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What Is This About?

These are lecture notes on bilevel optimization. The class of bilevel optimiza-
tion problems is formally introduced and motivated using examples from
different fields. Afterward, the main focus is on how to solve linear and
mixed-integer linear bilevel optimization problems. To this end, we first
consider various single-level reformulations of bilevel optimization problems
with linear or convex follower problems, discuss geometric properties of linear
bilevel problems, and study different algorithms for solving them. Finally,
we consider mixed-integer linear bilevel problems, discuss the main obsta-
cles for deriving exact as well as effective solution methods, and derive a
branch-and-bound method for solving these problems.

In summary, in these lecture notes, you will learn . . .

• to recognize bilevel optimization models in real-world applications,

• to properly model these real-world applications using the toolbox of
bilevel optimization,

• about the surprising (and mostly challenging) properties of bilevel
problems,

• how to reformulate bilevel problems as “ordinary” single-level problems,

• about the obstacles and pitfalls of these single-level reformulations,

• about structural properties of linear bilevel problems,

• how to solve linear bilevel problems,

• about structural properties of mixed-integer linear bilevel problems,

• how to solve mixed-integer linear bilevel problems.

Have fun!
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Preface

Bilevel optimization is a wonderful sub-field of mathematical optimization
with very many surprising properties of bilevel models, a lot of challenging
applications, as well as a growing number of useful algorithms and elegant
theoretical aspects.

As we will briefly discuss later on, it is a rather young field that compu-
tationally mainly started to develop in the 1980’s. My personal interest in
bi- and multilevel models started in 2014 and is still growing. That is why I
need more colleagues with whom I can work on bilevel problems and more
mathematicians with whom I can share and discuss ideas. To propel this,
the best way is to give a lecture on that topic and that is where you, the
students, and these lecture notes come into play.

I started to plan this lecture in the Covid-19 winter 2020/2021 and gave
the lecture for the first time in the summer term 2021 at Trier University.
There are some research-oriented books on bilevel optimization out there
and some surveys, which are also mainly written for a research-oriented
audience—but not for students. Thus, designing this lecture and writing
these lecture notes has been a rather delicate task. I very much hope that you
will enjoy studying bilevel optimization problems and reading these lecture
notes. However, I am very sure that tons of things can be improved, corrected,
explained in more detail, etc. If you come across such an aspect, please let
me know. Please give me your feedback so that the lecture and these notes
can improve. Being in one of its first versions also means that these lecture
notes will contain (although I took care as much as I could) some mistakes.
The consequence is that you should trust your own thinking more than these
notes—and if this turned out to be a wise choice since you spotted a mistake,
please let me know and I will carry out the required corrections as fast as
I can. In this sense, these notes are a “living document”. I will update it
from time to time, correct mistakes, improve explanations, or simply add
new sections or chapters on topics that I’m interested in.

One of the most frequent questions of students with respect to a new
lecture is on what is the required knowledge for this lecture. My aim is to
keep the lecture and these lecture notes as self-contained as possible. However,
throughout these notes I assume that you have a solid knowledge in linear
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List of Figures 9

optimization (especially including duality theory) and nonlinear optimization
(especially including first-order optimality conditions).

Finally, I have to thank many people that I stole content from, that I
asked for input regarding some examples or historic notes, or that I paid for
producing nice TikZ figures. Thanks a lot, Martine Labbé (I stole, at least,
my pricing example and the re-modeling of binary variables using LP-LP
bilevel feasibility from you), Ivana Ljubic (I stole, at least, the Knapsack
examples and some parts of the chapter on mixed-integer bilevel from our joint
papers), Thomas Kleinert (for very many bilevel discussions, many examples
that I took from your PhD thesis, the historic notes, for proof-reading many
sections, etc.), and Fränk Plein (also for very many discussions on the topic,
especially on the geometric properties of LP-LP bilevel problems). Last but
not least, I have to thank Ioana Molan and Andreas Horländer for many of
the TikZ pictures in these notes.

Martin Schmidt
Trier, April 2023



1
Introduction

1.1 What is a Bilevel Problem and Why Should We
Care?

Usual optimization problems are single-level problems, which can be denoted
as

min
x∈Rn

f(x)

s.t. g(x) ≥ 0,

h(x) = 0.

This means that there is only one objective function f , one vector of vari-
ables x, and one set of constraints g and h. In particular, this models a
situation in which a single decision maker takes all decisions, i.e., decides
on the variables of the problem. Studying such a problem is very often
appropriate—for instance, if a single dispatcher controls a gas transport
network, if a single investment banker decides on the assets in a portfolio, or
if a single logistics company decides on its supply chain.

On the other hand, there are very many situations in our day-to-day life
that are different. Often, we, as a decision maker, make a decision while
anticipating the (rational, i.e., optimal) reaction of another decision maker,
whose decision depends on ours. Moreover, also our outcome (or in more
mathematical terms, our objective function and/or feasible set) depends on
the reaction of the other decision maker. Formalizing this situation leads to
hierarchical or bilevel optimization problems. Before we formally define this
class of problems, let us consider some informally stated examples.

Example 1.1 (Pricing). One of the richest class of applications of bilevel
optimization are pricing problems. The first decision maker, which we will
also call leader in the following, decides on a price of a certain good (or maybe

10
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Figure 1.1: Different tolls lead to different route choices, travel costs, and
toll revenues

on different prices for multiple goods) to maximize her revenue from selling
these goods. The second decision maker, called follower in what follows, then
decides on purchasing the goods of the leader to generate some utility.

Thus, the leader’s decision depends on the optimal reaction of the follower
and the decision of the follower, of course, depends on the (pricing) decisions
of the leader.

Example 1.2 (Toll Setting). Imagine a transportation network, e.g., the
German highway network, via which a set of drivers want to reach their
destination, starting from their origin. Usually, the objective of these travelers
is to travel from their origin to their destination at minimum costs. In this
situation, costs can, e.g., be travel time, toll costs, or a combination of both.

On the other hand, there usually is a toll setting agency, which decides
on the tolls imposed on certain parts of the highway system. This toll setting
agency wants to maximize the revenues based on the tolls and the travelers,
afterward, minimize their traveling costs. The toll setting agency is the leader
and the travelers are the followers in this setting. Again, the leader anticipates
the optimal reaction of the followers, whereas the followers’ decisions obviously
depend on the decision of the leader. Whereas we only had one follower in
the pricing example, we now have multiple followers. The former is called a
single-leader single-follower problem, whereas the latter is called a single-leader
multi-follower problem.

Exercise 1.1. Consider the transportation network given by the directed graph in
Figure 1.1. Here, te and γe denote the toll spent and the time needed to travel along
edge e ∈ E = {a, b, c, d}, respectively. A toll setting agency wants to maximize revenues
based on tolls, while a traveler wants to travel from the origin O to the destination D
at minimum cost. In this example, route costs are the sum of the travel times and the
tolls imposed.
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The pink solution is worse for the toll setting agency as well as for the traveler, i.e.,
for the leader and for the follower: The leader earns less and the follower has larger
route costs compared to the “better” green solution. Does this always need to be the
case—or are there settings in which a solution is better for the leader but worse for the
follower (or vice versa)?

Example 1.3 (Energy Markets). Another very rich class of applications for
bilevel optimization is the energy sector—especially the sub-field of energy
market modeling. In many countries of the world, e.g., in Germany, electricity
is traded via auctions at an energy exchange.1 The rules that determine how
this auction is organized is typically decided on by the state government or
some regulatory authority. The aim of these rules are usually to obtain market
outcomes that are optimal in terms of social welfare; see, e.g., Mas-Colell et al.
(1995) for some economic background. Depending on these rules, producers
and consumers trade electricity at the exchange.

As before, the decision of the leader—here, the regulatory authority—
depends on the anticipation of the followers’ decisions—here, the decisions of
the firms trading on the market. Moreover, the firms’ decisions depend on
the market regime, i.e., on the decision of the leader.

Example 1.4 (Critical Infrastructure Defense). Bilevel optimization is also
of great importance for critical infrastructure defense. Imagine a set of
important buildings such as airports, central stations, market squares, etc.
that might be potential targets of attacks by terrorists. This infrastructure
needs to be protected by, e.g., police officers. However, there are not enough
officers so that every building can be protected. Terrorists then decide to
attack one or some of these locations based on their expectation on which
buildings are protected and which are not. Assuming some utility function2

for both the police (also called defenders in this setting) and the terrorists
(also called attackers in this setting), the police (as the leader) assigns officers
to certain buildings in order to achieve the worst outcome for the terrorists
(acting as followers).

Example 1.5 (Interdiction Problems). In discrete bilevel optimization, maybe
the most heavily studied problem is the interdiction problem. Here, the leader
is a defender that interdicts certain resources of the follower so that they
cannot be used anymore by the follower. Many of these problems are defined
on graphs. For instance, the follower might want to find a shortest path in a
graph from an origin to a destination. The leader, acting as the interdictor,
can interdict some of the arcs in the graph so that they cannot be part of
a feasible path of the follower anymore. The number of interdicted arcs is
further constrained by an interdiction budget of the leader.

1See, e.g., https://www.eex.com/en/ for the European Energy Exchange in Leipzig,
Germany.

2. . . although this might sound cynical.

https://www.eex.com/en/
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The broad range of examples from security, counter-terrorism, drug smug-
gling, energy markets, revenue management, and transport makes it obvious
that it is important to formally model, analyze, and solve the respective
mathematical models.

1.2 A Bit More Formal, Please

Since we are now convinced that it makes sense to study hierarchical op-
timization problems because they often appear in practice, let us formally
define them now.

Definition 1.6 (Bilevel Optimization Problem). A bilevel optimization prob-
lem reads

min
x∈X,y

F (x, y) (1.1a)

s.t. G(x, y) ≥ 0, (1.1b)
y ∈ S(x), (1.1c)

where S(x) is the set of optimal solutions of the x-parameterized problem

min
y∈Y

f(x, y) (1.2a)

s.t. g(x, y) ≥ 0. (1.2b)

Problem (1.1) is the so-called upper-level (or the leader’s) problem and
Problem (1.2) is the so-called lower-level (or the follower’s) problem, which
is parameterized by the leader’s decision x. Moreover, the variables x ∈ Rnx

are the upper-level variables (or leader’s decisions) and y ∈ Rny are lower-
level variables (or follower’s decisions). The objective functions are given by
F, f : Rnx × Rny → R, and the constraint functions by G : Rnx × Rny → Rm
as well as g : Rnx × Rny → R`. We restrict ourselves here to inequality
constraints just for the ease of presentation. Equality constraints can be
added, of course, as well. The sets X ⊆ Rnx and Y ⊆ Rny are typically used
to denote integrality constraints. For instance, Y = Zny makes the lower-level
problem an integer program. In what follows, we call upper-level constraints
Gi(x, y) ≥ 0, i ∈ {1, . . . ,m}, coupling constraints if they explicitly depend
on the lower-level variable vector y. Moreover, all upper-level variables that
appear in the lower-level constraints are called linking variables. The set S(x)
is also called rational reaction set of the follower.

We use the nomenclature that the bilevel problem (1.1) is called an “UL-
LL problem” where UL and LL can be LP, QP, MILP, MIQP, etc. if the
upper-/lower-level problem is a linear, a quadratic, a mixed-integer linear, a
mixed-integer quadratic, etc. program in both the variables of the leader and
the follower. If the concrete specification of both levels is not required, we
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also use a shorter nomenclature and say, e.g., that the problem is a bilevel
LP, if both levels are LPs.

Instead of using the point-to-set mapping S one can also use the so-called
optimal-value function

ϕ(x) := min
y∈Y
{f(x, y) : g(x, y) ≥ 0} (1.3)

and re-write Problem (1.1) as

min
x∈X,y∈Y

F (x, y) (1.4a)

s.t. G(x, y) ≥ 0, g(x, y) ≥ 0, (1.4b)
f(x, y) ≤ ϕ(x), (1.4c)

to which we will refer to as the optimal-value-function or value-function
reformulation.

Definition 1.7 (Shared Constraint Set). The set

Ω := {(x, y) ∈ X × Y : G(x, y) ≥ 0, g(x, y) ≥ 0}

is called the shared constraint set. Its projection onto the x-space is denoted by

Ωx := {x : ∃y with (x, y) ∈ Ω} .

Definition 1.8 (Bilevel Feasible Set; Inducible Region). The set

F := {(x, y) : (x, y) ∈ Ω, y ∈ S(x)}

is called the bilevel feasible set or inducible region.

Exercise 1.2. Consider the linear bilevel problem

min
x,y

x+ y

s.t. − x− 2y ≥ −10,

2x− y ≥ 0,

− x+ 2y ≥ 0,

x ≥ 0,

y ∈ arg min
ȳ

{ȳ : x+ ȳ ≥ 3} .

(1.5)

(i) Plot the linear inequalities in a coordinate system.

(ii) Determine the bilevel feasible set of Problem (1.5).

(iii) Reformulate Problem (1.5) into a single-level problem using the optimal-value
function.

(iv) Determine the optimal solution of the value-function reformulation in which the
lower-level constraint x+ y ≥ 3 is omitted.
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Definition 1.9 (High-Point Relaxation). The problem of minimizing the
upper-level objective function over the shared constraint set, i.e.,

min
x,y

F (x, y)

s.t. (x, y) ∈ Ω,

is called the high-point relaxation (HPR) of Problem (1.1).

Note that the high-point relaxation is identical to the original bilevel
problem (1.1) except for the constraint y ∈ S(x), i.e., except for the lower-level
optimality. Thus, it is obviously a relaxation of (1.1).

Next, we recap some of the previously discussed examples and formally
state the corresponding bilevel problems.

Example 1.10 (The Pricing Example Revisited). A first bilevel pricing
problem with linear constraints and bilinear upper- and lower-level objectives
has been proposed by Bialas and Karwan (1984). The following problem
considered in Labbé et al. (1998) provides a general framework for such
pricing problems:3

max
x,y=(y1,y2)

x>y1 (1.6a)

s.t. Ax ≤ a, (1.6b)

y ∈ arg min
ȳ

{
(x+ d1)>ȳ1 + d>2 ȳ2 : D1ȳ1 +D2ȳ2 ≥ b

}
. (1.6c)

The vector y of lower-level variables is partitioned into two sub-vectors y1

and y2, called plans, that specify the levels of some activities such as purchasing
goods or services. The upper-level player influences the activities from plan y1

through the price vector x that is additionally imposed onto y1. By doing
so, the goal of the leader is to maximize her revenue given by x>y1. The
price vector x is subject to linear constraints that may, among others, impose
lower and upper bounds on the prices. The vectors d1 and d2 represent linear
disutilities faced by the lower-level player when executing the activity plans y1

as well as y2. Note that d2 may also encompass the price for executing the
activities not influenced by the upper-level player. These activities may, e.g.,
be substitutes offered by competitors of the leader for which prices are known
and fixed. The lower-level player determines his activity plans y1 and y2 to
minimize the sum of total disutility and the price paid for plan y1 subject to
linear constraints. Remark that if the model allows negative prices then it
implicitly permits subsidies, which may be appropriate, e.g., in the context of
a central agency determining taxes. In order to avoid the situation in which

3You see that we are a bit sloppy when it comes to transposition of vectors. Formally,
we should write y = (y>1 , y

>
2 )>, which is a bit cumbersome. Hence, we just use y = (y1, y2)

in what follows for the ease of better reading.
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the leader would maximize her profit by setting prices to infinity for these
activities y1 that are essential, one may assume that the set {y2 : D2y2 ≥ b}
is non-empty. Indeed, in this case, there exists a feasible point for the lower
level that does not use any activity influenced by the upper-level player.

Example 1.11 (Bilevel Knapsack Interdiction). In the following, we con-
sider the bilevel knapsack interdiction problem that has been investigated
by Caprara et al. (2016). In this setting, the leader and the follower own
a private knapsack which is filled with items from a common set of items
[n] := {1, . . . , n}. For each item i ∈ [n], we denote pi as the corresponding
profit and with vi and wi, we associate the item’s weights for the leader and
the follower, respectively. The leader’s aim is to minimize the follower’s
maximum profit by prohibiting the usage of certain items by the follower. For
this purpose, the leader first selects a subset of items respecting her so-called
interdiction budget B. Then, the follower can choose from the remaining
items maximizing his profit considering the knapsack capacity C. The bilevel
knapsack interdiction problem is formally stated as

min
x

p>y (1.7a)

s.t. v>x ≤ B, (1.7b)
x ∈ {0, 1}n, (1.7c)

y ∈ arg max
ȳ

{
p>ȳ : ȳ ∈ Y (x)

}
(1.7d)

with B,C ∈ R, and p, v, w ∈ Rn. Here,

Y (x) = {y ∈ {0, 1}n : w>y ≤ C, yi ≤ 1− xi, i ∈ [n]}

denotes the set of feasible decisions of the follower, which is parameterized
by the leader’s decision x. In Problem (1.7), both players consider the same
objective function that is optimized in opposite directions. We call such
problems min-max-problems.

Example 1.12 (An Academic Example; see Kleinert (2021)). We now
consider the bilevel problem

min
x,y

F (x, y) = x+ 6y (1.8a)

s.t. − x+ 5y ≤ 12.5, (1.8b)
x ≥ 0, (1.8c)
y ∈ S(x), (1.8d)



Chapter 1. Introduction 17

x

y

1 2 3 4 5 6

1

2

3

4

f

F

( 3
7
, 6
7
) (3, 0)

Figure 1.2: The shared constrained set (gray area), the nonconvex set of
optimal follower solutions (green and red lines) lifted to the x-y-space, and
the nonconvex and disconnected bilevel feasible set (green lines) of the bilevel
problem (1.8) and (1.9).

where the lower-level optimal solutions S(x) are given by the linear problem

min
y

f(x, y) = −y (1.9a)

s.t. 2x− y ≥ 0, (1.9b)
− x− y ≥ −6, (1.9c)
− x+ 6y ≥ −3, (1.9d)
x+ 3y ≥ 3. (1.9e)

Both levels are linear optimization problems and all variables are continuous.
Thus, we consider an LP-LP bilevel problem, which is the easiest class of bilevel
models. The problem of this example is illustrated in Figure 1.2. The figure
reveals several interesting and important obstacles of bilevel optimization:

(a) The feasible region of the follower problem corresponds to the gray
area. Thus, the follower problem—and therefore the bilevel problem—is
infeasible for certain decisions of the leader, e.g., x = 0.

(b) The set {(x, y) : x ∈ Ωx, y ∈ S(x)} denotes the optimal follower solu-
tions lifted to the x-y-space and is given by the green and red facets.
Obviously, this set is nonconvex.

(c) The single leader constraint indicated by the dashed line renders certain
optimal responses of the follower infeasible. Thus, the bilevel feasible
region F corresponds to the green facets. Consequently, the feasible set
of Problem (1.8) is not only nonconvex but also disconnected.
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(d) The optimal solution of Problem (1.8) is (3/7, 6/7) with objective func-
tion value 39/7. In contrast, ignoring the follower’s objective, i.e.,
solving the high-point relaxation, yields the optimal solution (3, 0) with
objective function value 3. Note that the latter point is not bilevel
feasible.

This example shows that bilevel optimization problems are inherently difficult
to solve since even their easiest instantiation are nonconvex optimization
problems.

Before we really start to analyze bilevel problems in detail, let us mention
some other general literature, where you can find additional (and also much
more detailed) information. First, we refer to the survey articles by Colson
et al. (2005, 2007) and Kleinert, Labbé, Ljubić, et al. (2021) and the books by
Bard (1998), Dempe (2002), and Dempe, Kalashnikov, et al. (2015). Other
very early survey articles include Anandalingam and Friesz (1992), Ben-Ayed
(1993), Kolstad (1985), and Vicente and Calamai (1994) as well as Wen
and Hsu (1991) regarding the field of linear bilevel optimization. Last but
not least, Dempe (2020) contains, to the best of our knowledge, the largest
annotated list of references in the field of bilevel optimization.

Remark 1.13. For modeling practically relevant applications, one is, of
course, not restricted to use “only” two levels like we do here in bilevel opti-
mization. If the optimization problem has constraints that again contain an
optimization problem that has constraints, which again contain an optimiza-
tion problem . . . and so on, the problem is called a multilevel optimization
problem. You might imagine that three or four levels do not make the problem
easier to analyze and solve—especially since we already saw that even bilevel
problems are extremely challenging in their easiest instantiation. Nevertheless,
multilevel optimization is often required to model real-world situations; see,
e.g., Ambrosius et al. (2020), Grimm, Kleinert, et al. (2019), Grimm, Martin,
et al. (2016), Grimm, Schewe, et al. (2019), Kleinert and Schmidt (2019),
and Schewe et al. (2022).

Exercise 1.3 (See Dempe, Kalashnikov, et al. (2015)). A research team wants to
optimize the production of chemical substances. The aim is to produce m ∈ N
substances as a result of chemical reactions in a reactor. The reactor is operated at a
certain temperature T and a certain pressure p. There are n ∈ N different reactants,
which can be added to the reactor to produce the desired substances. If there are no
net changes in the amount of reactants and products, the reaction is said to be in a
chemical equilibrium. In this state, the function

f(y, p, T ) =

m∑
i=1

ci(p, T )yi +

k∑
i=1

yi ln
yi∑m
j=1 yj

takes its minimal value. Here, we denote yi as the mass and ci(p, T ) as the chemical
potential of substance i ∈ {1, . . . ,m}. Moreover, k ≤ m denotes the number of
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gaseous substances. In particular, the chemical equilibrium is uniquely determined by
temperature, pressure, and the composition of the reactants. Further, the following
chemical laws apply:

• Law of Constant Composition: A chemical compound always contains the same
elements in the same mass proportion. Here, the mass proportions in the resulting
substances are given by a matrix A of appropriate dimension. Each row of A
corresponds to a chemical element and each column gives the amount of the
different elements in the substances. In the same manner, the matrix B gives the
mass proportions corresponding to the reactants.

• Principle of Mass Conservation: In chemical reactions, mass is neither created
nor destroyed. Thus, the sum of the masses of the reactants must equal the
sum of the masses of the products, i.e., Ay = Bx. Here, x denotes the vector
containing the masses of the reactants.

It is assumed that the mass of all substances is nonnegative. Furthermore, there are
physical restrictions regarding the pressure and the temperature in the reactor as well as
the amount of available reactants, i.e., (p, T, x) ∈ X for a properly chosen set X. The
goal of the research team is to minimize the linear expression d>y. The vector d ∈ Rm
captures the aim to compose a mixture of reactants such that the amount of the desired
substances is as large as possible, while the amount of (toxic) by-products is as small as
possible.

(i) Formulate a bilevel problem that models the optimal chemical equilibrium.

(ii) Who acts as the leader and “who” acts as the follower?

(iii) Are there linking variables and/or coupling constraints?

Exercise 1.4. Prof. Jones is a collector of rare artifacts. He recently returned from an
adventure in South America from which he also brought some valuable treasures. Alice
and Bob, a famous robber couple, thus plan their next raid on Prof. Jones. Alice is the
mastermind of the duo and came across some inside knowledge about the number n ∈ N,
the values v ∈ Rn, and the weights w ∈ Rn of the artifacts in Prof. Jones’ possession
as well as the security measures at his mansion. The property is heavily protected but
Bob, the henchman of the duo, can access the building by climbing through a bathroom
window on the second floor. For climbing, Bob needs to have his hands free. Therefore,
he will carry the stolen items in a backpack. Alice’s task is to buy a backpack of
appropriate size b ∈ R that Bob will use in the raid. The backpack should not be too
big and not too small, i.e., bl ≤ b ≤ bu with 0 ≤ bl ≤ bu ∈ R. The costs c ∈ R for the
backpack are assumed to be proportional to its size. Bob cannot split any items, he can
either take item i ∈ {1, . . . , n} or leave it, i.e., xi = 1 or xi = 0. Moreover, Bob can
only take a subset of items such that the capacity of the backpack is not exceeded, i.e.,
w>x ≤ b. The aim of the robber duo is to maximize their profits, which is the difference
between the value of the stolen items v>x and the costs for buying the backpack cb.

(i) Formulate a bilevel problem that models the optimal raid strategy.

(ii) Who acts as the leader and who acts as the follower?

(iii) Are there linking variables and/or coupling constraints?

(iv) Unfortunately, the raid on Prof. Jones went horribly wrong. Bob got caught by
the police and he had to spend four years in prison. After his release, Bob still
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holds a grudge against Alice since she got away with impunity. Therefore, they
no longer work together but do solo robberies instead. During his time in prison,
fellow criminals helped Bob to work on his robbery skills, which now gives him
an advantage over Alice. This means that he will always be first to arrive at a
new potential robbery target. Unlike Alice, Bob is not interested in the value of
his stolen items. His aim is to leave the items for Alice to steal that yield the
worst possible outcome for her. Alice and Bob own a backpack of size bA and
bB , respectively, which they use for their raids.
What needs to be adapted in the previous modeling to account for the change of
circumstances?

Exercise 1.5 (See Dempe, Kalashnikov, et al. (2015)). Consider a simplified energy
network that is given by a directed graph G = (V,E). At each node v ∈ V , exactly
one producer and exactly one consumer is located. The edges e ∈ E denote the
electricity lines in the network. The demands dv as well as the real costs Avqv +Bvq

2
v

for producing qv ≥ 0 units of electricity are known for all v ∈ V . The flow fe along
the electricity lines e ∈ E is nonnegative and each line has a maximal transmission
capacity ce ≥ 0. Thus, 0 ≤ fe ≤ ce has to hold for all electricity lines e ∈ E. It is
assumed that there are no transmission losses when electricity is transported in the
energy network. The network is regulated by an Independent System Operator (ISO)
who is responsible for the trade and transport of electricity. Each producer bids the
costs avqv + bvq

2
v for producing qv units of electricity in an auction organized by the

ISO. The ISO ensures that the demand of each consumer is satisfied, i.e.,

qv −
∑

e∈δout(v)

fe +
∑

e∈δin(v)

fe ≥ dv

holds for all v ∈ V . Here, δin(v) denotes the incoming and δout(v) denotes the outgoing
electricity lines at node v ∈ V . The ISO distributes the units of electricity to be
produced among the producers such that the demand is satisfied at the lowest costs.
The producers aim to maximize their profits for the produced quantities of electricity,
which is the difference between the supply bids and the real costs. Further, the bids
need to meet certain requirements, i.e., Av ≤ av ≤ Āv as well as Bv ≤ bv ≤ B̄v have
to hold for all v ∈ V .

(i) Formulate a bilevel problem that models this simplified energy market.

(ii) Who acts as the leader and who acts as the follower? Do you notice anything
special regarding the number of players involved?

(iii) Are there linking variables and/or coupling constraints?

Exercise 1.6. Consider the linear bilevel problem

min
x,y

− x− 2y

s.t. x+ 4y ≥ 12,

x ≥ 0,

y ∈ arg min
ȳ

{ȳ : x+ ȳ ≥ 5, −x− ȳ ≥ −10, −x+ 4ȳ ≥ 0} .

(1.10)

(i) Plot the linear inequalities in a coordinate system.
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(ii) What is the shared constraint set Ω? Determine its projection onto the x-space Ωx.

(iii) Determine the solution of the high-point relaxation (HPR) of Problem (1.10).

(iv) Suppose that the leader sticks with the solution found in (iii). What would be
the optimal response of the follower?

(v) Determine the bilevel feasible set of Problem (1.10). What are its properties?

(vi) Determine the optimal solution of Problem (1.10).

Exercise 1.7. Consider the linear bilevel problem

min
x,y

− x+ y

s.t. 0 ≤ x ≤ 8,

y ∈ arg min
ȳ

{dȳ : x− 3ȳ ≥ −12, −x− ȳ ≥ −8} .
(1.11)

For which choices of d ∈ R is Problem (1.11) infeasible, unbounded, or solvable? What
can you say about the high-point relaxation (HPR) regarding infeasibility, unboundedness,
or solvability?

Exercise 1.8. Consider the linear bilevel problem

min
x,y

x− 2y

s.t. x+ 2y ≥ 12,

− x+ 2y ≥ −2,

y ∈ arg min
ȳ

{ȳ : x− ȳ ≥ −3, −2x− ȳ ≥ −24, ȳ ≥ 0} .

(1.12)

(i) Plot the linear inequalities in a coordinate system.

(ii) What is the shared constraint set Ω? Determine its projection onto the x-space Ωx.

(iii) Reformulate Problem (1.12) into a single-level problem using the optimal-value
function.

(iv) Determine the solution of the high-point relaxation (HPR) of Problem (1.12).

(v) What is the set of optimal follower solutions projected onto the x-y-space?

(vi) Determine the bilevel feasible set. Can you say something about the solvability
of Problem (1.12)?

(vii) What changes if we move the coupling constraints to the lower level?

1.3 A Brief History of Bilevel Optimization

Bilevel optimization dates back to the seminal publications on leader-follower
games by von Stackelberg (1934, 1952). The formulation introduced in the last
section was first used in Bracken and McGill (1973) in the context of a military
application regarding the cost-minimal mix of weapons. Another very early
discussion of multilevel, or, in particular, two-level problems can be found in
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Candler and Norton (1977). Candler and Norton (1977) recognized already in
the early days of bilevel optimization that such problems are very challenging
to solve. More precisely, the authors noticed that even in the “simplest case”
of continuous variables and linear objective functions and constraints, the
feasible set of bilevel problems may be nonconvex and disconnected. In fact,
formal complexity results, which were derived much later, state that even this
“easiest” class of linear bilevel problems is already strongly NP-hard. Candler
and Norton (1977) also proposed an enumerative algorithm for linear bilevel
problems similar to the simplex method, but they had “no doubt others could
develop more efficient algorithms”. After Bialas and Karwan (1978) proposed
the so-called kth-best algorithm—another enumerative and simplex-inspired
method—Fortuny-Amat and McCarl (1981) introduced a game-changing
approach for convex-quadratic bilevel problems in 1981. They replaced the
follower problem by its necessary and sufficient Karush–Kuhn–Tucker (KKT)
conditions to derive an equivalent single-level problem that can be further
reformulated and tackled by standard mixed-integer solvers. We will discuss
this approach in detail in Chapter 4. Bard and Moore (1990), Bard (1988),
Edmunds and Bard (1991), and Hansen et al. (1992) picked up the idea later
and this approach is still standard for solving bilevel problems with convex
follower problems today. Alternative approaches, e.g., penalty methods or
descent approaches, have been proposed by Anandalingam and White (1990)
as well as by Savard and Gauvin (1994). In the 1990s, the largest instances
of linear bilevel problems that have been solved consisted of 250 leader
variables, 150 follower variables, and 150 follower constraints; see Hansen
et al. (1992). Although cutting planes were derived in the following years, see
Audet, Haddad, et al. (2007) and Audet, Savard, et al. (2007), computational
linear and convex bilevel optimization did not attract much attention in the
2000s and not many computational results have been reported. Moore and
Bard (1990) developed a branch-and-bound approach for bilevel problems
with mixed-integer follower problems and also reported some first numerical
results already in 1990. However, only very little computational progress has
been reported until DeNegre and Ralphs (2009) introduced a branch-and-cut
approach for purely integer bilevel problems in 2009. In our opinion, this work
can be considered a tipping point for computational bilevel optimization and
many computationally oriented works for various classes of bilevel problems
appeared in the last ten years.

Exercise 1.9. Read the early publications by von Stackelberg (1934, 1952), Bracken
and McGill (1973), as well as Candler and Norton (1977). If you have time and find
this interesting, read Fortuny-Amat and McCarl (1981) as well; we will come back to
their paper in this lecture anyway.



2
Mathematical Background

In this section, we briefly review the basics of linear and nonlinear optimization
that we will later need during our studies of bilevel optimization problems.
For both types of problems, we mainly discuss the corresponding duality
theorems as well as the classic necessary (and sometimes also sufficient)
first-order optimality conditions. All theoretical results in this chapter are
given without proofs but we refer to seminal textbooks in which these can be
found.

2.1 Linear Optimization

We consider linear optimization problems of the form

min
x∈Rn

c>x (2.1a)

s.t. Ax = b, (2.1b)
x ≥ 0, (2.1c)

where c ∈ Rn, b ∈ Rm, and A ∈ Rm×n. This is the so-called standard form
of a linear optimization problem (LP). It can be shown that every linear
optimization problem can be written in this way by introducing suitable
variable splittings and/or slack variables.

As usual, we call a vector x ∈ Rn feasible if it satisfies the constraints,
i.e., if Ax = b and x ≥ 0 holds. Moreover, we call the problem bounded if
there exists a constant C ∈ R with

c>x ≥ C for all feasible x.

For linear optimization problems, we have the following nice existence result.

Theorem 2.1. The linear optimization problem (2.1) is either infeasible,
unbounded, or solvable.

23
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Exercise 2.1. Just as a refresher: Prove Theorem 2.1.

The dual problem of the linear optimization problem (2.1) is the linear
problem

max
λ∈Rm

b>λ (2.2a)

s.t. A>λ ≤ c. (2.2b)

Here and in what follows, we will use Latin letters for primal variables and
Greek letters for dual variables.

In bilevel optimization, we often make use of optimality conditions to
replace optimization problems with these conditions. For linear optimization
problems, these conditions are usually given by the strong duality theorem.
However, we first state the weak duality theorem.

Theorem 2.2. Let x ∈ Rn be a feasible point of the primal problem (2.1)
and let λ ∈ Rm be a feasible point of the dual problem (2.2). Then,

b>λ ≤ c>x (2.3)

holds.

Exercise 2.2. Another refresher: Prove Theorem 2.2.

Next, we state the strong duality theorem.

Theorem 2.3. Consider the pair (2.1) and (2.2) of primal and dual LPs.
Then, the following statements are equivalent:

(a) The problems (2.1) and (2.2) both are feasible.

(b) The problems (2.1) and (2.2) both have optimal solutions x∗ ∈ Rn and
λ∗ ∈ Rm and

c>x∗ = b>λ∗ (2.4)

holds.

(c) The problems (2.1) and (2.2) both have a finite optimal objective value.

Finally, we also state the complementarity slackness theorem.

Theorem 2.4. Consider the pair (2.1) and (2.2) of primal and dual LPs.
Moreover, let x̄ ∈ Rn be feasible for (2.1) and let λ̄ ∈ Rm be feasible for (2.2).
Then, the following statements are equivalent:

(a) x̄ ∈ Rn is optimal for (2.1) and λ̄ ∈ Rm is optimal for (2.2).

(b) It holds
(c−A>λ̄)>x̄ = 0.
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(c) For all components x̄j of the primal solution, it holds

x̄j > 0 =⇒ A>·j λ̄ = cj ,

i.e., if the primal variable has slack (x̄j > 0), the corresponding jth
dual inequality is active.

Here and in what follows, M·j represents the jth column of the matrix M
and Mi· represents its ith row.

For later reference, we also state the next two corollaries, which we
will often use to tackle bilevel optimization problems with linear lower-level
problems.

Corollary 2.5. The primal optimization problem (2.1) is equivalent to the
system

Ax = b, (2.5a)
x ≥ 0, (2.5b)

A>λ ≤ c, (2.5c)

b>λ ≥ c>x. (2.5d)

Here, “equivalent” means the following: Whenever x is an optimal solution of
the LP (2.1), then there exists a dual vector λ so that (x, λ) satisfy (2.5) and
whenever there exists (x, λ) that satisfy (2.5), then x is an optimal solution
of (2.1).

Proof. The claim follows directly from the strong duality theorem.

Corollary 2.6. The primal optimization problem (2.1) is equivalent to the
system

Ax = b, (2.6a)
x ≥ 0, (2.6b)

c−A>λ ≥ 0, (2.6c)

xi(c−A>λ)i = 0, i ∈ {1, . . . , n}. (2.6d)

Here, “equivalent” means the following: Whenever x is an optimal solution of
the LP (2.1), then there exists a dual vector λ so that (x, λ) satisfy (2.6) and
whenever there exists (x, λ) that satisfy (2.6), then x is an optimal solution
of (2.1).

Proof. The claim follows directly from the complementarity slackness theorem.
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Exercise 2.3. Consider the linear bilevel problem

min
x,y

c>x+ d>y

s.t. Ax+By ≥ a,
Cx+Dy = b,

x ≥ 0,

(P)

with x, c ∈ Rnx , y, d ∈ Rny , A ∈ Rm×nx , B ∈ Rm×ny , a ∈ Rm, C ∈ R`×nx ,
D ∈ R`×ny , and b ∈ R`. State the dual problem of (P).

2.2 Nonlinear Optimization

In this section, we consider the situation in which some of the constraints or
the objective function can be nonlinear. The general form of such a nonlinear
optimization problem (NLP) reads

min
x∈Rn

f(x) (2.7a)

s.t. gi(x) ≥ 0, i ∈ I = {1, . . . ,m}, (2.7b)
hj(x) = 0, j ∈ J = {1, . . . , p}. (2.7c)

We assume that the objective function f : Rn → R as well as the constraint
functions gi : Rn → R, i ∈ I, and hj : Rn → R, j ∈ J , are continuously
differentiable. The feasible set is denoted by F .

Definition 2.7 (Local Minimizer). A point x∗ ∈ Rn is called a local min-
imizer of Problem (2.7) if x∗ is feasible and if an ε > 0 exists such that
f(x) ≥ f(x∗) for all x ∈ F ∩Bε(x∗).

Here and in what follows, we denote by

Bε(x
∗) := {x ∈ Rn : ‖x− x∗‖ < ε}

the open ε-ball at x∗ and ‖x‖ =
√
x>x denotes the Euclidean norm in Rn.

Definition 2.8 (Strict Local Minimizer). A point x∗ ∈ Rn is called a strict
local minimizer of Problem (2.7) if x∗ is feasible and if an ε > 0 exists such
that f(x) > f(x∗) for all x ∈ (F ∩Bε(x∗)) \ {x∗}.

Besides local minimizers we will also consider global minimizers.

Definition 2.9 ((Strict) Global Minimizers). A point x∗ ∈ Rn is called a
global minimizer of Problem (2.7) if x∗ is feasible and if f(x) ≥ f(x∗) holds
for all x ∈ F . The point is called a strict global minimizer if f(x) > f(x∗)
holds for all x ∈ F \ {x∗}.
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Naturally, the question arises under which assumptions a (global) mini-
mum of a nonlinear optimization problem exists. The answer is given by the
very classic theorem of Weierstraß.

Theorem 2.10 (Theorem of Weierstraß). Suppose that the set F is non-
empty and compact and that the function f : F → R is continuous. Then, f
has at least one global minimizer and at least one global maximizer on F .

Our goal now is to state the first-order optimality conditions of Prob-
lem (2.7), i.e., the Karush–Kuhn–Tucker (KKT) conditions. To this end, we
need some more notation.

Definition 2.11 (Active Inequality Constraints). Let x ∈ F be a feasible
point of Problem (2.7). Then, the set

I(x) := {i ∈ I : gi(x) = 0}

is called the set of active inequality constraints at the point x.

Definition 2.12 (Abadie Constraint Qualification). We say that a feasible
point x ∈ F of Problem (2.7) satisfies the Abadie constraint qualification
(ACQ) if TX(x) = Tlin(x) holds.

In the last definition, we used the two cones TX(x), i.e., the tangential
cone of X at x, and Tlin(x), i.e., the linearized tangential cone of X at x. We
will not discuss the details here. They can be found in every textbook on
nonlinear optimization and are also a core topic of my lecture on “Nonlinear
Optimization”.

Definition 2.13 (Lagrangian Function). The function

L(x, λ, µ) := f(x)−
m∑
i=1

λigi(x)−
p∑
j=1

µjhj(x)

is called Lagrangian function of Problem (2.7).

Using the Lagrangian function we can now define the Karush–Kuhn–
Tucker (KKT) conditions.

Definition 2.14 (KKT Conditions, KKT Point, Lagrangian Multipliers). We
consider Problem (2.7) with continuously differentiable functions f, g, and h.1

(a) The conditions

∇xL(x, λ, µ) = 0, (2.8a)
h(x) = 0, (2.8b)

λ ≥ 0, g(x) ≥ 0, λ>g(x) = 0 (2.8c)

1A quantity without the index usually stands for the vector; e.g., h(x) = (hj(x))j=1,...,p.
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are called Karush–Kuhn–Tucker (or KKT) conditions of Problem (2.7).
Here and in what follows,

∇xL(x, λ, µ) = ∇f(x)−
m∑
i=1

λi∇gi(x)−
p∑
j=1

µj∇hj(x)

is the gradient of the Lagrangian function with respect to the variables x.

(b) Every vector ((x∗)>, (λ∗)>, (µ∗)>)> ∈ Rn × Rm × Rp that satisfies
the KKT conditions is called a KKT point of Problem (2.7). The
components of λ∗ and µ∗ are called Lagrangian multipliers.

With these definitions, we can now state the famous KKT theorem under
the ACQ.

Theorem 2.15 (KKT Theorem under the Abadie CQ). Let x∗ ∈ Rn be a
local minimizer of Problem (2.7). Moreover, suppose that the Abadie CQ
holds at x∗. Then, there exist Lagrangian multipliers λ∗ ∈ Rm and µ∗ ∈ Rp
so that ((x∗)>, (λ∗)>, (µ∗)>)> is a KKT point of Problem (2.7).2

The KKT theorem also holds under other constraint qualifications that
are stronger than the ACQ, where “stronger” means that the other constraint
qualification implies the ACQ. One very prominent example is the LICQ.

Definition 2.16 (Linear Independence Constraint Qualification). Let x ∈ Rn
be a feasible point of Problem (2.7) and let I(x) be the set of active inequality
constraints at x. We say that the linear independence constraint qualification
(LICQ)is satisfied in x if the gradients

∇gi(x) for all i ∈ I(x),

∇hj(x) for all j = 1, . . . , p

are linearly independent.

Thus, the following theorem holds because the LICQ implies the ACQ.

Theorem 2.17 (KKT Theorem under the LICQ). Let x∗ ∈ Rn be a local
minimizer of Problem (2.7) that satisfies the LICQ. Then, there exist La-
grangian multipliers λ∗ ∈ Rm and µ∗ ∈ Rp so that (x∗, λ∗, µ∗) is a KKT point
of Problem (2.7).

2As before, for the ease of presentation, we omit the many transpositions in
((x∗)>, (λ∗)>, (µ∗)>)> from now on and simply write (x∗, λ∗, µ∗) instead.
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2.3 Convex Optimization

We now consider convex optimization problems. The most important property
of convex optimization problems is that local and global optima coincide.

Theorem 2.18. Let f : F → R be a convex function defined on a convex
set F ⊆ Rn. Then, the following statements are true.

(a) Every local minimizer of f on F is also a global minimizer of f on F .

(b) If f is strictly convex, then f has at most one local minimizer on F
and this local minimizer (if it exists) then also is the unique strict global
minimizer of f on F .

(c) Let F be open, f be continuously differentiable on F , and suppose that
x∗ ∈ F is a stationary point of f .3 Then, x∗ is a global minimizer of f
on F .

Exercise 2.4. Prove Theorem 2.18.

Exercise 2.5. Regarding Claim (b) of Theorem 2.18: Can you construct an optimization
problem with f being strictly convex and F being convex for which no minimizer exists.

In the remainder of this section, we now study the meaning of the KKT
conditions for convex optimization problems. To this end, we consider the
problem

min
x∈Rn

f(x) (2.9a)

s.t. gi(x) ≥ 0, i = 1, . . . ,m, (2.9b)

b>j x = βj , j = 1, . . . , p, (2.9c)

where f : Rn → R and gi : Rn → R, i = 1, . . . ,m, are continuously
differentiable, bj ∈ Rn, j = 1, . . . , p, are vectors and βj ∈ R, j = 1, . . . , p, are
scalars. Moreover, f is supposed to be convex and the gi, i = 1, . . . ,m, are
supposed to be concave. Thus, we consider a convex objective function over
a convex feasible set.

Definition 2.19 (Slater’s Constraint Qualification). We say that the convex
problem (2.9) satisfies the constraint qualification of Slater if there exists a
vector x̂ ∈ Rn so that

gi(x̂) > 0 for all i = 1, . . . ,m,

b>j x̂ = βj for all j = 1, . . . , p

holds. This means that x̂ is strictly feasible w.r.t. the inequality constraints
and feasible w.r.t. the equality constraints.

3A point x is called a stationary point of f if ∇f(x) = 0 holds.
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Note that a convex problem that satisfies Slater’s CQ possess a non-empty
interior of the feasible set defined by the inequality constraints.

Theorem 2.20 (KKT Theorem for Convex Problems under Slater’s CQ).
Let x∗ ∈ Rn be a local (and thus global) minimizer of the convex problem (2.9).
Moreover, suppose that Slater’s CQ is satisfied. Then, there exist Lagrangian
multipliers λ∗ ∈ Rm and µ∗ ∈ Rp so that (x∗, λ∗, µ∗) satisfies the KKT
conditions

∇f(x∗)−
m∑
i=1

λ∗i∇gi(x∗)−
p∑
j=1

µ∗jbj = 0,

b>j x
∗ = βj , j = 1, . . . , p,

gi(x
∗) ≥ 0, i = 1, . . . ,m,

λ∗i gi(x
∗) = 0, i = 1, . . . ,m,

λ∗i ≥ 0, i = 1, . . . ,m,

of Problem (2.9).

Up to now, we have shown that the KKT conditions are also necessary
first-order optimality conditions for convex problems under Slater’s CQ. For
general nonlinear problems, the KKT conditions (under a reasonable CQ) are
not sufficient conditions. However, for convex problems, the KKT conditions
are also sufficient conditions.

Theorem 2.21. Let (x∗, λ∗, µ∗) ∈ Rn × Rm × Rp be a KKT point of the
convex problem (2.9). Then, x∗ is a local (and thus global) minimizer of
Problem (2.9).

Exercise 2.6. Consider the quadratic problem

min
x∈Rn

1

2
x>Qx+ c>x

s.t. Ax ≥ b,
Cx = d

(2.10)

with c ∈ Rn, Q ∈ Rn×n being symmetric and positive semi-definite, A ∈ Rm×n,
b ∈ Rm, C ∈ R`×n, and d ∈ R`.

(i) Is Problem (2.10) a convex optimization problem?

(ii) Derive the KKT conditions of Problem (2.10).

Hint: You may use the following theorem without proof.

Theorem 2.22. Let f : F → R be twice continuously differentiable on
the open set F ⊆ Rn. Then, the function f is convex if and only if the
Hessian matrix ∇2f(x) is positive semi-definite for all x ∈ F .
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2.4 Mathematical Programs with Complementarity
Constraints

We now consider problems of the form

min
x∈Rn

f(x) (2.11a)

s.t. gi(x) ≥ 0, i ∈ I = {1, . . . ,m}, (2.11b)
hj(x) = 0, j ∈ J = {1, . . . , p}, (2.11c)
ϕ`(x) ≥ 0, ` ∈ {1, . . . , r}, (2.11d)
ψ`(x) ≥ 0, ` ∈ {1, . . . , r}, (2.11e)
ϕ`(x)ψ`(x) = 0, ` ∈ {1, . . . , r}. (2.11f)

This problem is called a mathematical program with complementarity con-
straints (MPCC) and it can be seen as the nonlinear optimization prob-
lem (2.7), extended by the two functions ϕ,ψ : Rn → Rr and the three last
sets of constraints (2.11d)–(2.11f). We also assume that the functions ϕ,ψ
are continuously differentiable so that Problem (2.11) “looks like” a usual
NLP. However, the three last sets of constraints add a significant difficulty to
the problem.

The reason is that the LICQ does not hold at any feasible point of (2.11).

Theorem 2.23. Let x be feasible for Problem (2.11). Then, the LICQ does
not hold at x.

Exercise 2.7. Prove Theorem 2.23.

Moreover, the same can be shown for the Abadie CQ, which was the
weakest CQ under which we have stated the KKT theorem.

Theorem 2.24. Let x be feasible for Problem (2.11). Then, the ACQ does
not hold at x.

Exercise 2.8. Prove Theorem 2.24.

Example 2.25. We already considered a setting in which the feasible set has
the structure of the feasible set of Problem (2.11) in Corollary 2.6. The set
of inequalities and equations in this corollary reads

Ax = b,

x ≥ 0,

c−A>λ ≥ 0,

xi(c−A>λ)i = 0, i ∈ {1, . . . , n}.

With h(x) = Ax− b, ϕ(x) = x, and ψ(x, λ) = c−A>λ, this exactly matches
the setting in Problem (2.11). We will come back to this situation in Chapter 4.
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Example 2.26. The KKT conditions (2.8) in Definition 2.14 also fit into
the framework of the MPCC (2.11).

The interested reader is referred to the textbook by Luo et al. (1996) for
more details on this class of problems.



3
Solution Concepts: Pessimistic

vs. Optimistic Problems

Example 3.1. Imagine Alice (university professor in psychology) and Bob
(car mechanic), having a perfect marriage until now, i.e., they are both happy
with their marriage. Thus, they both want to achieve the best for themselves
and for the other one. Of course, one of them wears the pants and this is
Alice1; see Figure 3.1. In bilevel notation, Alice is the leader and Bob is
the follower. Let’s further model reality: Alice is managing the total budget
that they both can spend. Moreover, let us assume that the objective function
of Alice is to maximize her own utility, which is based (i) on the budget
she can spend and (ii) on how much Bob leaves her alone. She is, however,
limited on what of the entire budget she can spend on her own since there is
a minimum budget—at that moment, we as the modeler, still believe in this
marriage—that she has to leave to Bob. So let us suppose that Alice makes
her decision, meaning that Bob receives 120e for next Saturday. Bob has
two opportunities. Either he can solely go to a pub and drink as many beers
and shots that he can take within his budget of 120e or he can invite some
friends, buy some beer, and order some Pizza for all of them. We further
assume that both possibilities lead to the same objective function value for
Bob.

(i) Let’s assume Bob still adores Alice. Since Bob knows the objective of
Alice, he takes his budget, goes solely to a pub, and drinks as much as
he can as long as he stays within his budget. He arrives back home
horribly drunk and sleeps in the guest room. By doing all this, Bob is
maximizing his own utility2 and, at the same time, ensures that Alice
obtains her best-possible utility as well.

1Our assumptions are getting closer to reality.
2We are not going to question this further.
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Leader: Alice x
decides first

anticipates follower (Bob)

Follower: Bob y
decides second (of course)

Figure 3.1: The blessing and the curse of marriage

(ii) Let’s assume Bob finally managed to notice that Alice—although still
being married to him—enjoys a serious flirtation with her new PhD
student at the university. Working on a diabolic plan and, thus, still
staying with Alice, Bob again receives his 120e. Now, he acts differently.
He invites all of his friends, ignores Pizza for being able to spend more
money on beer, and tries to be as loud as he/they can.

His own utility function is the same as in the last case. He could have
drunk more without his friends but 120e spent on beer for him and
his friends means the same for him. But(!): Alice is really pissed now
because she cannot relax as much as in the other solution of Bob.

We see, Bob—being the follower—might be more powerful as we thought at
the beginning.

Let’s put this into math. In Section 1.2, we defined the bilevel problem as

min
x∈X,y

F (x, y) (3.1a)

s.t. G(x, y) ≥ 0, (3.1b)
y ∈ S(x), (3.1c)

where S(x) is the set of optimal solutions of the x-parameterized lower-level
problem, which we define as

min
y∈Y

f(x, y) (3.2a)

s.t. g(x, y) ≥ 0. (3.2b)



Chapter 3. Solution Concepts: Pessimistic vs. Optimistic Problems 35

-1 1

1

x

y

Figure 3.2: The optimal solution y of the lower-level problem in dependence
of the upper-level decision x in Example 3.2

One might think that this definition is the same as the one that we obtain if
we replace the upper level (3.1) with

min
x∈X

F (x, y) (3.3a)

s.t. G(x, y) ≥ 0, (3.3b)
y ∈ S(x). (3.3c)

Indeed, one really needs to take a closer look to see the difference: We omitted
the y below the “min” of the upper level and this really makes a difference.
But why?

Example 3.2 (See Example 1.2 in Dempe, Kalashnikov, et al. (2015)).
Consider the bilevel problem

min
x

F (x, y) = x2 + y s.t. y ∈ S(x)

with
S(x) = arg min

y
{−xy : 0 ≤ y ≤ 1} .

The best response of the follower is illustrated in Figure 3.2. Formally, it is
given by

S(x) =


[0, 1], x = 0,

{0}, x < 0,

{1}, x > 0.

This means that the mapping x 7→ F (x, S(x)) looks like it is illustrated in
Figure 3.3. This is not a function and its minimum is unclear since it depends
on the response y ∈ S(x) of the follower if the leader chooses x = 0. For
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-1 1

1

x

F (x, y(x))

Figure 3.3: Graph of the mapping x 7→ F (x, S(x)) in Example 3.2

the follower, all responses y ∈ S(0) = [0, 1] are optimal so that the optimal
lower-level solution is not unique. If the follower chooses y = 0, the optimal
leader’s decision is x = 0, leading to an objective function value of the leader
of 0. However, if the follower chooses y = 1, the objective function value of
the leader is 1, which is worse than 0 from the point of view of the leader.

This means the following. If the follower does not possess a unique solution,
i.e., the set S(x) is not a singleton, then the follower can be “leader-friendly”
(which corresponds to y = 0 in our example) or the follower can choose a
different solution, e.g., y = 1, which is worse for the leader (obtaining an
objective function value of 1 in this case).

This especially means that Problem (3.3) is ill-posed. To resolve this
issue, one usually distinguishes between two different solution concepts in
bilevel optimization: the optimistic solution and the pessimistic solution.

Definition 3.3 (Optimistic bilevel problem). Problem (3.1) with the lower-
level problem (3.2) is called the optimistic bilevel problem.

In this case, the leader controls those y that are part of the rational
reaction set S(x) of the follower. This is indicated by having the y also below
the “min” of the objective function of the leader.

Besides this optimistic variant of the problem, there also exists the so-
called pessimistic variant, which again is known in at least two versions
depending on whether the bilevel problem has coupling constraints or not.

Definition 3.4 (Pessimistic bilevel problem without coupling constraints).
The problem

min
x∈X

max
y∈S(x)

F (x, y) (3.4a)

s.t. G(x) ≥ 0, (3.4b)
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where S(x) is the set of optimal solutions of the x-parameterized lower-level
problem, which is defined as in (3.2), is called the pessimistic bilevel problem.

Definition 3.5 (Pessimistic bilevel problem with coupling constraints). The
problem

min
x∈X

F (x) (3.5a)

s.t. G(x, y) ≥ 0 for all y ∈ S(x), (3.5b)

where S(x) is the set of optimal solutions of the x-parameterized lower-level
problem, which is defined as in (3.2), is called the pessimistic bilevel problem.

Exercise 3.1. Prove that the assumption that the leader’s objective function does not
depend on the follower’s variables in Problem (3.5) is without loss of generality.

Note that the decision on the solution concept (optimistic vs. pessimistic)
is very important and can even change whether a solution exists or not. For
instance, the optimal solution (x, y) = (0, 0) with objective function value 0
is attained in Example 3.2 if one considers the optimistic bilevel problem.
However, for all other choices of y ∈ S(0) = [0, 1], the bilevel problem is not
solvable since the infimum 0 of the upper-level’s objective function is not
attained anymore. This, in particular, also applies to the pessimistic bilevel
problem in this example.

Remark 3.6. If the lower-level solution is unique for all x ∈ Ωx, both the
pessimistic and the optimistic variants of the bilevel problem coincide.

Besides the concepts of pessimistic and optimistic bilevel problems, local
and global solutions can be defined as it is the case for general optimization
problems as well; see Section 2.2 for the definitions for standard single-level
optimization problems.

For their definition in the bilevel context we first define the graph of the
solution set mapping S(·).

Definition 3.7 (Graph of the solution set mapping). The set

gphS := {(x, y) : y ∈ S(x)}

is called the graph of the solution set mapping S(·).

Definition 3.8 (Local and global optimal solution). A feasible point (x∗, y∗)
of the bilevel problem (1.1) is a local optimal solution if there exists an ε > 0
such that

F (x, y) ≥ F (x∗, y∗)

holds for all (x, y) ∈ gphS ∩ Ω with

‖(x, y)− (x∗, y∗)‖ < ε.

A local optimal solution is called a global optimal solution if ε > 0 can be
chosen arbitrarily large.
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Exercise 3.2. Consider the linear bilevel problem

min
x

x+ 2y

s.t. x ≥ 0,

y ∈ arg min
ȳ

{x : 3x+ 2ȳ ≤ 20, x+ 2ȳ ≤ 12, x− 2ȳ ≤ 4, 0 ≤ ȳ ≤ 5} .
(3.6)

(i) Plot the linear inequalities in a coordinate system.

(ii) Determine the bilevel feasible set of Problem (3.6).

(iii) Determine the optimal solution of Problem (3.6) considering the optimistic bilevel
problem.

(iv) Suppose that the leader sticks with the solution found in (iii). What would be
the optimal response of the pessimistic follower?

(v) Determine the optimal solution of Problem (3.6) considering the pessimistic
bilevel problem.

Exercise 3.3. Consider the LP-LP bilevel problem

min
x,y

c>x x+ c>y y

s.t. Ax+By ≥ a,
y ∈ arg min

ȳ

{
d>ȳ : Cx+Dȳ ≥ b

} (3.7)

with x, cx ∈ Rnx , y, cy, d ∈ Rny , A ∈ Rm×nx , B ∈ Rm×ny , and a ∈ Rm as well
as C ∈ R`×nx , D ∈ R`×ny , and b ∈ R`. Use the value-function reformulation
corresponding to Problem (3.7) to show that, for the optimistic version of the problem,
we can assume without loss of generality that all upper-level variables are linking variables;
see Bolusani and Ralphs (2020).



4
Single-Level Reformulations

Starting with the seminal paper by Fortuny-Amat and McCarl (1981), the
solution method for bilevel problems used most frequently in practice is to
reformulate the bilevel model as an “ordinary”, i.e., single-level, problem.
This single-level reformulation can then be solved1 with state-of-the-art
general-purpose solvers for the resulting classes of problems.

In this chapter, we will consider three different single-level reformulations:

(a) one being based on the optimal-value function of the lower-level problem,

(b) one using the KKT conditions of the lower-level problem,

(c) and one based on a strong-duality theorem for the lower-level problem.

While the first one can be applied for every bilevel problem, the two latter
ones require that the lower-level problem possesses some compact optimality
certificate, which is not only necessary but also sufficient. We will take care
about the details in the following sections.

4.1 A Single-Level Reformulation using the Optimal-
Value Function

Let us start again with the general optimistic bilevel problem

min
x∈X,y

F (x, y) (4.1a)

s.t. G(x, y) ≥ 0, (4.1b)
y ∈ S(x), (4.1c)

1At least after some further transformations. We will discuss the further pitfalls later
on.
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where S(x) is the set of optimal solutions of the x-parameterized problem

min
y∈Y

f(x, y) (4.2a)

s.t. g(x, y) ≥ 0. (4.2b)

We already considered this problem in Definition 1.6. By using the optimal-
value function

ϕ(x) := min
y∈Y
{f(x, y) : g(x, y) ≥ 0} ,

we can equivalently re-write the problem as

min
x∈X,y∈Y

F (x, y) (4.3a)

s.t. G(x, y) ≥ 0, g(x, y) ≥ 0, (4.3b)
f(x, y) ≤ ϕ(x). (4.3c)

This looks like a usual single-level problem. However, the problem is the
optimal-value function ϕ : Rnx → R. Of course, we can evaluate this function
but this evaluation corresponds to solving the lower-level problem (4.2) for the
given x, which is the argument of this function. Thus, the evaluation is rather
expensive. Moreover, in almost all cases, the optimal-value function is not
known in algebraic, i.e., in closed, form. Finally, it is usually nonsmooth (even
under strong assumptions), which can be easily seen, e.g., in Example 1.12.

Although this all sounds as if the single-level reformulation using the
optimal-value function is not useful, it can indeed be very useful for problems
that lead to a special structure of the optimal-value function. We will come
back to this aspect later on.

4.2 The KKT Reformulation for LP-LP Bilevel
Problems

The most classic approach to obtain a single-level reformulation is to exploit
optimality conditions for the lower-level problem. Since these optimality
conditions need to be necessary and sufficient, the application of these
conditions is usually only possible for convex lower-level problems that satisfy
a reasonable constraint qualification—which typically is Slater’s constraint
qualification in the convex case.

To avoid over-complicating the presentation, we first present the classic
KKT reformulation using the example of an LP-LP bilevel problem of the
form

min
x,y

c>x x+ c>y y (4.4a)

s.t. Ax+By ≥ a, (4.4b)

y ∈ arg min
ȳ

{
d>ȳ : Cx+Dȳ ≥ b

}
(4.4c)
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with cx ∈ Rnx , cy, d ∈ Rny , A ∈ Rm×nx , B ∈ Rm×ny , and a ∈ Rm as well as
C ∈ R`×nx , D ∈ R`×ny , and b ∈ R`. Note that we already omitted a linear
term depending on the upper-level variables x in the lower-level objective
function since this term would not have any influence on the optimal solutions
of the lower level as it is constant from the point of view of the follower.

The lower-level problem in (4.4c) can be seen as the x-parameterized
linear problem

min
y

d>y s.t. Dy ≥ b− Cx. (4.5)

Its Lagrangian function is given by

L(y, λ) = d>y − λ>(Cx+Dy − b)

and the KKT conditions are given by dual feasibility

D>λ = d, λ ≥ 0,

primal feasibility
Cx+Dy ≥ b,

and the KKT complementarity conditions

λi(Ci·x+Di·y − bi) = 0 for all i = 1, . . . , `.

As before, Ci· denotes the ith row of C. Since the lower-level feasible region is
polyhedral, the Abadie constraint qualification holds and the KKT conditions
are both necessary and sufficient. Thus, the LP-LP bilevel problem (4.4) can
be reformulated as

min
x,y,λ

c>x x+ c>y y (4.6a)

s.t. Ax+By ≥ a, Cx+Dy ≥ b, (4.6b)

D>λ = d, λ ≥ 0, (4.6c)
λi(Ci·x+Di·y − bi) = 0 for all i = 1, . . . , `. (4.6d)

Note that we now optimize over an extended space of variables since we
additionally have to include the lower-level dual variables λ. By optimizing
over x, y, and λ simultaneously in Problem (4.6), any global solution of (4.6)
corresponds to an optimistic bilevel solution.

Problem (4.6) is linear except for the KKT complementarity conditions
in (4.6d) that turn the problem into a nonconvex and nonlinear optimization
problem (NLP). More precisely, Problem (4.6) is a mathematical program
with complementarity constraints (MPCC); see, e.g., Luo et al. (1996) and
Section 2.4. Thus, and unfortunately, standard NLP algorithms usually can-
not be applied for such problems since classic constraint qualifications like the
Mangasarian–Fromowitz or the linear independence constraint qualification
are violated at every feasible point; see, e.g., Ye and Zhu (1995) or Section 2.4
again.
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Exercise 4.1. Derive the KKT reformulation of the LP-QP bilevel problem that is given
by

min
x,y

c>x x+ c>y y

s.t. Ax+By ≥ a,

y ∈ arg min
ȳ

{
1

2
ȳ>Qȳ + d>ȳ : Cx+Dȳ ≥ b

} (4.7)

with x, cx ∈ Rnx , y, cy, d ∈ Rny , A ∈ Rm×nx , B ∈ Rm×ny , a ∈ Rm, C ∈ R`×nx ,
D ∈ R`×ny , b ∈ R`, and Q ∈ Rny×ny being symmetric and positive semi-definite.

4.3 The KKT Reformulation for Parametric Convex
Lower-Level Problems

We have now stated the KKT reformulation (4.6) of the LP-LP bilevel
problem (4.4) but we have not yet discussed the relationship between their
solutions if, in a more general setting, a parametric convex lower-level problem
is considered. This topic is a bit more delicate as one might think at a first
glance since it turns out that the equivalence of these problems depends on
whether global or local solutions are considered and on the satisfaction of
constraint qualifications.

To shed some more light on these aspects, we consider the bilevel problem

min
x∈X,y

F (x, y) (4.8a)

s.t. y ∈ S(x), (4.8b)

where S(x) is the set of optimal solutions of the x-parameterized convex
problem

min
y∈Y

f(x, y) (4.9a)

s.t. g(x, y) ≥ 0. (4.9b)

Thus, we assume that y 7→ f(x, y) is a convex function and that y 7→ gi(x, y),
i = 1, . . . , `, are concave functions for all x ∈ X, i.e., for all feasible leader’s
decisions. Moreover, we assume that Y is a convex set that, e.g., contains
simple bound constraints on the variables of the follower. This means that
the lower-level problem is indeed an x-parametric convex problem. Please
note further at this point that we simplified the upper-level problem a bit
since no coupling constraints are present anymore.

In what follows, we also need Slater’s constraint qualification for the lower
level. For the ease of presentation, we now assume for what follows that all
constraints gi, i = 1, . . . , `, are nonlinear.
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Definition 4.1 (Slater’s constraint qualification for the lower level). For
a given upper-level feasible point x ∈ X of the bilevel problem (4.8), we say
that Slater’s constraint qualification holds for the lower-level problem (4.9) if
there exists a point ŷ(x) with gi(x, ŷ(x)) > 0 for all i = 1, . . . , `.

Under Slater’s constraint qualification (for all possible x decided on by
the leader), we then know that we can re-write the bilevel problem using the
KKT conditions of the lower-level problem, i.e., we obtain the single-level
reformulation

min
x,y,λ

F (x, y) (4.10a)

s.t. x ∈ X, (4.10b)
∇yL(x, y, λ) = 0, (4.10c)
g(x, y) ≥ 0, (4.10d)
λ ≥ 0, (4.10e)

λ>g(x, y) = 0. (4.10f)

Here,

∇yL(x, y, λ) = ∇yf(x, y)−
∑̀
i=1

λi∇ygi(x, y)

is the gradient of the lower level’s Lagrangian function w.r.t. y.
Let us now first shed some light on the relation between the global solutions

of the bilevel problem and the global solutions of its KKT reformulation.

Theorem 4.2 (See Theorem 2.1 in Dempe and Dutta (2012)). Let (x∗, y∗)
be a global optimal solution of the bilevel problem (4.8) and assume that the
lower-level problem is a convex optimization problem that satisfies Slater’s
constraint qualification for x∗. Then, the point (x∗, y∗, λ∗) is a global optimal
solution of the single-level reformulation (4.10) for every

λ∗ ∈ Λ(x∗, y∗) :=
{
λ ≥ 0: ∇yL(x∗, y∗, λ) = 0, λ>g(x∗, y∗) = 0

}
.

Proof. Since the x∗-parameterized lower-level problem is convex and since
this parametric convex problem satisfies Slater’s constraint qualification for
the given x∗, the KKT theorem for convex problems (Theorem 2.20) implies
that λ∗ ∈ Λ(x∗, y∗) holds if and only if (x∗, y∗) ∈ gphS.

The opposite direction is also true under some assumptions.

Theorem 4.3 (See Theorem 2.3 in Dempe and Dutta (2012)). Let (x∗, y∗, λ∗)
be a global optimal solution of Problem (4.10) and let the lower-level prob-
lem (4.9) be convex. Moreover, suppose that Slater’s constraint qualification
is satisfied for the lower-level problem for every x ∈ X. Then, (x∗, y∗) is a
global optimal solution of the bilevel problem (4.8).
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Proof. Suppose that (x∗, y∗, λ∗) is a global optimal solution of Problem (4.10).
Thus, Λ(x∗, y∗) 6= ∅ holds. Since the objective function F of (4.10) does not
depend on λ ∈ Λ(x∗, y∗), each point (x∗, y∗, λ) with λ ∈ Λ(x∗, y∗) is a global
optimal solution as well.

Assume now that (x∗, y∗) is not a global optimal solution of the bilevel
problem (4.8). Then, there exists a point (x, y) with x ∈ X and y ∈ S(x)
such that

F (x, y) < F (x∗, y∗)

holds. Since y ∈ S(x) and Slater’s constraint qualification holds at x, the
respective KKT conditions are valid and, thus, there exists a vector λ ∈ R`
of Lagrangian multipliers such that

∇yf(x, y)−
∑̀
i=1

λi∇ygi(x, y) = 0,

λ>g(x, y) = 0,

λ ≥ 0,

g(x, y) ≥ 0

holds. Consequently, (x, y, λ) is a feasible point for the KKT reformula-
tion (4.10) that has a better objective function value as (x∗, y∗, λ∗). This is a
contradiction to the global optimality of (x∗, y∗, λ∗) and the claim follows.

The last two theorems tell us that the original bilevel optimization problem
and its single-level KKT reformulation are equivalent under the assumption
that Slater’s constraint qualification holds for all possible x decided on by
the leader and if global optimal solutions are considered. The theorems so
far do not give any insight on the relationship between the local minima of
these two problems.

Before we consider these local optima, let us first study whether the as-
sumptions in the last two theorems regarding Slater’s constraint qualification
are really necessary.

Example 4.4 (See Example 2.2 in Dempe and Dutta (2012)). Let us consider
the x-parameterized convex lower-level problem

min
y1,y2

y1 s.t. y2
1 − y2 ≤ x, y2

1 + y2 ≤ 0; (4.11)

see Figure 4.1 for an illustration. If x = 0, the only feasible point of this
lower-level problem is y = (y1, y2) = (0, 0) and, thus, Slater’s constraint
qualification is violated. If we consider x ≥ 0 (this will be our upper-level
constraint later on), the lower-level’s optimal solutions are given by

y(x) =

{
(0, 0), if x = 0,(
−
√
x/2,−x/2

)
, if x > 0.
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y1

y2

Figure 4.1: The feasible region of the x-parameterized convex lower-level
problem (4.11) of Example 4.4 with x = 1.

Some further calculations reveal that the corresponding Lagrangian multiplier
is given by

λ1(x) = λ2(x) =
1

4
√
x/2

for x > 0. If x = 0, the problem does not satisfy Slater’s constraint qualifica-
tion so that the KKT conditions are not satisfied. Hence, no properly defined
Lagrangian multipliers exist in this case.

Consider now the bilevel problem

min
x,y

x s.t. x ≥ 0, y ∈ S(x), (4.12)

where S(x) is again the solution set mapping of the lower-level problem (4.11).
Obviously, the unique global optimal solution of this bilevel problem is x = 0,
y = (0, 0) with objective function value 0. Moreover, there are no other (e.g.,
local) optimal solutions.

Lastly, we consider the corresponding MPCC. The Lagrangian of the
lower-level problem reads

L(x, y, λ) = y1 − λ1(x− y2
1 + y2)− λ2(−y2

1 − y2)

and its gradient w.r.t. y is given by

∇yL(x, y, λ) =

(
1 + 2λ1y1 + 2λ2y1

−λ1 + λ2

)
.
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Hence, the MPCC is given by

min
x,y1,y2,λ1,λ2

x

s.t. x ≥ 0,

y2
1 − y2 ≤ x, y2

1 + y2 ≤ 0,

λ1 ≥ 0, λ2 ≥ 0,

λ1(x− y2
1 + y2) = 0, λ2(−y2

1 − y2) = 0,

1 + 2λ1y1 + 2λ2y1 = 0, −λ1 + λ2 = 0.

The point (x, y(x), λ(x)) is, by construction, feasible for the MPCC for x > 0
and the corresponding objective function value converges to 0 for x → 0.
However, the problem does not possess an optimal solution since for x = 0,
the uniquely determined lower-level’s solution is y = (0, 0) but no feasible
multipliers exist in this case.

The take-home message is the following: A global optimal solution of the
bilevel problem does not need to correspond to a global optimal solution of
its KKT reformulation if the lower-level problem does not satisfy Slater’s
constraint qualification for the given upper-level part of the bilevel problem’s
solution.

We have seen that the assumption of Theorem 4.2 cannot be neglected.
Next, we also show that the assumptions of Theorem 4.3 are essential as well.

Example 4.5 (See Example 2.4 in Dempe and Dutta (2012)). We consider
the bilevel problem

min
x,y

(x− 1)2 + y2 s.t. x ∈ R, y ∈ S(x),

where S(x) denotes the solution set mapping of the x-parameterized convex
lower-level problem

min
y

x2y s.t. y2 ≤ 0.

It is easy to see that y = 0 is the only feasible solution and thus the uniquely
determined global optimal solution of the lower-level problem (independent
of the leader’s decision x). In particular, this means that there exists no x
for which Slater’s constraint qualification holds for the lower-level problem.
Since y = 0 always is the optimal follower’s decision, the uniquely determined
global optimal solution of the bilevel problem is (x, y) = (1, 0).
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Let us now consider the corresponding KKT reformulation:

min
x,y,λ

(x− 1)2 + y2

s.t. x ∈ R,
y2 ≤ 0,

λ ≥ 0,

λy2 = 0,

x2 + 2λy = 0.

Clearly, all feasible solutions of this MPCC are of the form (0, 0, λ) with
λ ≥ 0. Since the objective function does not depend on λ, all these points are
also global optimal solutions of the MPCC. However, none of them correspond
to the optimal solution (1, 0) of the bilevel problem.

Now that we have clarified the relationship between the global optimal
values of the bilevel problem and its KKT reformulation, we will also consider
the relationship of the local optimal values. It turns out that local minima of
the KKT reformulation do not need to be local optima of the bilevel problem.

Example 4.6. We start by studying the lower-level problem

min
y1,y2

y2
1 + (y2 + 1)2

s.t. (y1 − x1)2 + (y2 − 1− x1)2 ≤ 1,

(y1 + x2)2 + (y2 − 1− x2)2 ≤ 1.

As usual, let S(x) be the set of all solutions. The problem is illustrated in
Figure 4.2. The feasible set is the intersection of the x-parameterized discs
and the centers of the discs are illustrated using the blue dotted lines. The
right arc belongs to x1 and the left arc belongs to x2. The solution of the
lower-level problem is then the point in the intersection of these discs which
is closest to the point (0,−1). The upper-level problem is given by

min
x,y1,y2

−y2 s.t. y1y2 = 0, x ≥ 0, y ∈ S(x).

All points y ∈ S(x) with x ≥ 0 and y2 ≥ 0 have a non-positive objective
function value and the points with a strictly negative objective function value
are those with y2 > 0, which then have to satisfy y1 = 0 due to upper-level
feasibility. Let us consider now the point x∗ = (0, 0) and y∗ = (0, 0). The
point (x∗, y∗) is feasible for the bilevel problem. However, it is not a local
minimum. To show this, we consider the points (0, y2) with y2 > 0 that have a
smaller objective function value. If (0, y2) with y2 > 0 is feasible for the bilevel
problem, this implies that x1 = x2. Otherwise, the point in the intersection
of the discs would be left or right from the y2-axis and, thus, y1 6= 0 would



Chapter 4. Single-Level Reformulations 48

y1

y2

Figure 4.2: Illustration of the lower-level problem of Example 4.6

need to hold. Thus, we can construct a bilevel feasible sequence (xk, yk) with
yk = (0, yk2), yk2 > 0 for all k and (xk1, x

k
2) satisfying xk1 = xk2 for all k. This

sequence converges to (x∗, y∗) for yk2 ↘ 0 but the leader’s objective function
values are strictly negative for all k. Hence, (x∗, y∗) is not a local minimum
of the bilevel problem.

Let us now come to the KKT reformulation of the problem, which is
given by

min
x,y,λ

− y2

s.t. y1y2 = 0, x ≥ 0,

(y1 − x1)2 + (y2 − 1− x1)2 ≤ 1,

(y1 + x2)2 + (y2 − 1− x2)2 ≤ 1,

λ1 ≥ 0, λ2 ≥ 0,

∇y1L = 2y1 + 2λ1(y1 − x1) + 2λ2(y1 + x2) = 0,

∇y2L = 2(y2 + 1) + 2λ1(y2 − 1− x1) + 2λ2(y2 − 1− x2) = 0,

λ1(1− (y1 − x1)2 − (y2 − 1− x1)2) = 0,

λ2(1− (y1 + x2)2 − (y2 − 1− x2)2) = 0.

Again, we are considering points with y2 > 0. Thus, y1 = 0 still needs to hold
and x1 = x2 is still valid, too. The partial derivative of the Lagrangian w.r.t. y1

then leads to λ1 = λ2. Moreover, for the point (x∗, y∗) with x∗ = (0, 0) and
y∗ = (0, 0) we obtain λ∗1 + λ∗2 = 1 from the second partial derivative of the
Lagrangian. This motivates the definition of the same sequence (xk, yk, λk)
as above but extended with λk1 = λk2 for all k. Moreover, we know that the
limit of the multipliers is (λ∗1, λ

∗
2) = (1/2, 1/2). As before, we see that the

point (x∗, y∗, λ∗) is not a local minimum of the KKT reformulation. However,
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all other points (x∗, y∗, λ̃) with λ̃ ∈ Λ(x∗, y∗) are local minima of the KKT
reformulation.

Finally, since (x∗, y∗) is not a local minimum of the bilevel problem, the
KKT reformulation has local minima that do not correspond to local minima
of the bilevel problem.

4.4 A Mixed-Integer Linear Reformulation of the
KKT Reformulation

The only reason for the nonconvexity of Problem (4.6) are the bilinear
products of the lower-level dual variables λi and the upper-level primal
variables x in the term

λiCi·x

and the bilinear products of the lower-level dual variables λi and the lower-
level primal variables y in the term

λiDi·y.

We can linearize these terms if we exploit the combinatorial structure of the
KKT complementarity conditions in (4.6d). The key idea here is to consider
the complementarity conditions λi(Ci·x + Di·y − bi) = 0, i = 1, . . . , `, as
disjunctions stating that either

λi = 0 or Ci·x+Di·y = bi

needs to hold. These two cases can be modeled using binary variables

zi ∈ {0, 1}, i = 1, . . . , `,

in the following mixed-integer linear way:

λi ≤Mzi, Ci·x+Di·y − bi ≤M(1− zi).

Here, M is a sufficiently large constant. Consequently, zi = 1 models the
case that the primal inequality is active, whereas zi = 0 models the inactive
case in which the dual variable is zero. By construction, we thus obtain the
following result.

Theorem 4.7. Suppose that M is a sufficiently large constant. Then, Prob-
lem (4.6) is equivalent to the mixed-integer linear optimization problem

min
x,y,λ,z

c>x x+ c>y y (4.13a)

s.t. Ax+By ≥ a, Cx+Dy ≥ b, (4.13b)

D>λ = d, λ ≥ 0, (4.13c)
λi ≤Mzi for all i = 1, . . . , `, (4.13d)
Ci·x+Di·y − bi ≤M(1− zi) for all i = 1, . . . , `, (4.13e)
zi ∈ {0, 1} for all i = 1, . . . , `. (4.13f)
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Here, “equivalence” means that for every globally optimal solution (x, y, λ) of
Problem (4.6) there exists a vector z so that (x, y, λ, z) is a globally optimal so-
lution of Problem (4.13) and that for every globally optimal solution (x, y, λ, z)
of Problem (4.13), (x, y, λ) is a globally optimal solution of Problem (4.6).

The resulting MILP reformulation can then be solved by general-purpose
MILP solvers such as Gurobi, CPLEX, or SCIP.2 Unfortunately, this reformu-
lation has a severe disadvantage because one needs to determine a big-M
constant that is both valid for the primal constraint as well as for the dual
variable. The primal validity is usually ensured by the assumption that the
high-point relaxation is bounded, which is typically justified in practical
applications. However, the dual feasible set is unbounded for bounded pri-
mal feasible sets; see Clark (1961) and Williams (1970). Thus, it is rather
problematic to bound the dual variables of the follower. In practice, often
“standard” values such as magic constants like 106 are used without any
theoretical justification or heuristics are applied to compute a big-M value.
For instance, in Pineda, Bylling, et al. (2018), big-M values are determined
from local solutions of the MPCC (4.6). In Pineda and Morales (2019), it is
shown by an illustrative counter-example that such heuristics may deliver
invalid values. Moreover, validating the correctness of a given big-M is shown
to be NP-hard in general in Kleinert, Labbé, Plein, et al. (2020).

Exercise 4.2. Derive the mixed-integer linear reformulation of the KKT reformulation
of the LP-QP bilevel problem

min
x,y

c>x x+ c>y y

s.t. Ax+By ≥ a,

y ∈ arg min
ȳ

{
1

2
ȳ>Qȳ + d>ȳ : Cx+Dȳ ≥ b

} (4.14)

with x, cx ∈ Rnx , y, cy, d ∈ Rny , A ∈ Rm×nx , B ∈ Rm×ny , a ∈ Rm, C ∈ R`×nx ,
D ∈ R`×ny , b ∈ R`, and Q ∈ Rny×ny being symmetric and positive semi-definite.
What does qualitatively change with respect to the LP-LP case? (Hint: What about
the dual polyhedron of the lower level?)

Exercise 4.3. Read the paper “Solving Linear Bilevel Problems Using Big-Ms: Not All
That Glitters Is Gold” (Pineda and Morales 2019).

Exercise 4.4. Read the paper “There’s No Free Lunch: On the Hardness of Choosing a
Correct Big-M in Bilevel Optimization” (Kleinert, Labbé, Plein, et al. 2020).

4.5 The Strong-Duality Based Reformulation

Besides the approach based on the lower-level KKT conditions, one can also
use a strong-duality theorem for the lower-level problem if such a theorem is

2Gurobi and CPLEX are commercial software packages that can be used for free in a
purely academic context, whereas SCIP is an open-source solver.
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at hand. In the linear case considered up to now, this is the case—so let’s go.
The dual problem of (4.5) is given by

max
λ

(b− Cx)>λ s.t. D>λ = d, λ ≥ 0. (4.15)

Note that also this dual problem is an x-parameterized linear problem but
now the objective function (and not the constraint set) depends on x. For a
given decision x of the leader, weak duality of linear optimization states that

d>y ≥ (b− Cx)>λ

holds for every primal and dual feasible pair y and λ. Thus, by strong duality,
we know that every such feasible pair is a pair of optimal solutions if

d>y ≤ (b− Cx)>λ

holds. Consequently, we can reformulate the bilevel problem as

min
x,y,λ

c>x x+ c>y y (4.16a)

s.t. Ax+By ≥ a, Cx+Dy ≥ b, (4.16b)

D>λ = d, λ ≥ 0, (4.16c)

d>y ≤ (b− Cx)>λ. (4.16d)

Here, the ` many KKT complementarity constraints in (4.6d) are replaced
with the scalar inequality in (4.16d). Note that the general nonconvexity
of LP-LP bilevel problems is reflected in this single-level reformulation due
to the bilinear products of the primal upper-level variables x and the dual
lower-level variables λ.

Remark 4.8. Obviously, the KKT reformulation (4.6) and the strong-duality
based reformulation (4.16) are equivalent since

λi(Ci·x+Di·y − bi) = 0 for all i = 1, . . . , `

⇐⇒ λ>(Cx+Dy − b) = 0

⇐⇒ λ>Dy = λ>(b− Cx)

⇐⇒ d>y = λ>(b− Cx)

holds, where we used λ ≥ 0 and Cx+Dy − b ≥ 0 for the first equivalence as
well as D>λ = d for the last one.

Note that the strong-duality inequality in (4.16d) does not allow to exploit
disjunctive arguments (such as in the case of the KKT reformulation), which
further would allow to linearize the nonlinearities with additional binary
variables. Thus, in the case of (4.16), one has to tackle the nonlinearity and
nonconvexity directly.
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Exercise 4.5. Derive the strong-duality based reformulation of the LP-QP bilevel problem

min
x,y

c>x x+ c>y y

s.t. Ax+By ≥ a,

y ∈ arg min
ȳ

{
1

2
ȳ>Qȳ + d>ȳ : Cx+Dȳ ≥ b

} (4.17)

with x, cx ∈ Rnx , y, cy, d ∈ Rny , A ∈ Rm×nx , B ∈ Rm×ny , a ∈ Rm, C ∈ R`×nx ,
D ∈ R`×ny , b ∈ R`, and Q ∈ Rny×ny being symmetric and positive semi-definite.

4.6 Excursus: How to Really Solve a Mixed-Integer
Linear Problem?

We have seen that we can re-state the LP-LP bilevel problem as a mixed-
integer linear optimization problem if we are able to find finite but sufficiently
large big-M constants. Let’s assume this is possible. How do I then solve
the resulting problem?

It’s easy! Download a mixed-integer optimization solver, for instance,
Gurobi at

https://www.gurobi.com.

Get a free academic license and start to code. But how? Here, we discuss
how to do this using the programming language Python.3 Let’s exemplarily
see how this works.

#!/usr/bin/python3

# This example is a modified model taken from
# https://bit.ly/3nrwl2Z

import gurobipy as gp
from gurobipy import GRB

# Create a new model
model = gp.Model("my-milp")

# Create variables
x = model.addVar(vtype=GRB.BINARY, name="x")
y = model.addVar(vtype=GRB.BINARY, name="y")
z = model.addVar(vtype=GRB.BINARY, name="z")

3If you do not have it installed on your computer go to https://www.python.org and
download it. It’s for free.

https://www.gurobi.com
https://www.python.org
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# Set objective
model.setObjective(x + y + 2 * z, GRB.MAXIMIZE)

# Add constraint: x + 2 y + 3 z <= 4
model.addConstr(x + 2 * y + 3 * z <= 4, "c0")

# Add constraint: x + y >= 1
model.addConstr(x + y >= 1, "c1")

# Optimize model
model.optimize()

for v in model.getVars():
print("variable " + v.varName + ": " + str(v.x))

print("Objective value: " + str(model.objVal))

This is the output that you should get:

Academic license - for non-commercial use only
Optimize a model with 2 rows, 3 columns and 5 nonzeros
Variable types: 0 continuous, 3 integer (3 binary)
Coefficient statistics:

Matrix range [1e+00, 3e+00]
Objective range [1e+00, 2e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 4e+00]

Found heuristic solution: objective 2.0000000
Presolve removed 2 rows and 3 columns
Presolve time: 0.00s
Presolve: All rows and columns removed

Explored 0 nodes (0 simplex iterations) in 0.00 seconds
Thread count was 1 (of 8 available processors)

Solution count 2: 3 2

Optimal solution found (tolerance 1.00e-04)
Best objective 3.000000000000e+00,

best bound 3.000000000000e+00, gap 0.0000%
variable x: 1.0
variable y: 0.0
variable z: 1.0
Objective value: 3.0
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Exercise 4.6. Consider the linear bilevel problem

min
x,y

x− y

s.t. x− 2y ≥ −8, (4.18)
y ∈ arg min

ȳ
{ȳ : x+ ȳ ≥ 7, −x+ 5ȳ ≥ 2, −x+ 2ȳ ≥ −4, −x− ȳ ≥ −13} .

(i) Derive the KKT reformulation of Problem (4.18).

(ii) Derive the mixed-integer linear reformulation of the KKT reformulation.

(iii) Determine appropriate big-M constants for the reformulation in (ii).

(iv) Use Gurobi to solve

(a) the mixed-integer linear reformulation of the KKT reformulation of Prob-
lem (4.18) using the big-M constants determined in (iii),

(b) the linearized KKT reformulation of Problem (4.18) exploiting special
ordered sets of type 1 (SOS1).

(v) Derive the strong-duality based reformulation of Problem (4.18).

(vi) Use Gurobi to solve the strong-duality based reformulation.

(vii) Elaborate on possible advantages and/or disadvantages of the considered ap-
proaches. Which approach should be preferred and why?



5
Linear Bilevel Problems

We start this chapter on linear bilevel problems again with another example
that illustrates the surprising properties of bilevel problems that have a linear
upper- and lower-level problem.

5.1 Surprising Properties—Revisited

Example 5.1 (See Kleinert, Labbé, Ljubić, et al. (2021)). We consider the
problem

min
x,y

{
y : y ∈ arg min

ȳ
{−ȳ : (x, ȳ) ∈ P}

}
,

where the feasible region of the lower level given by

P = {(x, y) : y ≥ 0, y ≤ 1 + x, y ≤ 3− x, 0 ≤ x ≤ 2}

as depicted in Figure 5.1 (left). The feasible points of the high-point relaxation
coincide with the lower-level feasible region P since there are no upper-level
constraints in this example. The horizontal segment linking the origin and the
point (2, 0) constitutes the set of solutions of the high-point relaxation, i.e.,
those points in Ω that minimize the upper-level objective function. Since the
corresponding upper-level objective function is 0 on this segment, this leads
to a lower bound of 0 for the entire bilevel LP. The bilevel feasible region F
is given by the union of the two segments in green. As we have seen before,
F is nonconvex although both levels are linear optimization problems. The
problem has the two optimal solutions (0, 1) and (2, 1) with value 1.

Now, if we add the constraint y ≤ a with 1 < a < 2 to the upper level, the
bilevel feasible region is reduced to two disjoint green segments as depicted
in Figure 5.1 (right). Nonetheless, these segments constitute faces of the
high-point relaxation. Note, however, that the set of optimal solutions of
the bilevel problem remains unchanged. A worse situation happens if the

55
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Figure 5.1: Illustration of the LP-LP bilevel problem of Example 5.1. The
“house” represents the feasible region of the high-point relaxation and the
green lines are the bilevel feasible set. The dashed red line in the right figure
represents the coupling constraint.

right-hand side of the constraint added to the upper level is set to a ∈ (0, 1).
Then, the bilevel feasible region is empty, i.e., the bilevel LP has no feasible
point, although the high-point relaxation is feasible. This last example is also
useful to illustrate the effect of moving coupling constraints, i.e., upper-level
constraints involving variables of the lower level, between the two levels. If,
e.g., the constraint y ≤ 1/2 is added to the lower level, then the problem
becomes feasible and all points (x, 1/2) with 0 ≤ x ≤ 1 are bilevel optimal.
The two facts that (i) coupling constraints of a bilevel LP may lead to a
disconnected bilevel feasible region and that (ii) they cannot be moved to the
lower level without changing the set of optimal solutions have been discussed
by Audet, Haddad, et al. (2006) and Mersha and Dempe (2006).

Example 5.2 (See Kleinert, Manns, et al. (2021)). Let us now consider the
linear bilevel problem

min
x,y∈R

x

s.t. y ≥ 0.5x+ 1, x ≥ 0,

y ∈ arg min
ȳ∈R

{ȳ : ȳ ≥ 2x− 2, ȳ ≥ 0.5}

with optimal solution (2, 2); see Figure 5.2 (left). When strengthening the
bound ȳ ≥ 0.5 in the lower-level problem using the constraint y ≥ 0.5x+ 1 of
the upper-level problem, one finds that the minimum value of 0.5x+ 1 is 1 due
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Figure 5.2: Feasible set (in blue) and optimal solution (blue dots) of the bilevel
problem in Example 5.2 without (left) and with (right) bound tightening
applied. Figure taken from Kleinert, Manns, et al. (2021).

to x ≥ 0, which increases the bound of ȳ to ȳ ≥ 1. This yields the problem

min
x,y∈R

x

s.t. y ≥ 0.5x+ 1, x ≥ 0,

y ∈ arg min
ȳ∈R

{ȳ : ȳ ≥ 2x− 2, ȳ ≥ 1},

having the optimal solution (0, 1) 6= (2, 2); see Figure 5.2 (right). See also the
thesis by Manns (2020) for further examples.

What have we seen now? We first solved an LP-LP bilevel problem
and then tightened a constraint in the lower-level problem. This tightened
constraint was not active in the original solution of the bilevel problem but
changes the optimal solution if added. This cannot happen in “ordinary”, i.e.,
single-level, optimization problems.

In single-level optimization, this means that the so-called IIC (indepen-
dence of irrelevant constraints) property holds. In Macal and Hurter (1997),
the IIC property for linear bilevel problems is defined as follows.

Definition 5.3 (Independence of irrelevant constraints). Let S be the set of
optimal solutions of a linear bilevel problem P . Further, let P̃ := P (u, v, w)
be the modified problem, in which the inequality u>x+ v>y ≥ w is added to
the follower’s problem of P and let S̃ be its set of optimal solutions. P is
called independent of irrelevant constraints, if for any (u, v, w) ∈ Rnx+ny+1

with u>x∗ + v>y∗ ≥ w it holds

(x∗, y∗) ∈ S̃

for every (x∗, y∗) ∈ S.

Further, it is shown in Macal and Hurter (1997) that only bilevel problems
possess the IIC property for which the solution of the high-point relaxation
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is also a solution to the bilevel problem. Consequently, most practical bilevel
problems (for which the objectives of the leader and the follower are not
aligned) lack the IIC property.

Exercise 5.1. Consider the linear bilevel problem

min
x,y

x+ 3y

s.t. 1 ≤ x ≤ 5,

y ∈ arg min
ȳ

{−ȳ : x+ ȳ ≥ 3, 0 ≤ ȳ ≤ 3} .
(P)

(i) Determine the solution of the HPR of Problem (P), e.g., using Gurobi.

(ii) Check if Problem (P) possesses the IIC property using Theorem 5.5.

(iii) Without explicitly determining an optimal solution of the bilevel problem (P),
what can you say about the relation between an optimal solution of Problem (P)
and the solution of its HPR?

(iv) Consider the augmented problem (P̃), in which the inequality −2x− y ≥ −6 is
added to the follower problem of (P). Is (P̃) independent of irrelevant constraints?
What about the relation between an optimal solution of the bilevel problem (P̃)
and the solution of its HPR?

(v) What can you say about the relation between the set of optimal solutions S of
Problem (P) and the set of optimal solutions S̃ of (P̃)?

Hint: You can use the following result without proof.

Assumption 5.4. Let (x̂, ŷ) be a solution of the high-point relaxation
(HPR) of the bilevel problem

min
x∈Rn,y

F (x, y)

s.t. G(x, y) ≥ 0,

y ∈ arg min
ȳ∈Rm

{f(x, ȳ) : g(x, ȳ) ≥ 0}
(5.1)

with continuously differentiable functions F, f,G, and g. Let A(x̂, ŷ) be
the set of active lower-level constraints at (x̂, ŷ), i.e., gi(x̂, ŷ) = 0 if and
only if i ∈ A(x̂, ŷ). Then, there exist λi ≥ 0 for all i ∈ A(x̂, ŷ) with

∇yjf(x̂, ŷ)−
∑

i∈A(x̂,ŷ)

λi∇yjgi(x̂, ŷ) = 0 for all j = 1, . . . ,m.

Theorem 5.5 (See Theorem 1 in Macal and Hurter (1997)). Problem (5.1)
is independent of irrelevant constraints (IIC) if and only if Assump-
tion 5.4 is satisfied.

Example 5.6. We consider almost the same bilevel problem as in Example 5.1
but with slightly changed objective functions:

max
x,y

{
y : y ≤ 3

2
, y ∈ arg max

ȳ
{ȳ : (x, ȳ) ∈ P}

}
,
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where the feasible region of the lower level given by

P = {(x, y) : y ≥ 0, y ≤ 1 + x, y ≤ 3− x, 0 ≤ x ≤ 2}.

Since now both the leader and the follower want to maximize y, both objectives
are exactly the same. One might think that the bilevel optimization problem
then could be equivalent to the high-point relaxation

max
x,y

y

s.t. y ≤ 3

2
, y ≥ 0, y ≤ 1 + x, y ≤ 3− x, 0 ≤ x ≤ 2.

This is, however, not the case. It is easy to see that the set of optimal solutions
of the high-point relaxation is given by{

(x, y) : x ∈
[

1

2
,
3

2

]
, y =

3

2

}
,

whereas the set of solutions of the bilevel problem is given by{(
1

2
,
3

2

)}
∪
{(

3

2
,
3

2

)}
.

Hence, there are solutions of the high-point relaxation that are not a solution of
the bilevel problem and the problems are not equivalent, although the objective
functions coincide.

5.2 Geometric Properties of LP-LP Bilevel Prob-
lems

For the remainder of this chapter, we consider LP-LP bilevel problems of the
form

min
x,y

c>x x+ c>y y (5.2a)

s.t. Ax ≥ a, (5.2b)

y ∈ arg min
ȳ

{
d>ȳ : Cx+Dȳ ≥ b

}
(5.2c)

with cx ∈ Rnx , cy, d ∈ Rny , A ∈ Rm×nx , and a ∈ Rm as well as C ∈ R`×nx ,
D ∈ R`×ny , and b ∈ R`. Note that this problem does not contain coupling
constraints to avoid the further difficulties that arise due to disconnected
bilevel feasible sets.

Our goal now is to understand the geometric properties of LP-LP bilevel
problems. The main source of the remainder of this section is the book by
Bard (1998).
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Theorem 5.7. Consider the LP-LP bilevel problem (5.2). Suppose that S(x)
is a singleton for all x ∈ Ωx and that Ω is non-empty and bounded. The
bilevel-feasible set of Problem (5.2) can then be written equivalently as the
intersection of the shared constraint set with the feasible points of a piecewise
linear equality constraint. In particular, the bilevel-feasible set is a union of
faces of the shared constraint set.

This claim should not be a surprise at this point since we saw this fact
already in Example 1.12 and 5.1.

Proof. We start by re-writing the bilevel-feasible set

F := {(x, y) : (x, y) ∈ Ω, y ∈ S(x)}

as
F :=

{
(x, y) : (x, y) ∈ Ω, d>y = min

ȳ
{d>ȳ : Cx+Dȳ ≥ b}

}
and use the optimal-value function

ϕ(x) = min
y

{
d>y : Dy ≥ b− Cx

}
again. Since S(x) is a singleton for all x ∈ Ωx, the optimal-value function ϕ(x)
is a well-defined function. By using the strong-duality theorem (Theorem 2.3),
we can also express the optimal-value function by means of the dual LP as

ϕ(x) = max
λ

{
(b− Cx)>λ : D>λ = d, λ ≥ 0

}
.

From the classic theory of linear optimization, we know that the optimal
solution of the follower’s problem is always attained at one of the vertices
of the feasible set, which, for the dual LP, does not depend on the leader’s
decision x anymore. Let λ1, . . . , λs be the set of all the dual polyhedron’s
vertices, i.e., the set of vertices of the polyhedron defined by

D>λ = d, λ ≥ 0. (5.3)

Thus, we can further equivalently re-write the optimal-value function as

ϕ(x) = max
{

(b− Cx)>λ : λ ∈ {λ1, . . . , λs}
}
. (5.4)

This shows that ϕ(x) is a piecewise linear function and re-writing the bilevel-
feasible set as

F =
{

(x, y) ∈ Ω: d>y − ϕ(x) = 0
}

(5.5)

shows the claim that the bilevel-feasible set can be written as the intersection
of the shared constraint set with a piecewise linear equality constraint.
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Consider now again the definition of the optimal-value function using the
vertices of the dual polyhedron of the lower-level problem in (5.4). Suppose
that for a given x the corresponding solution is the vertex λk. By using dual
feasibility (5.3), we obtain

0 = d>y − ϕ(x) = (D>λk)>y − (λk)>(b− Cx) = (λk)>(Cx+Dy − b).

Thus, for those λki , i ∈ {1, . . . , `}, with λki > 0 we get (Cx + Dy − b)i = 0.
Hence, the bilevel-feasible set is a union of faces of the shared constraint
set.

In other words, the latter result states the following.

Corollary 5.8. Suppose that the assumptions of Theorem 5.7 hold. Then,
the LP-LP bilevel problem (5.2) is equivalent to minimizing the upper-level
objective function over the intersection of the shared constraint set with a
piecewise linear equality constraint.

The last results make clear what we have also seen before in Example 1.12
and 5.1.

Corollary 5.9. Suppose that the assumptions of Theorem 5.7 hold. Then, a
solution of the LP-LP bilevel problem (5.2) is always attained at a vertex of
the bilevel-feasible set.

Theorem 5.10. Suppose that the assumptions of Theorem 5.7 hold. Then, a
solution (x∗, y∗) of the LP-LP bilevel problem (5.2) is always attained at a
vertex of the shared constraint set Ω.

Proof. Let (x1, y1), . . . , (xr, yr) be the distinct vertices of the shared con-
straint set Ω. Since Ω is a convex polyhedron, any point in Ω can be written
as a convex combination of these vertices, i.e.,

(x∗, y∗) =
r∑
i=1

αi(x
i, yi)

with
r∑
i=1

αi = 1 and αi ≥ 0 for all i = 1, . . . , r.

From the proof of Theorem 5.7 it follows that the optimal-value function ϕ is
convex and continuous. Since the bilevel solution (x∗, y∗) is, of course, bilevel
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feasible, the representation in (5.5) leads to

0 = d>y∗ − ϕ(x∗)

= d>

(
r∑
i=1

αiy
i

)
− ϕ

(
r∑
i=1

αix
i

)

≥
r∑
i=1

αid
>yi −

r∑
i=1

αiϕ(xi)

=

r∑
i=1

αi

(
d>yi − ϕ(xi)

)
.

(5.6)

By the definition of the optimal-value function we also have

ϕ(xi) = min
y

{
d>y : Cxi +Dy ≥ b

}
≤ d>yi.

This implies d>yi − ϕ(xi) ≥ 0. Consequently, for all i ∈ {1, . . . , r} with
αi > 0, it holds d>yi = ϕ(xi) since we otherwise get a contradiction in (5.6).
Hence, for those i with αi > 0, we obtain (xi, yi) ∈ F . From the last corollary,
we know that (x∗, y∗) is a vertex of the bilevel-feasible set. Suppose now that
there are two indices i and j with αi > 0 and αj > 0. Thus, (xi, yi) ∈ F and
(xj , yj) ∈ F holds and we can write (x∗, y∗) as a proper convex combination
of two bilevel feasible points, which is a contradiction to the last corollary.
Thus, (x∗, y∗) is a vertex of the shared constraint set.

By combining the last theorem with the last corollary, we have seen that
the set of vertices of the bilevel-feasible set F is a subset of the vertices of
the shared constraint set Ω. This also shows that F consists of faces of Ω
and that every extreme point of F is an extreme point of Ω.1

5.3 Existence of Solutions

Following the geometric intuition gained in the last section, we now prove
the existence of solutions. To this end, we need one more definition that we
will then apply to the set S(x) of lower-level solutions.

Definition 5.11 (Polyhedral Point-to-Set Mapping). A point-to-set mapping
Γ : Rnx → P(Rny) is called polyhedral if its graph

{(x, y) ∈ Rnx × Rny : y ∈ Γ(x)}

is the union of a finite number of convex polyhedral sets, where a convex
polyhedral set is defined as the intersection of a finite number of halfspaces.

1A subset E of the convex set S ⊆ Rn is called an extremal set of S if z ∈ E with
z = λx+ (1− λ)y and 0 < λ < 1, x, y ∈ S implies that x, y ∈ E holds. An extreme point
of S is an extremal set that is a singleton.
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We now consider the LP-LP bilevel problem (5.2) again and first study
the rational reaction set

S(x) = arg min
y∈Rny

{
d>y : Cx+Dy ≥ b

}
of the follower.

Lemma 5.12. The point-to-set mapping S(x) is polyhedral.

Proof. A point (x, y) is in the graph of S if and only if there exists a dual
variable vector λ ∈ R` so that the KKT conditions

Cx+Dy ≥ b, λ ≥ 0, λ>(Cx+Dy − b) = 0, D>λ = d (5.7)

are satisfied. For all possible sets L ⊆ {1, . . . , `}, we now consider the system

(Cx+Dy − b)i = 0, i ∈ L,
(Cx+Dy − b)i ≥ 0, i ∈ {1, . . . , `} \ L,

λi ≥ 0, i ∈ L,
λi = 0, i ∈ {1, . . . , `} \ L,

D>λ = d.

Let us denote the set of solutions of this system withM(L). For every such L,
all points in M(L) satisfy the KKT conditions in (5.7) and M(L) is obviously
polyhedral. Hence, the projection of M(L) onto the (x, y)-space is polyhedral
as well by Fourier–Motzkin. There are 2` <∞ (and thus finitely) many of
such polyhedral sets, which completes the proof.

We can now prove an existence result for linear bilevel problems.

Theorem 5.13. Suppose that Problem (5.2) has a non-empty and compact
shared constraint set. Then, the problem has at least one solution.

Proof. For any L ⊆ {1, . . . , `} as in the last proof, consider the optimization
problem

min
x,y,λ

c>x x+ c>y y

s.t. Ax ≥ a,
(Cx+Dy − b)i = 0, i ∈ L,
(Cx+Dy − b)i ≥ 0, i ∈ {1, . . . , `} \ L,
λi ≥ 0, i ∈ L,
λi = 0, i ∈ {1, . . . , `} \ L,
D>λ = d.
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These are 2` optimization problems. Since the shared constraint set of the
LP-LP bilevel problem (5.2) is non-empty and compact, at least one of these
problems is solvable. Among the solvable ones, we take the solution leading to
the overall smallest objective function value. The (x, y)-part of this solution
is a solution of Problem (5.2).

5.4 Complexity Results

The first paper proving the hardness of the LP-LP bilevel problem was
Jeroslow (1985), in which general multilevel models have been considered. As
a direct consequence of the results in this paper, one obtains the NP-hardness
of LP-LP bilevel problems. The problem is also strongly NP-hard, which
is shown in Hansen et al. (1992) by a reduction from KERNEL. Two years
later, it has been shown in Vicente, Savard, et al. (1994) that even checking
whether a given point is a local minimum of a bilevel problem is NP-hard.

Although we are not going to prove these hardness results here, we
try to get some intuition on the hardness of LP-LP bilevel problems. We
have already seen that LP-LP bilevel problems are nonconvex optimization
problems, which are hard to solve to global optimality in general. Moreover,
we know that mixed-integer (or mixed-binary) optimization is hard as well.
In the paper by Audet, Hansen, et al. (1997), it is noted that a binary
constraint, say x ∈ {0, 1}, appearing in a single-level optimization problem
can be modeled by an additional variable y and the upper-level constraints
y = 0 and

y = arg max
ȳ

{ȳ : ȳ ≤ x, ȳ ≤ 1− x} ;

see Figure 5.3 for an illustration. As a consequence, linear optimization
problems with binary variables are a special case of bilevel LPs.
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Figure 5.3: Modeling a binary variable with an LP-LP bilevel feasibility
problem.



6
Algorithms for Linear Bilevel

Problems

6.1 The Kth-Best Algorithm

One of the first proposed algorithms to solve LP-LP bilevel problems is the
simplex-inspired Kth-best algorithm; see Bialas and Karwan (1984). We
again consider the LP-LP bilevel problem

min
x,y

c>x x+ c>y y (6.1a)

s.t. Ax ≥ a, (6.1b)

y ∈ arg min
ȳ

{
d>ȳ : Cx+Dȳ ≥ b

}
(6.1c)

as in Section 5.2. Moreover, we assume that the bilevel-feasible set is non-
empty and bounded and that S(x) is a singleton for all x ∈ Ωx.

The idea is mainly based on Theorem 5.10, which states that the bilevel-
optimal solution is attained at one of the vertices of the shared constraint
set Ω. Thus, similar to the simplex method for linear problems, we can carry
out a search over the vertices of Ω to find a solution. To this end, we consider
the high-point relaxation

min
x,y

c>x x+ c>y y (6.2a)

s.t. Ax ≥ a, (6.2b)
Cx+Dy ≥ b (6.2c)

of Problem (6.1). Let us denote with

(x1, y1), (x2, y2), . . . , (xr, yr) (6.3)

66
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the ordered set of vertices of Ω, i.e., of basic feasible solutions of the high-point
relaxation. The ordering is chosen so that

c>x x
i + c>y y

i ≤ c>x xi+1 + c>y y
i+1

holds for i = 1, . . . , r − 1.
Hence, the problem of solving the LP-LP bilevel problem can be posed

as finding the minimum-index vertex that is feasible for the bilevel problem,
i.e., we want to find the index

K∗ = min
{
i ∈ {1, . . . , r} : (xi, yi) ∈ F

}
.

This means that we want to find the first vertex in the ordered list in (6.3)
whose y-component is an optimal solution of the follower’s problem. It is
then clear that (xK

∗
, yK

∗
) is a global optimal solution of the LP-LP bilevel

problem (6.1).
The method is formally given in Algorithm 1.

Algorithm 1 The Kth-Best Algorithm
1: Set i ← 1. Solve Problem (6.2) to obtain the optimal solution (x1, y1).

Set W ← {(x1, y1)} and T ← ∅.
2: Test if yi ∈ S(xi) holds, i.e., if yi is the optimal follower’s response to the

leader’s decision xi. To this end, we solve the xi-parameterized follower’s
problem

min
y

d>y

s.t. Dy ≥ b− Cxi.

Let us denote the optimal solution by ỹ.
3: if ỹ = yi then
4: Set K∗ ← i and return the LP-LP bilevel solution (xi, yi).
5: end if
6: Let W i denote the adjacent extreme points of (xi, yi) such that

(x, y) ∈W i implies

c>x x+ c>y y ≥ c>x xi + c>y y
i.

Set T ← T ∪ {(xi, yi)} and W ← (W ∪W i) \ T .
7: Set i← i+ 1 and choose (xi, yi) with

c>x x
i + c>y y

i = min
x,y

{
c>x x+ c>y y : (x, y) ∈W

}
.

Go to Step 2.
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Remark 6.1. (a) Note that the uniqueness of the follower’s problem is
required in Step 2 and 3, where we check if the current vertex is bilevel
feasible.

(b) A crucial and costly part of the algorithm (that we do not discuss here
in detail) is the computation of all adjacent extreme points in Step 6.
For more details; see Bard (1998).

Exercise 6.1. Reconsider the linear bilevel problem (P) from Exercise 5.1.

(i) Solve Problem (P) graphically.

(ii) Determine all the vertices of the shared constraint set of Problem (P) and check
which vertices are adjacent.

(iii) Solve Problem (P) by hand using the Kth-best algorithm (Algorithm 1).

6.2 Branch-and-Bound

In Section 4.2, we have seen that the general LP-LP bilevel problem

min
x,y

c>x x+ c>y y

s.t. Ax+By ≥ a,

y ∈ arg min
ȳ

{
d>ȳ : Cx+Dȳ ≥ b

}
can be equivalently re-written via the KKT reformulation as the MPCC

min
x,y,λ

c>x x+ c>y y

s.t. Ax+By ≥ a, Cx+Dy ≥ b,
D>λ = d, λ ≥ 0,

λi(Ci·x+Di·y − bi) = 0 for all i = 1, . . . , `.

Moreover, we have seen in Section 4.4 that the latter problem can be re-stated
as the mixed-integer linear optimization problem

min
x,y,λ,z

c>x x+ c>y y (6.4a)

s.t. Ax+By ≥ a, Cx+Dy ≥ b, (6.4b)

D>λ = d, λ ≥ 0, (6.4c)
λi ≤Mzi for all i = 1, . . . , `, (6.4d)
Ci·x+Di·y − bi ≤M(1− zi) for all i = 1, . . . , `, (6.4e)
zi ∈ {0, 1} for all i = 1, . . . , ` (6.4f)

for a sufficiently large constantM . We can solve this problem without further
ado by putting it into a state-of-the-art mixed-integer solver such as Gurobi
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(Gurobi 2021) or CPLEX (IBM 2021). These solvers will tackle this problem
using the classic branch-and-bound method; see Land and Doig (1960) for
the original paper. This means, they will branch on the auxiliary binary
variables that model whether the ith lower-level constraint is binding or
whether the ith dual variable vanishes. Alternatively, we can branch on the
KKT complementarity constraints

λi(Ci·x+Di·y − bi) = 0 for all i = 1, . . . , `,

which is, mathematically speaking, the same. However, the latter
complementarity-constraint based branching does not require choosing suffi-
ciently large big-M values, which is often a drawback of the mixed-integer
linear approach (6.4) for the KKT reformulation.

The idea of branch-and-bound for LP-LP bilevel problems is simple:

(a) Start with solving the problem

min
x,y,λ

c>x x+ c>y y (6.5a)

s.t. Ax+By ≥ a, Cx+Dy ≥ b, (6.5b)

D>λ = d, λ ≥ 0. (6.5c)

This is the high-point relaxation extended with the dual variables λ
and the lower level’s dual polyhedron given by

D>λ = d, λ ≥ 0.

(b) Usually, there will be an i ∈ {1, . . . , `} so that the ith KKT comple-
mentarity condition is not satisfied, i.e.,

λi(Ci·x+Di·y − bi) > 0

holds. Take such an i and construct two new sub-problems: one in
which the constraint

λi = 0

is added and one in which the constraint

Ci·x+Di·y = bi

is added.

(c) Then, we choose one of the unsolved sub-problems and proceed in the
same way.
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Every node in the branch-and-bound tree is thus defined by the root-node
problem (6.5) as well as the index sets D ⊆ {1, . . . , `} and P ⊆ {1, . . . , `}
that contain those indices for which the dual constraint λi = 0 or the primal
constraint Ci·x + Di·y = bi is added to Problem (6.5), respectively. Thus,
we denote a node by its corresponding index-set pair (P,D), which again
corresponds to the problem

min
x,y,λ

c>x x+ c>y y (6.6a)

s.t. Ax+By ≥ a, Cx+Dy ≥ b, (6.6b)

D>λ = d, λ ≥ 0, (6.6c)
Ci·x+Di·y = bi for all i ∈ P, (6.6d)
λi = 0 for all i ∈ D. (6.6e)

This leads to the branch-and-bound method formally stated in Algo-
rithm 2.

Algorithm 2 Branch-and-Bound for LP-LP Bilevel Problems
1: u← +∞ and Q← {(∅, ∅)}.
2: while Q 6= ∅ do
3: Choose any (P,D) ∈ Q and set Q← Q \ {(P,D)}.
4: Solve Problem (6.6) for P and D.
5: if Problem (6.6) for P and D is infeasible then
6: Go to Step 2.
7: end if
8: Let (x̄, ȳ, λ̄) denote the solution of Problem (6.6) for P and D.
9: if c>x x̄+ c>y ȳ ≥ u then

10: Go to Step 2.
11: end if
12: if (x̄, ȳ, λ̄) satisfies the complementarity conditions

λi(Ci·x+Di·y − bi) = 0 for all i ∈ {1, . . . , `} then
13: Set (x∗, y∗, λ∗) ← (x̄, ȳ, λ̄) as well as u ← c>x x

∗ + c>y y
∗ and go to

Step 2.
14: end if
15: Choose any i ∈ {1, . . . , `} with λi(Ci·x + Di·y − bi) > 0 and set

Q← Q ∪ {(P ∪ {i}, D), (P,D ∪ {i})}.
16: end while
17: if u < +∞ then
18: Return the optimal solution (x∗, y∗, λ∗).
19: else
20: Return the statement “The given LP-LP bilevel problem is infeasible.”
21: end if

Let us now analyze this branch-and-bound method. First, we formally
introduce the notion of a relaxation.
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Definition 6.2 (Relaxation). Consider the optimization problem
min{f(x) : x ∈ F}. The optimization problem min{g(x) : x ∈ F ′} is
called a relaxation of the other problem if F ⊆ F ′ and if g(x) ≤ f(x) holds
for all x ∈ F .

The easiest way to obtain a relaxation is to simply delete constraints
from a given set of constraints. This is exactly what we did to derive the
high-point relaxation, which means that the wording is reasonable.

Moreover, we see that Problem (6.6) for given P and D, i.e.,

min
x,y,λ

c>x x+ c>y y

s.t. Ax+By ≥ a, Cx+Dy ≥ b,
D>λ = d, λ ≥ 0,

Ci·x+Di·y = bi for all i ∈ P,
λi = 0 for all i ∈ D,

is a relaxation of the problem

min
x,y,λ

c>x x+ c>y y (6.7a)

s.t. Ax+By ≥ a, Cx+Dy ≥ b, (6.7b)

D>λ = d, λ ≥ 0, (6.7c)
λi(Ci·x+Di·y − bi) = 0 for all i ∈ {1, . . . , `}, (6.7d)
Ci·x+Di·y = bi for all i ∈ P, (6.7e)
λi = 0 for all i ∈ D. (6.7f)

Note that the latter is the KKT reformulation of the LP-LP bilevel problem,
which we extended by the equality constraints corresponding to the sets P
and D.

To prove the correctness of the branch-and-bound method in Algorithm 2,
we have to show that

(a) the bounding step in Step 9 as well as the pruning1 of infeasible nodes
in Step 5 are correct and that

(b) the branching step in Step 15 is correct.

This is done in the following two lemmas.

Lemma 6.3 (Bounding Lemma). Let P,D ⊆ {1, . . . , `} be given. Moreover,
denote the optimal objective function value of the relaxation (6.6) by zrel

and the optimal objective function value of Problem (6.7) by z (if they exist;
otherwise they are set to ∞). Then, it holds

zrel ≤ z.
1“Pruning nodes” is also often called “fathoming nodes”.
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Furthermore, the infeasibility of the relaxation (6.6) implies the infeasibility
of Problem (6.7).

Proof. Both statements immediately follow from the definition of a relaxation
(Definition 6.2).

Lemma 6.4 (Branching Lemma). Let P,D ⊆ {1, . . . , `} be given. Moreover,
let the point (x, y, λ) be feasible for Problem (6.7) for given sets P and D.
Let i ∈ {1, . . . , `}. Then, the point (x, y, λ) is either feasible for Problem (6.7)
for the sets (P ∪ {i}, D) or for Problem (6.7) for the sets (P,D ∪ {i}).

Theorem 6.5 (Correctness Theorem). Suppose that the root-node relax-
ation (6.5) of the KKT reformulation (4.6) is bounded. Then, Algorithm 2
terminates after a finite number of visited nodes with a global optimal solution
of (4.6) or with the correct indication of infeasibility.

Proof. The only thing that is left to prove is that the algorithm terminates
after a finite number of visited nodes. This, however, follows immediately
since we only have a finite number of KKT complementarity conditions to
branch on.

To sum up, we have seen that we can use a tailored branch-and-bound
method to solve LP-LP bilevel problems. In particular, we have seen that it
does not require the choice of any big-M values. Moreover, it is comparably
easy to implement, which is not necessarily true for the Kth-best algorithm;
see Remark 6.1.

Remark 6.6. It is rather easy to realize a branch-and-bound method for
linear bilevel problems in modern mixed-integer linear solvers such as Gurobi
or CPLEX by using so-called special ordered sets of type 1 (SOS1).

A set of non-negative variables x1, . . . , xn is called a special ordered set of
type 1 if there exists exactly one index i ∈ {1, . . . , n} with xi > 0 and xj = 0
for all j 6= i. We denote this property of the set of variables x1, . . . , xn in the
following via

SOS1(x1, . . . , xn).

This property of a subset of variables of a mixed-integer linear optimization
problem can also be communicated to a general-purpose solver such as those
mentioned above.

If we now introduce the non-negative auxiliary variables

si = (Ci·x+Di·y − bi) for i = 1, . . . , `,

we can state the complementarity conditions

(Ci·x+Di·y − bi) = 0 or λi = 0 for i = 1, . . . , `
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equivalently as
SOS1(si, λi) for i = 1, . . . , `.

By doing so, the mixed-integer linear solver takes care of the branching on
these SOS1 conditions.

More information on the usage of SOS1 techniques can be found in Kleinert
and Schmidt (2023).

Exercise 6.2. Consider the linear bilevel problem

min
x,y1,y2

7x− 2y1 + 3y2

s.t. x ≥ 0,

y ∈ S(x),

(6.8)

where S(x) is the set of optimal solutions of the x-parameterized problem

min
y=(y1,y2)

2y1 − y2

s.t. 4x+ y1 + y2 ≤ 3,

2x− 2y1 + 5y2 ≤ 5,

3x− y1 − 2y2 ≤ 1,

y1, y2 ≥ 0.

(6.9)

(i) Find out what the so-called breadth-first search and depth-first search methods
are. What is the difference?

(ii) Determine the KKT reformulation of the bilevel problem (6.8) and (6.9).

(iii) Apply the branch-and-bound method (Algorithm 2) to solve the bilevel prob-
lem (6.8) and (6.9) by hand. Use Gurobi to solve the arising subproblems and
visualize your progress in a search tree. Apply the branch-and-bound method
twice using

(a) the depth-first search strategy,

(b) the breadth-first search strategy

to select the index-set pair (P,D) in Step 3 of the algorithm.

(iv) Compare your results. Which strategy is faster to obtain a feasible solution?
Which strategy is faster to find the optimal solution and to verify optimality?

(v) Verify the solution found in (iii) by using Gurobi to solve the linearized KKT
reformulation of the bilevel problem (6.8) and (6.9) by exploiting SOS1-type
constraints.

6.3 A Penalty Alternating Direction Method for
LP-LP Bilevel Problems

We have seen in the previous chapters that LP-LP bilevel problem are, in
general, hard optimization problems—both in theory and practice. In such
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a situation it can be reasonable to also consider heuristic solution methods,
i.e., methods that do not provably compute a global minimum in finite time.
Instead, such heuristics are usually fast methods without optimality guarantee
for the output. However, one wants to compute at least a feasible point that
is, hopefully, of good quality. In this section, we derive such a heuristic for
LP-LP bilevel problems.

In contrast to the KKT reformulation that we used to set up the branch-
and-bound method in the last section, we now start with the reformulation
based on the strong-duality theorem. This means, we consider Problem (4.16),
i.e.,

min
x,y,λ

c>x x+ c>y y

s.t. Ax+By ≥ a, Cx+Dy ≥ b,
D>λ = d, λ ≥ 0,

d>y ≤ (b− Cx)>λ.

As we have discussed in Section 4.5, the “only” nasty aspect of the latter
reformulation is the strong-duality inequality

d>y ≤ (b− Cx)>λ. (6.10)

This constraint leads to a nonconvex feasible set due to the bilinear product

x>C>λ,

which is nonconvex since both upper-level primal variables x and lower-level
dual variables λ are variables of the reformulation. The key idea now is to
split the reformulated problem (4.16) into two problems that are much easier
to solve since they are split along the just discussed bilinearity.

However, before we do so, we briefly dive into the field of (penalty)
alternating direction methods (ADMs).

6.3.1 Penalty Alternating Direction Methods

We now briefly review the alternating direction method (ADM) and an
extension of this method; the penalty ADM (PADM). In the next section, we
then discuss how these methods can be used to compute a stationary point of
the classic strong-duality based single-level reformulation of the linear bilevel
problem.

We start with discussing general ADMs. To this end, we consider an
optimization problem in the specific form

min
x,y

f(x, y) (6.11a)

s.t. g(x, y) = 0, h(x, y) ≥ 0, (6.11b)
x ∈ X, y ∈ Y. (6.11c)
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Algorithm 3 A Standard Alternating Direction Method
1: Choose initial values (x0, y0) ∈ X × Y .
2: for i = 0, 1, . . . do
3: Compute

xi+1 ∈ arg min
x

{
f(x, yi) : g(x, yi) = 0, h(x, yi) ≥ 0, x ∈ X

}
.

4: Compute

yi+1 ∈ arg min
y

{
f(xi+1, y) : g(xi+1, y) = 0, h(xi+1, y) ≥ 0, y ∈ Y

}
.

5: end for

Here, x ∈ Rn and y ∈ Rm are variable vectors. The feasible set of this
problem is abbreviated by

F := {(x, y) ∈ X × Y : g(x, y) = 0, h(x, y) ≥ 0} ⊆ X × Y.

For discussing the theoretical properties of ADMs, we need the following
assumption.

Assumption 6.7. The objective function f : Rn×Rm → R and the constraint
functions g : Rn × Rm → Rk and h : Rn × Rm → R` are continuous and the
sets X and Y are non-empty and compact.

A standard ADM proceeds as follows. Given an iterate (xi, yi), we first
solve Problem (6.11) for y fixed to yi. Thus, we obtain a new x-iterate xi+1.
We now fix x to this new iterate xi+1, solve Problem (6.11) again, and
obtain yi+1. Repeating these two steps yields the method that is listed in
Algorithm 3.

Under certain mild assumptions, one can show that the ADM of Algo-
rithm 3 converges to a partial minimum.

Definition 6.8 (Partial Minimum). A feasible point (x∗, y∗) ∈ F of Prob-
lem (6.11) is called a partial minimum if

f(x∗, y∗) ≤ f(x, y∗) for all (x, y∗) ∈ F ,
f(x∗, y∗) ≤ f(x∗, y) for all (x∗, y) ∈ F

holds.

The following general convergence result is taken from Gorski et al. (2007).

Theorem 6.9. Let
{

(xi, yi)
}∞
i=0

be a sequence with (xi+1, yi+1) ∈ Θ(xi, yi),
where

Θ(xi, yi) :=
{

(x∗, y∗) : f(x∗, yi) ≤ f(x, yi) for all x ∈ X,

f(x∗, y∗) ≤ f(x∗, y) for all y ∈ Y
}
.
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Suppose that Assumption 6.7 holds and that the solution of the first opti-
mization problem is always unique. Then, every convergent subsequence of{

(xi, yi)
}∞
i=0

converges to a partial minimum. For two limit points z, z′ of
such subsequences, it holds that f(z) = f(z′).

For what follows, we also note that stronger convergence results can be
obtained if stronger assumptions on f and F are made. For later reference,
we state these results as a corollary; see Geißler et al. (2017, 2018), Gorski
et al. (2007), and Wendell and Hurter (1976) for the proofs and more detailed
discussions.

Corollary 6.10. Suppose that the assumptions of Theorem 6.9 are satisfied.
Then, the following holds:

(a) If f is continuously differentiable, then every convergent subsequence of{
(xi, yi)

}∞
i=0

converges to a stationary point of Problem (6.11).

(b) If f is continuously differentiable and if f and F are convex, then every
convergent subsequence of

{
(xi, yi)

}∞
i=0

converges to a global minimum
of Problem (6.11).

Let us comment on the main rationale of the alternating direction method
discussed so far. The considered Problem (6.11) can be seen as a quasi
block-separable problem, where the blocks are given by the variables x and y
as well as their respective feasible sets X and Y . We add the notion “quasi”
here since there still are the constraints g and h that couple the feasible sets
of the two blocks. The main idea of an ADM is to alternatingly solve in the
directions of the blocks separately until the method stagnates.

In practice, it can often be observed that an even stronger decoupling
of Problem (6.11) is favorable (Boyd et al. 2011; Geißler et al. 2015, 2017,
2018). Thus, we now go one step further and relax the coupling constraints g
and h. To this end, we introduce the weighted `1 penalty function

φ1(x, y;µ, ρ) := f(x, y) +
k∑
t=1

µt|gt(x, y)|+
∑̀
t=1

ρt[ht(x, y)]−.

Here, [α]− := max {0,−α} holds and µ and ρ are vectors of penalty param-
eters of size k and `, respectively. The penalty ADM consists of an inner
and an outer loop. In the inner loop, we apply a standard ADM like in
Algorithm 3 to the penalty problem

min
x,y

φ1(x, y;µ, ρ) s.t. x ∈ X, y ∈ Y. (6.12)

If this inner loop iteration terminates with a partial minimum of Prob-
lem (6.12), we check whether the coupling constraints are satisfied. If they
are, we terminate. If not, we increase the penalty parameters and proceed
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Algorithm 4 The `1 Penalty Alternating Direction Method
1: Choose initial values (x0,0, y0,0) ∈ X × Y and initial penalty parame-

ters µ0, ρ0 ≥ 0.
2: for j = 0, 1, . . . do
3: Set i← 0.
4: while (xj,i, yj,i) is not a partial minimum of (6.12) with µ = µj and

ρ = ρj do
5: Compute xj,i+1 ∈ arg minx{φ1(x, yj,i;µj , ρj) : x ∈ X}.
6: Compute yj,i+1 ∈ arg miny{φ1(xj,i+1, y;µj , ρj) : y ∈ Y }.
7: Set i← i+ 1.
8: end while
9: if g(xj,i, yj,i) = 0 and h(xj,i, yj,i) ≥ 0 then

10: Return (xj,i, yj,i).
11: else
12: Choose new penalty parameters µj+1 ≥ µj and ρj+1 ≥ ρj .
13: end if
14: end for

with computing a partial minimum of the new penalty problem in the next
inner loop. This method is formally stated in Algorithm 4. For later reference,
we also state the convergence results for the PADM (Algorithm 4), which
have been derived in Geißler et al. (2017). There, all details and proofs can
be found.

Theorem 6.11. Suppose that Assumption 6.7 holds and that µjt ↗ ∞ for
all t = 1, . . . , k and ρjt ↗∞ for all t = 1, . . . , `. Moreover, let {(xj , yj)}∞j=0

be a sequence of partial minima of (6.12) (for µ = µj and ρ = ρj) generated
by Algorithm 4 with (xj , yj) → (x∗, y∗). Then, there exist weights µ̄, ρ̄ ≥ 0
such that (x∗, y∗) is a partial minimizer of the weighted `1 feasibility measure

χµ̄,ρ̄(x, y) :=

k∑
t=1

µ̄t|gt(x, y)|+
∑̀
t=1

ρ̄t[ht(x, y)]−.

If, in addition, (x∗, y∗) is feasible for the original problem (6.11), the following
holds:

(a) If f is continuous, then (x∗, y∗) is a partial minimum of Problem (6.11).

(b) If f is continuously differentiable, then (x∗, y∗) is a stationary point of
Problem (6.11).

(c) If f is continuously differentiable and if f and F are convex, then
(x∗, y∗) is a global optimum of Problem (6.11).
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6.3.2 Applying the PADM to Linear Bilevel Problems

Now, we apply the PADM to the single-level reformulation (4.16) of the
original LP-LP bilevel problem. As already discussed, the problematic
constraint is the strong-duality inequality (6.10). This is due to two reasons.
On the one hand, it is the only nonlinear constraint and thus the reason for
the nonconvexity of the problem. On the other hand, it is the only constraint
that couples the variable blocks (x, y) and λ. Thus, we relax this constraint
and obtain the penalty problem reformulation

min
x,y,λ

c>x x+ c>x y + ρ
[
b>λ− x>C>λ− d>y

]−
(6.13a)

s.t. Ax+By ≥ a, (6.13b)
Cx+Dy ≥ b, (6.13c)

D>λ = d, (6.13d)
λ ≥ 0. (6.13e)

Moreover, we smoothen the penalty term by exploiting weak duality of the
lower level that is equivalent to that

d>y − b>λ+ x>C>λ ≥ 0

holds for every feasible point of Problem (6.13). Thus,[
b>λ− x>C>λ− d>y

]−
= max{0, d>y−b>λ+x>C>λ} = d>y−b>λ+x>C>λ

holds and we obtain the equivalent penalty problem

min
x,y,λ

c>x x+c>y y+ρ
(
d>y − b>λ+ x>C>λ

)
s.t. (6.13b)–(6.13e), (6.14)

which is a smooth but still nonconvex optimization problem. To be more
specific, Problem (6.14) is a nonconvex quadratic optimization problem. A
closer look also reveals that Problem (6.14) is exactly of the form in (6.12) if
the first block of variables is (x, y) and if the second block of variables is λ.
Thus, the splitting of the feasible set is obtained by identifying2

x ∈ X ←→ Constraints (6.13b), (6.13c), (6.15a)
y ∈ Y ←→ Constraints (6.13d), (6.13e). (6.15b)

Note further that this splitting corresponds to a primal-dual splitting of the
single-level reformulation (4.16). Given this splitting, the first sub-problem

2Note that in (6.15), x and y denote the variable blocks of the general problem formula-
tion (6.11). All other occurrences of x and y in this section stand for the respective upper-
and lower-level variables of the considered bilevel problem.
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that needs to be solved if we apply Algorithm 4 to Problem (6.14) reads

min
x,y

c>x x+ c>y y + ρ
(

(C>λ̄)>x+ d>y
)

(6.16a)

s.t. Ax+By ≥ a, Cx+Dy ≥ b, (6.16b)

where λ̄ is a given constant vector and where we already omitted the constant
objective function term b>λ̄. This problem has the same feasible set as the
classic high-point relaxation of the original LP-LP bilevel problem. However,
the objective function coefficients are modified in dependence of the penalty
parameter ρ, the current dual estimate λ̄, and the lower-level objective
function coefficients d.

The second sub-problem is equivalent to

max
λ

(b− Cx̄)>λ (6.17a)

s.t. D>λ = d, (6.17b)
λ ≥ 0, (6.17c)

which is exactly the dual lower-level problem. Here, three interesting aspects
can be observed. First, the second sub-problem only depends on the upper
level’s primal variables x̄—not on the lower level’s primal variables ȳ. The
reason is that we again omit constant terms in the objective function, i.e.,
c>x x̄ + c>y ȳ + ρd>ȳ. Second, Sub-problem (6.17) does not depend on the
penalty parameter ρ anymore since it only scales the remaining objective
function. Third, the second sub-problem may be unbounded for a given
estimate for x̄. This means that the primal lower-level problem is infeasible
for the upper-level decision x̄. We do not go into the details on how to resolve
this here. Some more details can be found in Kleinert and Schmidt (2021).

By using Corollary 6.10 and Theorem 6.11, we now state two theoretical
results for the PADM (Algorithm 4) applied to Problem (4.16).

Theorem 6.12. Consider the inner loop of Algorithm 4 applied to Prob-
lem (6.14) for a fixed penalty parameter ρ > 0 and let {(xj,i, yj,i, λj,i)}∞i=0 be
the generated sequence of iterates. Moreover, let one of the two sub-problems
(6.16) or (6.17) always have a unique solution. Then, every convergent sub-
sequence of {(xj,i, yj,i, λj,i)}∞i=0 converges to a stationary point of the penalty
problem (6.14).

Proof. The feasible set of Problem (6.14) is a polyhedron and thus convex
and the objective function is continuously differentiable but nonconvex. Thus,
Case (i) of Corollary 6.10 applies.

Regarding the obtained stationary points, two possible situations may
appear. First, the stationary point may have a strong-duality error

χsd(x, y, λ) :=
∣∣∣d>y − b>λ+ x>C>λ

∣∣∣
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of zero, which means that the stationary point is also bilevel feasible. Second,
the stationary point has a non-zero strong-duality error χsd(x, y, λ) > 0 and
is thus not bilevel feasible. The latter case then motivates to proceed with a
larger penalization of the strong-duality term.

Using now Theorem 6.11 implies the following main convergence result.

Theorem 6.13. Suppose that ρj ↗ ∞ holds and let {(xj , yj , λj)}∞j=0 be a
sequence of stationary points of (6.14) (for ρ = ρj) generated by Algorithm 4
applied to Problem (4.16) with (xj , yj , λj) → (x∗, y∗, λ∗) for j → ∞. Then,
(x∗, y∗, λ∗) is a stationary point of the strong-duality error χsd. If, in addition,
(x∗, y∗, λ∗) is bilevel feasible, i.e., the strong-duality error χsd is zero, then
(x∗, y∗, λ∗) is a stationary point of Problem (4.16).

We close the discussion of applying an PADM to linear bilevel problems
with three remarks.

Remark 6.14. Note that Theorem 6.13 “only” makes a statement regarding
stationary points of the single-level reformulation (4.16) and not about the
original bilevel problem. In general, a stationary point of the Problem (4.16)
does not need to be a stationary point of the bilevel problem; see Section 4.3
and Dempe and Dutta (2012) for the equivalent setting of a single-level
reformulation based on KKT conditions of the lower level. Although we thus
do not have any theoretical quality guarantee for the bilevel feasible points
obtained by our method, it is shown in Kleinert and Schmidt (2021) that, in
practice, the quality of the obtained solutions is very good.

Remark 6.15. A crucial assumption of Theorem 6.12 (and that is also
implicitly present in Theorem 6.13) is that one of the two PADM sub-problems
always needs to have a unique solution. In the context of bilevel optimization,
this is strongly connected to the topic of unique lower-level solutions. It is
well known that a bilevel problem can be very ill-behaved if its lower-level
problem does not possess a unique solution for all possible decisions of the
leader. Almost the same situation appears in the previous theorems despite
the fact that dual uniqueness is required instead of primal uniqueness of the
lower level if one considers the uniqueness of the second PADM sub-problem.
Uniqueness of the first PADM sub-problem translates to unique solutions of
the extended high-point relaxation (6.16).

Remark 6.16. The approach described in this section can also be applied to
bilevel problems for which the upper level contains integrality constraints and
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a convex-quadratic objective function, i.e., problems of the form

min
x,y

1

2
x>Hux+ c>x x+

1

2
y>Guy + c>y y (6.18a)

s.t. Ax+By ≥ a, (6.18b)
xi ∈ Z ⊂ Z for all i ∈ I ⊆ {1, . . . , n}, (6.18c)

y ∈ arg min
ȳ

{
d>ȳ : Cx+Dȳ ≥ b

}
, (6.18d)

with symmetric and positive semidefinite matrices Hu and Gu in appropriate
dimensions. This does not affect the second PADM sub-problem at all. How-
ever, the first PADM sub-problem (6.16) is a convex-quadratic problem (QP)
for I = ∅ and a mixed-integer convex-quadratic problem (MIQP) for I 6= ∅.
Solving (MI)QPs to global optimality in every iteration may have significant
impact on the performance of the PADM. For a numerical analysis, we refer
to Kleinert and Schmidt (2021).



7
Mixed-Integer Linear Bilevel

Problems

In this section, we focus on general bilevel mixed-integer linear problems
(MILPs), which are defined as

min
x∈X,y

c>x x+ c>y y (7.1a)

s.t. Ax ≥ a, (7.1b)

y ∈ arg min
ȳ∈Y

{
d>ȳ : Cx+Dȳ ≥ b

}
, (7.1c)

where the vectors cx, cy, d, a, b and matrices A,B,C,D are defined as before.
The sets X and Y specify integrality constraints on a subset of x- and
y-variables, respectively.

The shared constraint set of this bilevel MILP is, as usual, defined as the
set of points (x, y) ∈ X × Y satisfying all constraints of the upper and lower
level, i.e.,

Ω := {(x, y) ∈ X × Y : Ax ≥ a, Cx+Dy ≥ b} .
The bilevel-feasible set of this bilevel MILP consists of all points (x, y) ∈ Ω
from the shared constraint set for which for a given x, the vector y is an
optimal solution of the lower-level problem. This means,

d>y ≤ ϕ(x)

holds. Here, ϕ(x) again is the optimal value of the lower-level problem, which
is defined as

ϕ(x) = min
y∈Y

{
d>y : Dy ≥ b− Cx

}
. (7.2)

The optimal-value function ϕ(x) thus corresponds to a parametric MILP in
this case. Hence, it is nonconvex, not continuous, and in general very difficult
to describe.

82
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Remark 7.1 (Hardness of bilevel MILPs). In contrast to bilevel LPs, it is
now NP-hard to check whether a given point (x, y) is a feasible solution of
the bilevel MILP. Jeroslow (1985) showed that k-level discrete optimization
problems are Σp

k-hard, even if the variables are binary and all constraints
are linear. This means that, e.g., a discrete bilevel optimization problem can
be solved in nondeterministic polynomial time, provided that there exists an
oracle that solves problems in constant time that are in NP.

The inducible region of the bilevel MILP is contained in the shared
constraint set Ω and, therefore, minimizing the objective function of the
upper level over the shared constraint set Ω (which represents another MILP)
provides a valid lower bound for the bilevel MILP. Consequently, solving
the LP-relaxation of the high-point relaxation provides another (and usually
much weaker) lower bound of the bilevel MILP.

Moore and Bard (1990) initiated the studies of bilevel optimization prob-
lems involving discrete variables. Their illustrative example (see Figure 7.1
in Section 7.1) is frequently used in the literature to highlight the major
differences and pitfalls arising in discrete bilevel optimization. Since then,
studies have been carried out considering only special cases, e.g., by assuming
binary variables at both levels or by considering purely linear problems at
the lower level. Exact MILP-based procedures for the general case in which
both the upper and the lower level are MILPs have been studied mainly in
the last decade.

7.1 The Example by Moore and Bard

The following example is provided by Moore and Bard (1990). We consider
the discrete bilevel problem

min
x∈Z,y∈Z

{
−x− 10y : y ∈ arg min

ȳ∈Z
{ȳ : (x, ȳ) ∈ P}

}
,

where P is a polytope defined by

−25x+ 20ȳ ≤ 30, x+ 2ȳ ≤ 10, 2x− ȳ ≤ 15, 2x+ 10ȳ ≥ 15.

The high-point relaxation of this problem is an integer linear problem, whose
feasible region is depicted in Figure 7.1. The unique optimal solution for
this example is the point (x∗, y∗) = (2, 2) with optimal objective function
value −22, which is in the interior of the convex hull of the high-point
relaxation. This is in contrast to bilevel LPs, whose optimal solution is
always a vertex of the shared constraint set (Theorem 5.10). The example
also shows that relaxing the integrality constraints does neither provide a
lower nor an upper bound for the bilevel MILP. We will discuss this in more
detail later when we come back to this example to discuss how to derive a
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Figure 7.1: Example of a bilevel MILP (taken from Moore and Bard (1990)):
Discrete points are feasible for the high-point relaxation. The point (2, 4) is
the optimal solution of the high-point relaxation and (2, 2) is the optimal
solution of the bilevel MILP. Triangles represent bilevel feasible solutions
and dashed lines represent the feasible region of the bilevel LP in which the
integrality constraints on the upper- and lower-level variables are relaxed.

branch-and-bound method for solving mixed-integer linear bilevel problems.
In Figure 7.1, dashed lines correspond to the inducible region of the problem
in which the integrality constraints for both the upper-level and the lower-
level variables are relaxed. In general, this set does not even have to contain
a single bilevel feasible point.

7.2 Attainability of Optimal Solutions

In Vicente, Savard, et al. (1996), the authors consider three cases of bilevel
MILPs and study the following different assumptions:

(i) only upper-level variables are discrete,

(ii) all upper- and lower-level variables are discrete,

(iii) only lower-level variables can take discrete values.

Assuming that all discrete variables are bounded and that the bilevel-feasible
set is non-empty, they show that for Case (i) and (ii), an optimal solution
always exists and that (i) can be reduced to a linear bilevel program, whereas
(ii) can be “reduced” to a linear trilevel problem. However, for Case (iii),
Moore and Bard (1990) and also Vicente, Savard, et al. (1996) provide
examples that demonstrate that the bilevel feasible region may not be closed
and, hence, the optimal solution may not be attainable. The following simpler
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Figure 7.2: The attainability counterexample by Köppe et al. (2010)

example (see Figure 7.2) is due to Köppe et al. (2010):

inf
0≤x≤1, y

{
x− y : y ∈ arg min

ȳ∈Z
{ȳ : ȳ ≥ x, 0 ≤ ȳ ≤ 1}

}
,

which is equivalent to

inf
x
{x− dxe : 0 ≤ x ≤ 1} .

In this problem, the infimum is −1, which is never attained. In the existing
literature on bilevel MILPs, it is therefore frequently assumed that the linking
variables are discrete. We recall that non-linking upper-level variables can
be moved to the lower level (Bolusani and Ralphs 2020; Tahernejad et al.
2020), which effectively translates the latter assumption into “all upper-level
variables are discrete”.

7.3 A Branch-and-Bound Method for Mixed-Integer
Bilevel Problems

We now discuss the first branch-and-bound method for solving mixed-integer
linear bilevel problems. This algorithm has been published in the seminal
paper by Moore and Bard (1990).

To this end, we consider the mixed-integer linear bilevel problem

min
x∈X, y

c>x x+ c>y y (7.3a)

s.t. Ax ≥ a, (7.3b)

y ∈ arg min
ȳ∈Y

{
d>ȳ : Cx+Dȳ ≥ b

}
. (7.3c)

In what follows, the variables x and y are split in x = (xCx , xIx) and y =
(yCy , yIy). Here, xCx and yCy are the subsets of upper- as well as lower-
level variables, respectively, that are continuous-valued and xIx and yIy are
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the subsets of upper- as well as lower-level variables, respectively, that are
integer-valued. This can be encoded using the sets X and Y via

X := {x = (xCx , xIx) : xIx ∈ ZnxI } , Y :=
{
y = (yCy , yIy) : yIy ∈ ZnyI

}
.

Thus, nxI and nyI denote the number of integer variables in the upper- as
well as the lower-level problem, respectively.

For the remainder of this section, we make the following assumptions.

Assumption 7.2. The shared constraint set Ω is non-empty and compact.

The goal now is to design a branch-and-bound method for problems of
the type given in (7.3). To this end, let us first recap the main fathoming
rules that we used in the classic branch-and-bound method (Algorithm 2) for
linear bilevel problems. There, we fathomed nodes according to the following
three rules:

Rule 1 The problem at the current node is infeasible.

Rule 2 The problem at the current node is feasible and has a solution
with an objective function value that is not smaller than the current
incumbent, i.e., it is not smaller than the objective function value of
the best feasible point found so far.

Rule 3 The problem at the current node is feasible w.r.t. all complementarity
constraints.

As it is done in classic branch-and-bound for single-level mixed-integer linear
problems, we now do not branch on complementarity constraints anymore
but branch on integer variables. Thus, Rule 3 translates into . . .

Rule 3 The problem at the current node is feasible w.r.t. all integrality
constraints.

It turns out that only Rule 1 can be used in its original form as a
fathoming rule within a branch-and-bound method for mixed-integer linear
bilevel problems. Rule 2 can be adapted (which we will do later on) and
Rule 3 cannot be applied at all in the context of Problem (7.3).

To see this, we revisit the example studied in Section 7.1.

Example 7.3 (The example by Moore and Bard—revisited). We have
seen that the bilevel solution is given by the point (x∗, y∗) = (2, 2), which
leads to the optimal objective function value F (x∗, y∗) = −22.1 The optimal
solution of the bilevel problem in which we relax all integrality conditions is the
point (x, y) = (8, 1). Note that this point is both integer- and bilevel-feasible.
The corresponding objective function value, however, is F (x, y) = −18, which
is worse than the optimal objective function value.

1We use the more general notation F for the upper-level objective function from here
on again for the ease of presentation.
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This leads to the following two observations.

Observation 7.4. The solution of the continuous “relaxation” of the mixed-
integer linear bilevel problem does not provide a valid lower bound on the
solution of the original problem. Hence, neglecting the integrality constraints
of a mixed-integer linear bilevel problem does not lead to a relaxation.

Due to the last observation, we do not use the wording “continuous
relaxation” anymore but will use “continuous counterpart” instead.

Observation 7.5. Solutions of the continuous counterpart of the mixed-
integer linear bilevel problem that are feasible for the original bilevel problem
cannot, in general, be fathomed.

These two observations already render Rule 2 and Rule 3 invalid in general.
The following example, which is also taken from Moore and Bard (1990),
shows what goes wrong if Rule 3 is applied although it is invalid.

Example 7.6 (See Example 2 in Moore and Bard (1990))). We consider the
integer linear bilevel problem

max
x,y

F (x, y) = −x− 2y

s.t. y ∈ S(x),

where S(x) denotes the set of optimal solutions of the x-parameterized integer
linear problem

max
y

f(x, y) = y

s.t. − x+ 2.5y ≤ 3.75,

x+ 2.5y ≥ 3.75,

2.5x+ y ≤ 8.75,

x, y ≥ 0,

x, y ∈ Z.

An illustration of the problem is given in Figure 7.3. The shared constraint
set contains three integer-feasible points: (2, 1), (2, 2), and (3, 1). If the leader
chooses x = 2, the follower chooses y = 2, leading to F = −6. If the leader
decides for x = 3, the follower optimally reacts with y = 1, leading to an
objective function value of F = −5. Thus, (x∗, y∗) = (3, 1) is the optimal
solution with F ∗ = −5.

Let us now consider what a classic depth-first search branch-and-bound
method would look like if we (as usual) branch on fractional integer variables
and if relaxations are obtained by relaxing integrality restrictions. A possible
branch-and-bound tree is given in Figure 7.4. The root node’s relaxation
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Figure 7.3: The bilevel problem of Example 7.6; taken from Moore and Bard
(1990)

0(0, 1.5)

1(1.25, 2)

2(2, 2.3)

3 4 (2, 2)

F = −6

5

6 (1.25, 1)

7(3.45, 0.12)

8 9 (2, 1)∗
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F = −5

11

y ≥ 2

x ≥ 2

y ≥ 3 y ≤ 2

x ≤ 1

y ≤ 1

x ≤ 1x ≥ 2

x ≥ 4 x ≤ 3

x ≥ 3

Figure 7.4: A branch-and-bound tree for Example 7.6; taken and adapted
from Bard (1998). The tuples of the form (x, y) at the nodes denote the
solutions of the problems at the nodes. The solution marked with a star at
node 9 is integer-feasible but not bilevel-feasible.
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(node 0) has the solution (x, y) = (0, 1.5) with F = −3. Adding then the
constraint y ≥ 2 leads to node 1, which has the solution (x, y) = (1.25, 2)
with F = −5.25. Further branching, fathoming due to infeasibility, and
backtracking2 leads us to arrive at node 9, which has the solution (x, y) = (2, 1)
with F = −4. The point lies in the shared constraint set and is integer-feasible.
However, it is not bilevel feasible since y = 1 is not the optimal reaction of
the follower to x = 2. Moreover, the objective function value at node 9 is
F = −4 and this is not a valid lower bound. If we apply Rule 3 here, we
would fathom this node and will not find the optimal solution (x, y) = (3, 1).
Instead, to find the optimal solution, one has to restrict the variable x further.
One can also show that selecting y as the branching variable in node 7 does
not help for finding the optimal solution.

Thus, we can make the third main observation.

Observation 7.7. An integer-feasible solution found at a node that contains
branching restrictions on the follower variables cannot, in general, be used to
fathom this node.

For what follows, we need some more notation. First, we use Ix and Iy
to denote the index sets of integer variables of the leader and the follower,
respectively. Moreover, let Ux and Uy be the |Ix|- as well as |Iy|-dimensional
vectors of upper bounds for the integer variables of the leader and of the
follower, respectively. If an integer variable is not bounded from above in the
original problem, the corresponding entry in Ux or Uy is set to ∞. Moreover,
we assume that the initial lower bounds of all integers variables are 0, which
is (without loss of generality) and which can be encoded using the sets X
and Y of the original problem formulation.

The problem at node k of the branch-and-bound tree is defined by the
variable bound sets

Xk :=
{

(xk, x̄k) : 0 ≤ xkj ≤ xj ≤ x̄kj ≤ Uxj for j ∈ Ix
}
,

Yk :=
{

(yk, ȳk) : 0 ≤ yk
j
≤ yj ≤ ȳkj ≤ U

y
j for j ∈ Iy

}
.

The notation Y0 is used to indicate that no other bounds than the original
ones are imposed on the follower’s integer variables. Note further that for
a node k along the path from the root to node l, the problem associated to
node l is derived from the problem of the node k by additionally imposing
bounds on the integer variables, i.e.,

Xl ⊆ Xk, Yl ⊆ Yk

holds, which means that

xk ≤ xl, yk ≤ yl

2“Backtracking” happens in a branch-and-bound method if, after solving a node’s
problem, no new sub-problems are generated.
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as well as
x̄k ≥ x̄l, ȳk ≥ ȳl

holds. Furthermore, the sets

Rxk :=
{
j ∈ Ix : xkj > 0 or x̄kj < Uxj

}
and

Ryk :=
{
j ∈ Iy : yk

j
> 0 or ȳkj < Uyj

}
denote that sets of integer variables on which additional bounds are imposed
(due to branching).

Finally, for later reference we define the problem

min
x≥0, y

c>x x+ c>y y (7.4a)

s.t. Ax ≥ a, (7.4b)

bounds in Xk, i.e., xkj ≤ xj ≤ x̄kj for j ∈ Ix, (7.4c)

y ∈ Sk(x) (7.4d)

with the lower-level problem

min
y≥0

d>y

s.t. Cx+Dy ≥ b,
bounds in Yk, i.e., ykj ≤ yj ≤ ȳ

k
j for j ∈ Iy

as the bilevel problem at node k in which the integrality constraints are
relaxed. Its optimal objective function value is denoted with F cont

k . The
corresponding high-point relaxation is given by

min
x≥0, y≥0

c>x x+ c>y y (7.5a)

s.t. Ax ≥ a, (7.5b)

bounds in Xk, i.e., xkj ≤ xj ≤ x̄kj for j ∈ Ix, (7.5c)

Cx+Dy ≥ b, (7.5d)

bounds in Yk, i.e., ykj ≤ yj ≤ ȳ
k
j for j ∈ Iy. (7.5e)

Its optimal objective function value is denoted with F hpr
k .

With the observations made so far and the previously collected notation,
we are now able to state and prove some bounding theorems.

Theorem 7.8 (See Theorem 1 in Moore and Bard (1990)). Consider the
sub-problem at node k with the bounds given by Xk and Y0. Let (xk, yk)
be the global optimal solution of the continuous high-point relaxation (7.5).
Then, F hpr

k = F (xk, yk) is a lower bound on the global optimal solution of the
mixed-integer linear bilevel problem at node k.
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Proof. Consider any successor node l of node k in the branch-and-bound tree,
i.e., Xl ⊆ Xk and Yl ⊆ Y0 holds. Let (xl, yl) be a global optimal solution
of the mixed-integer linear bilevel problem associated with node l. Assume
now that F (xl, yl) < F hpr

k holds. This directly leads to a contradiction since
(xl, yl) is also a feasible point of the continuous high-point relaxation at
node k.

The last theorem states the following. We can use the bound obtained
by the continuous high-point relaxation of the mixed-integer linear bilevel
problem at node k to fathom this node if no further restriction (compared to
the original ones) have been imposed by branching on the integer variables
of the follower, i.e., if Ryk = ∅.

The next theorem indicates a situation in which the value F hpr
k can be

used as a valid lower bound if Ryk 6= ∅.

Theorem 7.9. Consider the sub-problem at node k with the bounds given
by Xk and Yk. Let (xk, yk) be the global optimal solution of the continuous
high-point relaxation (7.5). Then, F hpr

k = F (xk, yk) is a lower bound on the
global optimal solution of the mixed-integer linear bilevel problem at node k if
yk
j
< ykj < ȳkj holds for all j ∈ Ryk.

This means that the solution of the continuous high-point relaxation
of the mixed-integer linear bilevel problem at node k can serve as a valid
lower bound if the optimal integer variables of the follower at node k are not
active w.r.t. their bounds imposed due to branching. Note that this is, of
course, a rather strong condition, which is, for instance, violated at node 9 in
Example 7.6.

Proof. Let again (xl, yl) be the solution of the mixed-integer linear bilevel
problem associated with node l, which is a successor node of node k, i.e.,
Xl ⊆ Xk and Yl ⊆ Yk holds. Assume again that F (xl, yl) < F hpr

k holds. This
directly implies that (xl, yl) cannot be feasible for the continuous high-point
relaxation of the mixed-integer linear bilevel problem at node k. We consider
the points (x′, y′) of the convex combination of (xl, yl) and (xk, yk), i.e.,

(x′, y′) = λ(xk, yk) + (1− λ)(xl, yl)

for some λ ∈ [0, 1]. It holds

F (x′, y′) = λF (xk, yk) + (1− λ)F (xl, yl)

since F is linear. Using F (xl, yl) < F hpr
k we obtain

F (x′, y′) = λF (xk, yk) + (1− λ)F (xl, yl)

< λF (xk, yk) + (1− λ)F (xk, yk)

= F (xk, yk)
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for λ > 0. This, however, contradicts the optimality of (xk, yk) since for
sufficiently small λ, (x′, y′) is feasible for the continuous high-point relaxation
of the mixed-integer linear bilevel problem at node k.

As already stated, the assumptions of the last theorem are rather strict.
The next corollary gives “a bit” of an improvement.

Corollary 7.10. Consider the sub-problem at node k with the bounds given
by Xk and Yk. Let (xk, yk) be the global optimal solution of the continuous
high-point relaxation (7.5). Then, F hpr

k = F (xk, yk) is a lower bound on the
global optimal solution of the mixed-integer linear bilevel problem at node k if
all restrictions in Yk are relaxed.

Proof. Relaxing all restrictions in Yk is equivalent to replacing Yk with Y0

and, thus, Theorem 7.8 applies.

The theoretical results so far reveal that the bounding step for mixed-
integer linear bilevel problems need to be restricted significantly when com-
pared with the bounding step for single-level mixed-integer problems or for
linear bilevel problems. However, no stronger bounding schemes are known
and, due to the observations and examples above, can also not be expected.

Taking all the insights together leads to the branch-and-bound method
for mixed-integer linear bilevel problems as stated in Algorithm 5.

Due to the construction of the algorithm and the insights we obtained
before, we get the following results.

Proposition 7.11. If all follower variables are integer, Algorithm 5 finds
the global optimal solution of the mixed-integer linear bilevel problem (7.3).

Proposition 7.12. Assume that an optimum exists for the mixed-integer
linear bilevel problem (7.3) and that all follower variables are continuous. If
the fathoming rules 2 and 3 are used, Algorithm 5 always terminates with the
global optimal solution.
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Algorithm 5 Branch-and-Bound for MILP-MILP Bilevel Problems
1: Set k = 0 and initialize Xk and Yk with the bounds of the original

mixed-integer linear bilevel problem. Set Rxk = ∅, Ryk = ∅, and F ∗ =∞.
2: Solve the continuous high-point relaxation (7.5). If this problem is

infeasible go to Step 7. Otherwise, let F hpr
k be the optimal objective

function value. If F hpr
k ≥ F ∗ holds, go to Step 7 as well.

3: Solve the continuous counterpart (7.4). If this problem is infeasible, go
to Step 7. Otherwise, denote the solution as (xk, yk).

4: If (xk, yk) is integer-feasible, go to Step 5. Otherwise, select a fractional
leader variable index j ∈ Ix or a fractional follower variable index j ∈ Iy
and place a new bound on the selected variable. Set k ← k + 1 and
update Xk or Yk as well as Rxk or Ryk accordingly. Go to Step 2.

5: Fix x = xk and solve the follower’s problem to obtain the overall
bilevel feasible point (xk, ŷk). Compute F (xk, ŷk) and update F ∗ =
min{F ∗, F (xk, ŷk)}.

6: If xkj = x̄kj for all j ∈ Ix and if yk
j

= ȳkj for all j ∈ Iy holds, go to Step 7.
Otherwise, select an integer variable j ∈ Ix with xkj < x̄kj or a j ∈ Iy with
yk
j
< ȳkj and place a new bound on it. Set k ← k + 1 and update Xk

or Yk as well as Rxk or Ryk accordingly. Go to Step 2.
7: If no open node exists, go to Step 8. Otherwise, branch on the lastly

added open node, set k ← k + 1, and update Xk or Yk as well as Rxk or
Ryk accordingly. Go to Step 2.

8: If F ∗ =∞, the original mixed-integer linear bilevel problem is infeasible.
Otherwise, F ∗ is the global optimal objective function value.



8
What You Should Know Now!

1. In what situations do bilevel problems occur in general?

2. What is a pricing problem?

3. What is the toll setting problem?

4. In what situations do bilevel problems occur in energy markets?

5. What is the relation between bilevel models and critical infrastructure
defense?

6. What are interdiction problems about?

7. How is a bilevel optimization problem defined formally?

8. What are coupling constraints?

9. What are linking variables?

10. What is the optimal-value function?

11. How does the optimal-value-function reformulation look like?

12. Why do we have to repeat the lower-level constraints in the optimal-
value-function reformulation although they are also part of the right-
hand side of the optimal-value function constraint?

13. What is the shared constraint set?

14. What is the bilevel feasible set/the inducible region?

15. What is the high-point relaxation? Is it really a relaxation? If yes, a
relaxation of what and why?

94
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16. How can a pricing problem by formally modeled as a bilevel optimization
problem?

17. How can we formally model the knapsack interdiction problem as a
bilevel problem?

18. What nasty properties do we already encounter if we consider the easiest
case of bilevel problems, i.e., LP-LP bilevel problems?

19. What is an LP in standard form?

20. What is the feasible set?

21. When do we call the LP bounded?

22. What do you know about the solvability of LPs?

23. What is the dual LP?

24. What is the statement of the weak duality theorem of linear optimiza-
tion?

25. What is the statement of the strong duality theorem of linear optimiza-
tion?

26. What is the statement of the complementarity slackness theorem of
linear optimization?

27. How can we use the strong duality theorem to re-write an LP as a
system of equalities and inequalities?

28. How can we use the complementarity slackness theorem to re-write an
LP as a system of equalities and inequalities?

29. What is the “standard form” of an NLP?

30. How do we define a local minimizer?

31. How do we define a strict local minimizer?

32. How do we define a global minimizer?

33. How do we define a strict global minimizer?

34. What are active inequality constraints?

35. What is the ACQ?

36. What is the Lagrangian function of an NLP?

37. How do the KKT conditions look like?
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38. What is a Lagrangian multiplier?

39. What is the relation between Lagrangian multipliers and dual variables?

40. What is the statement of the KKT theorem?

41. What is the relation between the KKT theorem and the complementarity
slackness theorem?

42. What is the LICQ?

43. What does the KKT theorem under LICQ say?

44. What is a convex optimization problem?

45. What is the nice thing about convex optimization problems? Why are
they so special?

46. What specific properties do equality and inequality constraints need to
have so that the resulting feasible set is convex?

47. How is the CQ of Slater defined?

48. What is the geometric meaning of Slater’s CQ?

49. How does the KKT theorem for convex problems look like?

50. What do you know about the relationship between KKT points and
global minimizers in the case of convex optimization problems?

51. What is an MPCC?

52. Why is this different from “usual” NLPs?

53. What is the relation between MPCCs and optimality conditions of
optimization problems?

54. How do we define an optimistic bilevel problem?

55. How do we define a pessimistic bilevel problem without coupling con-
straints?

56. Why do we need to distinguish between the optimistic and the pes-
simistic solution at all?

57. How do we define a pessimistic bilevel problem with coupling con-
straints?

58. Can you illustrate the differences between these concepts using an
example?
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59. What is nice about uniquely defined lower-level solutions?

60. What is a local minimum of a bilevel problem?

61. What is a global minimum of a bilevel problem?

62. How many single-level reformulations do you know?

63. How does the single-level reformulation using the optimal-value function
look like?

64. What is the problem (in general) with the single-level reformulation
using the optimal-value function?

65. How does an LP-LP bilevel problem look like?

66. Why did we omit the linear term in x in the lower-level objective
function of the LP-LP bilevel problem?

67. Can you derive the KKT reformulation of the LP-LP bilevel problem?

68. What makes this KKT reformulation hard to solve?

69. How do we define Slater’s CQ for the lower-level problem?

70. What is the relation between the global optimal solutions of the bilevel
problem with a convex follower problem and the corresponding KKT
reformulations? What are the assumptions that are required?

71. What is the relation between the local optimal solutions of the bilevel
problem with a convex follower problem and the corresponding KKT
reformulation?

72. Is the KKT reformulation of an LP-LP bilevel problem an LP again?

73. Which ones are the nonlinear constraints of the KKT reformulation of
an LP-LP bilevel problem? Can we linearize these nonlinear constraints?
If yes, how? What is the price that we have to pay for it?

74. What is the problem with the big-Ms?

75. How does the strong-duality-based single-level reformulation of an
LP-LP bilevel problem look like? How is it derived?

76. What makes this strong-duality-based single-level reformulation hard
to solve?

77. Why can’t we linearize the nonlinearities of the strong-duality-based
single-level reformulation similar to the case of the KKT reformulation?
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78. What is the relation between the strong-duality-based single-level refor-
mulation and the KKT reformulation of an LP-LP bilevel problem?

79. What is the IIC property?

80. Does the IIC property hold for bilevel optimization problems?

81. What do you know about the geometrical properties of LP-LP bilevel
problems?

82. To what points can we restrict our search for optimal solutions of an
LP-LP bilevel problem? What role does the high-point relaxation play
here?

83. What do you know about the relation of LP-LP bilevel problems and
single-level mixed-integer linear problems? What ingredient does your
LP-LP bilevel problem need to have to establish this relation?

84. What is the main idea behind the Kth-best algorithm?

85. How is the Kth-best algorithm formally defined?

86. What are the crucial parts of the Kth-best algorithm?

87. What is the main idea behind the branch-and-bound method for LP-LP
bilevel problems? What do we branch on and why?

88. How is the branch-and-bound method for LP-LP bilevel problems stated
formally?

89. What is a relaxation?

90. What is the claim of the bounding lemma?

91. What is the claim of the branching lemma?

92. What theoretical statement do you know about the branch-and-bound
method for LP-LP bilevel problems?

93. What is an alternating direction method (ADM)?

94. What is a partial minimum?

95. What is the general convergence result for ADMs and what assumptions
are required?

96. What can we gain if we impose stronger assumptions?

97. What is the idea to come from ADM to the penalty ADM?

98. What is the convergence result for the PADM?
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99. How do we apply PADM to LP-LP bilevel problems and why do we do
it exactly like this?

100. What is the theoretical result that we get for LP-LP bilevel problems?

101. Can you state the general form of a mixed-integer linear bilevel problem?

102. What do you know about the hardness of these problems?

103. What are the insights from the example by Moore and Bard from 1990?

104. What do you know about the attainability of solutions for mixed-integer
linear bilevel problems?

105. What branch-and-bound fathoming rules can we carry over from MILP
to mixed-integer linear bilevel problems?

106. What is wrong with those that we cannot carry over (directly)?

107. How does the branch-and-bound method for mixed-integer linear bilevel
problems by Moore and Bard work?

108. What are the theoretical results about bounding and about the entire
algorithm that you know?
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CPLEX, 72
Gurobi, 72

ACQ, 27
Active inequality constraints, 27
ADM, 74
Alternating direction methods, 73
Attainability, 84

Big-M , 50
Bilevel feasible set, 14
Bilevel MILP, 82
Bilevel optimization problem, 13

discrete, 12
mixed-integer linear, 82

Bounding Lemma, 71
Branch-and-Bound, 68, 85

Linear bilevel problems, 68
Mixed-integer linear bilevel prob-

lems, 85
Branching Lemma, 72

Complementarity slackness, 24
Constraint qualification

Abadie, 27
ACQ, 27
LICQ, 28
linear independence, 28
Mangasarian–Fromowitz, 41
Slater’s, 29

Convex optimization, 29
Coupling constraints, 13, 76
Critical infrastructure defense, 12

Dual problem, 24

Duality theorem
strong, 24
weak, 24

Duality theorem, 24

Energy market modeling, 12
Extremal set, 62
Extreme point, 62, 67

Fathoming rules, 71, 86
Feasible point, 23

strictly, 29
Follower, 11

problem, 13

Graph of the solution set mapping, 37

Hardness, 64, 83
Hierarchical optimization problems,

10, 13
High-point relaxation, 15
HPR, 15

IIC property, 57
Incumbent, 86
Independence of irrelevant con-

straints, 57
Inducible region, 14
Interdiction problems, 12

KERNEL, 64
KKT, 27

conditions, 28
point, 28
reformulation, 40, 42
theorem
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ACQ, 28
LICQ, 28
Slater, 30

Knapsack, 16

Lagrangian
function, 27
multipliers, 28

Leader, 10
problem, 13

LICQ, 28
Linear optimization, 23
Linking variables, 13
Lower-level problem, 13

Mathematical program with comple-
mentarity constraints, 31

MFCQ, 41
MILP reformulation, 49
Min-max-problems, 16
Minimizer

global, 26
local, 26
strict global, 26
strict local, 26

MPCC, 31
Multilevel optimization problem, 18

Nonlinear optimization, 26

Optimal solution
global, 37
local, 37

Optimal-value function, 14
Optimal-value-function reformulation,

39
Optimality conditions, 23
Optimistic solution, 36

PADM, 74, 77
Partial minimum, 75
Penalty function, 76
Penalty method, 73
Pessimistic solution, 36
Player, 15

Polyhedral point-to-set mapping, 62
Pricing, 10, 15
Pruning rules, 71, 86

Rational reaction set, 13, 36
Relaxation, 71

Shared constraint set, 14, 82
Shortest path, 12
Single-leader multi-follower, 11
Single-leader single-follower, 11
Single-level reformulation, 39
Slater’s constraint qualification, 40,

43
SOS1, 72
Special ordered sets of type1, 72

Theorem of Weierstraß, 27
Toll setting, 11

Upper-level problem, 13

Value-function reformulation, 39
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