programming formulation for general nonconvex piecewise linear functions. As an example of the

application of the framework, the paper applies the framework to the problem of deciding on

continuous product attributes to maximize a logit-based share-of-choice objective, which involves

approximating the logistic response function f(u) = eu/(1+ eu) using a piecewise linear function.

As with our discussion of Udell and Boyd (2013), our formulation differs in that it is exact, and

that the attributes are discrete rather than continuous.

Author: Exact Logit-Based Product Design
6

Lastly, we note that our paper also contributes to a growing literature on optimization models

where the objective function to be optimized is obtained from a predictive model or a machine

learning model. Some examples include work on optimizing objective functions obtained from tree

ensemble models (such as random forests; see Ferreira et al. 2016, Mǐsić 2020) and neural networks

(Anderson et al. 2020).

3. Model

We begin by formally defining our model in Section 3.1. We then discuss the computational com-

plexity of this model in Section 3.2. Subsequently, in Section 3.3 we develop a dynamic programming

approach for solving the problem in pseudo-polynomial time when the problem data is integer,

and leverage this approach in Section 3.4 to design a fully polynomial time approximation scheme

(FPTAS) when the number of customer types K is treated as a constant. Finally, in Section 3.5,

we present an alternate approximation algorithm for the problem that is based on maximizing the

geometric mean of the purchase probabilities, and provide a parametric performance guarantee for

this method.

3.1. Problem definition

We assume that there are n binary attributes. We assume the product design is described by a

binary vector a = (a1, . . . , an), where ai denotes the presence of attribute i. We let A ⊆ {0,1}n

denote the set of feasible attribute vectors. While we formulate the problem in terms of binary

attributes, we note that this is without loss of generality, as one can represent an attribute with M

levels using M − 1 binary attributes, and one can specify A to include a constraint that requires

at most one of the new M − 1 binary attributes to be selected.

We assume that there are K different segments or customer types. Each customer type is asso-

ciated with a nonnegative weight λk, which is the fraction of customers who belong to that

type/segment, or alternatively the probability that a customer belongs to that type/segment; note

that we always have that
∑K

k=1 λk = 1. Each customer type is also associated with a partworth

vector βk = (βk,1, . . . , βk,n) ∈ Rn, where βk,i is the partworth of attribute i. In addition, we let

βk,0 ∈ R denote the constant part of the customer’s utility. Given a candidate design a ∈ A, the

customer’s utility for the product is given by

uk(a) = βk,0 +
n∑

i=1

βk,iai.

We assume that each customer type is choosing between our product design corresponding to the

vector a, and an outside/no-purchase option. Without loss of generality, we fix the utility of the

outside option to zero. This assumption is not restrictive, as choice probabilities under the logit

Author: Exact Logit-Based Product Design
7

model are unaffected when all of the utilities are adjusted by a constant. In particular, an equivalent

representation (one that would lead to the same choice probabilities) is to specify the utility of the

product as
∑n

i=1 βk,iai and the utility of the no-purchase option as −βk,0. As a result, the constant

term βk,0 effectively captures the utility of the no-purchase option.

We assume that each customer type chooses to buy or not buy the product according to a

multinomial logit model. Thus, given a ∈ A, the customer chooses to purchase the product with

probability exp(uk(a))/(1 + exp(uk(a))) and chooses the outside option with probability 1/(1 +

exp(uk(a))).

With these definitions, the logit-based share-of-choice product design problem can then be

defined as

maximize
a∈A

K∑
k=1

λk ·
exp(uk(a))

1+ exp(uk(a))
. (1)

The objective function of this problem can be thought of as the share or fraction of all customers

who choose to purchase the product, or the (unconditional) probability that a random customer

chooses to purchase the product.

3.2. Complexity

In this section, we characterize the complexity of the logit-based SOCPD problem. Our first major

theoretical result is that problem (1) is NP-Hard.

Theorem 1. The logit-based SOCPD problem (1) with A= {0,1}n is NP-Hard.

This result (see Section EC.1.1 for the proof) follows by reducing the MAX 3SAT problem, a well-

known NP-Complete problem, to problem (1). Notwithstanding Theorem 1, it is unreasonable to

expect problem (1) to be easy: it is an optimization problem over a discrete feasible region, with

a nonlinear objective function that is neither convex nor concave.

Unfortunately, the extent of the difficulty of problem (1) does not stop here. It turns out that

problem (1) is challenging even in the case that there are two customer types.

Theorem 2. The logit-based SOCPD problem (1) with A = {0,1}n and with K = 2 customer

types is NP-Hard.

We establish this result by considering the decision form of problem (1), which asks whether there

exists a product attribute vector a that achieves a share-of-choice of at least θ, where θ is a user

specified parameter. We show that the decision form of problem (1) is equivalent to the parti-

tion problem, which is another well-known NP-Hard problem (Garey and Johnson 1979). We note

that our result was inspired by and shares some similarity with another result from the paper

of Rusmevichientong et al. (2014). In particular, Theorem 3.2 of the paper of Rusmevichientong

Author: Exact Logit-Based Product Design
8

et al. (2014) shows that the problem of assortment optimization under the mixture of multino-

mial logits (MMNL) model is NP-Hard when the number of customer classes/types is equal to 2.

This result is similar to ours in that our underlying choice model is also a mixture of multinomial

logits/latent-class multinomial logit model, and that paper also establishes this result using the

partition problem. Although there is a similarity in the choice model used and the use of the par-

tition problem, the problem of assortment optimization under the MMNL model is quite different

from the share-of-choice product design problem, because the objective function of the MMNL

assortment optimization problem is a sum of weighted linear fractional functions of a binary vec-

tor, i.e., it is a problem of the form maxx∈{0,1}n
∑K

k=1 λk

∑n
i=1 riwk,ixi

1+
∑n

i=1 wk,ixi
(where n is the number of

candidate products, x is a binary vector that encodes for each product i ∈ {1, . . . , n} whether it

is offered or not, ri is the marginal profit/revenue of product i, and wi is the preference weight

of product i for customer type k). The nonlinearity in this problem arises from the ratios of lin-

ear functions. Note that the exponential function does not appear, because it is “baked into” the

wk,i’s: each wk,i can be thought of as wk,i = euk,i , where uk,i is the mean utility of product i for

customer type k. In contrast, in our logit-based SOCPD problem the decision variable is also a

binary vector a ∈ {0,1}n, but the objective function has a more complicated dependence on this

vector a through the exponential function. As a result the proof of Theorem 2 is quite different

from that in Rusmevichientong et al. (2014), and is not a straightforward adaptation of the proof

of Theorem 3.2 from Rusmevichientong et al. (2014).

Our final result in this section concerns the ability to approximate problem (1). Letting F ∗ denote

the optimal objective value of problem (1), we say that an algorithm achieves an approximation

factor of C if it is guaranteed to produce a solution a whose objective value is at least (1/C) ·F ∗.

We then have the following result.

Theorem 3. The logit-based SOCPD problem (1) with A= {0,1}n is NP-Hard to approximate

to within a factor of O(n1−ϵ) for any ϵ > 0.

We establish this result by designing an approximation-preserving reduction between the logit-

based SOCPD problem and the maximum independent set problem, for which the same inap-

proximability result holds (Hastad 1996). We note that this result also shares some similarities

with known results in the assortment optimization literature. In particular, the excellent papers of

Aouad et al. (2018) and Désir et al. (2022) respectively showed that the assortment optimization

problem under ranking preferences and the MMNL assortment optimization problem are NP-Hard

to approximate to within a factor better than O(n1−ϵ) for ϵ > 0, where n is the number of candidate

products, also using the maximum independent set problem (see Theorem 1 of Aouad et al. 2018

and Theorem 2 of Désir et al. 2022). As with our discussion of our Theorem 2, the proof of our

Author: Exact Logit-Based Product Design
9

Theorem 3 differs from these existing results because the dependence of the objective function

of problem (1) on the binary vector a of product attributes is completely different from how the

expected revenue under the ranking-based model or under the MMNL model depend on the binary

vector x that encodes which products are included/excluded from the assortment. As a result, the

proof of Theorem 3 is not a direct adaptation of the proofs of these prior results.

The main takeaway from these results is that problem (1) is fundamentally a very difficult

problem to solve. In the next section, we discuss one setting in which problem (1) can be solved in

pseudo-polynomial time.

3.3. Dynamic programming approach

In this section, we describe a dynamic programming approach for solving the logit-based SOCPD

problem when the partworths βk,0, . . . , βk,n take integer values and when the set of product attribute

vectors is unconstrained, i.e., A = {0,1}n. When we treat the number of customer types K as

a constant, this approach yields a pseudo-polynomial time algorithm for solving the logit-based

SOCPD problem.

Recall that the logit-based SOCPD problem is

max
a∈A≡{0,1}n

K∑
k=1

λk ·σ(uk(a)),

where for convenience, we use σ(·) to denote the logistic response function, i.e., σ(u) = eu/(1+eu).

Let F (a) denote the above objective function.

Suppose that all of the utility parameters – βk,0, . . . , βk,n – are integer valued. For each k ∈ [K]

and i∈ {1, . . . , n+1}, define uk,i,max and uk,i,min as

uk,i,max = βk,0 +
i−1∑
j=1

(βk,j)+,

uk,i,min = βk,0 +
i−1∑
j=1

(βk,j)−,

where (·)+ = max{0, ·}, (·)− = min{0, ·}, and the sum is defined to be zero when the range of

summation is empty (i.e., when i= 1). In words, uk,i,min is the lowest possible value that uk(·) can

take when we are allowed to set a1, . . . , ai−1 arbitrarily, but ai, . . . , an are fixed to zero. Similarly,

uk,i,max is the largest possible value that uk(·) can take when we fix ai, . . . , an to zero. Finally, let

umax =maxk∈[K] uk,n+1,max and umin =mink∈[K] uk,n+1,min be the largest and smallest possible utility

values, respectively, attainable from setting all n attributes over all K customer types.

Let Vi,k be the set of possible integer utilities between uk,i,min and uk,i,max:

Vi,k = {uk,i,min, uk,i,min +1, . . . , uk,i,max}. (2)

Author: Exact Logit-Based Product Design
10

Consider the following dynamic program, defined using the value functions J1, . . . , Jn+1. For

i= 1, . . . , n+1, let Ji : Vi,1× · · ·×Vi,K→R be a function that satisfies the following recursion:

Ji(v1, . . . , vK) =max{Ji+1(v1, . . . , vK), Ji+1(v1 +β1,i, . . . , vK +βK,i)},

∀i∈ [n], (v1, . . . , vK)∈
K∏

k=1

Vi,k,

where we use the notation [N] = {1, . . . ,N}, with the terminal conditions

Jn+1(v1, . . . , vK) =
K∑

k=1

λk ·σ(vk), ∀(v1, . . . , vK)∈
K∏

k=1

Vn+1,k

Observe that by solving this dynamic program, the value of J1(β1,0, . . . , βK,0) yields the exact

optimal value of the logit-based SOCPD problem. The optimal solution can be obtained by taking

the greedy action with respect to the optimal value function.

Note also that the running time of computing all of the values of J using the DP recursion is∑n+1

i=1

∏K

k=1 |Vi,k|=O((n+1)(umax−umin)
K)), and the time to find the optimal a by identifying the

greedy action is O(n). Thus, if K is treated as a constant, then we can solve the problem in time

that is polynomial in the magnitude of the inputs (the difference umax− umin) and in n. We shall

leverage this idea in the next section to develop a theoretically tractable approximation algorithm

in the constant K regime.

3.4. Fully polynomial-time approximation scheme (FPTAS)

Using the dynamic programming method developed in the previous section, we now consider

whether it is possible, under certain conditions, to construct a fully polynomial time approximation

scheme (FPTAS) for the logit-based SOCPD problem. An FPTAS is a procedure that, given an

input ϵ > 0, outputs a solution a such that F (a)≥ (1− ϵ)F ∗, where F ∗ is the optimal value of the

logit-based SOCPD, in computation time that is polynomial in n, K and 1/ϵ. In light of our earlier

inapproximability result (Theorem 3), this is in general not possible. However, under the condition

that K is a constant, we will see that it is possible to obtain an approximation algorithm with

running time that is polynomial in n and 1/ϵ, but exponential in K.

The overall strategy that we will take to construct our FPTAS is to discretize the utility param-

eters βk,0, . . . , βk,n of each customer type. In particular, suppose that we are given a number R> 0,

which will serve as a discretization parameter. Consider discretizing the partworths according to

R:

β̃k,j =

⌊
βk,j

R

⌋
, ∀ k ∈ [K], j ∈ {0,1, . . . , n}.

Define also the discretized utility function ũk(·) as

ũk(a) = β̃k,0 +
n∑

j=1

β̃k,jaj.

Author: Exact Logit-Based Product Design
11

Note that by multiplying ũk(a) by R, we approximately obtain uk(a); that is, Rũk(a)≈ uk(a). Our

goal now is to solve the discretized problem

max
a∈{0,1}n

F̂ (a)

≡ max
a∈{0,1}n

K∑
k=1

λkσ(R · ũk(a)),

where F̂ : {0,1}n→ R denotes the discretized logit-based share-of-choice objective. We will now

describe a dynamic programming approach for solving this problem, which will turn out to be the

FPTAS that we seek.

As with the DP approach in Section 3.3, let us compute bounds ũk,i,max and ũk,i,min as

ũk,i,max = β̃k,0 +
i−1∑
j=1

(β̃k,j)+,

ũk,i,min = β̃k,0 +
i−1∑
j=1

(β̃k,j)−.

Let us also define ũmax = maxk∈[K] ũk,n+1,max, ũmin = mink∈[K] ũk,n+1,min. Note that in relation to

umax and umin defined in Section 3.3, ũmax and ũmin can be bounded as follows:

ũmax ≤
⌊umax

R

⌋
,

ũmin ≥
⌊umin

R

⌋
− (n+1),

where both inequalities follow from basic properties of the floor function. Finally, let Ṽi,k be defined

as

Ṽi,k = {ũk,i,min, ũk,i,min +1, . . . , ũk,i,max}. (3)

Note that the discretized problem,

max
a∈{0,1}n

F̂ (a)≡ max
a∈{0,1}n

K∑
k=1

λkσ(R · ũk(a))

can again be solved by dynamic programming.

We now describe the DP approach for solving the problem maxa∈{0,1}n F̂ (a). Define the value

functions J1, . . . , Jn+1, where for each i= 1, . . . , n+ 1 the function J1 :
∏K

k=1 Ṽi,k→ R satisfies the

following recursion:

Ji(v1, . . . , vK) =max{Ji+1(v1, . . . , vK), Ji+1(v1 + β̃1,i, . . . , vK + β̃K,i)},

∀i∈ [n], (v1, . . . , vK)∈
K∏

k=1

Ṽi,k, (4)

Author: Exact Logit-Based Product Design
12

with the terminal values defined as

Jn+1(v1, . . . , vK) =
K∑

k=1

λkσ(R · vk),

∀(v1, . . . , vK)∈
K∏

k=1

Ṽi,k. (5)

The value of J1(·) at (β̃1,0, . . . , β̃K,0), i.e., J1(β̃1,0, . . . , β̃K,0), is exactly the optimal value of

maxa∈{0,1}n F̂ (a). In addition, the number of steps to calculate all of the value functions J1, . . . , Jn+1

is bounded by

n+1∑
i=1

K∏
k=1

|Ṽi,k|

=
n+1∑
i=1

K∏
k=1

(ũk,i,max− ũk,i,min)

≤
n+1∑
i=1

(ũmax− ũmin)
K

= (n+1)(ũmax− ũmin)
K

≤ (n+1)
(⌊umax

R

⌋
−
⌊umin

R

⌋
+n+1

)K

,

which implies that the computation time of the DP is O((n+1) · (⌊umax/R⌋−⌊umin/R⌋+n+1)K),

which is polynomial in n, umax and umin.

An optimal solution â∈ argmaxa∈{0,1}n F̂ (a) can be obtained using the algorithm below, which

requires O(n) steps.

Algorithm 1 Greedy algorithm for obtaining optimal solution from DP value function J(·).
Initialize a1 ≥ 0, . . . , an← 0.

Initialize v1← β̃1,0, . . . , vK← β̃K,0, i← 1.

while i≤ n do

if J(i+1, v1, . . . , vK)<J(i+1, v1 + β̃1,i, . . . , vK + β̃K,1) then

Set ai← 1.

else

Set ai← 0.

end if

end while

return Solution a.

We can now define a fully polynomial-time approximation scheme for the logit-based SOCPD,

which is presented below as Algorithm 2.

Author: Exact Logit-Based Product Design
13

Algorithm 2 FPTAS for logit-based SOCPD problem.

Set R← ϵ/[(n+1)K]

Solve maxa∈{0,1}n F̂ (a) using the dynamic program (4) - (5).

Using Algorithm 1, obtain â∈ argmaxa∈{0,1}n F̂ (a).

return Approximate solution â.

Our main theoretical result is that Algorithm 2 is a FPTAS for problem (1).

Theorem 4. Algorithm 2 returns a (1− ϵ)-optimal solution the logit-based SOCPD problem, in

running time O(n+(n+1)K+1KK(1/ϵ)K(umax−umin +n+2)K).

The following result is a straightforward consequence of Theorem 4.

Corollary 1. When the number of customer types K is constant, there exists a fully polynomial

time approximation scheme (FPTAS) for the logit-based SOCPD problem.

Note that in Theorem 4, there is an exponential dependence on the number of customer types K.

These results establish that when K is treated as a constant (i.e., O(1)) quantity, the logit-based

SOCPD problem can be approximated in polynomial time, at least in theory. From a practical

standpoint, however, the performance of Algorithm 2 is not strong. Our experience with imple-

menting Algorithm 2 suggests that the computation time is reasonable for up to K = 2 customer

types, but explodes for K ≥ 3. For this reason, we do not pursue this approach further.

3.5. Approximation via geometric mean maximization

In this final section, we consider an alternate approach to approximating problem (1). In prob-

lem (1), the objective function is formulated as the weighted sum of the logit probabilities of each

customer purchasing the product. An alternate way of regarding this objective is to view it as a

weighted arithmetic mean of the logit probabilities of the customer types.

Consequently, instead of formulating the objective of our product design problem as an arithmetic

mean, we can instead consider formulating the problem using the geometric mean. This leads to

the following optimization problem:

maximize
a∈A

K∏
k=1

[
exp(uk(a))

1+ exp(uk(a))

]λk

. (6)

In other words, rather than trying to optimize the weighted arithmetic mean of the purchase prob-

abilities, this problem seeks to optimize the weighted geometric mean of the purchase probabilities,

where the weights indicate the relative proportion of each customer type in the population.

This formulation is interesting to consider because it provides a lower bound on the optimal

value of problem (1); the following simple result, which is based on the arithmetic-geometric mean

inequality and is stated without proof, formalizes this.

Author: Exact Logit-Based Product Design
14

Proposition 1. Let Z∗
AM and Z∗

GM be the optimal objective values of problems (1) and (6),

respectively. Then Z∗
AM ≥Z∗

GM .

Thus, by solving problem (6), we obtain a lower bound on problem (1); by evaluating the objective

value of the optimal solution of (6) within problem (1), we obtain an even stronger lower bound.

The solution of the geometric mean problem (6) can be used as an approximate solution of the

arithmetic mean problem (1).

We can further analyze the approximation quality of the solution of problem (6) with regard to

the original problem. Let us use x= (x1, . . . , xK) to denote the vector of purchase probabilities for

the K different customer types, and let us use x(a) to denote the vector of purchase probabilities

for a given product a∈A:

x(a) = (x1(a), . . . , xK(a)) =

(
exp(u1(a))

1+ exp(u1(a))
, . . . ,

exp(uK(a))

1+ exp(uK(a))

)
.

Let us also use X be the set of achievable customer choice probabilities, given by

X =

{
x∈ [0,1]K | xk =

exp(uk(a))

1+ exp(uk(a))
for some a∈A

}
. (7)

Given a vector of choice probabilities x, we use the function f : X → R to denote the weighted

arithmetic mean of x, with the weights λ= (λ1, . . . , λK):

f(x) =
K∑

k=1

λkxk. (8)

Similarly, we use g :X →R to denote the weighted geometric mean of x:

g(x) =
K∏

k=1

x
λk
k . (9)

Thus, in terms of these two functions, the original logit-based SOCPD problem can be written as

maxa∈A f(x(a)), while the geometric mean problem (6) can be written as maxa∈A g(x(a)). We then

have the following guarantee on the performance of any solution of the geometric mean problem (6)

with respect to the objective of the original logit-based SOCPD problem (1).

Theorem 5. Let L and U be nonnegative numbers satisfying L ≤ xk(a) ≤ U for all k ∈

{1, . . . ,K} and a ∈A. Let a∗ ∈ argmaxa∈A f(x(a)) be a solution of the arithmetic mean problem,

and â∈ argmaxa∈A g(x(a)) be a solution of the geometric mean problem. Then the geometric mean

solution â satisfies

f(x(â))≥ 1∑K

k=1 λk

(
U
L

)1−λk
· f(x(a∗)).

Author: Exact Logit-Based Product Design
15

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5
U / L

Fa
ct

or
K

2
5
10
15
20
100

Figure 1 Plot of the approximation factor Γ as a function of the ratio U/L, for different values of K. Note that

λ is assumed to be the uniform distribution, i.e., λ= (1/K, . . . ,1/K).

The proof of Theorem 5 (see Section EC.1.5 of the ecompanion) follows by finding constants α

and α such that αf(x) ≤ g(x) ≤ αg(x) for any vector of probabilities x, and then showing that

a solution â that maximizes g(x(·)) must be within a factor α/α of the optimal objective of the

arithmetic mean problem. Theorem 5 is valuable because it provides some intuition for when a

solution â obtained by solving the geometric mean problem (6) will be close in performance to the

optimal solution of the original (arithmetic mean) problem (1). In particular, the factor Γ defined

as

Γ= α/α=
1∑K

k=1 λk

(
U
L

)1−λk

is decreasing in the ratio U/L. Recall that U is an upper bound on the highest purchase probability

that can be achieved for any customer type, while L is similarly a lower bound on the lowest

purchase probability that can be achieved for any customer type. When the ratio U/L is large, it

implies that there is a large range of choice probabilities spanned by the set of product designs A.
On the other hand, when U/L is small, then the range of choice probabilities is smaller. Thus, the

smaller the range of choice probabilities spanned by the set A is small, the closer we should expect

the geometric mean solution to be in performance to the optimal solution of the arithmetic mean

problem. Figure 1 visualizes the dependence of the factor Γ on U/L when λ is assumed to be the

discrete uniform distribution and K is varied.

In addition to the ratio U/L, the factor Γ is also affected by λ. It can be verified that the factor Γ

is minimized when the customer type distribution is uniform, i.e., λ= (1/K, . . . ,1/K). In addition,

Author: Exact Logit-Based Product Design
16

it can also be verified that when λ is such that λk = 1 for a single customer type (and λk′ = 0 for

all others), the factor Γ becomes 1. Thus, the more “unbalanced” the customer type distribution

λ is, the closer the geometric mean solution should be in performance to the optimal solution of

the arithmetic mean problem.

Lastly, with regard to the bounds U and L, we note that these can be found easily. In particular,

for each customer type k, one can compute uk,max =maxa∈A uk(a) and uk,min =mina∈A uk(a), which

are the highest and lowest utilities that one can attain for customer type k; for many common

choices of A this should be an easy problem. (For example, if A is simply {0,1}n, we can find

uk,max by setting to 1 those attributes for which βk,i > 0 and setting to 0 all other attributes; uk,min

can be found in a similar manner). One can then compute L and U as

U = max
k=1,...,K

exp(uk,max)

1+ exp(uk,max)
,

L= min
k=1,...,K

exp(uk,min)

1+ exp(uk,min)
.

We now turn our attention to how one can solve problem (6). While problem (6) is still a

challenging nonconvex problem, it is possible to transform it into a mixed-integer convex problem.

To do so, we consider taking the logarithm of the objective function of (6):

log
K∏

k=1

[
exp(uk(a))

1+ exp(uk(a))

]λk

=
K∑

k=1

λk log

(
exp(uk(a))

1+ exp(uk(a))

)

=
K∑

k=1

λk · (uk(a)− log(1+ exp(uk(a)))) .

This transformation is useful because the logarithm function is monotonic, so any solution that

maximizes the logarithm of the objective function maximizes the objective function itself. This

leads to the following mixed-integer convex program:

maximize
a,u

K∑
k=1

λk · (uk− log(1+ exp(uk))) (10a)

subject to uk = βk,0 +
n∑

i=1

βk,iai, ∀ k ∈ {1, . . . ,K}, (10b)

Ca≤ d, (10c)

ai ∈ {0,1}, ∀i∈ {1, . . . , n}. (10d)

This formulation can be further reformulated as a mixed-integer exponential cone program, and

solved using Mosek. In terms of complexity, we note that problem (6) is still a hard problem, which

is formalized in the proposition below.

Theorem 6. The geometric mean problem (6) is NP-Hard.

Author: Exact Logit-Based Product Design
17

We refer readers to Section EC.1.6 for the proof of this result. However, in spite of this result,

our experience is that the conic reformulation of (10) can generally be solved quite quickly; in

our experiments in Section 5.1, we find that synthetic problem instances of with up to n = 70

attributes and K = 30 customer types can be solved to full optimality in no more than two minutes

on average. Despite this positive empirical result, we again note that the geometric mean approach

only provides a heuristic and not an exact approach to solving the original problem (1), and indeed,

in Section 5.2, we shall see that the GM heuristic can be quite suboptimal in real data instances.

In what follows, we shall consider how to solve this problem to provable optimality.

4. Mixed-Integer Convex Programming Formulations

Motivated by the hardness results that we established for problem (1) in Section 3.2, in this section,

we develop exact mathematical programming formulations of problem (1).

The formulations that we will develop belong to the general class of mixed-integer convex pro-

gramming (MICONVP) problems, and specifically, the class of mixed-integer conic programming

(MICP) problems; we provide a brief overview of MICP here. An MICP problem has the following

general form:

minimize
x∈Rn

cTx (11a)

subject to Ax−b∈K, (11b)

xi ∈Z, ∀ i∈ I, (11c)

where x is an n-dimensional vector of decision variables, c is an n-dimensional vector, b is an

m-dimensional vector, A is an m-by-n matrix, I ⊆ [n] is the set of integer variables in the problem

and finally, K is a closed convex cone. A closed convex cone K is a closed subset of Rn that contains

all nonnegative combinations of its elements, i.e., a set K satisfying the following property:

y1,y2 ∈K ⇒ α1y1 +α2y2 ∈K for any α1, α2 ≥ 0. (12)

While the cone K can in theory be specified as any set that satisfies (12), in practice, it is common

to model K as a Cartesian product of a collection of cones drawn from the set of standard cones.

An example of a standard cone is the the cone K≥ = {y ∈Rm | y≥ 0}, where 0 is an m-dimensional

vector of zeros. This cone is known as the nonnegative cone, as it corresponds to the nonnegative

orthant of Rn. The constraint Ax − b ∈ K≥ is equivalent to the constraint Ax ≥ b, which is

just a linear constraint. Other standard cones include the zero cone, the second order cone, the

exponential cone and the positive semidefinite cone; we refer readers to Mosek ApS (2021a) for an

overview of other standard cones.

Author: Exact Logit-Based Product Design
18

Having described mixed-integer conic programming in generality, we now elaborate on why this

representation is valuable. Many mixed-integer convex programs involve complicated nonlinear

functions. Until recently, the method of choice for tackling such problems has been to use mixed-

integer nonlinear programming solvers, which treat these nonlinear functions in a “black-box”

fashion and rely on evaluating these functions and their derivatives to solve the problem. Often, it

turns out that constraints involving these nonlinear functions can be re-written through additional

variables and additional conic constraints involving standard cones.1 In so doing, one obtains a

mixed-integer conic program, which is then amenable to solution methods for such problems. This

is important because conic programs – problems of the same form as (11), without the integrality

constraint (11c) – are considered to be among the easiest continuous nonlinear programs to solve:

the theory of numerical algorithms for solving these problems is quite developed, there are numerous

software packages for solving these problems at practical scale, and there continues to be active

development both in the theory and in software implementations. Solution algorithms for mixed-

integer conic programs are built on top of algorithms for (continuous) conic programs and can

exploit the conic structure. By formulating the problem as a mixed-integer conic program, one is

able to use state-of-the-art commercial solvers such as Mosek (Mosek ApS 2021b), as well as new

open-source solvers such as Pajarito (Coey et al. 2020) to solve the problem. (In our numerical

experiments in Section 5 we will indeed solve all of our formulations using Mosek.)

The challenge in developing a MICP formulation of problem (1) is how to model probabilities of

the form eu/(1+eu); as we have already discussed, such probabilities have a non-convex dependence

on u. The first formulation we will present in Section 4.1, formulation RA, is based on leveraging the

fact that logit probabilities arise as optimal solutions of a concave maximization problem called the

representative agent model. The second formulation we will present in Section 4.2, formulation P, is

based on a technique known as perspectification. The last formulation we will present in Section in

Section 4.3, formulation P-RPT, is based on applying the reformulation-perspectification technique

(RPT; Zhen et al. 2021) to formulation P. In all three of our formulations, the representation of the

logit probabilities will critically depend on certain convex functions that are representable using

the exponential cone, and our formulations will thus be mixed-integer exponential cone programs,

which are supported by Mosek as of 2019. Finally, in Section 4.4, we briefly describe a couple of

extensions of our models here (on handling a profit objective and handling uncertainty in problem

data) that are discussed in more detail in the ecompanion.

Before we continue, we make the following assumption on the structure of the set A.

1 A notable recent example of this is the paper of Lubin et al. (2018), which found that all 194 mixed-integer con-
vex programming problems in the MINLPLIB2 (http://www.gamsworld.org/minlp/minlplib2/html/) benchmark
library could be represented as mixed-integer conic programs using standard cones.

Author: Exact Logit-Based Product Design
19

Assumption 1. The set A can be written as A = {a ∈ {0,1}n | Ca ≤ d} for some choice of

C∈Rm×n and d∈Rm, where m∈Z+.

Assumption 1 just requires that the set of candidate products A can be represented as the set

of binary vectors satisfying a finite collection of linear inequality constraints. This assumption is

necessary in order to ensure that our problem can be formulated as a mixed-integer convex program

of finite size. We note that this assumption is not too restrictive, as many natural constraints can

be expressed in this way; we discuss some examples in Section EC.2.1 of the ecompanion.

4.1. Formulation RA

Our first formulation relies on the representative agent model, which we now briefly review. In the

representative agent model, an agent is faced with M alternatives. Each alternative m ∈ [M] is

associated with a utility πm. The agent must choose the probability xm with which each alternative

will be selected; we let x= (x1, . . . , xM) be the probability distribution over the M alternatives. The

agent seeks to maximize his adjusted expected utility, where the adjustment is achieved through

a convex regularization function V (x). The representative agent model is then the following opti-

mization problem:

maximize
x

M∑
i=1

πmxm−V (x) (13a)

subject to
M∑

m=1

xm = 1, (13b)

xm ≥ 0, ∀ m∈ [M]. (13c)

Since the function V (·) is a convex function, the above problem is a concave maximization prob-

lem. By carefully choosing the function V , the optimal solution of this problem – the probability

distribution x – can be made to coincide with choice probabilities under different choice models.

In particular, it is known that the function V (x) =
∑M

i=1 xi log(xi) gives choice probabilities corre-

sponding to a multinomial logit model (Anderson et al. 1988). We refer the reader to the excellent

paper of Feng et al. (2017) for a complete characterization of which discrete choice models can be

captured by the representative agent model.

For our problem, the specific instantiation of the representative agent model that we are inter-

ested in is one corresponding to the choice of the kth customer type between our product and

the no-purchase option. We let xk,1 denote the probability of choosing our product with attribute

vector a, and xk,0 denote the probability of choosing the no-purchase option. Recall that the utility

of our product is uk(a), and the utility of the no-purchase option is 0. The representative agent

model for this customer type can thus be formulated as

maximize
xk,0,xk,1

uk(a) ·xk,1 +0 ·xk,0−xk,1 log(xk,1)−xk,0 log(xk,0) (14a)

Author: Exact Logit-Based Product Design
20

subject to xk,1 +xk,0 = 1, (14b)

xk,1, xk,0 ≥ 0. (14c)

The following theoretical result establishes two key properties of this problem. First, the unique

optimal solution (x∗
k,1, x

∗
k,0) is exactly the pair of logit choice probabilities for the two alternatives.

Second, the optimal objective value can be found in closed form. The proof of this proposition

follows straightforwardly by analyzing the Lagrangean of problem (14), and is thus omitted.

Proposition 2. The unique optimal solution (x∗
k,1, x

∗
k,0) of problem (14) is given by

x∗
k,1 =

euk(a)

1+ euk(a)
,

x∗
k,0 =

1

1+ euk(a)
.

In addition, the optimal objective value is log(1+ euk(a)).

Using this result, we can now proceed with the formulation of our SOCPD problem. With a

slight abuse of notation, let uk be a decision variable that denotes the utility of the candidate

product a for customer type k. As before, let xk,1 and xk,0 denote the probability of customer type

k purchasing and not purchasing the product, respectively. Then, the optimization problem can be

formulated as

maximize
a,u,x

K∑
k=1

λk ·xk,1 (15a)

subject to xk,1 +xk,0 = 1, ∀k ∈ {1, . . . ,K}, (15b)

ukxk,1−xk,1 log(xk,1)−xk,0 log(xk,0)≥ log(1+ exp(uk)), ∀k ∈ {1, . . . ,K}, (15c)

uk = βk,0 +
n∑

i=1

βk,iai, ∀k ∈ {1, . . . ,K}, (15d)

Ca≤ d, (15e)

ai ∈ {0,1}, ∀i∈ {1, . . . , n}, (15f)

xk,1, xk,0 ≥ 0, ∀k ∈ {1, . . . ,K}. (15g)

Observe that this formulation is a valid formulation of problem (1). To see this, observe that any

solution (a,u,x) that is feasible has the property that for every k ∈ [K], (xk,0, xk,1) is an optimal

solution to problem (14). This is because constraint (15c) enforces that the objective function of

(14) is at least as good as log(1+ euk), which is equal to log(1+ euk(a)) (because constraint (15d)

ensures that the decision variable uk is exactly equal to uk(a)). Since we know that log(1+ euk(a))

is the optimal objective value of problem (14), it follows that (xk,0, xk,1) is an optimal solution to

Author: Exact Logit-Based Product Design
21

problem (14). Additionally, since the solution of the representative agent problem (14) is unique,

it must be that xk,0 = 1/(1+ euk(a)), xk,1 = euk(a)/(1+ euk(a)).

The key feature of this formulation is that it no longer explicitly involves the logit choice prob-

abilities, which are a nonconvex function of uk. We note that this problem is almost a mixed-

integer convex program. In the main nonlinear constraint (15c), the functions −xk,1 log(xk,1) and

−xk,0 log(xk,0) appearing on the left hand side are instances of the entropy function −x log(x) (Boyd

and Vandenberghe 2004) and are concave in xk,1 and xk,0. Similarly, the function log(1+ exp(uk))

appearing on the right hand side, which is known as the softplus function (Mosek ApS 2021a), is a

convex function of uk. Thus, this constraint can almost be written in the form f(uk,xk)≤ 0, where

f is a convex function. The main obstacle that prevents us from doing this is the bilinear term

ukxk,1, which is not jointly concave in uk and xk,1.

Fortunately, we can use the fact that uk = βk,0 +
∑n

i=1 βk,iai to re-write this bilinear term as

ukxk,1 = (βk,0 +
n∑

i=1

βk,iai)xk,1

= βk,0xk,1 +
n∑

i=1

βk,i · aixk,1.

Using the fact that each ai ∈ {0,1} and that 0≤ xk,1 ≤ 1, we can now linearize the bilinear terms

aixk,1 using a standard modeling technique from integer programming. In particular, we introduce

a continuous decision variable yk,i for each k and i which corresponds to the product aixk,1, and a

continuous decision variable wk which corresponds to the product ukxk,1. This leads to the following

equivalent formulation, which we denote by RA:

RA : maximize
a,u,w,x,y

K∑
k=1

λk ·xk,1 (16a)

subject to xk,1 +xk,0 = 1, ∀k ∈ [K], (16b)

wk−xk,1 log(xk,1)−xk,0 log(xk,0)≥ log(1+ exp(uk)), ∀k ∈ [K], (16c)

uk = βk,0 +
n∑

i=1

βk,iai, ∀k ∈ [K], (16d)

wk = βk,0xk,1 +
n∑

i=1

βk,iyk,i, ∀k ∈ [K], (16e)

yk,i ≤ xk,1, ∀k ∈ [K], i∈ [n], (16f)

yk,i ≤ ai, ∀k ∈ [K], i∈ [n], (16g)

yk,i ≥ ai− 1+xk,1, ∀k ∈ [K], i∈ [n], (16h)

yk,i ≥ 0, ∀k ∈ [K], i∈ [n], (16i)

Ca≤ d, (16j)

Author: Exact Logit-Based Product Design
22

ai ∈ {0,1}, ∀i∈ [n], (16k)

xk,1, xk,0 ≥ 0, ∀k ∈ [K]. (16l)

Note that in the formulation above, when a ∈A, yk,i is forced to take the value of ai · xk,1, and

wk takes the value of uk ·xk,1, which ensures the correctness of the formulation. We note that the

nonlinear functions that appear in formulation RA, which are the entropy functions xk,1 log(xk,1)

and xk,0 log(xk,0) and the softplus function, are representable using the exponential cone; we refer

readers to Mosek ApS (2021a) for more details. As a result, formulation RA is a mixed-integer

exponential cone program that can be solved using Mosek.

4.2. Formulation P

In this section, we develop an alternate formulation of the logit-based SOCPD problem using

a trick that is colloquially known in the nonlinear programming/convex optimization literature

as perspectification (Zhen et al. 2021). We briefly review the idea of perspectification, and then

demonstrate how it can be applied in our setting.

In nonconvex optimization problems, one sometimes encounters a constraint of the form

g(x,y)+xf(y)≤ 0

where x≥ 0 is a scalar decision variable, y is a vector of decision variables, f is convex in y and g

is jointly convex in x and y. This constraint is not a convex constraint because although the term

xf(y) is marginally convex in each of x and y (specifically, it is linear in x for any fixed y and

convex in y for a fixed x≥ 0), it is not jointly convex in (x,y). However, one way in which one can

turn this constraint into a convex one is as follows. First, we multiply and divide y by x inside the

constraint:

g(x,y)+xf
(xy

x

)
≤ 0,

where we assume that xf(u/x) = 0 when x= 0. We now replace xy with a new decision variable

vector u, which serves as the linearization of the vector of bilinear terms xy. This leads to the

constraint

g(x,y)+xf
(u
x

)
≤ 0,

This last constraint now is in fact a convex constraint, because the new term xf(u/x), is exactly the

perspective function of f . Recall that the perspective function of f is the function f̃(y, t) = t ·f(y/t),

defined for t≥ 0. The perspective function is significant because whenever f is a convex function

of y, then the perspective function f̃ is a convex function of y and t (Boyd and Vandenberghe

2004). By including additional constraints that appropriately constrain the u variable vector, we

can potentially obtain a good relaxation of the original problem. This idea has been identified

Author: Exact Logit-Based Product Design
23

and exploited in a number of recent papers that consider challenging optimization problems (for

example Zhen et al. 2022, Gorissen et al. 2022).

Let us now see how this idea applies in the context of our problem. Recall that in our problem,

ideally we wish to enforce the constraint

xk,1 =
1

1+ e−uk
(17)

where xk,1 is the decision variable that represents the purchase probability of customer type k,

and uk is the utility of the product for customer type k. Note that since the objective function is∑K

k=1 λkxk,1, which is a nonnegative weighted combination of the xk,1 variables, we can safely relax

the equality to an inequality, to obtain the constraint

xk,1 ≤
1

1+ e−uk
. (18)

If we now move the denominator of the right-hand side to the left, we get

xk,1 +xk,1e
−uk ≤ 1. (19)

Here, recall that f(y) = ey is a convex function of y. We can thus apply the perspectification idea

by multiplying and dividing the argument of e· by xk,1, which yields

xk,1 +xk,1e
−xk,1uk

xk,1 ≤ 1. (20)

Finally, as in formulation RA, let us use wk to denote the linearization of uk ·xk,1. We now replace

xk,1uk with wk, to arrive at the following convex constraint:

xk,1 +xk,1e
−wk/xk,1 ≤ 1. (21)

This suggests the following formulation of the logit-based SOCPD problem, which we refer to as

formulation P. Note that the definitions of the decision variables are the same as in formulation RA,

and that constraints (22c) - (22h) are the same as in formulation RA.

P : maximize
a,w,x,y

K∑
k=1

λkxk,1 (22a)

subject to xk,1 +xk,1e
−wk/xk,1 ≤ 1, ∀ k ∈ [K], (22b)

wk = βk,0xk,1 +
n∑

i=1

βk,iyk,i, ∀ k ∈ [K], (22c)

yk,i ≤ ai, ∀ k ∈ [K], i∈ [n], (22d)

yk,i ≤ xk,1, ∀ k ∈ [K], i∈ [n], (22e)

yk,i ≥ xk,1 + ai− 1, ∀ k ∈ [K], i∈ [n], (22f)

Author: Exact Logit-Based Product Design
24

yk,i ≥ 0, ∀ k ∈ [K], i∈ [n], (22g)

xk,0, xk,1 ≥ 0, ∀ k ∈ [K], (22h)

Ca≤ d, (22i)

a∈ {0,1}n. (22j)

Note that this formulation is a valid formulation of problem (1). To see this, observe that when

a∈A, yk,i will take the value ai ·xk,1 and wk will take the value uk ·xk,1, where uk = βk,0+
∑n

i=1 βk,iai

is the utility of the product for customer type k. Thus, constraint (22b) essentially enforces that

xk,1 + xk,1e
−uk·xk,1/xk,1 ≤ 1, or equivalently, that xk,1 ≤ 1/(1 + e−uk). Since the objective function

is a nonnegative weighted combination of the xk,1 variables, at optimality we will have that xk,1

will be equal to this upper bound, i.e., xk,1 = 1/(1 + e−uk). Note that unlike formulation RA, it

is no longer necessary to include a decision variable uk to represent the utility of the product for

customer k.

We make a couple of important remarks about this formulation. First, we note that formulation P,

like formulation RA, can also be represented as a mixed-integer exponential cone program and

solved directly using Mosek. However, one advantage that formulation P has over RA is that P

requires only a single exponential cone constraint per customer type to represent the perspective

function xk,1e
−wk/xk,1 , whereas RA requires four (one for each of the entropy functions, xk,1 logxk,1

and xk,0 logxk,0, and two for the softplus function log(1 + euk)). Thus, formulation P should be

easier to solve in general. On this point, another advantage that formulation P has over (16) is in

regard to numerical stability. In formulation RA, constraint (16c) by design must hold at equality

at integer solutions, which can lead to ill-posedness issues (Mosek ApS 2021a). On the other hand,

constraint (22b) does not have to hold at equality for integer solutions, and so formulation P does

not have this same issue of ill-posedness.

Second, a natural question is how formulation P and RA compare. Here, the continuous relax-

ations of formulations P and RA are the convex optimization problems that one obtains when the

constraint a∈ {0,1}n is replaced with the constraint

0≤ ai ≤ 1, ∀ i∈ [n]. (23)

The relaxation bound is the objective value that is obtained when one solves the continuous

relaxation. Let Z∗
P and Z∗

RA denote the optimal values of the continuous relaxations of formulations

P and RA respectively. The following result (see Section EC.1.7 of the ecompanion for the proof)

characterizes the relation between the relaxation bounds of the two formulations.

Proposition 3. Z∗
P ≤Z∗

RA.

Author: Exact Logit-Based Product Design
25

This result implies that the relaxation bound of formulation P is always at least as tight as that

of formulation RA. This is important because a tighter relaxation bound generally implies that

the integer problem can be solved more quickly via branch-and-bound. We will see in Section 5.1

that the relaxation bound of P can be substantially tighter than that of RA. In the next section,

we discuss one way in which formulation P can be modified to obtain an even stronger (albeit less

tractable) formulation.

4.3. Formulation P-RPT

In this section, we propose a modified version of formulation P that produces a tighter relaxation

bound. The key idea in this new formulation is to leverage a recently proposed technique from the

paper of Zhen et al. (2021) called the reformulation-perspectification technique (RPT). RPT is a

generalization of the well-known reformulation-linearization technique (RLT) originally proposed

by Sherali and Adams (1990). The basic idea of RPT is to multiply a pair of constraints together,

where one constraint is a linear constraint and one is a convex constraint, to generate new con-

straints that are valid but potentially intractable. These new constraints are then converted into

tractable constraints by applying perspectification.

To illustrate the idea, suppose that we are given the following two constraints:

cTy≥ d

f(x)≤ 0

where y is a vector of decision variables, x is a scalar decision variable, c is a vector of the same

size as y, d is a scalar, and f is a convex function. Observe that from the first constraint, we know

that cTy−d must be nonnegative. Therefore, we can obtain a valid new constraint by multiplying

the left and right hand sides of f(x)≤ 0 by cTy− d:

(cTy− d)f(x)≤ 0. (24)

This new constraint is no longer convex. However, we can now apply the perspectification trick to

obtain a tractable convex constraint. We multiply and divide the argument of f by cTy− d:

(cTy− d)f

(
x(cTy− d)

cTy− d

)
≤ 0. (25)

Now, letting u denote the linearization of x ·y, we can reformulate this as

(cTy− d)f

(
cTu− dx

cTy− d

)
≤ 0. (26)

As in the example in Section 4.2, this new constraint is a convex constraint, because again we can

write the left hand side of the constraint as f̃(cTu− dx,cTy− d), where f̃(x, t) = tf(x/t) for t≥ 0

Author: Exact Logit-Based Product Design
26

is the perspective function of f . This example is a simple example of the procedure; in the paper of

Zhen et al. (2021), there are a number of more complicated instances shown (for example, where

f is a multivariate function).

To apply the RPT technique to formulation P, let us use as a starting point the constraints

ai ≥ 0,

xk,1 +xk,1e
−uk ≤ 1.

Note that the first constraint is a valid constraint that must be satisfied by ai, whether it is binary

or relaxed to be continuous, while the second constraint is the main constraint from formulation P

prior to perspectification. If we now multiply the second constraint on the left and right by ai, we

obtain

aixk,1 + aixk,1e
−uk ≤ ai

We now perspectify the second term by multiplying and dividing by aixk,1 inside the e:

aixk,1 + aixk,1e
−aiukxk,1

aixk,1 ≤ ai.

Finally, introducing the new variable φk,i to represent the linearization of ai ·xk,1 ·uk, and recalling

that we had previously introduced yk,i to denote the linearization of aixk,1, we can re-write this

constraint as

yk,i + yk,ie
−φk,i
yk,i ≤ ai,

which is a convex constraint. We can apply similar steps using the two constraints

1− ai ≥ 0,

xk,1 +xk,1e
−uk ≤ 1,

where the first constraint is just a re-arrangement of ai ≤ 1. By multiplying the left and right hand

side of the second constraint by 1− ai and following the same steps, we obtain

(xk,1− yk,i)+ (xk,1− yk,i)e
−(wk−φk,i)

xk,1−yk,i ≤ 1− ai.

This leads us to the following formulation, which we refer to as formulation P-RPT:

maximize
a,b,w,x,
y,z,φ

K∑
k=1

λkxk,1 (27a)

subject to yk,i + yk,ie
−φk,i
yk,i ≤ ai, ∀ k ∈ [K], i∈ [n], (27b)

Author: Exact Logit-Based Product Design
27

(xk,1− yk,i)+ (xk,1− yk,i)e
−(wk−φk,i)

xk,1−yk,i ≤ 1− ai, ∀ k ∈ [K], i∈ [n], (27c)

φk,i = βk,0yk,i +
n∑

j=1

βk,jzk,i,j, ∀ k ∈ [K], i∈ [n], (27d)

zk,j,i = zk,i,j, ∀ k ∈ [K], i, j ∈ [n], i < j, (27e)

zk,i,i = yk,i, ∀ k ∈ [K], i∈ [n], (27f)

zk,i,j ≤ yk,i, ∀ k ∈ [K], i, j ∈ [n], i < j, (27g)

zk,i,j ≤ yk,j, ∀ k ∈ [K], i, j ∈ [n], i < j, (27h)

zk,i,j ≥ yk,i + yk,j −xk,1, ∀ k ∈ [K], i, j ∈ [n], i < j, (27i)

zk,i,j ≤ bi,j, ∀ k ∈ [K], i, j ∈ [n], i < j, (27j)

zk,i,j ≥ bi,j + yk,j − aj, ∀ k ∈ [K], i, j ∈ [n], i < j, (27k)

zk,i,j ≥ bi,j + yk,i− ai, ∀ k ∈ [K], i, j ∈ [n], i < j, (27l)

zk,i,j ≤ 1−xk,1− ai + yk,i− aj + yk,j + bi,j, ∀ k ∈ [K], i, j ∈ [n], i < j, (27m)

zk,i,j ≥ 0, ∀ k ∈ [K], i, j ∈ [n], i < j, (27n)

bj,i = bi,j, ∀ i, j ∈ [n], i < j, (27o)

bi,i = ai, ∀ i∈ [n], (27p)

bi,j ≤ ai, ∀ i, j ∈ [n], i < j, (27q)

bi,j ≤ aj, ∀ i, j ∈ [n], i < j, (27r)

bi,j ≥ ai + aj − 1, ∀ i, j ∈ [n], i < j, (27s)

bi,j ≥ 0, ∀ i, j ∈ [n], i < j, (27t)

constraints (22b) - (22j). (27u)

In the above formulation, constraints (27b) and (27c) are those obtained by applying RPT. In

addition to the new decision variable φk,i, the formulation also includes the decision variables zk,i,j,

which represents the linearization of ai ·aj ·xk,1, and bi,j, which represents the linearization of ai ·aj.

Constraints (27e) - (27n) are standard constraints to linearize aiajxk,1, while constraints (27o) -

(27t) are similar constraints to linearize aiaj.

We make a couple of observations regarding formulation P-RPT. First, just like formulation P,

this formulation can be represented as a mixed-integer exponential cone program. Second, in terms

of strength, observe that the projection of the feasible region of the continuous relaxation of P-RPT

is contained in the feasible region of the relaxation of P, since the constraints of P are a superset

of those in P-RPT. Therefore, it follows straightforwardly that the relaxation bound of formulation

P-RPT, which we denote by Z∗
P-RPT, is at least as tight as that of Z

∗
P.

Author: Exact Logit-Based Product Design
28

Proposition 4. Z∗
P-RPT ≤Z∗

P.

We will see in Section 5.1 that the relaxation bound of P-RPT can be substantially tighter than

that of P.

Third, in terms of tractability, formulation P-RPT is significantly more complex than formula-

tion P. In particular, whereas P is representable using K exponential cone constraints and O(Kn)

linear constraints, P-RPT requires O(Kn) exponential cone constraints, and O(Kn2) linear con-

straints. In our experience with this formulation, it is generally much slower to solve with integrality

constraints than formulation P, and we did not have success with solving this formulation in a

reasonable amount of time for the synthetic instances considered in Section 5.1. However, the con-

tinuous relaxation of formulation P-RPT can be solved relatively quickly. Thus, this formulation

can be useful in some cases in allowing one to quickly obtain a better upper bound than P.

4.4. Extensions

Before we conclude this section, we comment on a couple of extensions of the models we consider

here. First, all of our formulations focus on optimizing the market share of the product. A firm

may instead be interested in maximizing expected profit. In the case that profit is a linear function

of a, then all of our formulations can be straightforwardly modified to represent this new objective;

we provide more details in Section EC.2.2 of the ecompanion.

Second, an important consideration in practice is the reliability of the problem data. In the

situation where there are estimation errors in the parameters (the λk and βk,i values), it is possible

that a product designed under the assumption of one set of values for these parameters will perform

poorly if another set of parameter values is realized. In Section EC.4, we present two different vari-

ants of the logit-based SOCPD problem, based on robust optimization, for addressing uncertainty

in the problem data.

5. Numerical Experiments

In this section, we present the results of our numerical experiments. Section 5.1 presents the results

of our experiments with synthetically generated problem instances, while Section 5.2 presents the

results of our experiments with instances derived from real conjoint datasets. All of our numerical

experiments are implemented in the Julia technical computing language, version 1.5 (Bezanson

et al. 2017) using the JuMP package (Julia for Mathematical Programming; see Dunning et al.

2017). All mixed-integer exponential cone programs are solved using Mosek version 10 (Mosek ApS

2021b) with a maximum of 8 threads. All of our experiments are conducted on Amazon Elastic

Compute Cloud (EC2), on a single instance of type m6a.48xlarge (AMD EPYC 7R13 processor,

with 192 virtual CPUs and 768 GB of memory).

Author: Exact Logit-Based Product Design
29

5.1. Experiments with synthetic instances

In our first collection of numerical experiments, we test our approaches on synthetically generated

problem instances. We generate these instances as follows. For a fixed number of binary attributes

n and number of customer types K, we draw an independent uniformly distributed random number

vk,i in the interval [−1,+1] for each customer type k and attribute i. We then set the partworth

βk,i of attribute i for customer type k as βk,i = c · vk,i, where c is a positive constant. For each

customer type, we set the utility βk,0 of the no-purchase option as βk,0 = −3. This choice of the

no-purchase option can be interpreted as assuming that when offered a product with no attributes,

i.e., a= 0, then the utility of the product for a segment k is uk(a) = βk,0 =−3, which corresponds

to a purchase probability of σ(−3)≈ 0.0474, i.e., a roughly 5% chance of the customer buying the

product. We assume that the probability λk of each customer type k is set to 1/K.

We vary n ∈ {30,40,50,60,70}, K ∈ {10,20,30}, and c ∈ {5,10,20}. For each combination of n

and k, we generate 20 collections of values vk,i for each k ∈ [K] and i∈ [n]. For each such collection,

we vary c∈ {5,10,20} and compute βk,i = cvk,i for each k ∈ [K] and i∈ [n]. Consequently, this gives

rise to 5× 3× 3 = 45 sets of 20 problem instances, for a total of 45× 20 = 900 problem instances.

In our first experiment, we solve formulation P on each instance with a time limit of 2 hours.

We record the computation time and the optimality gap, which is defined as

OP = 100%× ZP,UB −ZP,LB

ZP,UB

,

where ZP,UB is the best upper bound obtained upon termination of formulation P and ZP,LB is the

best lower bound at termination of P (which corresponds to the best possible integer solution). We

compute the average of the computation time, denoted by TP, and OP over the twenty instances

corresponding to each combination of n, K and c.

Table 1 displays the results. Overall, we can see that in a large number of cases one can solve

formulation P to provable optimality (i.e., the average gap OP is zero) within two hours. In other

cases, it is not possible to solve it to provable optimality, but the resulting solution comes with

a relatively low optimality gap. For example, for n = 70, K = 30, c = 5, the average optimality

gap is 4.95%. Across all combinations of n,K, c where there is a non-zero average optimality gap,

the average optimality gap ranges from 0.19% to 9.60%. To put these results into perspective,

we attempted to solve some of our instances using exhaustive enumeration in Julia. For instances

with n= 30, the average time required for exhaustive enumeration was on the order of one hour.

For instances with n= 40, the time exceeded two hours; given that A= {0,1}n, we should expect

this time to be about 240−30 = 210 times larger, i.e., on the order of approximately 1000 hours.

In comparison, formulation P can be solved to provable optimality in no more than 2333 seconds

Author: Exact Logit-Based Product Design
30

c n K OP TP

5 30 10 0.00 15.54
5 30 20 0.00 202.62
5 30 30 0.00 2333.12
5 40 10 0.00 44.99
5 40 20 0.37 2393.76
5 40 30 6.91 7026.27
5 50 10 0.00 21.62
5 50 20 0.70 2809.89
5 50 30 9.95 7213.79
5 60 10 0.00 47.54
5 60 20 1.03 2317.13
5 60 30 9.60 7213.76
5 70 10 0.00 18.33
5 70 20 0.45 1267.83
5 70 30 4.95 6410.63

c n K OP TP

10 30 10 0.00 14.96
10 30 20 0.00 80.05
10 30 30 0.00 1107.93
10 40 10 0.00 17.78
10 40 20 0.00 399.22
10 40 30 2.50 5316.60
10 50 10 0.00 17.92
10 50 20 0.19 1351.77
10 50 30 6.16 7161.57
10 60 10 0.00 22.60
10 60 20 0.03 709.22
10 60 30 4.88 6692.13
10 70 10 0.00 16.69
10 70 20 0.00 87.16
10 70 30 1.64 3310.76

c n K OP TP

20 30 10 0.00 12.23
20 30 20 0.00 66.61
20 30 30 0.00 614.31
20 40 10 0.00 18.42
20 40 20 0.00 496.22
20 40 30 1.19 4346.31
20 50 10 0.00 24.78
20 50 20 0.22 817.61
20 50 30 3.40 5550.03
20 60 10 0.00 38.61
20 60 20 0.00 114.48
20 60 30 2.18 5115.71
20 70 10 0.00 21.44
20 70 20 0.00 202.43
20 70 30 0.23 2610.99

Table 1 Optimality gap and computation time of formulation P as c, n and K vary.

(approximately 39 minutes) on average for instances with n= 30 and to an average optimality gap

of below 7% within 7026 seconds (just under two hours) for instances with n= 40.

In our second experiment, we compare the three formulations – RA, P and P-RPT– in terms of

their continuous relaxations. We solve the continuous relaxation of each of the three formulations

for each instance, and then compute the integrality gap, denoted by Im, as

Im = 100%× Zm,rlx−Z ′

Z ′ , (28)

where Z ′ denotes the objective value of the best integer solution obtained from P after two hours

of computation. In addition to Im, we also calculate Trlx,m, which is the time required to solve the

continuous relaxation of model m. We focus on only those instances with c= 5, as these instances

resulted in the largest separation between the integrality gaps. We note that in a small but not

negligible number of cases (79 instance-method pairs out of 900), the value of Zm,rlx obtained was

lower than Z ′ because of numerical precision issues arising from Mosek. Over these 79 instance-

method pairs, the error was extremely small, with the relaxation gap ranging between -0.091% and

-0.000016%. Of the 79 instance-method pairs, 5 corresponded to RA, 23 to P and 51 to P-RPT.

Due to the relatively small magnitudes of the errors, we treated these negative values as zeros in

the calculation of our result metrics.

Table 2 below displays the average integrality gap over the 20 instances for each combination

of (c,n,K). From this table, we can see that P-RPT generally has the smallest integrality gap,

followed by P, and finally RA. In some cases, the difference can be quite large (for example, for

c= 5, n= 30 and K = 30, the average integrality gap is about 30% for RA, compared to about 25%

Author: Exact Logit-Based Product Design
31

c n K IRA IP IP-RPT Trlx,RA Trlx,P Trlx,P-RPT

5 30 10 4.84 3.46 2.28 9.05 0.02 1.06
5 30 20 17.80 13.66 9.46 9.72 0.04 15.36
5 30 30 29.57 24.55 17.99 9.89 0.08 29.95
5 40 10 2.40 1.74 1.24 9.21 0.02 2.35
5 40 20 10.88 8.36 6.06 10.17 0.08 41.71
5 40 30 19.83 16.33 12.51 10.68 0.17 81.65
5 50 10 0.05 0.03 0.02 9.18 0.08 3.84
5 50 20 5.19 4.02 3.09 10.33 0.08 91.80
5 50 30 19.32 16.58 13.79 10.69 0.17 162.83
5 60 10 0.03 0.02 0.01 10.61 0.10 6.20
5 60 20 2.54 2.12 1.80 10.65 0.10 224.54
5 60 30 15.71 13.73 12.04 12.47 0.23 379.66
5 70 10 0.01 0.01 0.00 9.37 0.04 8.46
5 70 20 0.98 0.83 0.74 10.75 0.11 388.53
5 70 30 7.93 6.98 6.19 11.97 0.39 615.05

Table 2 Comparison of integrality gaps for continuous relaxations of RA, P and P-RPT using synthetic

instances with c= 5.

for P and 18% for P-RPT). This agrees with our theoretical results on the objective values of the

continuous relaxations of these formulations (Proposition 3 and 4). In terms of computation time,

we note that the relaxation of P is fastest to solve, while RA is about two orders of magnitude

slower, and P-RPT is an additional 1-2 orders of magnitude slower and can take up to 10 minutes

to solve. The edge of P in time is to be expected, as P requires only K exponential cones, while RA

requires 4K and P requires 2nK+K. As noted in Section 4.3, we did not have success with solving

the integer version of P-RPT in a reasonable amount of time; however, these results suggest that

P-RPT’s relaxation could still be useful when one needs to quickly obtain a good upper bound as

a complement to a heuristic solution.

In our final experiment, we test formulation P and compare the quality of its solutions against

those of several heuristic approaches. We compare it against several different heuristic approaches,

which we summarize below:

1. KKDP: This is the dynamic programming (DP) heuristic of Kohli and Krishnamurti (1987),

which sequentially fixes the elements of a. Although this heuristic was originally proposed for the

problem of product design under a first-choice/max-utility model, with some minor modifications

it can also be applied to the logit-based SOCPD problem.

2. Greedy: This is the greedy heuristic described in Shi et al. (2001), which involves simply

picking the attribute vector a that maximizes the weighted average of the customer utilities:

max
a∈A

K∑
k=1

λk ·uk(a). (29)

Author: Exact Logit-Based Product Design
32

When A= {0,1}n, this problem can be solved by setting each attribute independently of the others

based on the sign of the quantity
∑K

k=1 λk ·βk,i. More generally, it can be solved by formulating a

mixed-integer linear program.

3. LS: This is a local search heuristic. This heuristic involves starting from a random attribute

vector a ∈ A, and then moving to a new attribute vector a′ in the neighborhood N (a) of a that

leads to the greatest improvement in the objective value; we then repeat this at the new attribute

vector, and continue in this way until there is no attribute vector in the neighborhood of the current

one that leads to an improvement. We consider a neighborhood N (a) defined as N (a) = {a′ ∈A |

∥a′−a∥1 ≤ 1}, in other words, all attribute vectors a′ that differ from a in exactly one coordinate

i∈ [n]. We apply the local search heuristic from ten uniformly randomly generated starting points,

and retain the best solution of those ten repetitions.

4. GM: This is the geometric mean approach described in Section 3.5. We solve formulation (10)

as a mixed-integer exponential cone program via Mosek.

For formulation P, we solve it using Mosek with a time limit of 2 hours.

We execute each of the four heuristics and formulation P on each of the 900 problem instances.

For each problem instance, we identify the solution with the highest objective value and denote its

objective function value by Z ′. For each approach m (one of KKDP, Greedy, LS, GM, or formulation

P), we then compute the gap of its solution relative to the best solution for that instance:

Gm = 100%× Z ′−Zm

Z ′ , (30)

where Zm is the objective value attained by approach m. We compute the average of Gm over all

instances with the same values of n, K and c, for each approach.

Table 3 below displays the average gap of each approach. From this table, we can see that

in general, across all the values of n, K and c, the solution obtained using our mixed-integer

exponential cone formulation P tends to be the best one, as it has the lowest average gap. Out of the

heuristic approaches, KKDP tends to deliver very poor solutions (average gap over all 900 instances

of 16.3%), followed by Greedy (average gap of 16.2%), followed by LS (average gap of 8%). We note

that our geometric mean-based heuristic method GM generally tends to give better solutions than

all three heuristic in the aggregate, with an average gap of 5.7% over all 900 instances, although

there are many cases where GM is the weakest of the four heuristic approaches (for example c= 5,

n = 30 K = 30); generally, GM seems to perform best for large n and low K. Overall, the main

takeaway from these results is that our exact solution approach can lead to solutions that are

significantly better than heuristic approaches that do not guarantee global optimality.

Besides the optimality gap, it is also helpful to compare the exact solution of formulation P with

the heuristics in terms of computation time. Due to space considerations, these results are reported

Author: Exact Logit-Based Product Design
33

c n K GGreedy GLS GKKDP GGM GP

5 30 10 15.74 3.91 19.25 2.37 0.00
5 30 20 16.93 5.20 21.86 17.78 0.00
5 30 30 17.25 4.35 17.43 20.01 0.00
5 40 10 15.64 6.17 15.73 1.03 0.00
5 40 20 21.07 7.51 21.16 12.91 0.00
5 40 30 19.80 7.72 18.46 18.42 0.00
5 50 10 12.21 3.56 16.48 0.00 0.00
5 50 20 19.18 8.49 21.80 4.99 0.00
5 50 30 16.31 6.75 15.72 15.34 1.20
5 60 10 9.43 3.49 10.45 0.00 0.00
5 60 20 16.24 9.42 20.38 0.63 0.00
5 60 30 17.71 7.84 18.60 9.35 0.49
5 70 10 7.74 2.49 8.52 0.00 0.00
5 70 20 22.17 13.47 20.72 0.00 0.14
5 70 30 19.25 12.09 22.14 3.20 0.19

10 30 10 14.14 3.54 15.73 1.74 0.00
10 30 20 18.75 7.01 18.34 12.23 0.00
10 30 30 18.93 7.91 18.52 20.12 0.00
10 40 10 14.05 4.30 13.69 0.00 0.00
10 40 20 21.49 10.63 19.72 7.22 0.00
10 40 30 20.81 11.59 17.98 13.26 0.00
10 50 10 9.97 2.50 10.72 0.00 0.00
10 50 20 19.43 11.07 19.87 1.20 0.00
10 50 30 17.53 10.35 17.88 10.86 0.26
10 60 10 7.47 3.51 8.05 0.00 0.00
10 60 20 15.57 9.59 16.58 0.00 0.01
10 60 30 19.13 12.82 18.63 2.17 0.00
10 70 10 6.49 1.50 4.56 0.00 0.00
10 70 20 19.36 13.30 17.04 0.00 0.01
10 70 30 20.66 16.67 22.53 0.40 0.26

20 30 10 12.95 3.28 11.15 1.58 0.00
20 30 20 19.37 8.90 20.49 10.22 0.00
20 30 30 19.51 10.38 18.80 42.97 0.00
20 40 10 13.23 4.50 11.12 0.00 0.00
20 40 20 20.41 11.29 15.37 5.46 0.00
20 40 30 21.06 13.76 19.20 10.23 0.00
20 50 10 8.94 2.50 5.50 0.00 0.00
20 50 20 18.47 10.51 17.83 0.11 0.01
20 50 30 19.50 13.39 19.70 7.92 0.00
20 60 10 6.83 4.50 6.60 0.00 0.00
20 60 20 14.98 7.76 16.25 0.00 0.02
20 60 30 20.21 14.72 20.61 0.30 0.01
20 70 10 6.05 3.50 5.76 0.00 0.00
20 70 20 17.78 11.50 17.91 0.00 0.01
20 70 30 20.62 16.65 19.72 0.00 0.08

(Mean) 16.23 8.13 16.32 5.65 0.06
(Median) 17.40 8.85 16.81 0.00 0.00

Table 3 Comparison of optimality gap of heuristic approaches and exact approach (from solving P) on

synthetic instances.

Author: Exact Logit-Based Product Design
34

in Table EC.1 in Section EC.3.1 of the ecompanion, which compares the approaches in terms of

average computation time, where the average is taken over the twenty instances for a fixed n, K, c

combination. From this table, our formulation P requires the most time, while the KKDP, Greedy

and LS heuristics are extremely fast, requiring no more than a second in all cases. Although solving

P requires more time than the heuristics, we believe that the additional runtime is justified in

light of the fact that P produces solutions for which the level of suboptimality (i.e., the optimality

gap) is known, which is not the case for KKDP, Greedy or LS. The geometric mean approach GM

requires significantly less time compared to formulation P; across all of the instances, we were

able to solve the geometric mean formulation (10) to provable optimality in under two minutes on

average; across all 900 instances, the largest computation time we observed was 996 seconds (just

over 16 minutes). Together with the higher quality of solution returned by GM, our results here

suggest that GM could be an attractive alternative to classical heuristics for the SOCPD problem.

5.2. Experiments with instances based on real conjoint datasets

In our second set of numerical experiments, we test our approaches using instances built with

logit models estimated from real conjoint datasets. We use four different data sets: timbuk2, a

dataset on preferences for laptop bags produced by Timbuk2 from Toubia et al. (2003) (see also

Belloni et al. 2008, Bertsimas and Mǐsić 2017, 2019, which also use this data set for profit-based

product line design); bank, a dataset on preferences for credit cards from Allenby and Ginter

(1995) (accessed through the bayesm package for R; see Rossi 2019); candidate, a dataset on

preferences for a hypothetical presidential candidate from Hainmueller et al. (2014); immigrant, a

dataset on preferences for a hypothetical immigrant from Hainmueller et al. (2014). The high-level

characteristics of each dataset are summarized in Table 4 below, and we provide additional details

on the datasets in Section EC.3.2.

We note that for some of these datasets, the product design problem is of a more hypothetical

nature. For example, for candidate, the problem is to “design” a political candidate maximizing

the share of voters who would vote for that candidate. Similarly, for immigrant, the problem is

to “design” an ideal immigrant that would maximize the fraction of people who would support

granting admission to such an immigrant. Clearly, it is not possible to “create” a political candidate

or immigrant with certain characteristics. Despite this, we believe that identifying what an optimal

“product” would be for these data sets, and what share-of-choice such a product would achieve,

would still be insightful. Notwithstanding these concerns, these datasets are still valuable from the

perspective of verifying that our optimization methodology can solve problem instances derived

from real data.

For each data set, we develop two different types of logit models, which we summarize below.

Author: Exact Logit-Based Product Design
35

Dataset Respondents Attributes Attribute Levels n

bank 946 7 4× 4× 3× 3× 3× 2× 2 14
candidate 311 8 6× 2× 6× 6× 6× 6× 6× 2 32
immigrant 1396 9 7× 2× 10× 3× 11× 4× 4× 5× 4 41
timbuk2 330 10 7× 2× 2× 2× 2× 2× 2× 2× 2× 2 15

Table 4 Summary of real conjoint datasets used in Section 5.2. The column “Attributes” indicates the number

of attributes, and “Attribute Levels” indicates the structure of each attribute (e.g., 2× 3× 5 indicates that the

product has one attribute with two levels, followed by one with three levels, followed by one with five levels). The

column labelled n indicates the resulting number of binary attributes when the dataset is used to formulate the

logit-based SOCPD problem.

1. Latent-class logit : For each dataset, we estimate a latent-class (LC) multinomial logit with

a finite number of classes K. We estimate each model using a custom implementation of the

expectation-maximization (EM) algorithm (Train 2009). For each dataset, we run the EM algorithm

from five randomly chosen starting points, and retain the model with the lowest log likelihood. To

ensure numerical stability, we impose the constraint −10 ≤ βk,i ≤ 10 for each i in the M step of

the algorithm. We vary the number of classes K in the set {5,10,15,20,30,40,50}. Thus, in the

associated logit-based SOCPD instance, each customer class corresponds to one of the customer

types and the customer type probability λk is the class k probability estimated via EM.

2. Hierarchical Bayes: For each dataset, we estimate a mixture multinomial logit (MMNL) model

with a multivariate normal mixture distribution using the hierarchical Bayesian (HB) approach; we

use a standard specification with normal-inverse Wishart second stage priors (see Section EC.3.4

of the ecompanion for more details). We estimate this model using Markov chain Monte Carlo

(MCMC) via the bayesm package in R (Rossi 2019). We simulate 50,000 draws from the posterior

distribution of (βr,1, . . . , βr,n) for each respondent r, and thin the draws to retain every 100th

draw. Of those draws, we retain the last J = 100 draws, which we denote as (βj
r,1, . . . , β

j
r,n), where

j ∈ {1, . . . , J}, and we compute the average partworth vector (βk,1, . . . , βk,n) as

(βr,1, . . . , βr,n) = (
1

J

J∑
j=1

βj
r,1, . . . ,

1

J

J∑
j=1

βj
r,n). (31)

This approach leads to an estimate of the partworths for each of the respondents. In the corre-

sponding logit-based SOCPD instance, the number of customer types K corresponds to the number

of respondents, and the probability of each customer type k is 1/K.

Before continuing, we note that there may be other approaches for defining a mixture of logits

model. (For example, given an estimate of the mean and covariance matrix of a normal mixture

distribution defining a mixture logit model, one could sample a set of K partworth vectors and

use those as the set of customer types, with each λk = 1/K.) We emphasize that our goal is not

Author: Exact Logit-Based Product Design
36

to advocate for one approach over another. The estimation approaches described here are simply

for the purpose of obtaining problem instances that are of a realistic scale and correspond to real

data. We note that our optimization approach is agnostic to how the customer choice model is

constructed and is compatible with any estimation approach, so long as it results in a finite set of

customer types that each follow a logit model of choice.

For each dataset, we define the set A to be the set of all binary vectors of size n that respect

the attribute structure of the dataset; in particular, for attributes that are not binary, we intro-

duce constraints of the form
∑

i∈S ai ≤ 1 as appropriate (cf. constraints (EC.48) and (EC.49) in

Section EC.2.1). For immigrant, we also follow Hainmueller et al. (2014) in not allowing certain

combinations of attributes (for example, it is not possible for a hypothetical immigrant to be a

doctor and have only a high school education). We briefly describe the constraints for immigrant

in Section EC.3.5 of the ecompanion.

With regard to the no-purchase option, recall from Section 3.1 that the constant part of each

customer’s utility function, βk,0, can be thought of as the negative of the utility of the no-purchase

option. None of the four data sets include explicit information on the no-purchase option, and

they did not include any tasks where respondents were able to choose between the no-purchase

option and a hypothetical product. Thus, to define the utility of the no-purchase option, we take a

different approach, where we assume that in each problem instance, each customer can choose from

three different competitive offerings which are defined using the same attributes as the product

that is to be designed. This is a standard assumption in the product design and product line design

literature (Belloni et al. 2008, Bertsimas and Mǐsić 2017, 2019). More details on this calculation

are provided in Section EC.3.2 and we provide the specific details of the competitive offerings for

each data set in Section EC.3.6 of the ecompanion.

For each real data instance, we test the Greedy, LS and GM heuristics. We solve formulation P

using Mosek, with a time limit of two hours.

Table 5 shows the computation time and the objective value of all of the different methods for

all four datasets. From this table, we can see that all of the LC (latent class logit) instances can be

solved to complete optimality using formulation P within 16 seconds, while all of the HB instances

are solved within ten minutes. As in our synthetic experiments, the Greedy and LS heuristics are

the fastest, requiring under a second to execute in all cases. Although Greedy and LS sometimes

obtain the optimal solution, this is not always the case, and in some cases there can be a large gap

between these heuristic solutions and the optimal solution; to focus on one example, for immigrant

with LC and K = 30, Greedy and LS are about 12% and 8% suboptimal, respectively). These results

again highlight the value of a provably optimal approach to the logit-based SOCPD problem.

Author: Exact Logit-Based Product Design
37

Objective Value Computation Time (s)
Dataset Model K Greedy LS GM P Greedy LS GM P

bank LC 5 0.737 0.742 0.675 0.742 0.01 0.00 0.12 0.19
LC 10 0.743 0.749 0.685 0.749 0.00 0.00 0.05 0.29
LC 15 0.752 0.752 0.682 0.752 0.00 0.00 0.06 0.54
LC 20 0.719 0.719 0.687 0.719 0.00 0.00 0.08 0.49
LC 30 0.736 0.764 0.637 0.764 0.00 0.00 0.14 0.97
LC 40 0.757 0.757 0.665 0.757 0.00 0.00 0.17 1.27
LC 50 0.746 0.749 0.642 0.749 0.00 0.00 0.13 1.70
HB 946 0.817 0.817 0.812 0.817 0.01 0.01 2.23 45.52

candidate LC 5 0.504 0.471 0.509 0.626 0.00 0.00 0.05 1.14
LC 10 0.573 0.597 0.637 0.694 0.00 0.00 0.09 1.49
LC 15 0.637 0.616 0.651 0.670 0.00 0.00 0.07 2.13
LC 20 0.563 0.628 0.574 0.705 0.00 0.00 0.11 2.55
LC 30 0.549 0.567 0.534 0.627 0.00 0.00 0.16 6.12
LC 40 0.585 0.671 0.537 0.671 0.00 0.00 0.22 9.48
LC 50 0.710 0.669 0.680 0.710 0.01 0.00 0.34 9.83
HB 311 0.829 0.851 0.851 0.852 0.01 0.03 1.05 42.65

immigrant LC 5 0.555 0.670 0.687 0.689 0.00 0.00 0.05 0.63
LC 10 0.688 0.718 0.688 0.738 0.01 0.00 0.08 1.91
LC 15 0.683 0.631 0.393 0.726 0.00 0.00 0.08 2.66
LC 20 0.706 0.696 0.552 0.756 0.01 0.00 0.18 4.25
LC 30 0.595 0.622 0.467 0.675 0.01 0.00 0.20 9.02
LC 40 0.724 0.692 0.344 0.724 0.01 0.00 0.29 9.84
LC 50 0.713 0.689 0.628 0.731 0.01 0.00 0.29 15.81
HB 1396 0.828 0.851 0.846 0.865 0.01 0.22 6.34 549.31

timbuk2 LC 5 0.519 0.519 0.510 0.519 0.00 0.00 0.04 0.14
LC 10 0.543 0.543 0.536 0.543 0.00 0.00 0.06 0.34
LC 15 0.551 0.567 0.430 0.567 0.00 0.00 0.08 0.48
LC 20 0.556 0.557 0.556 0.557 0.00 0.00 0.11 0.80
LC 30 0.596 0.620 0.436 0.620 0.01 0.00 0.16 1.21
LC 40 0.579 0.579 0.560 0.579 0.00 0.00 0.24 1.78
LC 50 0.628 0.628 0.446 0.628 0.00 0.00 0.25 2.19
HB 330 0.644 0.644 0.644 0.644 0.00 0.01 1.54 16.75

Table 5 Results for numerical experiment with real data.

With regard to the geometric mean approach, we find that Mosek is able to solve all of the

instances very quickly (within 6 seconds in all cases), but surprisingly, the solutions obtained from

GM perform worse in these datasets than in the synthetic datasets considered in the previous

section and exhibits higher suboptimality gaps than Greedy and LS. Although GM does not perform

as well in these instances, given its good performance on our synthetic datasets, it is possible

that GM may perform better in other problem instances arising from other real datasets or from

different estimation methods.

In addition to the performance of the different methods, it is also interesting to examine the

optimal solutions. Table 6 visualizes the optimal solution for the candidate dataset for the LC

Author: Exact Logit-Based Product Design
38

model with K = 20 segments. The table also shows the three outside options/competitive offerings

that were defined for this dataset. In addition, the table also shows the structure of the solution

obtained by Greedy, which finds the vector a in A that maximizes
∑K

k=1 λkuk(a).

From this table, we can see that the optimal solution matches some of the outside options on

certain attributes (such as income and profession), but differs on some (for example, age). In addi-

tion, while the optimal solution does match the heuristic on many attributes, it differs on a couple

of key attributes, namely race/ethnicity (the optimal candidate is Black, while the heuristic candi-

date is Asian American) and gender (the optimal candidate is male, while the heuristic candidate

is female). While this may appear to be a minor difference, it results in a substantial difference in

market share: the heuristic candidate attracts a share of 0.563, while the optimal candidate attracts

a share of 0.705, which is an improvement of 25%. This illustrates that intuitive solutions to the

logit-based product design problem can be suboptimal, and demonstrates the value of a principled

optimization-based approach to this problem.

6. Conclusions

In this paper, we have studied the logit-based share-of-choice product design problem. While we

have showed that this problem is theoretically intractable even in the simplest case of two customer

types and is moreover NP-Hard to approximate to within a reasonable factor, we nevertheless

showed how it is possible to transform this problem into a mixed-integer convex optimization

problem and in particular, a mixed-integer (exponential) cone program, which allows us to lever-

age cutting edge solvers that can handle these types of problems such as Mosek. Our numerical

experiments show how our approach can obtain high quality solutions to large instances, whether

generated synthetically or from real conjoint data, within reasonable time limits. To the best of our

knowledge, this is the first methodology for solving the logit-based share-of-choice product design

problem to provable optimality.

Acknowledgments

The authors thank the authors of Toubia et al. (2003), Hainmueller et al. (2014) and Allenby and

Ginter (1995) for making their data sets available, which were used in the experiments in Sec-

tion 5.2. The authors also thank the department editor George Shanthikumar, the associate editor

and three anonymous referees for their helpful and constructive feedback that have significantly

improved the quality of the paper.

References

G. M. Allenby and J. L. Ginter. Using extremes to design products and segment markets. Journal of

Marketing Research, 32(4):392–403, 1995.

Author: Exact Logit-Based Product Design
39

Attribute Outside Outside Outside Optimal Greedy
Option 1 Option 2 Option 3 Solution Solution

Age: 36
Age: 45
Age: 52
Age: 60
Age: 68
Age: 75
Military Service: Did not serve
Military Service: Served
Religion: None
Religion: Jewish
Religion: Catholic
Religion: Mainline protestant
Religion: Evangelical protestant
Religion Mormon
College: No BA
College: Baptist college
College: Community college
College: State university
College: Small college
College: Ivy League university
Income: 32K
Income: 54K
Income: 65K
Income: 92K
Income: 210K
Income 5.1M
Profession: Business owner
Profession: Lawyer
Profession: Doctor
Profession: High school teacher
Profession: Farmer
Profession: Car dealer
Race/Ethnicity: White
Race/Ethnicity: Native American
Race/Ethnicity: Black
Race/Ethnicity: Hispanic
Race/Ethnicity: Caucasian
Race/Ethnicity: Asian American
Gender: Male
Gender: Female

Table 6 Attributes of outside options, optimal solution and heuristic solution for candidate LC-MNL model

with K = 20 segments.

R. Anderson, J. Huchette, W. Ma, C. Tjandraatmadja, and J. P. Vielma. Strong mixed-integer programming

formulations for trained neural networks. Mathematical Programming, pages 1–37, 2020.

S. P. Anderson, A. De Palma, and J.-F. Thisse. A representative consumer theory of the logit model.

International Economic Review, pages 461–466, 1988.

A. Aouad, V. Farias, R. Levi, and D. Segev. The approximability of assortment optimization under ranking

preferences. Operations Research, 66(6):1661–1669, 2018.

A. Atamtürk, G. Berenguer, and Z.-J. M. Shen. A conic integer programming approach to stochastic joint

location-inventory problems. Operations Research, 60(2):366–381, 2012.

P. V. Balakrishnan and V. S. Jacob. Genetic algorithms for product design. Management Science, 42(8):

1105–1117, 1996.

Author: Exact Logit-Based Product Design
40

A. Belloni, R. Freund, M. Selove, and D. Simester. Optimizing product line designs: Efficient methods and

comparisons. Management Science, 54(9):1544–1552, 2008.

H. Y. Benson and Ü. Sağlam. Mixed-Integer Second-Order Cone Programming: A Survey, chapter Chapter

2, pages 13–36. INFORMS, 2013. doi: 10.1287/educ.2013.0115. URL https://pubsonline.informs.

org/doi/abs/10.1287/educ.2013.0115.

D. Bertsimas and V. V. Mǐsić. Robust product line design. Operations Research, 65(1):19–37, 2017.

D. Bertsimas and V. V. Mǐsić. Exact first-choice product line optimization. Operations Research, 67(3):

651–670, 2019.

D. Bertsimas and M. Sim. The price of robustness. Operations research, 52(1):35–53, 2004.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical computing.

SIAM Review, 59(1):65–98, 2017.

S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

J. D. Camm, J. J. Cochran, D. J. Curry, and S. Kannan. Conjoint optimization: An exact branch-and-bound

algorithm for the share-of-choice problem. Management Science, 52(3):435–447, 2006.

K. D. Chen and W. H. Hausman. Mathematical properties of the optimal product line selection problem

using choice-based conjoint analysis. Management Science, 46(2):327–332, 2000.

L. Chen, L. He, and Y. H. Zhou. An exponential cone programming approach for managing electric vehicle

charging. Available at SSRN 3548028, 2021.

C. Coey, M. Lubin, and J. P. Vielma. Outer approximation with conic certificates for mixed-integer convex

problems. Mathematical Programming Computation, pages 1–45, 2020.

J. M. Davis, G. Gallego, and H. Topaloglu. Assortment optimization under variants of the nested logit

model. Operations Research, 62(2):250–273, 2014.

A. Désir, V. Goyal, and J. Zhang. Capacitated assortment optimization: Hardness and approximation.

Operations Research, 70(2):893–904, 2022.

I. Dunning, J. Huchette, and M. Lubin. Jump: A modeling language for mathematical optimization. SIAM

Review, 59(2):295–320, 2017.

J. B. Feldman and H. Topaloglu. Revenue management under the markov chain choice model. Operations

Research, 65(5):1322–1342, 2017.

G. Feng, X. Li, and Z. Wang. On the relation between several discrete choice models. Operations research,

65(6):1516–1525, 2017.

K. J. Ferreira, B. H. A. Lee, and D. Simchi-Levi. Analytics for an online retailer: Demand forecasting and

price optimization. Manufacturing & Service Operations Management, 18(1):69–88, 2016.

G. Gallego and H. Topaloglu. Assortment optimization. In Revenue Management and Pricing Analytics,

pages 129–160. Springer, 2019.

Author: Exact Logit-Based Product Design
41

M. R. Garey and D. S. Johnson. Computers and intractability. W. H. Freeman New York, 1979.

B. L. Gorissen, D. den Hertog, and M. Reusken. Hidden convexity in a class of optimization problems with

bilinear terms. Optimization Online, 2022.

P. E. Green, A. M. Krieger, and Y. Wind. Buyer Choice Simulators, Optimizers, and Dynamic Models,

pages 169–199. Springer US, Boston, MA, 2004.

J. Hainmueller, D. J. Hopkins, and T. Yamamoto. Causal inference in conjoint analysis: Understanding

multidimensional choices via stated preference experiments. Political analysis, 22(1):1–30, 2014.

J. Hastad. Clique is hard to approximate within n1−ϵ. In Proceedings of 37th Conference on Foundations of

Computer Science, pages 627–636. IEEE, 1996.

J. Hofbauer and W. H. Sandholm. On the global convergence of stochastic fictitious play. Econometrica, 70

(6):2265–2294, 2002.

J. Huchette and J. P. Vielma. Nonconvex piecewise linear functions: Advanced formulations and simple

modeling tools. arXiv preprint arXiv:1708.00050, 2017.

P. Jaillet, G. G. Loke, and M. Sim. Strategic manpower planning under uncertainty. Available at SSRN

3168168, 2018.

R. Kohli and R. Krishnamurti. A heuristic approach to product design. Management Science, pages 1523–

1533, 1987.

R. Kohli and R. Krishnamurti. Optimal product design using conjoint analysis: Computational complexity

and algorithms. European Journal of Operational Research, 40(2):186–195, 1989.

R. Kohli and R. Sukumar. Heuristics for product-line design using conjoint analysis. Management Science,

36(12):1464–1478, 1990.

M. Liu, Z. Pan, K. Xu, and D. Manocha. New formulation of mixed-integer conic programming for globally

optimal grasp planning. IEEE Robotics and Automation Letters, 5(3):4663–4670, 2020.

M. Lubin, J. P. Vielma, and I. Zadik. Mixed-integer convex representability. arXiv preprint arXiv:1706.05135,

2017.

M. Lubin, E. Yamangil, R. Bent, and J. P. Vielma. Polyhedral approximation in mixed-integer convex

optimization. Mathematical Programming, 172(1):139–168, 2018.

M. Lubin, Y. Dvorkin, and L. Roald. Chance constraints for improving the security of ac optimal power

flow. IEEE Transactions on Power Systems, 34(3):1908–1917, 2019.

H.-Y. Mak, Y. Rong, and Z.-J. M. Shen. Infrastructure planning for electric vehicles with battery swapping.

Management Science, 59(7):1557–1575, 2013.

R. D. McBride and F. S. Zufryden. An integer programming approach to the optimal product line selection

problem. Marketing Science, 7(2):126–140, 1988.

Author: Exact Logit-Based Product Design
42

V. V. Mǐsić. Optimization of tree ensembles. Operations Research, 68(5):1605–1624, 2020.

Mosek ApS. Mosek modeling cookbook, 2021a. URL https://docs.mosek.com/MOSEKModelingCookbook.

pdf.

Mosek ApS. Mosek optimization suite, 2021b.

P. E. Rossi. bayesm: Bayesian inference for marketing/micro-econometrics. r package version 3.1-4, 2019.

P. Rusmevichientong, D. Shmoys, C. Tong, and H. Topaloglu. Assortment optimization under the multi-

nomial logit model with random choice parameters. Production and Operations Management, 23(11):

2023–2039, 2014.

R. Schmalensee and J.-F. Thisse. Perceptual maps and the optimal location of new products: An integrative

essay. International Journal of Research in Marketing, 5(4):225–249, 1988.

C. Schön. On the optimal product line selection problem with price discrimination. Management Science,

56(5):896–902, 2010.

H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous and convex hull repre-

sentations for zero-one programming problems. SIAM Journal on Discrete Mathematics, 3(3):411–430,

1990.

L. Shi, S. Ólafsson, and Q. Chen. An optimization framework for product design. Management Science, 47

(12):1681–1692, 2001.

K. Talluri and G. Van Ryzin. Revenue management under a general discrete choice model of consumer

behavior. Management Science, 50(1):15–33, 2004.

O. Toubia, D. I. Simester, J. R. Hauser, and E. Dahan. Fast polyhedral adaptive conjoint estimation.

Marketing Science, 22(3):273–303, 2003.

K. E. Train. Discrete choice methods with simulation. Cambridge university press, 2009.

M. Udell and S. Boyd. Maximizing a sum of sigmoids. Optimization and Engineering, pages 1–25, 2013.

X. Wang, J. D. Camm, and D. J. Curry. A branch-and-price approach to the share-of-choice product line

design problem. Management Science, 55(10):1718–1728, 2009.

J. Zhen, D. de Moor, and D. den Hertog. An extension of the reformulation-linearization technique to

nonlinear optimization. Available at Optimization Online, 2021.

J. Zhen, A. Marandi, D. de Moor, D. den Hertog, and L. Vandenberghe. Disjoint bilinear optimization: A

two-stage robust optimization perspective. INFORMS Journal on Computing, 34(5):2410–2427, 2022.

T. Zhu, J. Xie, and M. Sim. Joint estimation and robustness optimization. Management Science, 2021.

e-companion to Author: Exact Logit-Based Product Design ec1

EC.1. Omitted proofs
EC.1.1. Proof of Theorem 1 (NP-Hardness)

To prove this result, we will show that the well-known MAX 3SAT problem can be reduced to the

logit-based SOCPD problem. The MAX 3SAT problem is the problem of setting a collection of

binary variables so as to maximize the number of clauses, which are disjunctions of three literals,

that are satisfied. More precisely, we have n binary variables, x1, . . . , xn, and a Boolean formula

c1∧c2∧· · ·∧cK , where the symbol ∧ denotes the “and” operator. Each ck is a disjunction involving

three literals where a literal is one of the binary variables or the negation of one of the binary

variables. For example, a clause could be x1 ∨ x4 ∨ ¬x9 where ∨ denotes the “or” operator and

¬ denotes negation; in this example, the clause evaluates to 1 if x1 = 1, or x4 = 1, or x9 = 0,

and evaluates to zero if x1 = 0, x4 = 0 and x9 = 1. The MAX 3SAT problem is to determine how

x1, . . . , xn should be set so that the number of the clauses c1, . . . , cK that are true is maximized.

Given an instance of the MAX 3SAT problem, we show how the instance can be transformed

into an instance of the logit-based SOCPD problem.

In the instance of the logit-based SOCPD problem that we will construct, we let the number of

attributes n be equal to the number of binary variables in the MAX 3SAT instance, and we let

the set of permissible attribute vectors A simply be equal to {0,1}n. Each attribute of our product

will correspond to one of the binary variables. We let each customer type k correspond to one of

the K literals, and we set λk = 1/K. To aid in defining the partworths of each customer type, we

will define the parameters pL and pU as

pL =
1

100K
, (EC.1)

pU = 1− 1

100K
(EC.2)

and we define the utilities QL, QU as the inverse of the logistic response function of each of these:

QL = log

[
1/(100K)

1− 1/(100K)

]
(EC.3)

QU = log

[
1− 1/(100K)

1/(100K)

]
. (EC.4)

Now, for each customer type k, let Jk ∈ {0,1,2,3} denote the number of negative literals in the

corresponding clause k of the MAX 3SAT instance (i.e., how many literals of the form ¬xi appear

in ck). We define the partworths βk,1, . . . , βk,n of customer type k as follows:

βk,i =

0 if variable xi does not appear in any literal of clause k,

QU −QL if the literal xi appears in clause k,

QL−QU if the literal ¬xi appears in clause k,

(EC.5)

ec2 e-companion to Author: Exact Logit-Based Product Design

for each i∈ {1, . . . , n}, and we define the constant part of the utility βk,0 as

βk,0 =QL +Jk · (QU −QL). (EC.6)

The rationale for this choice is that the utility of an attribute vector a will be equal to QL if the

attributes are set in a way such that none of the literals of clause k are satisfied, and will be equal

to QU or higher if the attributes are set so that the clause is satisfied (i.e., at least one literal

is true). For example, if clause k is ck = x1 ∨ x4 ∨¬x9, then the corresponding utility function of

customer type k has the form:

uk(a) =QL +1 · (QU −QL)+ (QU −QL)a1 +(QU −QL)a4 +(QL−QU)a9

=QU +(QU −QL)a1 +(QU −QL)a4 +(QL−QU)a9.

If a1 = 1, a4 = 0 and a9 = 1, the clause evaluates to 1 (= 1∨ 0∨¬1); the utility is

uk(a) =QU +(QU −QL) · 1+ (QU −QL) · 0+ (QL−QU) · 1

=QU .

If a1 = 0, a4 = 0, a9 = 1, the clause evaluates to 0 (= 0∨ 0∨¬1), and the utility is

uk(a) =QU +(QU −QL) · 0+ (QU −QL) · 0+ (QL−QU) · 1

=QL,

as expected.

Lastly, before we verify that this reduction is valid, it is helpful to introduce some additional

notation to model the MAX 3SAT. Given a binary vector x ∈ {0,1}n, we let gk(x) = 1 if clause k

is satisfied and 0 if clause k is not satisfied. The MAX 3SAT problem can then be written simply

as

max
x∈{0,1}n

K∑
k=1

gk(x).

Given an optimal solution a to the logit-based SOCPD problem, we claim that the solution x,

which is obtained by setting xi = ai for each i∈ {1, . . . , n}, is an optimal solution of the MAX 3SAT

problem. To see why, suppose that this is not the case. In particular, suppose that x̃ is a solution

to the MAX 3SAT problem with a higher number of satisfied clauses, that is,

K∑
k=1

gk(x̃)>
K∑

k=1

gk(x).

Consider the solution ã to the logit-based SOCPD problem, where we set ãi = x̃i for each i. We

will now show that ã achieves an objective that is strictly higher than that of a, which will give us

the desired contradiction.

e-companion to Author: Exact Logit-Based Product Design ec3

To show this, we first need to establish some bounds for the share-of-choice objective in terms

of the MAX 3SAT objective. Let f(u) = eu/(1+ eu) denote the logistic response function. For the

solution ã, we have

K∑
k=1

f(uk(ã))≥ pU ·
K∑

k=1

gk(x̃). (EC.7)

This relationship holds because, by construction of the utility functions u1, . . . , uK , if literal k is

true for the binary vector x̃, then uk(ã)≥QU , and f(uk(ã))≥ pU , as the function f is increasing;

thus, f(uk(ã))≥ pUgk(x̃) is satisfied. If the literal k is false for the binary vector x̃, then gk(x̃) = 0,

and f(uk(ã))≥ pUgk(x̃) is automatically satisfied, since f(u)> 0 for all u∈R.

Similarly, for the solution a, we have

K∑
k=1

f(uk(a))≤ pL ·K +(1− pL) ·
K∑

k=1

gk(x). (EC.8)

By similar logic as (EC.7), this relationship holds because if literal k is true, then QL +(1−QL) ·

gk(x) = QL + 1 − QL = 1, and f(u) < 1 for all u ∈ R. If literal k is false, then uk(a) = QL and

f(uk(a)) = pL, and pL +(1− pL) · gk(x) = pL (since gk(x) = 0).

To now show that ã outperforms a in the logit-based SOCPD problem, we need to show

1

K

K∑
k=1

f(uk(ã))>
1

K

K∑
k=1

f(uk(a)),

which is equivalent to showing

K∑
k=1

f(uk(ã))−
K∑

k=1

f(uk(a))> 0.

We have

K∑
k=1

f(uk(ã))−
K∑

k=1

f(uk(a))≥

[
pU ·

K∑
k=1

gk(x̃)

]
−

[
pL ·K +(1− pL) ·

K∑
k=1

gk(x)

]

= pU ·
K∑

k=1

gk(x̃)− pL ·K − (1− pL) ·
K∑

k=1

gk(x)

= pU ·
K∑

k=1

gk(x)+ pU · [
K∑

k=1

gk(x̃)−
K∑

k=1

gk(x)]− pLK − (1− pL) ·
K∑

k=1

gk(x)

= (pU + pL− 1) ·
K∑

k=1

gk(x)+ pU · [
K∑

k=1

gk(x̃)−
K∑

k=1

gk(x)]− pLK

≥ (pU + pL− 1)︸ ︷︷ ︸
(a)

·
K∑

k=1

gk(x)+ pU − pLK︸ ︷︷ ︸
(b)

(EC.9)

ec4 e-companion to Author: Exact Logit-Based Product Design

where the first inequality follows from (EC.7) and (EC.8), and the second inequality follows by the

fact that
∑K

k=1 gk(x̃)>
∑K

k=1 gk(x), and that both quantities are integer valued. We now argue that

this last quantity (EC.9) must be positive. To establish this, we need to show that the quantity

denoted by (a) is nonnegative and the quantity denoted by (b) is positive. To see why (a) must be

nonnegative, recall by how we set pL and pU that

pL + pU − 1 =
1

100K
+1− 1

100K
− 1

= 0.

To see why (b) must be positive, we have

pU − pL ·K = 1− 1

100K
− 1

100K
·K

≥ 1− 1

100
− 1

100

> 0,

where the inequality follows by the fact that K is a positive integer. Thus, we have
∑K

k=1 f(uk(ã))−∑K

k=1 f(uk(a))> 0, which establishes that ã achieves a higher objective than a. Since this contra-

dicts the optimality of a, it must be the case that x is an optimal solution of the MAX 3SAT

instance.

Since we have reduced the MAX 3SAT problem to the logit-based SOCPD problem and the

MAX 3SAT problem is an NP-Complete problem (Garey and Johnson 1979), it follows that the

logit-based SOCPD problem is NP-Hard. □

EC.1.2. Proof of Theorem 2 (NP-Hardness when K = 2)

To show this result, we will show that the partition problem, a well-known NP-complete problem

(Garey and Johnson 1979), can be reduced to the decision form of the logit-based SOCPD problem.

The partition problem can be stated as follows:

Partition:
Inputs:

• Integer n;
• integers c1, . . . , cn.

Question: Does there exist a set S ⊆ [n] such that
∑

i∈S ci =
∑

i/∈S ci?

The decision form of the logit-based SOCPD problem can be stated as follows:

e-companion to Author: Exact Logit-Based Product Design ec5

Logit-based SOCPD problem with K = 2 (decision form):
Inputs:

• Integer n;
• utility parameters β1,0, . . . , β1,n, β2,0, . . . , β2,n;
• customer type probabilities λ1, λ2 ≥ 0 such that λ1 +λ2 = 1;
• target share-of-choice value θ.

Question: Does there exist an a∈A= {0,1}n such that

λ1σ(u1(a))+λ2σ(u2(a))≥ θ

is satisfied?

Given an instance of the partition problem, we construct an instance of the decision form of the

logit-based SOCPD problem such that the answer to the partition problem is yes if and only if the

answer to the decision form of the logit-based SOCPD problem is yes.

Let c1, . . . , cn be the sizes of the n items in the partition problem. Let T =
∑n

i=1 ci be the total

of all of the sizes. Note that the equality
∑

i∈S ci =
∑

i/∈S ci implies∑
i∈S

ci =
∑
i/∈S

ci

⇒
∑
i∈S

ci +
∑
i∈S

ci =
∑
i∈S

ci +
∑
i/∈S

ci

⇒ 2
∑
i∈S

ci = T

⇒
∑
i∈S

ci = T/2.

Thus, a set S answers the partition problem in the affirmative if and only if
∑

i∈S ci = T/2 if and

only if
∑

i/∈S ci = T/2.

Consider an instance of the decision form of the logit-based SOCPD problem defined as follows.

Let λ1 = λ2 = 0.5. Let the number of attributes be the same as the number of items n, and let

A = {0,1}n. Let pU = 0.9 and pL = 0.1, and define qU = log pU
1−pU

and qL = log pL
1−pL

as the logits

corresponding to pU and pL respectively. Define the utility parameters as follows:

β1,0 = qL +(1−T/2) · (qU − qL),

β1,i = (qU − qL) · ci, ∀ i∈ [n],

β2,0 = qL +(T/2+1) · (qU − qL),

β2,i =−(qU − qL) · ci, ∀ i∈ [n].

The utility functions u1, u2 :A→R are then

u1(a) = β1,0 +
n∑

i=1

β1,iai

ec6 e-companion to Author: Exact Logit-Based Product Design

= qL +(1−T/2) · (qU − qL)+
n∑

i=1

(qU − qL) · ci · ai

= qL +(qU − qL) ·

[
n∑

i=1

ciai−T/2+1

]
,

u2(a) = β2,0 +
n∑

i=1

β2,iai

= qL +(T/2+1) · (qU − qL)+
n∑

i=1

−(qU − qL) · ci · ai

= qL +(qU − qL) ·

[
n∑

i=1

−ciai +T/2+1

]
.

Finally, let θ= pU = 0.9.

We now show that the answer to the partition problem is yes if and only if the answer to the

logit-based SOCPD problem with K = 2 is yes.

Partition is yes ⇒ Logit-based SOCPD is yes. To prove this direction of the equivalence, let S

be the set for which
∑

i∈S ci =
∑

i/∈S ci. As discussed earlier, this implies that
∑

i∈S ci = T/2 and∑
i/∈S ci = T/2. Let the product vector a= (a1, . . . , an) be defined as

ai = I{i∈ S}.

Observe now that:

u1(a) = qL +(qU − qL) ·

[
n∑

i=1

ciai−T/2+1

]

= qL +(qU − qL) ·

[∑
i∈S

ci−T/2+1

]
= qL +(qU − qL) · [T/2−T/2+1]

= qL +(qU − qL) · 1

= qU ,

u2(a) = qL +(qU − qL) ·

[
n∑

i=1

−ciai +T/2+1

]

= qL +(qU − qL) ·

[∑
i∈S

−ci +T/2+1

]
= qL +(qU − qL) · [−T/2+T/2+1]

= qL +(qU − qL)

= qU .

e-companion to Author: Exact Logit-Based Product Design ec7

This implies that the objective value of a is

λ1σ(u1(a))+λ2σ(u2(a))

= 0.5 ·σ(qU)+ 0.5 ·σ(qU)

= (0.5)(0.9)+ (0.5)(0.9)

= 0.9,

which implies that the answer to the decision form of the logit-based SOCPD problem is yes, as

required.

Partition is no ⇒ Logit-based SOCPD is no. To prove the other direction of the equivalence, let a

be any product attribute vector. We need to show that the objective value of a in the logit-based

SOCPD problem is strictly less than 0.9. To see this, observe that if we define S = {i∈ [n] | ai = 1},

we obtain a subset of [n]. Since the answer to the partition problem is no, we know that
∑

i∈S ci ̸=∑
i/∈S ci. This is equivalent to

∑
i∈S ci ̸= T/2.

There are now two possible cases to consider for where
∑

i∈S ci is in relation to T/2. If
∑

i∈S ci >

T/2, then because the ci’s are integers, this means that
∑

i∈S ci ≥ T/2+1/2. This implies that the

utility of segment 2 for product vector a can be upper bounded as follows:

u2(a) = qL +(qU − qL) ·

[
n∑

i=1

−ciai +T/2+1

]

= qL +(qU − qL) ·

[∑
i∈S

−ci +T/2+1

]
≤ qL +(qU − qL) · [−T/2− 1/2+T/2+1]

= qL +(qU − qL) · (1/2)

= (qL + qU)/2

= 0

which implies that the objective value of a is bounded from above as

λ1σ(u1(a))+λ2σ(u2(a))

≤ 0.5 · 1+0.5 ·σ(0)

= 0.5+ (0.5)(0.5)

= 0.75

< 0.9.

ec8 e-companion to Author: Exact Logit-Based Product Design

Alternatively, if
∑

i∈S ci < T/2, then we know that
∑

i∈S ci ≤ T/2− 1/2. This implies that the

utility of segment 1 for a can be upper bounded as follows:

u1(a) = qL +(qU − qL) ·

[
n∑

i=1

ciai−T/2+1

]

= qL +(qU − qL) ·

[∑
i∈S

ci−T/2+1

]
≤ qL +(qU − qL) · [T/2− 1/2−T/2+1]

= (qL + qU)/2

= 0,

which again implies that the objective value of a is bounded from above as

λ1σ(u1(a))+λ2σ(u2(a))

≤ λ1σ(0)+λ2 · 1

= (0.5)(0.5)+ (0.5)(1)

= 0.75

< 0.9.

This shows that if the answer to the partition problem is no, then the answer to our instance of

the decision form of the logit-based SOCPD problem is also no.

Since our instance of the logit-based SOCPD problem can be constructed in polynomial time

from the instance of the partition problem, it follows that the logit-based SOCPD problem is

NP-Hard even when the number of segments K is equal to 2. □

EC.1.3. Proof of Theorem 3

To prove this result, we will leverage a known inapproximability result for the maximum indepen-

dent set (MAX-IS) problem. In the MAX-IS problem, we are given an undirected graph G= (V,E),

where V is the set of vertices and E is the set of edges. An independent set U ⊆ V is a set of

vertices such that for any pair of vertices v, v′ ∈ U , v ̸= v′, there does not exist an edge between

them, that is, (v, v′) /∈ E. The goal in the MAX-IS problem is to find an independent set whose

size is maximal. The MAX-IS problem is known to be NP-Hard to approximate to within a factor

O(n1−ϵ) for any ϵ > 0 (Hastad 1996).

In what follows we will construct an approximation-preserving reduction that maps an instance

of the MAX-IS problem to an instance of the unconstrained logit-based SOCPD problem. Given

e-companion to Author: Exact Logit-Based Product Design ec9

a graph G= (V,E), let the number of attributes n= |V |, the number of segments K = n, and let

V = {v1, . . . , vn} be an enumeration of the vertices in V . Define the parameters pL and pU as

pL =
1

100n
,

pU = 1− 1

100
.

Observe that both pL and pU can be regarded as probabilities. Using pL, pU , define the parameters

qL and qU as the logits corresponding to these probabilities:

qL = log
pL

1− pL
,

qU = log
pU

1− pU
.

Let the utility parameters βi,j for i∈ [n], j ∈ {0}∪ [n] be defined as follows:

βi,j =

qL if j = 0,
qU − qL if j = i,
qL− qU if j < i and (vi, vj)∈E,
0 otherwise,

Note that by construction, the highest possible value that σ(ui(a)) can attain is pU , which occurs if

ai′ = 0 for i′ < i with (vi′ , vi)∈E, and ai = 1. Otherwise, for any other a, ui(a) satisfies ui(a)≤ qL,

and so σ(ui(a))≤ pL = 1/(100n).

Let the weight λk of each segment k be set to 1/n. Finally, let F :A→ [0,1] be defined as the

share of choice objective function:

F (a)≡ 1

n

n∑
i=1

σ(ui(a)).

To establish the result we need to verify two claims.

1. Claim 1. For any independent set U ⊆ V , there exists a product a such that F (a)≥ 99
100n
|U |.

2. Claim 2. For any product a with share-of-choice given by F (a), there exists an independent

set U ⊆ V such that |U | ≥ ⌊ 100n
99

F (a)⌋.

Proof of Claim 1. Let U ⊆ V be an independent set. Consider the product vector a= (a1, . . . , an)

where ai = I{vi ∈U}. For each i such that vi ∈U , we have:

ui(a) = βi,0 +
n∑

j=1

βi,jaj

= qL +
i−1∑
j=1:

(vi,vj)∈E

(qL− qU)aj +(qU − qL)ai

= qL +0+ (qU − qL) · 1

ec10 e-companion to Author: Exact Logit-Based Product Design

= qU

where the second equality follows by how the attribute utilities βi,j are defined; the third equality

follows because U is an independent set, so aj = 0 for all attributes j such that there exists an edge

between vi and vj; the fourth follows by algebra. Thus, we have:

F (a) =
1

n

n∑
i=1

exp(ui(a))

1+ exp(ui(a))

≥ 1

n
·
∑

i:vi∈U

exp(ui(a))

1+ exp(ui(a))

=
1

n
·
∑

i:vi∈U

exp(qU)

1+ exp(qU)

=
1

n
· |U | · pU

=
99

100n
· |U |.

Proof of Claim 2. Let a be an attribute vector. Let us define the set U as follows:

U = {vi ∈ V | σ(ui(a))≥ pU}.

In other words, we retrieve those vertices for which the corresponding segment’s purchase proba-

bility is at least pU .

We argue that this set U is an independent set. To see this, let us suppose for the sake of a

contradiction that it is not. Then there exist two distinct vertices vi, vi′ ∈U such that (vi, vi′)∈E.

Without loss of generality, let us assume that i < i′. Observe that if we calculate the logit of segment

i′, we have

ui′(a) = βi′,0 +
n∑

j=1

βi′,jaj

= qL +
i′−1∑
j=1:

(vj ,vi′)∈E

(qL− qU)aj +(qU − qL)ai′

≤ qL +(qL− qU)ai +(qU − qL)ai′

= qL +(qL− qU) · 1+ (qU − qL) · 1

= qL,

where the inequality follows because qL− qU < 0. This implies that

exp(ui′(a))

1+ exp(ui′(a))
≤ pL < pU .

e-companion to Author: Exact Logit-Based Product Design ec11

This, however, leads to a contradiction, because vi′ was assumed to be in U , which would imply

that the corresponding purchase probability of segment i′ was higher than pU . Therefore, it must

be the case that U is an independent set.

Now, we derive the desired bound on |U |. We have:⌊
100n

99
F (a)

⌋
=

⌊
100n

99
· 1
n

n∑
i=1

σ(ui(a))

⌋

=

100
99
·
∑

i:vi∈U

σ(ui(a))+
100

99
·
∑

i:vi /∈U

σ(ui(a))

≤
⌊
100

99
· |U | · 99

100
+

100

99
· (n− |U |) 1

100n

⌋
≤
⌊
|U |+ 100

99
·n · 1

100n

⌋
=

⌊
|U |+ 1

99

⌋
= |U |

where the first step follows by definition of F ; the second step follows by algebra; the third step

follows because the floor function is monotonic, and because by definition of the utility parameters

{βi,j}, σ(ui(a))≤ pU = 99/100 for all i, while for i such that vi /∈ U , it is the case that σ(ui(a))≤

pL = 1/(100n); the fourth step again follows by monotonicity of the floor function and the fact that

(n− |U |)≤ n; the fifth step follows by algebra; and the last step follows by the fact that |U | is an

integer while 1/99 is strictly less than 1. □

EC.1.4. Proof of Theorem 4

To prove Theorem 4, we first establish several auxiliary results. The first is Lemma EC.1, which

states that the discretized utility function Rũk underapproximates the true utility function uk(a),

and that the gap between this discretized utility function and the true utility function is uniformly

bounded by (n+1)R.

Lemma EC.1. For any a ∈ {0,1}n, we have that uk(a) ≥ Rũk(a) and that uk(a) − Rũk(a) ≤

(n+1)R.

Proof: For the inequality uk(a)≥Rũk(a), observe that

Rũk(a) =Rβ̃k,0 +
n∑

j=1

Rβ̃k,jaj

=R ·
⌊
βk,0

R

⌋
+

n∑
j=1

R ·
⌊
βk,j

R

⌋
· aj

ec12 e-companion to Author: Exact Logit-Based Product Design

≤R · βk,0

R
+

n∑
j=1

R · βk,j

R
· aj

= uk(a),

where the inequality follows because ⌊x⌋ ≤ x. To see the second part of the lemma, observe that

uk(a)−Rũk(a) =

(
βk,0−R ·

⌊
βk,0

R

⌋)
+

n∑
j=1

(
βk,j −R ·

⌊
βk,j

R

⌋)
· aj

≤R+
n∑

j=1

R · aj

≤ (n+1)R,

where the first inequality follows because for any x and any positive R, we have ⌊x/R⌋ ≥ x/R− 1,

which implies that x−R⌊x/R⌋ ≤ x−R · (x/R− 1) =R. □

A straightforward consequence of this lemma is that the discretized share-of-choice function F̂ (a)

always underapproximates the true share-of-choice function F (a), which is captured in the next

lemma.

Lemma EC.2. For all a∈ {0,1}n, F̂ (a)≤ F (a).

Proof: We have

F̂ (a) =
K∑

k=1

λk ·σ(R · ũk(a))

≤
K∑

k=1

λk ·σ(uk(a))

= F (a),

where the inequality follows by the first part of Lemma EC.1 and the monotonicity of σ(·). □

Armed with Lemma EC.1 and Lemma EC.2, we can prove the following guarantee on the quality

(in terms of relative gap) of the solution of the discretized problem.

Lemma EC.3. Let â be an optimal solution of maxa F̂ (a), and a∗ be an optimal solution of

maxaF (a). Then

F (a∗)−F (â)

F (a∗)
≤K · (n+1) ·R.

e-companion to Author: Exact Logit-Based Product Design ec13

Proof: We have:

F (a∗)−F (â)

F (a∗)
≤ F (a∗)− F̂ (a∗)+ F̂ (a∗)− F̂ (â)+ F̂ (â)−F (â)

F (a∗)

≤ F (a∗)− F̂ (a∗)

F (a∗)

=

∑K

k=1 λkσ(uk(a
∗))−

∑K

k=1 λkσ(Rũk(a
∗))∑K

k=1 λkσ(uk(a∗))

=
K∑

k=1

λk ·
σ(uk(a

∗))−σ(Rũk(a
∗))∑K

k=1 λkσ(uk(a∗))

≤
K∑

k=1

λk ·
σ(uk(a

∗))−σ(Rũk(a
∗))

λk ·σ(uk(a∗))

=
K∑

k=1

σ(uk(a
∗))−σ(Rũk(a

∗))

σ(uk(a∗))

=
K∑

k=1

(
1− 1+ e−uk(a

∗)

1+ e−Rũk(a
∗)

)

=
K∑

k=1

e−Rũk(a
∗)− e−uk(a

∗)

1+ e−Rũk(a
∗)

=
K∑

k=1

1− eRũk(a
∗)−uk(a

∗)

eRũk(a
∗) +1

≤
K∑

k=1

(
1− e−(uk(a

∗)−Rũk(a
∗))
)

≤
K∑

k=1

(uk(a
∗)−Rũk(a

∗))

≤K · (n+1) ·R

where the first step follows by algebra; the second step follows because F̂ (a∗) − F̂ (â) ≤ 0

(this is true because â is an optimal solution of maxa F̂ (a)) and F̂ (â) − F (â) ≤ 0 (this follows

by Lemma EC.2); the third and fourth step follow by algebra; the fifth step follows because∑K

k=1 λkσ(uk(a
∗))≥ λk′σ(uk′(a

∗)) for any k′; the sixth, seventh, eighth and ninth steps follow by

algebra; the tenth step follows by the fact that the denominator eRũk(a
∗) +1 is lower bounded by

1; the eleventh step follows because 1− e−x ≤ x for any real x; and the final step follows by the

second part of Lemma EC.1. □

With all of these results established, we now finally verify Theorem 4. Let â be the solution

produced by Algorithm 2. The solution â produced by Algorithm 2 solves the approximate problem

ec14 e-companion to Author: Exact Logit-Based Product Design

maxa∈{0,1}n F̂ (a). By Lemma EC.3, this solution is a (1−K(n+ 1)R)-optimal solution; for R =

ϵ/(K(n+1)), we thus have that it is a (1− ϵ)-optimal solution.

With regard to the running time, the running time of the DP recursion in equations (4) - (5)

is O((n+1) · (⌊umax/R⌋− ⌊umin/R⌋+n+1)K). Since R= ϵ/(K(n+1)), we have that the running

time of the DP is

O((n+1) · (⌊(n+1) ·K ·umax/ϵ⌋− ⌊(n+1) ·K ·umin/ϵ⌋+n+1)K)

=O((n+1) · ((n+1) ·K ·umax/ϵ− (n+1) ·K ·umin/ϵ+n+2)K)

=O((n+1)K+1KK(1/ϵ)K(umax−umin +n+2)K)

Additionally, the number of steps to run Algorithm 1 after computing the value function is O(n).

Therefore, the overall complexity is

O(n+(n+1)K+1KK(1/ϵ)K(umax−umin +n+2)K),

which is polynomial in n, 1/ϵ and (umax−umin). □

EC.1.5. Proof of Theorem 5

Let x∗ = x(a∗) and x̂= x(â). To prove the result we proceed in three steps.

Step 1: The first step in our proof is to show that if there exist nonnegative constants α and α

such that g satisfies

αf(x)≤ g(x)≤ αf(x) (EC.10)

for all x∈X , then x̂ satisfies

f(x̂)≥ (α/α) · f(x∗). (EC.11)

To establish this, we will first bound the quantity f(x∗)− f(x̂). We have

f(x∗)− f(x̂) = [f(x∗)− g(x∗)]+ [g(x∗)− g(x̂)]+ [g(x̂)− f(x̂)]

≤ f(x∗)− g(x∗)+ g(x̂)− f(x̂)

≤ f(x∗)−αf(x∗)+αf(x̂)− f(x̂)

= (1−α)f(x∗)− (1−α)f(x̂)

= (1−α+α−α)f(x∗)− (1−α)f(x̂)

= (1−α)(f(x∗)− f(x̂))+ (α−α)f(x∗)

where the first step follows by algebra; the second step follows since g(x∗)≤ g(x̂), which is true by

the definition of x̂ as the vector of choice probabilities for an optimal product â for the function

g(x(a)); the third step follows by (EC.10); and the remaining steps by algebra.

e-companion to Author: Exact Logit-Based Product Design ec15

Observe that by re-arranging the inequality

f(x∗)− f(x̂)≤ (1−α)(f(x∗)− f(x̂))+ (α−α)f(x∗) (EC.12)

we obtain that

α[f(x∗)− f(x̂)]≤ (α−α)f(x∗). (EC.13)

Since α is nonnegative, dividing through by α we obtain

f(x∗)− f(x̂)≤ (α−α)

α
f(x∗), (EC.14)

and re-arranging, we obtain

f(x̂)≥
[
1− α−α

α

]
f(x∗)

= (α/α) · f(x∗),

which is the desired result.

Step 2:We now establish explicit values for the constants α and α. Recall that by the arithmetic-

geometric mean inequality, g(x)≤ f(x) for all x∈X . Therefore, a valid choice of α is 1.

For α, we proceed as follows. Consider the ratio f(x)/g(x). For any x, we have

f(x)

g(x)
=

∑K

k=1 λkxk∏K

k=1 x
λk
k

=
K∑

k=1

λk ·x1−λk
k ·

∏
k′ ̸=k

x
−λk′
k′

≤
K∑

k=1

λk ·U 1−λk ·
∏
k′ ̸=k

L−λk′

=
K∑

k=1

λk ·U 1−λk ·L−
∑

k′ ̸=k λk′

=
K∑

k=1

λk ·U 1−λk ·Lλk−1

=
K∑

k=1

λk

(
U

L

)1−λk

,

where the first step follows by the definitions of f and g; the second by algebra; the third by

the fact that the function h(x) = x1−λk is increasing in x (since 1−λk ≥ 0), and that the function

h̄(x) = x−λk′ is decreasing in x (since −λk ≤ 0); the fourth by algebra; the fifth by recognizing that

ec16 e-companion to Author: Exact Logit-Based Product Design∑K

k′=1 λk = 1, which implies that λk−1 =−
∑

k′ ̸=k λk′ ; and the last by algebra. This implies that a

valid choice of α is

α=
1∑K

k=1 λk

(
U
L

)1−λk
. (EC.15)

Step 3: We conclude the proof by combining Steps 1 and 2. In particular, by using α= 1 and

α= [
∑K

k=1 λk (U/L)
1−λk]−1, we obtain that

f(x(â))≥ 1∑K

k=1 λk

(
U
L

)1−λk
· f(x(a∗)),

as required. □

EC.1.6. Proof of Theorem 6

To prove this result, we will show that MAX 3SAT problem can be reduced to the geometric mean

problem (6).

Given an instance of the MAX 3SAT problem, we construct an instance of the geometric mean

problem (6) as follows. Let the number of attributes n be equal to the number of binary variables in

the MAX 3SAT instance, and we define A as {0,1}n. Each attribute of our product will correspond

to one of the binary variables. Let each customer type k correspond to one of the K clauses, and

we set λk = 1/K. We define the parameters pL and pU as

pL =
1

100K
, (EC.16)

pU = pL
pL =

(
1

100K

) 1
100K

(EC.17)

and we define the utilities QL and QU as

QL = log

(
pL

1− pL

)
, (EC.18)

QU = log

(
pU

1− pU

)
. (EC.19)

We define the partworth parameters as how we did in the proof of Theorem 1. For each customer

type k, let Jk ∈ {0,1,2,3} denote the number of negative literals in the corresponding clause k

of the MAX 3SAT instance (i.e., how many literals of the form ¬xi appear in ck). We define the

partworths βk,1, . . . , βk,n of customer type k as follows:

βk,i =

0 if variable xi does not appear in any literal of clause k,

QU −QL if the literal xi appears in clause k,

QL−QU if the literal ¬xi appears in clause k,

(EC.20)

for each i∈ {1, . . . , n}, and we define the constant part of the utility βk,0 as

βk,0 =QL +Jk · (QU −QL). (EC.21)

e-companion to Author: Exact Logit-Based Product Design ec17

Next, we need to show that, given an optimal solution a to the geometric mean problem, the

solution x, which is obtained by setting xi = ai for each i∈ {1, . . . , n}, is an optimal solution of the

MAX 3SAT problem. However, before we establish this, we make the following observation. Since

log(pL) is a constant and
∑K

k=1 λk = 1, we can subtract
∑K

k=1 λk log(pL) from the objective function

of the geometric mean problem and divide it by − log(pL)> 0 without changing the optimal solution

of the problem. After this transformation, we obtain the following objective function:

K∑
k=1

λk

− log(pL)+ log
(

exp(uk(a))

1+exp(uk(a))

)
− log(pL)

. (EC.22)

It is straightforward to see that maximizing the geometric mean objective
∑K

k=1 λk(uk(a)− log(1+

euk(a))) is equivalent to maximizing this modified objective. In the remainder of the proof, we use

this objective function for the geometric mean problem. Let

h(u) =
− log(pL)+ log

(
exp(u)

1+exp(u)

)
− log(pL)

. (EC.23)

Observe that, if the product attribute a is set such that none of the literals in a clause k is satisfied,

then uk(a) =QL and h(uk(a)) = 0. Otherwise, uk(a)≥QU and h(uk(a))≥ 1−1/(100K). Moreover,

h(u)< 1 for all u∈R.
Before we proceed with the proof of the theorem, we prove the two lemmas. We first define gk(x)

as in the proof of Theorem 1. That is, gk(x) = 1 if clause k in the MAX 3SAT problem is satisfied

by solution x and gk(x) = 0 otherwise. Then we establish the following relations between gk(x) and

h(uk(a)) for a MAX 3SAT problem solution x and a geometric logit-based SOCPD solution a.

Lemma EC.4. Let x and a defined such that xi = ai for all i∈ {1, . . . , n}. Then, we have

gk(x)−
1

100K
≤ h(uk(a))≤ gk(x). (EC.24)

Proof: To establish the first inequality, notice that, h is an increasing function since the logarithm

and logistic functions are increasing functions and − log(pL) is a positive constant. If gk(x) = 1,

we have uk(a) ≥ QU , which implies that h(uk(a)) ≥ h(QU) = 1 − 1/100K = gk(x) − 1/100K. If

gk(x) = 0, we have uk(a) =QL, which implies h(uk(a)) = 0> gk(x)− 1/100K. Therefore, for both

cases, h(uk(a))≥ gk(x)− 1/100K holds.

The second inequality also holds because 1 > h(uk(a)) ≥ 1 − 1/100K if gk(x) = 1, and

h(uk(a)) = 0 otherwise. □

Now, we will establish a relation between the objective functions of the geometric logit-based

SOCPD and the MAX 3SAT problem.

ec18 e-companion to Author: Exact Logit-Based Product Design

Lemma EC.5. Let x and a defined such that xi = ai for all i∈ {1, . . . , n}. Then, we have⌈
K∑

k=1

h(uk(a))

⌉
=

K∑
k=1

gk(x). (EC.25)

Proof: By Lemma EC.4, we have

K∑
k=1

(
gk(x)−

1

100K

)
=

K∑
k=1

gk(x)−
1

100
≤

K∑
k=1

h(uk(a))≤
K∑

k=1

gk(x). (EC.26)

Since
∑K

k=1 gk(x) is an integer, this implies that
⌈∑K

k=1 h(uk(a))
⌉
=
∑K

k=1 gk(x). □

Finally, we will conclude the proof of the theorem by showing that, given an optimal solution a

to the geometric logit-based SOCPD problem, the solution x, which we obtain by setting xi = ai

for all i∈ {1, . . . , n}, is an optimal solution to the MAX 3SAT problem. To verify this, we use the

notation that we defined in the proof of Theorem 1 and follow a similar proof technique. Suppose

that, x is not the optimal solution to the MAX 3SAT problem, and there exists a solution x̃, which

achieves a higher number of satisfied clauses than x. Let ã be the solution we obtain by setting

ãi = x̃i for all i∈ {1, . . . , n}. Then, we have

⌈
K∑

k=1

h(uk(ã))

⌉
=

K∑
k=1

gk(x̃) (EC.27)

>
K∑

k=1

gk(x) (EC.28)

=

⌈
K∑

k=1

h(uk(a))

⌉
(EC.29)

where the equalities follow from Lemma EC.5 and the inequality follows from the assumption

that
∑K

k=1 gk(x̃) >
∑K

k=1 gk(x). Since
∑K

k=1 gk(x̃) and
∑K

k=1 gk(x) are integers, this implies that∑K

k=1 h(uk(ã))>
∑K

k=1 h(uk(a)), which contradicts the optimality of a. Therefore, x must be the

optimal solution to the MAX 3SAT problem. □

EC.1.7. Proof of Proposition 3

Let (ā, w̄, x̄, ȳ) be an optimal solution of the continuous relaxation of formulation P, and let ū∈RK

be the vector of utilities corresponding to a. To establish the proposition, we will first prove that

x̄k,1 ≥
1

1+ e−ūk
,

e-companion to Author: Exact Logit-Based Product Design ec19

x̄k,0 ≤
1

1+ eūk
,

for each k ∈ [K]. To see why this is the case, consider the following optimization problem, which

involves finding the maximum value of xk,1 given the fixed value of ā, subject to the constraints of

P, and with the additional restriction that yk,i is exactly equal to the product of āi and xk,1:

maximize
wk,xk,yk

xk,1 (EC.30a)

subject to yk,i = āi ·xk,1, ∀ i∈ [n], (EC.30b)

wk = βk,0xk,1 +
n∑

i=1

βk,iyk,i, (EC.30c)

xk,1 +xk,0 = 1, (EC.30d)

xk,1 +xk,1e
−wk
xk,1 ≤ 1, (EC.30e)

yk,i ≤ ai, ∀ i∈ [n], (EC.30f)

yk,i ≤ xk,1, ∀ i∈ [n], (EC.30g)

yk,i ≥ ai− 1+xk,1, ∀ i∈ [n], (EC.30h)

yk,i ≥ 0. (EC.30i)

Observe that the optimal solution of this problem is

x∗
k,1 =

1

1+ e−u∗
k
, (EC.31)

x∗
k,0 =

1

1+ eu
∗
k
, (EC.32)

y∗
k,i = āi ·xk,1, ∀ i∈ [n], (EC.33)

w∗
k = xk,1 ·u∗

k, (EC.34)

where u∗
k = βk,0 +

∑n

i=1 βk,iāi. To see this, observe that the above solution is feasible for the prob-

lem (EC.30). In addition, observe that constraints (EC.30b) and (EC.30c) imply that wk must be

equal to u∗
k ·xk,1. As a result, (EC.30e) implies that xk,1, which is the objective, is upper bounded

in the following way:

xk,1 +xk,1e
−wk
xk,1 ≤ 1 (EC.35)

⇒ xk,1(1+ e
−xk,1·u

∗
k

xk,1)≤ 1 (EC.36)

⇒ xk,1(1+ e−u∗
k)≤ 1 (EC.37)

⇒ xk,1 ≤
1

1+ e−u∗
k

(EC.38)

Since the proposed solution in (EC.31) - (EC.34) attains this upper bound, it must also be optimal.

ec20 e-companion to Author: Exact Logit-Based Product Design

Next, consider what happens if we relax the constraint (EC.30b). In doing so we obtain the

following program:

maximize
wk,xk,yk

xk,1 (EC.39a)

subject to wk = βk,0xk,1 +
n∑

i=1

βk,iyk,i, (EC.39b)

xk,1 +xk,0 = 1, (EC.39c)

xk,1 +xk,1e
−wk
xk,1 ≤ 1, (EC.39d)

yk,i ≤ ai, ∀ i∈ [n], (EC.39e)

yk,i ≤ xk,1, ∀ i∈ [n], (EC.39f)

yk,i ≥ ai− 1+xk,1, ∀ i∈ [n], (EC.39g)

yk,i ≥ 0. (EC.39h)

Since this problem is a relaxation, the optimal solution (x′
k,1, x

′
k,0,w

′
k,y

′
k) must do at least as well as

(x∗
k,1, x

∗
k,0,w

∗
k,y

∗
k). This means that x′

k,1 ≥ x∗
k,1 = 1/(1+ e−u∗

k), and similarly that x′
k,0 ≤ 1/(1+ eu

∗
k).

Coming back to the solution (ā, w̄, x̄, ȳ) of the relaxation of formulation P, observe that utilizing

the argument above and the fact that the objective is a nonnegative weighted combination of the

xk,1 variables, we will have that x̄k,1 ≥ 1/(1+ e−ūk) and that x̄k,0 ≤ 1/(1+ eūk) for each k for which

λk > 0. Without loss of generality, we can also assume that these inequalities hold for all k ∈ [K],

since there is no contribution to the objective function of formulation P from the term λkxk,1 for

any k with λk = 0.

With this property of (ā, w̄, x̄, ȳ) established, we now claim that (ā, ū, w̄, x̄, ȳ) is a feasible

solution of the relaxation of formulation RA. Note that this amounts to verifying that (ā, ū, w̄, x̄, ȳ)

satisfies the representative agent constraint

wk−xk,1 logxk,1−xk,0 logxk,0 ≥ log(1+ euk) (EC.40)

for every k, since the other constraints in RA are already present in P. To see why this constraint

is satisfied by our solution (ā, ū, w̄, x̄, ȳ), observe that:

x̄k,1 + x̄k,1e
−w̄k
x̄k,1 ≤ 1 (EC.41)

⇒ x̄k,1e
−w̄k
x̄k,1 ≤ x̄k,0 (EC.42)

⇒ log x̄k,1 +
−w̄k

x̄k,1

≤ log x̄k,0 (EC.43)

⇒ x̄k,1 log x̄k,1− w̄k ≤ (1− x̄k,0) log x̄k,0 (EC.44)

⇒ w̄k− x̄k,0 log x̄k,0− x̄k,1 log x̄k,1 ≥− log x̄k,0 (EC.45)

e-companion to Author: Exact Logit-Based Product Design ec21

Now, recall that x̄k,0 ≤ 1/(1+ eūk), or equivalently (after taking logs and multiplying by -1):

− log x̄k,0 ≥ log(1+ eūk). (EC.46)

Inequality (EC.45) and (EC.46) together imply that

w̄k− x̄k,1 log x̄k,1− x̄k,0 log x̄k,0 ≥ log(1+ eūk), (EC.47)

which is exactly the representative agent constraint of formulation RA. As a result, we have estab-

lished that (ā, ū, w̄, x̄, ȳ) is a feasible solution of the relaxation of formulation RA. Since the two

formulations share the same objective functions, it thus follows that Z∗
P ≤Z∗

RA, as required. □

ec22 e-companion to Author: Exact Logit-Based Product Design

EC.2. Extra modeling details

In this section, we provide some additional discussion of the modeling capability of our mixed-

integer convex programming models discussed in Section 4. Section EC.2.1 provides some examples

of what can be modeled using the linear constraint Ca≤ d that defines A, while Section EC.2.2

discusses how the three formulations (RA, P and P-RPT) can be modified for the purpose of

expected profit maximization.

EC.2.1. Set of feasible product designs

The constraint Ca≤ d which defines the set A can be used to encode a variety of requirements

on the attribute vectors a as linear constraints. For example, if the product has two attributes,

where the first attribute has three levels and the second attribute has four levels, then one can

model the product through the vector a= (a1, a2, a3, a4, a5), where a1 and a2 are dummy variables

to represent two out of the three levels of the first attribute and a3, a4, a5 are dummy variables to

represent three out of the four levels of the second attribute. One would then need to enforce the

constraints

a1 + a2 ≤ 1, (EC.48)

a3 + a4 + a5 ≤ 1 (EC.49)

to ensure that at most one out of the variables a1, a2 is set to 1 and at most one variable out of

a3, a4, a5 is set to 1. This can be achieved by specifying C and d as

C=

[
1 1 0 0 0
0 0 1 1 1

]
, d=

[
1
1

]

Beside the ability to represent multi-level attributes, one can use the constraint Ca ≤ d to

represent design requirements such as weight and cost; for example, one may be interested in

imposing the constraint

b0 +
n∑

i=1

biai ≤B,

where b0 is the base weight of the product, bi is the incremental weight added to the product from

attribute i and B is a limit on the overall weight of the product. This constraint can be modeled

by specifying C and d as

C=
[
b1 b2 · · · bn

]
, d= [B− b0] .

e-companion to Author: Exact Logit-Based Product Design ec23

EC.2.2. Extension to expected profit maximization

While all three of our formulations RA, P and P-RPT corresponds to the share-of-choice objective,

it turns out that it is straightforward to generalize these models so as to optimize a profit-based

objective. In particular, suppose that the marginal profit of a design a is given by a function R(a)

defined as

R(a) = r0 +
n∑

i=1

riai.

In other words, the profit R(a) is a linear function of the binary attributes. One can model various

types of profit structures with this assumption. For example, if all of the attributes correspond to

non-price features that affect the cost of the product, then one can set r0 to be the price of the

product (a positive quantity), and each ri to be the marginal incremental cost of attribute i (a

negative quantity).

With this assumption, the logit-based expected profit product design problem can be written as

maximize
a∈A

R(a) ·

[
K∑

k=1

λk ·
exp(uk(a))

1+ exp(uk(a))

]
. (EC.50)

In terms of the xk,1 decision variables that appear in formulations RA, P and P-RPT, the objective

function can be re-written as

R(a) ·

[
K∑

k=1

λk ·xk,1

]
=

(
r0 +

n∑
i=1

riai

)
·

[
K∑

k=1

λk ·xk,1

]

=
K∑

k=1

λk ·

[
r0xk,1 +

n∑
i=1

ri · aixk,1

]
.

Notice that this last expression includes terms of the form aixk,1, which we can already represent

through the variables yk,i that appear in all three formulations. We can therefore re-write the

objective function of problem (EC.50) as

K∑
k=1

λk ·

[
r0xk,1 +

n∑
i=1

ri · yk,i

]
Thus, the expected profit product design problem can be handled by modifying the objective

function of formulation RA/ P/ P-RPT.

EC.3. Additional details for numerical experiments
EC.3.1. Comparison of computation times for heuristic approaches and formulation

P on synthetic instances

Table EC.1 below compares the average computation time (in seconds), where the average is taken

over the 20 instances for each (c,n,K) triple, for each of the heuristics (Greedy, LS, KKDP, GM)

and formulation P.

ec24 e-companion to Author: Exact Logit-Based Product Design

c n K TGreedy TLS TKKDP TGM TP

5 30 10 0.00 0.00 0.00 0.07 15.54
5 30 20 0.00 0.00 0.00 0.11 202.62
5 30 30 0.00 0.00 0.00 0.19 2333.12
5 40 10 0.00 0.01 0.00 0.10 44.99
5 40 20 0.00 0.01 0.00 18.56 2393.76
5 40 30 0.00 0.00 0.00 0.30 7026.27
5 50 10 0.00 0.01 0.00 0.23 21.62
5 50 20 0.00 0.01 0.00 0.43 2809.89
5 50 30 0.00 0.01 0.00 0.82 7213.79
5 60 10 0.00 0.02 0.00 0.42 47.54
5 60 20 0.00 0.02 0.00 3.25 2317.13
5 60 30 0.00 0.02 0.00 2.88 7213.76
5 70 10 0.00 0.03 0.00 0.67 18.33
5 70 20 0.00 0.03 0.00 3.70 1267.83
5 70 30 0.00 0.03 0.00 7.60 6410.63

10 30 10 0.00 0.00 0.00 0.20 14.96
10 30 20 0.00 0.00 0.00 0.21 80.05
10 30 30 0.00 0.00 0.00 0.27 1107.93
10 40 10 0.00 0.00 0.00 0.32 17.78
10 40 20 0.00 0.00 0.00 0.76 399.22
10 40 30 0.00 0.00 0.00 0.63 5316.60
10 50 10 0.00 0.01 0.00 0.38 17.92
10 50 20 0.00 0.01 0.00 2.56 1351.77
10 50 30 0.00 0.01 0.00 4.41 7161.57
10 60 10 0.00 0.02 0.00 1.25 22.60
10 60 20 0.00 0.02 0.00 15.24 709.22
10 60 30 0.00 0.01 0.00 21.05 6692.13
10 70 10 0.00 0.02 0.00 2.84 16.69
10 70 20 0.00 0.02 0.00 14.89 87.16
10 70 30 0.00 0.01 0.00 143.68 3310.76

20 30 10 0.00 0.00 0.00 1.57 12.23
20 30 20 0.00 0.00 0.00 0.28 66.61
20 30 30 0.00 0.00 0.00 0.28 614.31
20 40 10 0.00 0.00 0.00 0.36 18.42
20 40 20 0.00 0.00 0.00 26.03 496.22
20 40 30 0.00 0.00 0.00 1.39 4346.31
20 50 10 0.00 0.01 0.00 0.51 24.78
20 50 20 0.00 0.01 0.00 4.84 817.61
20 50 30 0.00 0.02 0.00 23.71 5550.03
20 60 10 0.00 0.01 0.00 1.22 38.61
20 60 20 0.00 0.01 0.00 6.87 114.48
20 60 30 0.00 0.01 0.00 82.74 5115.71
20 70 10 0.00 0.01 0.00 0.93 21.44
20 70 20 0.00 0.02 0.00 12.15 202.43
20 70 30 0.00 0.01 0.00 113.62 2610.99

Table EC.1 Comparison of computation times for heuristic approaches and formulation P on synthetic

instances.

e-companion to Author: Exact Logit-Based Product Design ec25

EC.3.2. Additional details on real data sets in Section 5.2

In this section, we provide some additional details on the four data sets used in Section 5.2. As

noted in Section 5.2, these four data sets are conjoint analysis data sets, and specifically choice-

based conjoint data sets. In choice-based conjoint analysis, a respondent is shown two or more

hypothetical products formulated in terms of the attributes that are being studied, and is asked to

choose between them. The choice between these hypothetical products (also known as profiles) is

called a task. Based on the responses given by each customer to each of their tasks, one can estimate

a discrete choice model, such as a latent-class logit model, that predicts how the customer will

choose and provides a measure of the utility for each attribute. As an alternative to choice-based

conjoint analysis, there also exists what is called ratings-based or metric conjoint analysis, where

a customer is shown a single profile and asked to provide a numeric rating. Based on the responses

to such rating tasks, one can use ordinary least squares to determine the utility of each attribute.

In all four data sets (bank, candidate, immigrant and timbuk2), each task consists of choosing

between two profiles, which is also known as a paired comparison task in the conjoint analysis

literature. The number of paired comparison tasks varies for each data set. For bank, each respon-

dent performed between 14 and 17 paired comparison tasks; for candidate, between 3 and 6 tasks;

for immigrant, exactly 5 tasks; and for timbuk2, exactly 16 tasks. (We note that for timbuk2,

the paired comparison also included a metric/rating component, where respondents were asked to

specify the degree to which one profile was preferred to the other. In this experiment, respondents

were allowed to specify being indifferent between the two profiles; this happened in 297 out of 5280

total responses. Since the estimation of latent-class and mixture MNL models requires a choice

and since this indifference happened in a relatively small number of responses, we removed these

responses from the timbuk2 data set when conducting our estimation procedures.)

While conjoint studies sometimes involve tasks where respondents can select a no-purchase option

(for example, a respondent is shown two or more profiles and a “none of the above” option), none

of the four data sets we used include explicit information on the no-purchase option, and none of

them included any task where the respondent was asked to choose between a product profile and

the no-purchase option. Thus, we instead assume the existence of several competitive products,

and assume that the customer is allowed to choose the product we have designed or one of the

competitive products. The utility of each of the competitive offerings is calculated using the same

partworths that are used to calculate the utility of the product we are designing. To provide an

example, suppose that a′, a′′, a′′′ are the attribute vectors of three competitive products. If a is

the attribute vector of our product, then the no-purchase probability of customer type k would be

given by
e
∑n

i=1 βk,ia
′
i + e

∑n
i=1 βk,ia

′′
i + e

∑n
i=1 βk,ia

′′′
i

e
∑n

i=1 βk,iai + e
∑n

i=1 βk,ia
′
i + e

∑n
i=1 βk,ia

′′
i + e

∑n
i=1 βk,ia

′′′
i
. (EC.51)

ec26 e-companion to Author: Exact Logit-Based Product Design

Recall that the no-purchase probability under the model described in Section 3.1 can be expressed

as

1

1+ eβk,0+
∑n

i=1 βk,iai

=
e−βk,0

e−βk,0 + e
∑n

i=1 βk,iai
. (EC.52)

Thus, to calibrate βk,0 so that (EC.51) and (EC.52) are equal, we simply set βk,0 as

βk,0 =− log
(
e
∑n

i=1 βk,ia
′
i + e

∑n
i=1 βk,ia

′′
i + e

∑n
i=1 βk,ia

′′′
i

)
. (EC.53)

EC.3.3. Attributes for real data instances in Section 5.2

Tables EC.2, EC.3, EC.4 and EC.5 display the attributes and attribute levels for the bank,

candidate, immigrant and timbuk2 datasets, respectively.

Attribute Levels

Interest Rate High Fixed Rate, Medium Fixed Rate,
Low Fixed Rate, Medium Variable Rate

Rewards 1, 2, 3, 4
Annual Fee High, Medium, Low
Bank Bank A, Bank B, Out of State Bank
Rebate Low, Medium, High
Credit Line Low, High
Grace Period Short, Long

Table EC.2 Attributes for bank dataset.

Attribute Levels

Age 36, 45, 52, 60, 68, 75
Military Service Did Not serve, Served
Religion None, Jewish, Catholic, Mainline Protestant,

Evangelical Protestant, Mormon
College No BA, Baptist College, Community College,

State University, Small College,
Ivy League University

Income 32K, 54K, 65K, 92K, 210K, 5.1M
Profession Business Owner, Lawyer, Doctor,

High School Teacher, Farmer, Car Dealer
Race/Ethnicity White, Native American, Black,

Hispanic, Caucasian, Asian American
Gender Male, Female

Table EC.3 Attributes for candidate dataset.

e-companion to Author: Exact Logit-Based Product Design ec27

Attribute Levels

Education No Formal, 4th Grade, 8th Grade, High School,
Two-Year College, College Degree, Graduate Degree

Gender Female, Male
Origin Germany, France, Mexico, Philippines, Poland,

India, China, Sudan, Somalia, Iraq
Application Reason Reunite With Family, Seek Better Job, Escape Persecution
Profession Janitor, Waiter, Child Care Provider, Gardener, Financial Analyst,

Construction Worker, Teacher, Computer Programmer,
Nurse, Research Scientist, Doctor

Job Experience None, 1-2 Years, 3-5 Years, 5+ Years
Job Plans Contract With Employer, Interviews With Employer,

Will Look For Work, No Plans To Look For Work
Prior Trips to US Never, Once As Tourist, Many Times As Tourist,

Six Months With Family, Once Without Authorization
Language Fluent English, Broken English,

Tried English But Unable, Used Interpreter

Table EC.4 Attributes for immigrant dataset.

Attribute Levels

Price $70, $75, $80, $85, $90, $95, $100
Size Normal, Large
Color Black, Red
Logo No, Yes
Handle No, Yes
PDA Holder No, Yes
Cellphone Holder No, Yes
Velcro Flap No, Yes
Protective Boot No, Yes

Table EC.5 Attributes for timbuk2 dataset.

ec28 e-companion to Author: Exact Logit-Based Product Design

EC.3.4. Hierarchical Bayesian model specification

For our hierarchical Bayesian model, we assume that each respondent’s partworth vector β =

(β1, . . . , βn) is drawn as

β∼N(β̄,Vβ),

where N(µ,Σ) denotes a multivariate normal distribution with mean µ and covariance matrix Σ.

The distributions of the mean β̄ and covariance matrix Vβ are then specified as

β̄∼N(0, αVβ),

Vβ ∼ IW (ν,V),

where IW (ν,W) denotes an inverse Wishart distribution with degrees of freedom ν and scale

matrix W. This model specification is implemented in bayesm, using the rhierBinLogit function.

We use bayesm’s defaults for ν, V and α.

EC.3.5. Additional constraints for immigrant dataset

As discussed in Section 5.2, we define A with some additional constraints, which we describe here:

• If the immigrant’s profession attribute is set to “doctor”, “research scientist”, “computer

programmer” or “financial analyst”, then the immigrant’s education attribute is set to “college

degree” or “graduate degree”.

• If the immigrant’s profession attribute is set to “teacher” or “nurse”, then the immigrant’s edu-

cation attribute is set to “high school”, “two-year college”, “college degree” or “graduate degree”.

• If the immigrant’s application reason attribute is set to “escape persecution”, then the country

of origin attribute is set to Sudan, Somalia or Iraq.

• Either the immigrant’s application reason attribute is set to “seek better job” or the immi-

grant’s job plan attribute is set to “no plans to work”, but they cannot both be set in this way.

EC.3.6. Competitive offerings for Section 5.2

Tables EC.6, EC.7, EC.8 and EC.9 display the attributes of the competitive offerings for the bank,

candidate, immigrant and timbuk2 datasets, respectively. We note that for timbuk2, we follow

the same competitive offerings used in other optimization work that has used this dataset (Belloni

et al. 2008, Bertsimas and Mǐsić 2017, 2019).

e-companion to Author: Exact Logit-Based Product Design ec29

Attribute Outside Outside Outside
Option 1 Option 2 Option 3

Interest Rate: High fixed rate
Interest Rate: Medium fixed rate
Interest Rate: Low fixed rate
Interest Rate: Medium variable rate
Rewards: 1
Rewards: 2
Rewards: 3
Rewards: 4
Annual Fee: High
Annual Fee: Medium
Annual Fee: Low
Bank: Bank A
Bank: Bank B
Bank: Out of state bank
Rebate: Low
Rebate: Medium
Rebate: High
Credit Line: Low
Credit Line: High
Grace Period: Short
Grace Period: Long

Table EC.6 Outside options for bank dataset problem instances.

ec30 e-companion to Author: Exact Logit-Based Product Design

Attribute Outside Outside Outside
Option 1 Option 2 Option 3

Age: 36
Age: 45
Age: 52
Age: 60
Age: 68
Age: 75
Military Service: Did not serve
Military Service: Served
Religion: None
Religion: Jewish
Religion: Catholic
Religion: Mainline protestant
Religion: Evangelical protestant
Religion Mormon
College: No BA
College: Baptist college
College: Community college
College: State university
College: Small college
College: Ivy League university
Income: 32K
Income: 54K
Income: 65K
Income: 92K
Income: 210K
Income 5.1M
Profession: Business owner
Profession: Lawyer
Profession: Doctor
Profession: High school teacher
Profession: Farmer
Profession: Car dealer
Race/Ethnicity: White
Race/Ethnicity: Native American
Race/Ethnicity: Black
Race/Ethnicity: Hispanic
Race/Ethnicity: Caucasian
Race/Ethnicity: Asian American
Gender: Male
Gender: Female

Table EC.7 Outside options for candidate dataset problem instances.

e-companion to Author: Exact Logit-Based Product Design ec31

Attribute Outside Outside Outside
Option 1 Option 2 Option 3

Education: No formal
Education: 4th grade
Education: 8th grade
Education: High school
Education: Two-year college
Education: College degree
Education: Graduate degree
Gender: Female
Gender: Male
Origin: Germany
Origin: France
Origin: Mexico
Origin: Philippines
Origin: Poland
Origin: India
Origin: China
Origin: Sudan
Origin: Somalia
Origin: Iraq
Application Reason: Reunite with family
Application Reason: Seek better job
Application Reason: Escape persecution
Profession: Janitor
Profession: Waiter
Profession: Child care provider
Profession: Gardener
Profession: Financial analyst
Profession: Construction worker
Profession: Teacher
Profession: Computer programmer
Profession: Nurse
Profession: Research scientist
Profession: Doctor
Job Experience: None
Job Experience: 1-2 years
Job Experience: 3-5 years
Job Experience: 5+ years
Job Plans: Contract with employer
Job Plans: Interviews with employer
Job Plans: Will look for work
Job Plans: No plans to look for work
Prior Trips to U.S.: Never
Prior Trips to U.S.: Once as tourist
Prior Trips to U.S.: Many times as tourist
Prior Trips to U.S.: Six months with family
Prior Trips to U.S.: Once without authorization
Language: Fluent English
Language: Broken English
Language: Tried English but unable
Language: Used interpreter

Table EC.8 Outside options for immigrant dataset problem instances.

ec32 e-companion to Author: Exact Logit-Based Product Design

Attribute Outside Outside Outside
Option 1 Option 2 Option 3

Price: $70
Price: $75
Price: $80
Price: $85
Price: $90
Price: $95
Price: $100
Size: Large
Color: Red
Logo: Yes
Handle: Yes
PDA Holder: Yes
Cellphone Holder: Yes
Mesh Pocket: Yes
Velcro Flap: Yes
Protective Boot: Yes

Table EC.9 Outside options for timbuk2 dataset problem instances. (For ease of comparison, only one level of

each binary attribute is shown.)

e-companion to Author: Exact Logit-Based Product Design ec33

EC.4. Robust logit-based share-of-choice product design

A key assumption in the logit-based SOCPD problem is that the underlying parameters that

determine customer choice – the distribution λ and the partworth vectors β1, . . .βK – are known

precisely. In practice, these parameters are estimated from data (as in our numerical experiments

with real data in Section 5.2) and there may be errors in these estimated values; thus, these

parameters are subject to uncertainty. This is important because a product that is optimized

based on a single λ and a single collection of partworth vectors β1, . . . ,βK may yield significantly

lower market share if the actual λ and β1, . . . ,βK values are different from the ones used in the

optimization.

In this section, we consider two different robust optimization approaches to the logit-based

SOCPD problem that address uncertainty in the partworth vectors β1, . . . ,βK . In particular, let

β = (β1, . . . ,βK) ∈ R(n+1)K denote the concatenation of the partworth vectors of all K customer

types; we refer to β as the grand partworth vector. The robust logit-based SOCPD problem can

then be written as the following max-min problem:

max
a∈A

min
β∈U

K∑
k=1

λk ·σ(βk,0 +
n∑

i=1

βk,iai), (EC.54)

where U ⊆R(n+1)K is an uncertainty set of possible partworth vectors. In this problem, we seek to

find the product design vector a that maximizes the worst-case share-of-choice, where the worst-

case is taken over all grand partworth vectors in U .

The rest of this section is organized as follows. Section EC.4.1 presents our first approach, which

assumes that U is structured as a Cartesian product of smaller uncertainty sets corresponding

to each customer type. Section EC.4.2 presents our second approach, which assumes that U is

structured as a budget uncertainty set. Section EC.4.3 presents a small set of computational exper-

iments for the first approach, while Section EC.4.4 presents computational results for the second

approach.

Before we continue, we note that the two approaches developed below only consider uncertainty

in the grand partworth vector β and not in the probability distribution λ. We focus on this form

of uncertainty as we believe this is the more interesting case to consider. When there is only

uncertainty in λ, the robust logit-based SOCPD problem can be written as

max
a∈A

min
λ∈Λ

K∑
k=1

λk ·σ(βk,0 +
n∑

i=1

βk,iai), (EC.55)

where Λ is an uncertainty set of probability mass functions supported on [K]. This problem can

be analyzed in a straightforward fashion as the objective function is linear in λ, and therefore the

inner worst-case problem that minimizes over λ is a linear program. Depending on the structure

ec34 e-companion to Author: Exact Logit-Based Product Design

of Λ, one can potentially reformulate the inner problem to eliminate the minimization over λ (for

example, if Λ is a polyhedron, then one can use LP duality to reformulate the problem with a

finite number of additional variables and constraints) and reformulate each σ(·) term using one

of the three formulations presented earlier (RA, P or P-RPT). Alternatively, one can also design

a cutting plane procedure that replaces Λ with a finite set Λ̂, solves the corresponding restricted

master problem, and then identifies a new λ to add to Λ̂ by solving the worst-case problem

minλ∈Λ

∑K

k=1 λk ·σ(βk,0 +
∑n

i=1 βk,iai).

EC.4.1. Robust approach 1: product uncertainty set

In the first approach that we consider, we assume that the uncertainty set U of the grand partworth

vector is structured as a Cartesian product of type-specific uncertainty sets, that is,

U = U1×U2× · · ·×UK , (EC.56)

where Uk ⊆Rn+1 is an uncertainty set governing the partworth vector βk of customer type k. Under

this uncertainty set, the robust logit-based SOCPD problem can be written as

max
a∈A

min
β∈U

{
K∑

k=1

λkσ(βk,0 +
n∑

i=1

βk,iai)

}
(EC.57)

Due to the product form of the uncertainty set, this problem admits a nice reformulation, which

we now explain. In particular, we can re-write the problem as

max
a∈A

min
β∈U

{
K∑

k=1

λkσ(βk,0 +
n∑

i=1

βk,iai)

}
(EC.58)

=max
a∈A

min
β1∈U1,...,βK∈UK

{
K∑

k=1

λkσ(βk,0 +
n∑

i=1

βk,iai)

}
(EC.59)

=max
a∈A

{
K∑

k=1

λk min
βk∈Uk

σ(βk,0 +
n∑

i=1

βk,iai)

}
, (EC.60)

where the last step follows because, due to the product form of the uncertainty set, the minimization

over the overall grand partworth vector β decomposes into K minimizations over each individual

customer type’s partworth vector βk.

From here, the problem can be further reformulated by observing that the logistic response

function σ(·) is monotonic, and so the minimization over βk can be pushed inside of σ(·):

max
a∈A

{
K∑

k=1

λk min
βk∈Uk

σ(βk,0 +
n∑

i=1

βk,iai)

}
, (EC.61)

=max
a∈A

{
K∑

k=1

λkσ(min
βk∈Uk

{βk,0 +
n∑

i=1

βk,iai})

}
. (EC.62)

e-companion to Author: Exact Logit-Based Product Design ec35

Recall now from our formulation P that the decision variable wk represents the linearization of xk,1 ·

uk. To model the inner minimization, we replace the constraint that defines wk in that formulation,

which is

wk = βk,0xk,1 +
n∑

i=1

βk,iyk,i, (EC.63)

with the following robust constraint:

wk ≤ βk,0xk,1 +
n∑

i=1

βk,iyk,i, ∀ βk ∈ Uk. (EC.64)

Formulation P thus becomes the following formulation, which we denote by P-Robust:

P-Robust : maximize
a,u,w,x,y

K∑
k=1

λkxk,1 (EC.65a)

subject to xk,1 +xk,1e
−wk/xk,1 ≤ 1, ∀ k ∈ [K], (EC.65b)

wk ≤ βk,0xk,1 +
n∑

i=1

βk,iyk,i, ∀ k ∈ [K], βk ∈ Uk, (EC.65c)

yk,i ≤ ai, ∀ k ∈ [K], i∈ [n], (EC.65d)

yk,i ≤ xk,1, ∀ k ∈ [K], i∈ [n], (EC.65e)

yk,i ≥ xk,1 + ai− 1, ∀ k ∈ [K], i∈ [n], (EC.65f)

yk,i ≥ 0, ∀ k ∈ [K], i∈ [n], (EC.65g)

xk,0, xk,1 ≥ 0, ∀ k ∈ [K], (EC.65h)

Ca≤ d, (EC.65i)

a∈ {0,1}n. (EC.65j)

The key distinction between P-Robust and P is that constraint (EC.65c) is quantified over all

partworth vectors βk ∈ Uk, and thus (EC.65c) describes a potentially uncountably infinite collec-

tion of linear inequalities. As is standard in robust optimization, if each Uk admits a tractable

representation, then one can re-write the constraint as

wk ≤ min
βk∈Uk

{βk,0xk,1 +
n∑

i=1

βk,iyk,i} (EC.66)

and reformulate the minimization problem on the right hand side of the inequality to obtain an

equivalent but finite representation. For example, if Uk is a polyhedron, the minimization problem

is a linear program, and one can use LP duality theory to reformulate the constraint exactly using a

finite number of constraints and variables. Alternatively, one can consider solving the problem using

constraint generation, where one replaces Uk with a finite subset Ûk, and solves the minimization

problem on the right-hand side to identify partworth vectors at which the constraint is violated.

ec36 e-companion to Author: Exact Logit-Based Product Design

In the experiments that we will present in Section EC.4.3, we will assume that each Uk is a

continuous budget uncertainty set (see Bertsimas and Sim 2004, for more details) defined as

Uk = {βk = β̄k− β̂k ◦ ξk | 0≤ ξk ≤ 1, 1⊤ξk ≤ Γ}, (EC.67)

where the vectors 1 and 0 are used to denote (n+ 1)-dimensional vectors of all ones and zeros,

respectively, and ◦ denotes the component-wise product of two vectors. In this definition, the

vector β̄k ∈Rn+1 is the vector of nominal partworths and the vector β̂k is the vector of maximum

allowable deviations, where each value β̂k,i represents the most that the partworth βk,i may deviate

from its nominal value βk,i. The value ξk,i is bounded between 0 and 1 and represents the fraction

of the maximum deviation of β̂k,i; the constraint
∑n

i=0 ξk,i ≤ Γ models that we only allow up to Γ

partworth values to maximally deviate from their nominal values. Note that in our uncertainty set,

we only consider downward deviations, which results in the form β̄k − β̂k ◦ ξk. Although budget

uncertainty sets (as for example in Bertsimas and Sim 2004) usually allow for both upward and

downward deviations, in our case it is not necessary to consider upward deviations, because such

deviations are never optimal for the inner minimization problem and will in general never be a

part of the worst-case solution.

For this budget uncertainty set, constraint (EC.66) can be reformulated by applying LP duality

to the right-hand side of (EC.66), and introducing a new set of decision variables and constraints.

In particular, it can be shown that constraint (EC.66) is equivalent to

wk ≤ β̄k,0xk,1 +
n∑

i=1

β̄k,iyk,i−Γqk−
n∑

i=1

τk,i (EC.68)

qk + τk,0 ≥ β̂k,0xk,1, (EC.69)

qk + τk,i ≥ β̂k,iyk,i, ∀ i∈ [n], (EC.70)

qk ≥ 0, (EC.71)

τk,i ≥ 0, ∀ i∈ [n], (EC.72)

where qk and τ k = (τk,0, . . . , τk,n) are new decision variables that are added to problem P-Robust.

Thus, problem P-Robust becomes

P-Robust-Budget : maximize
a,q,w,x,y,τ

K∑
k=1

λkxk,1 (EC.73a)

subject to xk,1 +xk,1e
−wk/xk,1 ≤ 1, ∀ k ∈ [K], (EC.73b)

wk ≤ β̄k,0xk,1 +
n∑

i=1

β̄k,iyk,i−Γqk−
n∑

i=1

τk,i, ∀ k ∈ [K], (EC.73c)

qk + τk,0 ≥ β̂k,0xk,1, ∀ k ∈ [K] (EC.73d)

e-companion to Author: Exact Logit-Based Product Design ec37

qk + τk,i ≥ β̂k,iyk,i, ∀ k ∈ [K], i∈ [n], (EC.73e)

yk,i ≤ ai, ∀ k ∈ [K], i∈ [n], (EC.73f)

yk,i ≤ xk,1, ∀ k ∈ [K], i∈ [n], (EC.73g)

yk,i ≥ xk,1 + ai− 1, ∀ k ∈ [K], i∈ [n], (EC.73h)

yk,i ≥ 0, ∀ k ∈ [K], i∈ [n], (EC.73i)

xk,0, xk,1 ≥ 0, ∀ k ∈ [K], (EC.73j)

Ca≤ d, (EC.73k)

a∈ {0,1}n, (EC.73l)

qk ≥ 0, ∀ k ∈ [K], (EC.73m)

τk,i ≥ 0, ∀ k ∈ [K], i∈ [n], (EC.73n)

EC.4.2. Robust approach 2: joint uncertainty set

In our second approach, let our uncertainty set U of partworth vectors be defined as

U =

{
β= β̄− β̂ ◦Ξ

K∑
k=1

n∑
i=0

ξk,i ≤ Γ, Ξ∈ {0,1}(n+1)K

}
. (EC.74)

In the above definition, β̄= (β̄1, . . . , β̄K)∈RK(n+1) is the vector of nominal values of the partworths,

where β̄k = (β̄k,0, β̄k,1, . . . , β̄k,n) is the vector containing the nominal partworths and the nominal

intercept for customer type k. The vector β̂ = (β̂1, . . . , β̂K) ∈ RK(n+1) is the vector of maximal

allowed deviations of the partworth parameters, where β̂k = (β̂k,0, . . . , β̂k,n) represents the vector

of maximal allowed deviations of each parameter (i.e., β̂k,i is the most that the partworth βk,i

is allowed to deviate from its nominal value β̄k,i). The vector Ξ is defined as Ξ = (ξ1, . . . ,ξK) ∈

{0,1}(n+1)K , where each ξk = (ξk,0, . . . , ξk,n) ∈ {0,1}n+1 is the vector of binary variables indicating

whether partworth βk,j is deviating from the nominal value β̄k,j (ξk,j = 1) or not (ξk,j = 0). We refer

to ξk as the perturbation pattern of customer type k, and Ξ as the grand perturbation pattern.

The uncertainty set U represents the set of all vectors of partworth vectors where at most Γ

parameters are equal to β̄k,i− β̂k,i and the rest are equal to their nominal value β̄k,i. The idea of this

uncertainty set is that while each partworth parameter βk,j may deviate from its nominal value,

we expect that in the worst case, there should not be too many such parameters deviating from

their nominal value. Note that unlike the product uncertainty set in the previous section, there is

no limit on how many deviations can occur for each customer type, and so an admissible grand

partworth vector β from U may be such that all of the deviations occur for a small subset of the

K customer types, with the partworths for the other customer types unperturbed. Additionally, U

ec38 e-companion to Author: Exact Logit-Based Product Design

is a discrete uncertainty set, whereas the uncertainty set of the previous section may be discrete

or continuous. The motivation for this choice is tractability; we shall discuss this in more detail

shortly.

The corresponding robust logit-based SOCPD problem is then

max
a∈A

min
β∈U

{
K∑

k=1

λkσ(βk,0 +
n∑

i=1

βk,iai)

}
, (EC.75)

where the goal is to find the product design vector a that maximizes the worst-case logit-based

share-of-choice, where the worst-case is taken over all partworth vectors β belonging to U . Note

that in this model, we are again assuming that the nominal values of the customer type probabilities

λ1, . . . , λK are not subject to uncertainty.

Note that this problem is rather difficult to solve, because the inner worst-case problem,

min
β∈U

{
K∑

k=1

λkσ(βk,0 +
n∑

i=1

βk,iai)

}
(EC.76)

is a binary nonlinear optimization problem, similarly to the nominal logit-based SOCPD problem.

Typically in robust optimization, the inner worst-case problem is a tractable optimization problem

that can be reformulated using duality. For example, if the objective is linear in the uncertain

parameter, and the uncertainty set is polyhedral, then the inner worst-case problem is a linear pro-

gram, and one can apply linear programming duality to reformulate the inner worst-case problem

using a finite number of additional variables and constraints. In our setting, such an approach is

not applicable due to the nature of this inner problem.

Instead, what we can hope to do is to solve the overall robust problem (EC.75) using delayed

constraint generation. In this approach, we first reformulate the problem in epigraph form:

maximize
a,θ

θ (EC.77a)

subject to θ≤
K∑

k=1

λkσ(βk,0 +
n∑

i=1

βk,iai), ∀ β ∈ U , (EC.77b)

a∈A. (EC.77c)

Now, instead of solving problem (EC.77) with all possible β enumerated, we start with con-

straint (EC.77b) enforced for only a finite subset Û ⊆ U . We then solve this restricted master

problem to obtain a solution a. With this solution a in hand, we now solve the following separation

problem:

minimize
Ξ

K∑
k=1

λkσ(ūk− β̂k,0ξk,0−
n∑

i=1

β̂k,iaiξk,i) (EC.78a)

e-companion to Author: Exact Logit-Based Product Design ec39

subject to
K∑

k=1

n∑
i=0

ξk,i ≤ Γ, (EC.78b)

ξk,i ∈ {0,1}, ∀ k ∈ [K], i∈ {0,1, . . . , n}, (EC.78c)

where ūk is defined as ūk = β̄k,0+
∑n

i=1 β̄k,iai, which is the utility of a using the nominal partworth

values for customer type k.

Although this problem is challenging, we can reformulate it as a mixed-integer convex program

using the same type of technique as we used to obtain formulation P. In particular, as in formu-

lation P, let πk,1 and πk,0 denote the purchase probability of the product and the no-purchase

probability, respectively, for customer type k; let uk denote the utility of product k; let hk denote

the linearization of uk ·πk,0; and let zk,i denote the linearization of πk,0 · ξk,i. With these definitions,

this separation problem (EC.78) can be re-written as the following mixed-integer exponential cone

program:

minimize
π,u,h,z,Ξ

K∑
k=1

λkxk,1 (EC.79a)

subject to πk,0 +πk,0 · e
hk
πk,0 ≤ 1, ∀ k ∈ [K], (EC.79b)

πk,0 +πk,1 = 1, ∀ k ∈ [K], (EC.79c)

uk = ūk−
n∑

i=0

β̂k,i · ai · ξk,i, ∀ k ∈ [K], (EC.79d)

hk = ūkπk,0−
n∑

i=0

β̂k,i · ai · zk,i, ∀ k ∈ [K], (EC.79e)

zk,i ≤ πk,0, ∀ k ∈ [K], i∈ {0,1, . . . , n}, (EC.79f)

zk,i ≤ ξk,i, ∀ k ∈ [K], i∈ {0,1, . . . , n}, (EC.79g)

zk,i ≥ πk,0 + ξk,i− 1, ∀ k ∈ [K], i∈ {0,1, . . . , n}, (EC.79h)
K∑

k=1

n∑
i=0

ξk,i ≤ Γ, ∀ k ∈ [K], (EC.79i)

K∑
k=1

n∑
i=0

zk,i ≤ Γ ·πk,0, ∀ k ∈ [K], (EC.79j)

K∑
k=1

n∑
i=0

(ξk,i− zk,i)≤ Γ ·πk,1, ∀ k ∈ [K], (EC.79k)

ξk,i ∈ {0,1}, ∀ k ∈ [K], i∈ {0,1, . . . , n}, (EC.79l)

zk,i ≥ 0, ∀ k ∈ [K], i∈ {0,1, . . . , n}. (EC.79m)

By solving this problem, we obtain the solution Ξ; to obtain the corresponding β vector, we simply

calculate it as β= β̄− β̂ ◦Ξ. We add the corresponding constraint to the master problem (EC.77),

and solve the master problem again.

ec40 e-companion to Author: Exact Logit-Based Product Design

We make several important remarks about the restricted master problem. First, note that the

restricted master problem can be formulated as a mixed-integer exponential cone program that is

very similar to the nominal problem. The main difference is that the variables xk,0, xk,1, uk,wk, yk,i

are now additionally indexed by ξ. In particular, xk,ξ,0 and xk,ξ,1 are the choice probabilities for

the no-purchase option and the product for customer type k when its partworth vector deviates

according to the perturbation pattern ξ. Similarly, uk,ξ is the utility of the product for customer

type k with the perturbation pattern ξ; wk,ξ is the linearization of uk,ξ ·xk,ξ,1; yk,ξ,i is the lineariza-

tion of ai ·xk,ξ,1. Each combination of k and ξ requires analogs of the constraints (22b) to (22h) of

P and in particular, requires one exponential cone.

Second, and related to the previous point, is that across different worst-case realizations of the

grand partworth vector β that are generated from U , the same deviation pattern ξ could appear

multiple times for the same customer type. This implies that the same variable xk,ξ,1 that represents

the purchase probability for customer type k under perturbation pattern ξ could appear in multiple

instances of the epigraph constraint (EC.77b). This is important because it allows for efficiency in

terms of how many exponential cones are used to model the xk,ξ,1 variables. A naive implementation

of constraint generation would introduce a new exponential cone for each x variable that appears

in constraint (EC.77b), resulting in K ·M exponential cones after M worst-case realizations are

generated. By being careful about whether a perturbation pattern has been generated previously,

one can reuse variables that have already been introduced, and reduce how many new exponential

cones get added to the master problem.

Lastly, we alluded earlier that the choice of a discrete budget uncertainty set, as opposed to

a continuous budget uncertainty set is motivated by tractability, and after laying out the overall

constraint generation procedure, it should become clear why a discrete uncertainty set may be

easier to work with. In particular, the worst-case problem (EC.78) can be formulated exactly as the

mixed-integer exponential cone program (EC.79). If one were to consider a continuous uncertainty

set U , then the worst-case problem (EC.76) would be a continuous, non-convex problem, and in

such a situation, it is not clear how one can solve such a problem to global optimality (in order

to implement a constraint generation/cutting plane method), or how one can otherwise tractably

reformulate the overall robust problem.

EC.4.3. Numerical experiments with product uncertainty robust approach

In this section, we present a small set of numerical experiments to demonstrate the value of the

robust approach using the product budget uncertainty set described in Section EC.4.1. We con-

sider the synthetic instances from Section 5.1 with n= 30, and K ∈ {10,20}, and the scale factor

parameter c fixed to 5.

e-companion to Author: Exact Logit-Based Product Design ec41

We set up the budget uncertainty set Uk of each customer type k as follows. We use the value of

each term βk,i as the nominal value β̄k,i in our uncertainty set. For the intercept, we assume that

there is no uncertainty, and set β̂k,0 = 0. For each attribute, we assume that β̂k,i = c′ · |β̄k,i|, where

c′ ∈ {0.1,0.2} is a parameter that will be tested. We vary the budget Γ in the set {1,2,3,4,5,6,7}.

Note that in general, there are Kn partworth parameters, not counting the intercept; setting the

budget as m means that at most m out of n parameters deviate from their nominal values, for a

total of Km out of Kn parameters over all K customer types.

For each (n,K, c′) combination, we solve formulation P-Robust-Budget for each of the 20 synthetic

instances, and record the objective value. We solve the formulation using Mosek and impose a time

limit of one hour. In addition, for each n and K, we also compute the worst-case share-of-choice

of the nominal product vector by solving minβ∈U

{∑K

k=1 λkσ(βk,0 +
∑n

i=1 βk,iai)
}
.

To compare the robust and nominal approaches, we compute two different metrics:

1. Worst-case loss: The worst-case loss (WCL) is defined as

WCL=
F (aN , β̄)−minβ∈U F (aN ,β)

F (aN , β̄)
× 100%, (EC.80)

where aN is the nominal product design (i.e., aN ∈ argmaxa∈AF (a, β̄)), and F (a,β) =∑K

k=1 λkσ(βk,0 +
∑n

i=1 βk,iai) is the share-of-choice of the product vector a under the overall part-

worth vector β = (β1, . . . ,βK). In words, it is the percentage reduction in the share-of-choice of

the nominal solution aN , relative to the nominal share-of-choice, under the worst-case realization

in U . A high value of WCL implies that the worst-case performance of the nominal product design

deteriorates significantly when the realized partworths differ from their nominal values.

2. Relative improvement : The relative improvement (RI) is defined as

RI =
minβ∈U F (aR,β)−minβ∈U F (aN ,β)

minβ∈U F (aN ,β)
× 100%, (EC.81)

where aN is the nominal product design and aR is the robust product design (i.e., aR ∈

argmaxa∈Aminβ∈U F (a,β)). In words, it is the improvement in worst-case share-of-choice perfor-

mance of the robust product design aR relative to the nominal product design aN . A high value of

RI implies that the robust design delivers better performance under uncertainty than the nominal

design.

Table EC.10 reports the average WCL and RI for each of the (n,K, c′) combinations, as well as the

average computation time of P-Robust-Budget. From this table, we can see that the deterioration

of the nominal solution when exposed to the worst grand partworth vector β from U can be large

(as high 33% when K = 20, c′ = 0.20 and Γ = 5), and that the robust solution improves on the

nominal solution significantly in terms of worst-case share-of-choice (as much as 28%). Additionally,

ec42 e-companion to Author: Exact Logit-Based Product Design

c′ n K Γ WCL (%) RI (%) Time (s)

0.10 30 10 1 0.96 0.00 20.90
0.10 30 10 2 2.15 0.06 25.89
0.10 30 10 3 3.55 0.38 30.36
0.10 30 10 4 5.14 1.13 31.10
0.10 30 10 5 6.78 2.06 32.16

0.10 30 20 1 1.99 0.15 461.28
0.10 30 20 2 4.35 0.84 616.34
0.10 30 20 3 6.96 1.84 755.08
0.10 30 20 4 9.70 3.42 872.96
0.10 30 20 5 12.50 5.41 956.01

0.20 30 10 1 2.28 0.07 26.43
0.20 30 10 2 6.00 1.59 28.91
0.20 30 10 3 11.17 5.15 36.13
0.20 30 10 4 17.61 11.66 41.62
0.20 30 10 5 24.41 20.31 50.46

0.20 30 20 1 4.55 0.91 591.00
0.20 30 20 2 10.87 4.15 780.24
0.20 30 20 3 18.38 10.50 901.27
0.20 30 20 4 26.26 18.59 1158.55
0.20 30 20 5 33.90 27.94 1294.17

Table EC.10 Performance of robust solutions using the product uncertainty set approach (Section EC.4.1) on

synthetic data instances.

the computation times of this approach are reasonable; while they are larger than the nominal

formulation (see Table 1 in Section 5.1), they are no more than about 20 minutes in the largest

case.

EC.4.4. Numerical experiments with joint uncertainty robust approach

In this second set of numerical experiments, we aim to understand the value of the robust approach

using the joint budget uncertainty set described in Section EC.4.2. We again consider the synthetic

instances from Section 5.1 with n= 30 and K ∈ {10,20}. We set the scale factor parameter c to 5.

To set up the joint budget uncertainty set U , we proceed as follows. We use the value of each term

βk,i as the nominal value β̄k,i in our uncertainty set. For the intercept, we assume that there is no

uncertainty, and set β̂k,0 = 0. For each attribute, we assume that β̂k,i = c′ · |β̄k,i|, where c′ ∈ {0.1,0.2}
is a parameter that will be tested. Lastly, we vary the budget Γ in the set {1 ·K,2 ·K, . . . ,5 ·K}.
Note that in general, there are K(n+1) utility parameters (n partworths plus one intercept, for

each customer type); setting the budget as m ·K can be interpreted as anticipating up to m out

of n partworths of each segment (on average) to vary from their nominal values.

For each of the 20 instances corresponding to each combination (n,K, c)∈ {30}×{10,20}×{5},
we solve the robust formulation (EC.75) for each Γ and each c′. We apply the constraint generation

method described in Section EC.4.2. Due to the significantly greater computational requirement of

e-companion to Author: Exact Logit-Based Product Design ec43

the robust problem described in Section EC.4.2 compared to the nominal problem (formulation P),

we deemed it necessary to impose time limits on several components of the overall method. In

particular, we impose a time limit of one hour on the overall procedure, with a time limit of

600 seconds for each solve of the restricted master problem, and 5 seconds for each solve of the

subproblem. If the subproblem fails to identify a violated constraint within the 5 second time limit,

it is solved again with a longer time limit of 120 seconds. If this second solve results in a violated

constraint, the procedure continues; if it does not produce a violated constraint, the procedure

terminates.

For each of the same 20 instances corresponding to each combination (n,K, c)∈ {30}×{10,20}×

{5}, for each value of c′ ∈ {0.1,0.2} and for each value of Γ, we also compute the worst-case objective

value of the nominal solution. We do this by solving the separation problem (EC.79) at the nominal

product vector a. To make this worst-case objective value consistent with our robust procedure,

we again impose a computation time limit of 120 seconds. We again compute the WCL and RI as

in the experiments of the previous section.

Table EC.11 reports the average of WCL and RI for each combination of (n,K, c), c′ and Γ. In

addition, it also reports the average computation time. From this table, we can see that in general,

the WCL of the nominal solution can be substantial. For example, in the case where c′ = 0.1 (i.e.,

each partworth deviates from its nominal value by at most 10%), the WCL ranges from 4.31% to

24.22%. When c′ = 0.2, it can be as high as 53.88%. On the other hand, the robust solution can

significantly outperform the nominal solution in terms of worst-case share-of-choice, as shown in

the high values of RI (for example, with K = 10, c′ = 0.2, Γ = 40, the RI is over 15%).

In these results, we note that in a few cases the average RI is negative. Note that by the definition

of RI in equation (EC.81), this cannot happen if aR exactly solves the robust problem, and all

worst-case share-of-choice objective values are computed exactly. This is entirely an artifact due to

the computation time limits that were applied when solving the robust problem and to evaluate the

worst-case share-of-choice. In particular, due to the overall time limit of one hour, it is possible to

have a suboptimal solution to the robust problem; as a result, even if one could perfectly compute

minβ∈U F (·,β) for such a solution and the nominal solution, it is possible that the nominal solution

outperforms it in terms of worst-case objective value, leading to a negative RI. In addition, it is

also possible that the worst-case objective value of the nominal solution, minβ∈U F (aN ,β), is over-

estimated, which can happen if problem (EC.79) is terminated early with a suboptimal solution;

this in turn could result in a negative RI as well.

Lastly, with regard to computation times, we note that the computation times for this approach

are large, and in particular much larger than for the product uncertainty set approach tested in

Section EC.4.3, which involved solving a single finite mixed-integer exponential cone program with

ec44 e-companion to Author: Exact Logit-Based Product Design

c′ n K Γ WCL (%) RI (%) Time (s)

0.10 30 10 10 4.31 0.19 777.40
0.10 30 10 20 7.50 0.70 1612.02
0.10 30 10 30 9.87 2.79 2257.32
0.10 30 10 40 11.60 4.39 2333.21
0.10 30 10 50 13.10 5.02 2105.17

0.10 30 20 20 8.80 -0.97 3823.48
0.10 30 20 40 14.58 -0.56 3989.73
0.10 30 20 60 18.79 2.93 4021.12
0.10 30 20 80 21.90 4.91 3999.85
0.10 30 20 100 24.22 9.41 3999.27

0.20 30 10 10 12.29 -0.16 3368.03
0.20 30 10 20 21.76 3.13 3854.17
0.20 30 10 30 29.75 8.48 3846.31
0.20 30 10 40 36.45 15.88 3682.21
0.20 30 10 50 41.75 33.67 3644.28

0.20 30 20 20 18.00 -1.86 3928.02
0.20 30 20 40 30.58 0.99 3973.20
0.20 30 20 60 40.20 6.63 3911.56
0.20 30 20 80 48.14 18.73 3938.09
0.20 30 20 100 53.88 27.28 3907.19

Table EC.11 Performance of robust solutions using the joint uncertainty set approach (Section EC.4.2) on

synthetic data instances.

the same number of exponential cones as the nominal problem P. (Note that in some cases, the

computation time is higher than one hour, as the global one hour time limit was reached in the

middle of a solve of either the restricted master problem or the worst-case separation problem.)

From a tractability standpoint, these preliminary results suggest that the product uncertainty set

approach is preferable to the joint uncertainty set approach.

