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Abstract

Semidefinite programs (SDPs) can be solved in polynomial time by interior point
methods. However, when the dimension of the problem gets large, interior point methods
become impractical both in terms of computational time and memory requirements. First
order methods, such as Alternating Direction Methods of Multipliers (ADMMs), turned
out to be suitable algorithms to deal with large scale SDPs and gained growing attention
during the past decade. In this paper, we focus on an ADMM designed for SDPs in stan-
dard form and extend it to deal with inequalities when solving SDPs in general form. This
allows to handle SDP relaxations of classical combinatorial problems such as the graph
coloring problem and the maximum clique problem, that we consider in our extensive nu-
merical experience. The numerical results show the comparison of the method proposed
equipped with a post-processing procedure with the state-of-the-art solver SDPNAL+ [1].
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1 Introduction

Interest on semidefinite programming has considerably grown during the last two decades
and this is partly due to the fact that many practical problems in operations research and
combinatorial optimization can be modeled or approximated by semidefinite programs [2].
It is the purpose of the present paper to focus on the use of augmented Lagrangian meth-
ods for dealing with semidefinite programming relaxations of two well-known combinatorial
problems: the graph coloring problem and the maximum clique problem. Augmented La-
grangian methods are known to be an alternative to interior point methods and currently
represent the most popular first-order algorithms used to handle large scale semidefinite pro-
grams [3, 4, 5, 6]. Alternating direction methods of multipliers (ADMMs), which are a variant
of augmented Lagrangian methods, gained growing attention in the last years [7, 1, 8, 9] and
their success comes from the fact that as first-order methods avoid computing, storing and
factorizing large Hessian matrices and are able to scale to much larger problems than in-
terior point methods. This of course at some cost in accuracy, that should be avoided in
case the semidefinite programming problem addressed is the relaxation of a combinatorial
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problem and one aims at obtaining a valid bound on its optimal solution. In order to over-
come this issue, post-processing procedures for ADMMs have been recently developed (see
e.g. [10, 11, 12]). In this paper, we compare the performance of an ADMM equipped with a
post-processing procedure with SDPNAL+ [1], the state-of-the art solver for large scale SDPs.
SDPNAL+ combines an inexact symmetric Gauss-Seidel based semi-proximal ADMM with
a semismooth Newton-Conjugate Gradient method and has been awarded with the Beale-
Orchard-Hays Prize in 2018. Our study is motivated by the need of solvers for large scale
SDPs, able to deal with inequality constraints, in particular when addressing SDP relaxations
of combinatorial problems. This need is further demonstrated by similar studies in this re-
spect, where SDP relaxations of the graph partitioning problem are solved [12]. We present
numerical experiments on randomly generated instances and on instances from the SDP re-
laxations of the maximum clique problem and the graph coloring problem. Our aim is that of
showing that even an inaccurate dual solution, obtained at a generic iteration of our ADMM,
can represent a good and fast recovered bound on the optimal solution of the combinatorial
problems considered.

1.1 Notation and outline

Let Sn be the set of n-by-n symmetric matrices, S+
n ⊂ Sn be the set of positive semidefinite

matrices and S−n ⊂ Sn be the set of negative semidefinite matrices. In the following, we
denote by 〈X,Y 〉 = trace(XY ) the standard inner product in Sn. Whenever a norm is used,
we consider the Frobenius norm in case of matrices and the Euclidean norm in case of vectors.
Let v ∈ Rn, we denote by Diag(v) the diagonal matrix having v on the main diagonal. The
vector ei is defined as the i-th vector of the standard basis in Rn. Let S ∈ Sn. We denote
the projection of S onto the positive semidefinite and negative semidefinite cone by (S)+

and (S)−, respectively. Moreover we denote by λ(S) the vector of the eigenvalues of S and
by λmin(S) and λmax(S) the smallest and largest eigenvalue of S, respectively. With 0n we
denote the all-zeros column vector of size n.

The paper is organized as follows. In Section 2, we present the ADMM algorithm ADAL [5,
6, 8] for solving SDPs in standard form. We use this method to handle problems in general
form and we detail how to deal with inequalities, avoiding the storage of the full matrices.
We also discuss how to recover a valid dual bound on the optimal primal value, starting from
an approximated solution. Some SDP relaxations of the maximum clique problem and of the
graph coloring problem are reported in section 3. Our numerical experience is presented in
section 4 and some conclusions are drawn in section 5.

2 An ADMM method for SDPs in general form

We focus on SDPs in general form:

min 〈C,X〉
s.t. 〈Ai, X〉 ≤ bi, ∀i = 1, . . . , l

〈Aj , X〉 = bj , ∀j = l + 1, . . . ,m

X ∈ S+
n

(1)

where C ∈ Sn, Ai ∈ Sn, i = 1, . . . ,m + l and b ∈ Rm+l. In order to deal with problem (1) a
standard way is to add slack variables si ≥ 0, i = 1, . . . , l and expand the matrix variable X
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to X̄ ∈ Sn+l:

X̄ :=

(
X 0n,l
0l,n Diag(s)

)
.

Recall that if B is a diagonal matrix, the constraint B � 0 boils down to B ≥ 0. In particular,
imposing X̄ � 0 is equivalent to consider X � 0 and s ≥ 0. By expanding the matrices Ai, Aj ,
and C, i = 1, . . . , l; j = l + 1, . . . ,m; to Āi, Āj and C̄ as

Āi :=

(
Ai 0n,l
0l,n eTi ei

)
, Āj :=

(
Aj 0n,l
0l,n 0l,l

)
, C̄ :=

(
C 0n,l
0l,n 0l,l

)
problem (1) can be rewritten as an SDP in standard form as follows:

min
〈
C̄, X̄

〉
s.t. ĀX = b

X̄ ∈ S+
n+l

(2)

where b := (b1, . . . , bm) ∈ Rm and Ā : Sn+l → Rm is the linear operator (ĀX)i =
〈
Āi, X

〉
with Āi ∈ Sn+l, i = 1, . . . ,m. The dual problem of (2) is defined as

min bT y

s.t. Ā>y + Z̄ = C̄

Z̄ ∈ S+
n+l,

(3)

where Ā> : Rm → Sn+l is the adjoint operator of Ā, namely Ā>y =
∑

i yiĀ
i for y ∈ Rm.

Note that the matrix Z̄ ∈ Sn+l is a ”surplus” matrix variable that can be written as

Z̄ :=

(
Z 0n,l
0n,l diag(p)

)
,

with p ∈ Rl. In particular, the equality constraint in (3) can be rewritten as

C̄ − ĀT (y)− Z̄ =


C −AT y − Z 0n,l

−y1 − p1

0n,l
. . .

−yl − pl

 = 0.

Assuming that both the primal (2) and the dual (3) problems have strictly feasible points (i.e.
Slater’s condition is satisfied) strong duality holds and (y, Z̄, X̄) is optimal for (2) and (3) if
and only if the following conditions hold:

ĀX̄ = b, Ā>y + Z̄ = C̄, Z̄X̄ = 0, X̄ ∈ S+
n+l, Z̄ ∈ S+

n+l. (4)

In the following, we assume that the constraints formed through the operator Ā are linearly
independent.
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2.1 ADAL: an ADMM for SDPs in standard form

We now present ADAL [5, 8], an alternating direction method of multipliers (ADMM) to address
standard SDPs and in particular, able to deal with problem (2). The method we consider is
based on the maximization of the augmented Lagrangian built over the dual problem. Let
X̄ ∈ Sn+l be the Lagrange multiplier for the dual equation Ā>y + Z̄ − C̄ = 0 and σ > 0 be
fixed. The augmented Lagrangian of the dual (3) is defined as

Lσ(y, Z̄; X̄) = bT y − 〈Ā>y + Z̄ − C̄, X̄〉 − σ

2
‖Ā>y + Z̄ − C̄‖2.

In augmented Lagrangian methods applied to the dual (3) the problem

max Lσ(y, Z̄; X̄)

s.t. y ∈ Rm, Z̄ ∈ S+
n+l,

(5)

where X̄ is fixed and σ > 0 is a penalty parameter is addressed at every iteration. When
the maximization of the augmented Lagrangian Lσ(y, Z̄; X̄) is performed by optimizing first
with respect to y and then with respect to Z̄, we are considering the well known alternat-
ing direction method of multipliers (ADMM), first proposed in [5, 6] and then extended
in [8]. In the following, we refer to this method as ADAL. To be more precise, the new point
(yk+1, Z̄k+1, X̄k+1) is computed by the following steps:

yk+1 = argmax
y∈Rm

Lσk(y, Z̄k; X̄k), (6)

Z̄k+1 = argmax
Z∈S+n

Lσk(yk+1, Z̄; X̄k), (7)

X̄k+1 = X̄k + σk(A>yk+1 + Z̄k+1 − C̄). (8)

The update of y in (6) can be performed in closed form, as it derives from the first-order
optimality conditions of the problem on the right-hand side of (6): yk+1 is the unique solution
of

∇yLσk(y, Z̄k; X̄k) = b− Ā(X̄k + σk(Ā>y + Z̄k − C̄)) = 0,

that is

yk+1 = (ĀĀ>)−1
( 1

σk
b− Ā(

1

σk
X̄k + Z̄k − C̄)

)
.

The update of Z̄ in (7) is conducted by considering the equivalent problem

min
Z̄∈S+n+l

‖Z̄ +W k+1‖2, (9)

where

W k+1 =
X̄k

σk
− C̄ + Ā>yk+1.

Solving problem (9), is equivalent to project W k+1 ∈ Sn+l onto the (closed convex) cone S−n+l

and take its additive inverse (see Algorithm 1). Such a projection is computed via the spectral
decomposition of the matrix W k+1. Finally, it is easy to see that the update of X̄ in (8) can
be performed considering the projection of W k+1 ∈ Sn+l onto S+

n+l multiplied by σk, namely

X̄k+1 = X̄k + σk(Ā>yk+1 + Z̄k+1 − C̄) =
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= σk(X̄k/σk − C̄ + Ā>yk+1 − (X̄k/σk − C̄ + Ā>yk+1)−) =

= σk(X̄k/σk − C̄ + Ā>yk+1)+.

We report in Algorithm 1 the scheme of ADAL. ADAL is stopped as soon as the following errors

Algorithm 1 Scheme of ADAL from [8]

1: Choose σ > 0, ε > 0, X̄ ∈ S+
n+l, Z̄ ∈ S+

n+l

2: δ = max{rP , rD}
3: while δ > ε do
4: y = (ĀĀ>)−1

(
1
σ b− Ā( 1

σ X̄ − C̄ + Z̄)
)

5: Z̄ = −(X̄/σ − C̄ + Ā>y)− and X̄ = σ(X̄/σ − C̄ + Ā>y)+

6: δ = max{rP , rD}
7: Update σ
8: end while

related to primal feasibility (ĀX̄ = b, X̄ ≥ 0) and dual feasibility (Ā>y + Z̄ + S̄ = C̄) are
below a certain accuracy

rP =
‖ĀX̄ − b‖

1 + ‖b‖
, rD =

‖Ā>y + Z̄ − C̄‖
1 + ‖C̄‖

.

More precisely, the algorithm stops as soon as the quantity δ = max{rP , rD} is less than a fixed
precision ε > 0. The other optimality conditions (namely X̄ ∈ S+

n+l, Z̄ ∈ S+
n+l, Z̄X̄ = 0) are

satisfied up to machine accuracy throughout the algorithm thanks to the projections employed
in ADAL. The numerical performance of ADMMs, including the one of ADAL, strongly depends
on the update rule used for the penalty parameter σ. As in [11, 12], we follow the strategy
by Lorenz and Tran-Dinh [13], considering at every iteration k the ratio between the norm of
the primal variable X̄k and norm of the dual variable Z̄k.

The memory required to store the augmented matrices C̄, Āi, Āj , Z̄ and X̄ gets large with
the number l of inequalities and even using efficient sparse matrix implementations may be
insufficient to computationally deal with large scale problems. Our idea is then to rewrite the
steps of ADAL in terms of the original matrices C,Ai and X, so that one can keep in memory
only the matrices that are actually defining the problem. Indeed, let 1 ≤ i ≤ l be a generic
index of an inequality constraint and let l + 1 ≤ j ≤ m be a generic index of an equality
constraint, then the following holds:

〈Āi, X̄〉= 〈Ai, X〉+ si,

〈Āj , X̄〉= 〈Aj , X〉,
〈C̄, X̄〉 = 〈C,X〉;

The linear map applied to X̄ becomes:

Ā(X̄) =



〈A1, X〉
...

〈Al, X〉
〈Al+1, X〉

...
〈Am, X〉


+

(
sT

0m−l

)
= A(X) +

(
sT

0m−l.

)
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Similarly, the adjoint operator ĀT : Rm → Sn+l of Ā is defined as

ĀT y :=

i=1∑
m

yiĀ
i =


∑i=1

m yiA
i 0n,l
y1

0n,l
. . .

yl

 =


AT y 0n,l

y1

0n,l
. . .

yl

 .

Using the operator vec, we can write Ā(X̄) = b as Ā vec(X̄) = b, where

Ā :=
(
vec(Ā1), . . . , vec(Ām)

)T ∈ Rm×(n+l)2 .

Note that matrix Āi, i = 1, . . . , l, corresponding to the i-th inequality constraint, is the
unique matrix having 1 in position (n + i, n + i). Then, ĀĀT can be expressed in terms of
AAT as follows:

ĀĀT = AAT + diag

(
1l

0m−l

)
,

as the zero entries of Āi i = 1, . . . ,m, do not contribute in the row-by-column product and
the 1 in position (n + i, n + i) contributes only to the entry where vec(Āi) is multiplied by
itself, i.e., in position (i, i) of ĀĀT . According to the notation introduced, the update of the
y variable can be rewritten as follows:

yk+1 =

(
AAT + Diag

(
1l

0m−l

))−1
(

1

σk
b−A vec

(
1

σk
Xk − C + Zk

)
+

(
1
σk s

kT + pk
T

0m−l

))

Furthermore, the spectral decomposition of the matrix W , needed for updating the variable
X̄ and Z̄ can be computed in a “block-wise” fashion. At a generic iteration of ADAL, matrix
W can be written as follows:

W k+1 =


Xk

σk − C + A>yk+1 0n,l

0n,l Diag

 skT

σk +

y
k+1
1
...

yk+1
l



 .

Then, in order to compute the eigenvalues and eigenvectors of W k+1, we can first compute the
spectral decomposition of the matrix Xk

σk −C +AT yk+1, then we trivially get the eigenvalues

and eigenvectors of the diagonal part of W k+1 and eventually we adjust the dimension of the
eigenvectors computed, in order to have them in Rn+l.

The convergence of the scheme introduced is inherited by the convergence of ADAL [8].
In particular, Algorithm 1 can be interpreted as a fixed point method and we can state the
following result

Theorem 1 The sequence {(X̄k, yk, Z̄k)} generated by Algorithm 1 from any starting point
(X̄0, y0, Z̄0) converges to a solution (X̄∗, y∗, Z̄∗) ∈ Ω∗, where Ω∗ is the set of primal and dual
solutions of (2) and (3).
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2.2 Obtaining dual bounds

SDPs are used to approximate combinatorial problems: the optimal solution of a semidefinite
relaxation can be computed in polynomial time and generally gives a better bound than
that obtained solving a linear relaxation (see e.g. [14]). Given a pair of primal-dual SDPs,
weak and strong duality hold under the assumption that both problems are strictly feasible.
Duality results imply that the objective function value of every feasible solution of the dual
SDP is a valid bound on the optimal objective function value of the primal. Therefore, every
dual feasible solution and in particular the optimal dual solution of an SDP relaxation, gives
a valid bound on the solution of the related combinatorial optimization problem. Hence,
being able to compute dual feasible solutions - even of moderate quality - can be extremely
useful when considering branch-and-bound frameworks to define exact solution methods for
specific combinatorial optimization problems. Following ideas developed in [11], we define
a post-processing procedure for ADAL on general SDPs, that allows to get a feasible dual
solution starting from a positive semidefinite matrix Z̃ ∈ S+

n . Let Aineq and Aeq be the linear
operators defining the inequality and equality constraints in problem (1): Aineq =

〈
Ai, X

〉
with Ai ∈ Sn, i = 1, . . . , l and Aeq =

〈
Aj , X

〉
with Aj ∈ Sn, j = l + 1, . . . ,m. Let bineq and

beq be the right hand side vectors accordingly defined. Introducing the adjoint operators of
Aineq and Aeq, the dual problem (3) can be equivalently written as

max − bTineqλ+ bTeqµ

s.t. C + A>ineqλ−A>eqµ = Z

Z ∈ S+
n , λ ≥ 0,

(10)

with λ ∈ Rl and µ ∈ Rm−l. We can then extend the results proposed in [11] and define a
procedure to get feasible solutions of problem (10) and then, by weak duality, valid bounds on
the optimal objective function value of the primal (1). Let Z̃ ∈ S+

n . If the linear programming
problem

max − bTineqλ+ bTeqµ

s.t. C + A>ineqλ−A>eqµ = Z̃

λ ≥ 0

(11)

has an optimal solution (λ̃, µ̃) ∈ Rm, then (λ̃, µ̃, Z̃) is a feasible solution for (10) and the value
−bTineqλ̃+ bTeqµ̃ is giving a dual bound. If (11) is unbounded, then also (10) is unbounded and

hence the primal (1) is not feasible. If (11) is infeasible, it means that the starting Z̃ ∈ S+
n

does not allow to find a feasible dual solution and then get a dual bound. From a practical
point of view, once problem (1) is approximately solved by ADAL, we can try to get a feasible
solution of problem (10), by addressing problem (11). This is what we have implemented,
using GUROBI 9.1.1 [15] as solver for problem (11).

3 Bounding the clique number and the chromatic number of
a graph

Given an undirected graph G = (V,E), where V is the set of vertices and E is the set of
edges, a subset of W ⊆ V is a clique if every two vertices in W are adjacent while a subset
of W ⊆ V is called stable if no two vertices in W are adjacent. The clique number ω(G) and
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the stability number α(G) are the maximum cardinality of a clique in G and the maximum
cardinality of a stable set in G, respectively. A k-coloring is a partition of V into k stable sets.
The chromatic number χ(G) is the smallest integer k for which G has a k-coloring. Denoting
with Ḡ = (V, Ē) the complementary graph of G, it holds

ω(Ḡ) = α(G) ≤ χ(Ḡ).

Lovàsz [16] introduced the so called theta number ϑ(G) that is an upper bound for the clique
number ω(Ḡ) and the stability number α(G) and is a lower bound for the chromatic number
χ(Ḡ). The important property of ϑ(G) is that it can be computed with an arbitrary precision
in polynomial time, as it is the optimal value of the following SDP [17]:

ϑ(G) = max 〈J,X〉

s.t. trace(X) = 1

Xij = 0 {i, j} ∈ E(G)

X ∈ S+
n ,

where J is the n-by-n matrix of all ones, being n = |V |. Starting from this relaxation, several
attempts for sharpening ϑ(G) as a bound for ω(Ḡ), α(G) and χ(Ḡ) have been made (see,
e.g., [18, 19, 20, 21, 22, 23, 24]). As a first way to improve ϑ(G), we consider the numbers
ϑ+(G) and ϑ̄+(G) obtained as solutions of the following SDPs, where bounds on the entries
of the matrix variables are introduced:

ϑ+(G) = max 〈J,X〉

s.t. trace(X) = 1

Xij = 0 {i, j} ∈ E(G)

X ≥ 0

X ∈ S+
n

ϑ̄+(G) = max 〈J,X〉

s.t. trace(X) = 1

Xij ≤ 0 {i, j} ∈ E(G)

X ∈ S+
n .

The values ϑ+(G) and ϑ̄+(G) are related to ω(Ḡ), α(G) and χ(Ḡ) as follows

ω(Ḡ) = α(G) ≤ ϑ+(G) ≤ ϑ(G) ≤ ϑ̄+(G) ≤ χ(Ḡ).

In the literature, equivalent formulations for both ϑ+(G) and ϑ̄+(G) have been proposed [2]
and for our computational experience, we consider the following formulation for ϑ̄+(G):

ϑ̄+(G) = min t

s.t. Xii = t− 1 i ∈ V (G)

Xij = −1 {i, j} ∈ Ē(G)

Xij ≥ −1 {i, j} ∈ E(G)

X ∈ S+
n .

Note that in both the formulations of ϑ+(G) and ϑ̄+(G) the entries of the matrix X are
bounded from below. In the context of ADMMs defined over the dual problem, bounds on
the matrix variable can be handled by introducing a further step, where a projection onto
the nonnegative orthant is performed (see e.g. [8, 11, 12]). Although these 3-blocks ADMMs
may not theoretically converge [25], they perform well in practice.
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4 Numerical results

In this section we report our computational study: we compare the performance of ADAL

and SDPNAL+ [1] on randomly generated instances and on instances from SDP relaxations
of the stable set problem (equivalent to the max clique problem) and the graph coloring
problem. SDPNAL+ implements an ADMM combined with a semismooth Newton-Conjugate
Gradient method. SDPNAL+ is implemented in MATLAB, with some subroutines in C language
incorporated via Mex files. For our comparison, we considered the version of SDPNAL+ available
at https://blog.nus.edu.sg/mattohkc/softwares/sdpnalplus/. Our version of ADAL is
implemented in MATLAB R2020a and uses its built-in functions. Both our implementation
of ADAL and the instances used in our numerical experience can be downloaded from https:

//github.com/batt95/ADAL-ineq. In the implementation of SDPNAL+ a refined management
of the matrices is implemented exploiting their symmetry and allows the optimization of the
subroutines used throughout the application of the algorithm.

The experiments were carried out on an Intel(R) Xeon(R) CPU E5-2698 v4 running at
2.20GHz, with 256GB of RAM, under Linux (Ubuntu 16.04.7).

We compare the performance of the algorithms using performance profiles as proposed
by Dolan and Moré [26]. Given a set of solvers S and a set of problems P, the perfor-
mance of a solver s ∈ S on problem p ∈ P is compared against the best performance
obtained by any solver in S on the same problem. The performance ratio is defined as
rp,s = tp,s/min{tp,s′ | s′ ∈ S}, where tp,s is the measure we want to compare, and we consider
a cumulative distribution function ρs(τ) = |{p ∈ P | rp,s ≤ τ}|/|P|. The performance profile
for s ∈ S is the plot of the function ρs.

4.1 Comparison on randomly generated instances

The random instances considered in the first experiment are obtained from the instance
generator used in [6]. Given n, m and a percentage p, we built 5 instances having round(pm)
number of inequalities. In Table 4.1, we report the comparison between ADAL and SDPNAL+

in terms of number of iterations and CPU time needed in order to reach an accuracy of 10−5.
We consider instances with n ∈ {200, 250, 500, 1000}, m ∈ {5000, 10000, 25000, 50000, 100000}
and p ∈ {0.25, 0.5, 0.75}. We excluded those combinations of n and m leading to matrices Ai
with linearly dependent rows. We set a time limit of 1800 seconds CPU time.

As a preliminary test, we ran the version of ADAL tailored for SDPs in standard form.
However, this non-optimized version of ADAL did not allow us to solve any instance due to
memory issues. Therefore, in the following comparisons, we only consider the version of ADAL
described in Section 2.

In Table 4.1, for each solver and each combination of n, m and p, we report the number
of instances solved within the time limit and the average running time. We notice that for
n = 250 and m = 25000, SDPNAL+ is not able to solve any instance within the time limit, while
ADAL is able to solve all of them with a precision of 10−5. For n = 500 and m = 100000 both
algorithms are not able to solve any instance within the time limit. SDPNAL+ performs better
on instances with n = 1000 and m = 10000, while for the other instances either the two solvers
show similar performances or ADAL outperforms SDPNAL+. The performance profiles of ADAL

and SDPNAL+ on random instances are reported in Figure 1, showing the better performance
of ADAL with respect to SDPNAL+: on almost 60% of the instances ADAL is the fastest algorithm
and it is also able to solve 90% of the instances while SDPNAL+ solves only 80% of the instances
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ADAL SDPNAL+

n m p (%) #sol CPU time #sol CPU time

200 10000 25 5 39.24 5 33.05
50 5 58.24 5 109.14
75 5 67.14 5 713.82

250 5000 25 5 7.99 5 11.05
50 5 9.87 5 15.51
75 5 11.28 5 16.93

25000 25 5 838.04 0 -
50 5 1166.45 0 -
75 5 1114.52 0 -

500 10000 25 5 15.52 5 15.54
50 5 16.49 5 22.45
75 5 28.87 5 23.94

25000 25 5 18.11 5 31.33
50 5 30.20 5 50.78
75 5 45.53 5 52.57

50000 25 5 217.61 5 106.28
50 5 260.43 5 221.66
75 5 325.71 5 250.97

100000 25 0 - 0 -
50 0 - 0 -
75 0 - 0 -

1000 10000 25 5 136.63 5 49.52
50 5 157.21 5 58.22
75 5 242.63 5 71.38

50000 25 5 57.19 5 60.96
50 5 94.09 5 109.48
75 5 110.00 5 111.29

100000 25 5 83.15 5 136.53
50 5 127.37 5 181.13
75 5 155.05 5 184.21

Table 1: Results on 120 random instances

10



0.0 0.5 1.0 1.5 2.0
log10( )

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(
)

CPU_ADAL
CPU_SDPNAL

Figure 1: Performance profiles on CPU time. Comparison between ADAL and SDPNAL+ on
random instances.

within the time limit.

4.2 Comparison on instances from SDP relaxations of the maximum clique
problem

In the following, we report the results on the SDP relaxation ϑ+(G) for bounding the clique
number (or the stability number) of a graph. We considered graphs from the second DIMACS
implementation challenge [27], available at ftp://dimacs.rutgers.edu/pub/challenge/

graph/benchmarks/clique. These graphs form the standard benchmark for the maximum
clique problem. In order to use them, we complemented the graphs to convert the maximum
clique instances into stable set problem instances. Apart from applying ADAL and SDPNAL+

for finding ϑ+(G), stopping the algorithms as soon as the optimality conditions were satisfied
with a precision of 10−6, we applied the post-processing procedure every 200 iterations of ADAL
and at the very last iteration performed by ADAL. Everytime the post-processing procedure
is called, we give as input the matrix Zk obtained by ADAL at the corresponding iteration
k and solve the linear programming problem (10) using Gurobi [15]. Along the iterations
of ADAL, we keep in memory the best dual bound found by the post-processing procedure,
together with the CPU time needed to detect it. Note that every dual bound computed by
the post-processing procedure and in particular the best dual bound is a valid upper bound
on the stability number.

In Table 2, we report the following data for the comparison between ADAL and SDPNAL+:
for each instance, we report its name (Graph), the dual objective function value obtained by
ADAL and SDPNAL+, the best dual bound found along the iterations of ADAL (ϑ+(G)), the CPU
time needed by ADAL and SDPNAL+ to satisfy the stopping criterion, the CPU time needed
to recover the best dual bound found by ADAL and the overall time needed to apply the
post-processing procedure (CPU times).

We have that the post-processing procedure applied on ADAL is able to compute valid dual
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bounds on every instance but on keller6, where ADAL shows a failure. On p hat1500-2 even
if both ADAL and SDPNAL+ did not converge within 3600 seconds, the post-processing procedure
is able to compute a valid dual bound. Note that for huge graphs the time needed to find the
best dual bound may be greater than the time needed by ADAL to converge and this comes
from the fact that the best dual bound can be recovered at the last iteration computed. Note
also the the overall time needed to apply the post-processing procedure in ADAL is small with
respect the overall time needed by the algorithm, and clearly it may be lowered by seldom
applying the procedure.

In Figure 2, we report the performance profiles obtained with respect to the CPU time
needed by ADAL, the CPU time for computing the value of the best dual bound with ADAL and
CPU time needed by SDPNAL+. It is clear that on these instances SDPNAL+ outperforms ADAL.
However, we want to underline the good performances of ADAL on the p-hat graphs, where
we are often able to get the same bound as the optimal dual objective of SDPNAL+ in a much
lower CPU time.
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Figure 2: Performance profiles on CPU time. Comparison among ADAL, BestBound and
SDPNAL+ on the computation of ϑ+(G).

4.3 Comparison on instances from SDP relaxations of the coloring problem

In the following, we report the results on the SDP relaxation ϑ̄+(G) for bounding the chro-
matic number of a graph. As before, we considered graphs from the second DIMACS imple-
mentation challenge [27], available at https://sites.google.com/site/graphcoloring/

files. We applied ADAL and SDPNAL+, stopping the algorithms as soon as the optimality
conditions were satisfied with a precision of 10−6. As for bounding ϑ+(G), we applied the
post-processing procedure every 200 iterations of ADAL and at the very last iteration performed
by ADAL. Every dual bound computed by the post-processing procedure and in particular the
best dual bound is a valid lower bound on the chromatic number.

In Table 3 and Table 4, we report the following data for the comparison between ADAL

and SDPNAL+: for each instance, we report its name (Graph), the dual objective function
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ϑ+(G) CPU times

Graph ADAL SDPNAL+ BestBound ADAL SDPNAL+ BestBound post-proc

DSJC125.1 38.04 38.04 38.04 2.89 3.52 2.56 0.12
DSJC125.5 11.40 11.40 11.40 1.93 0.77 1.70 0.09
DSJC125.9 4.00 4.00 4.00 2.41 1.17 2.44 0.09
DSJC500-5 22.57 22.57 22.57 6.83 4.85 7.30 0.48
DSJC1000-5 31.67 31.67 31.67 41.60 34.32 43.69 3.59
C125-9 37.55 37.55 37.55 2.88 0.99 2.73 0.11
C250-9 55.82 55.82 55.82 7.82 3.12 7.15 0.43
C500-9 83.58 83.58 83.58 30.55 8.32 31.03 1.48
C1000-9 122.60 122.60 122.60 159.79 34.93 147.00 9.74
C2000-5 44.56 44.56 44.56 389.59 534.67 398.86 22.42
C2000-9 177.73 177.73 177.73 1238.53 278.60 1247.62 68.30
brock200 1 27.20 27.20 27.20 3.45 1.06 3.12 0.24
brock200 2 14.13 14.13 14.13 1.91 1.08 1.98 0.15
brock200 3 18.67 18.67 18.67 2.24 1.07 2.31 0.15
brock200 4 21.12 21.12 21.12 2.83 0.96 2.92 0.18
brock400 1 39.33 39.33 39.33 7.81 3.84 8.09 0.53
brock400 2 39.20 39.20 39.20 8.30 4.02 8.58 0.50
brock400 3 39.16 39.16 39.16 8.64 3.59 8.92 0.48
brock400 4 39.23 39.23 39.23 7.99 3.53 8.27 0.49
brock800 1 41.87 41.87 41.87 24.31 11.67 20.96 2.66
brock800 2 42.10 42.10 42.10 23.94 12.88 20.49 2.59
brock800 3 41.88 41.88 41.88 24.52 13.02 25.87 2.57
brock800 4 42.00 42.00 42.00 23.91 12.80 20.28 2.50
p hat300-1 10.02 10.02 10.02 18.45 16.72 8.85 0.95
p hat300-2 26.71 26.71 26.71 211.40 161.90 28.17 11.20
p hat300-3 40.70 40.70 40.70 35.69 36.28 16.91 1.78
p hat500-1 13.01 13.01 13.01 34.11 14.71 22.55 2.04
p hat500-2 38.56 38.56 38.56 580.86 537.38 92.52 32.79
p hat500-3 57.81 57.81 57.81 99.65 33.72 61.56 5.03
p hat700-1 15.05 15.05 15.05 59.86 33.94 43.15 4.20
p hat700-2 48.44 48.44 48.44 1161.67 295.99 218.26 71.55
p hat700-3 71.76 71.76 71.76 293.90 93.48 162.79 15.91
p hat1000-1 17.52 17.52 17.52 144.76 119.26 84.75 10.38
p hat1000-2 54.84 54.84 54.84 1815.65 697.11 487.41 121.86
p hat1000-3 83.53 83.53 83.53 473.77 243.21 293.35 28.77
p hat1500-1 21.89 21.89 21.89 606.67 479.28 471.58 41.41
p hat1500-2 - - 76.46 - - 1826.66 233.69
p hat1500-3 113.65 113.65 113.65 3014.42 879.45 1886.51 202.90
keller4 13.47 13.47 13.47 3.35 1.46 2.69 0.17
keller5 31.00 31.00 31.00 503.36 53.31 289.31 30.06
keller6 - 63.00 - - 1524.62 - 146.42
sanr200 0.7 23.63 23.63 23.63 3.44 1.26 3.21 0.25
sanr200 0.9 48.90 48.90 48.90 6.04 1.73 4.80 0.34
sanr400 0.5 20.18 20.18 20.18 6.60 3.80 6.19 0.57
sanr400 0.7 33.97 33.97 33.97 7.21 4.05 7.49 0.51
MANN a9 17.48 17.48 17.47 0.48 0.28 0.46 0.05
MANN a27 132.76 132.76 132.76 561.87 5.48 550.52 30.80
hamming6-2 32.00 32.00 32.00 1.49 0.33 1.25 0.10
hamming6-4 4.00 4.00 4.00 0.10 0.08 0.11 0.01
hamming8-2 128.00 128.00 128.00 532.92 3.96 500.17 30.03
hamming8-4 16.00 16.00 16.00 2.62 1.13 2.60 0.24
hamming10-4 42.67 42.67 42.67 97.36 31.77 93.90 7.46

Table 2: Results on ϑ+(G), graphs from the second DIMACS implementation challenge.

13



0.0 0.5 1.0 1.5 2.0
log10( )

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(
)

CPU_BestBound
CPU_TH+_sdpnal
CPU_TH+_adal

Figure 3: Performance profiles on CPU time. Comparison among ADAL, BestBound and
SDPNAL+ on the computation of ϑ̄+(G).

value obtained by ADAL and SDPNAL+, the best dual bound found along the iterations of ADAL
(ϑ̄+(G)), the CPU time needed by ADAL and SDPNAL+ to satisfy the stopping criterion, the
CPU time needed to recover the best dual bound found by ADAL and the overall time needed
to apply the post-processing procedure (CPU times).

We notice that the post-processing procedure fails in finding bounds on the chromatic
number for several graphs, 19 out of 113 graphs. This is due to the precision of the dual matrix
given as input, that may be too low to detect a dual feasible solution. We also notice that
on some graphs the bound obtained is slightly bigger than the dual objective function value
obtained by ADAL. This is due to the precision asked to Gurobi to solve the LP in the post-
processing phase. We imposed a feasibility precision of 10−5. Asking for a higher precision
would often result in a failure for the post-processing procedure. We are then showing what
in our opinion is a good trade off between feasibility precision and quality of the bound. The
CPU time needed to compute the BestBound is often much lower with respect to the time
needed by SDPNAL+ to converge and this is confirmed by the performance profiles shown in
Figure 3. In the performance profiles, we excluded those instances for which the difference
in absolute value of the BestBound found by ADAL and the dual objective of SDPNAL+ is less
than 0.5. In particular, we excluded all the instances where the post-processing procedure
was not able to compute a bound.

As a further comparison between ADAL and SDPNAL+ on SDP relaxations of the chromatic
number, we built instances adding 1000, 2500 and 5000 inequalities to ϑ̄(G). The inequalities
are chosen randomly from those proposed by Dukanovic and Rendl [18] to strengthen ϑ̄(G):

Xij +Xik −Xjk ≤ t− 1, ∀ i, j, k ∈ V (G).

In Table 5, we report the results on some classes of graphs where the CPU time needed to
compute the BestBound is often lower with respect to the time needed by SDPNAL+ to converge
with a precision of 10−6.
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ϑ̄+(G) CPU times

Graph ADAL SDPNAL+ BestBound ADAL SDPNAL+ BestBound post-proc

DSJC125.1 4.14 4.14 4.14 69.01 22.88 1.72 0.91
DSJC125.5 11.87 11.87 11.87 1.02 1.36 0.74 0.06
DSJC125.9 37.80 37.80 37.80 1.87 2.03 1.31 0.09
DSJC250.1 4.94 4.94 4.94 6.65 6.70 2.19 0.16
DSJC250.5 16.35 16.35 16.35 1.90 2.84 2.00 0.10
DSJC250.9 55.22 55.22 55.22 4.76 3.76 3.76 0.37
DSJC500.1 6.25 6.25 6.25 8.66 16.57 5.91 0.16
DSJC500.5 22.90 22.90 22.90 5.41 9.64 5.71 0.30
DSJC500.9 84.14 84.14 84.14 17.04 16.36 17.53 1.21
DSJR500.1 12.00 12.00 12.00 35.18 10.00 23.59 0.34
DSJR500.1c 83.75 83.75 83.75 - 1231.74 190.31 294.26
DSJR500.5 122.01 122.00 122.00 198.08 16.95 181.80 6.48
DSJC1000.1 8.36 8.36 8.36 31.65 59.76 22.83 0.57
DSJC1000.5 32.11 32.11 32.11 18.30 38.11 19.46 1.17
DSJC1000.9 122.80 122.80 122.80 72.30 63.88 70.85 6.89
fpsol2.i.1 65.00 65.00 65.00 200.57 11.71 199.60 2.67
fpsol2.i.2 30.00 30.00 30.00 28.11 9.75 25.71 0.43
fpsol2.i.3 30.00 30.00 30.00 27.36 7.82 27.43 0.42
inithx.i.1 54.00 54.00 54.00 604.51 32.25 537.71 4.96
inithx.i.2 31.00 31.00 30.22 387.80 12.39 35.60 3.70
inithx.i.3 31.00 31.00 30.23 341.12 13.64 32.57 3.45
latin square 10 90.00 89.99 - 48.40 41.12 - 2.91
le450 15a 15.00 15.00 - 6.37 5.18 - 0.12
le450 15b 15.00 15.00 15.00 7.06 5.61 7.13 0.14
le450 15c 15.00 15.00 15.00 3.92 4.70 4.02 0.10
le450 15d 15.00 15.00 15.00 3.86 4.71 3.96 0.10
le450 25a 25.00 25.00 25.00 19.73 7.54 19.53 0.29
le450 25b 25.00 25.00 - 18.44 7.27 - 0.23
le450 25c 25.00 25.00 25.00 9.67 7.03 9.78 0.20
le450 25d 25.00 25.00 25.00 9.15 6.82 9.25 0.19
mulsol.i.1 49.00 49.00 - 18.89 3.48 - 0.66
mulsol.i.2 31.00 31.00 31.00 9.02 2.92 9.04 0.28
mulsol.i.3 31.00 31.00 31.00 8.13 3.12 7.47 0.19
mulsol.i.4 31.00 31.00 31.00 7.97 2.40 6.31 0.22
mulsol.i.5 31.00 31.00 31.00 9.88 3.34 9.01 0.19
school1 14.00 14.00 14.00 14.74 65.03 8.08 0.40
school1 nsh 14.00 14.00 14.00 12.12 75.97 7.29 0.30
zeroin.i.1 49.00 49.00 49.00 24.91 2.47 21.91 0.80
zeroin.i.2 30.00 30.00 30.00 14.63 2.43 14.13 0.48
zeroin.i.3 30.00 30.00 30.00 14.62 2.80 13.53 0.46
anna 11.00 11.00 - 9.97 1.16 - 0.13
david 11.00 11.00 - 2.46 0.59 - 0.08
huck 11.00 11.00 - 1.60 0.43 - 0.04
jean 10.00 10.00 - 1.35 0.53 - 0.03
games120 9.00 9.00 - 3.23 0.86 - 0.07
miles250 8.00 8.00 8.00 7.17 0.94 6.30 0.11
miles500 20.00 20.00 20.00 6.78 1.69 6.26 0.11
miles750 31.00 31.00 31.00 4.75 2.73 4.77 0.09
miles1000 42.00 42.00 42.00 7.81 1.64 7.61 0.16
miles1500 73.00 73.00 73.00 10.36 1.48 10.28 0.27

Table 3: Results on ϑ̄+(G), graphs from the second DIMACS implementation challenge.

15



ϑ̄+(G) CPU times

Graph ADAL SDPNAL+ BestBound ADAL SDPNAL+ BestBound post-proc

queen5 5 5.00 5.00 5.00 0.01 0.11 0.04 0.03
queen6 6 6.04 6.04 6.04 0.77 0.69 0.19 0.04
queen7 7 7.00 7.00 7.00 0.08 0.29 0.08 0.01
queen8 8 8.00 8.00 8.00 0.10 0.19 0.11 0.01
queen8 12 12.00 12.00 - 0.55 0.62 - 0.02
queen9 9 9.00 9.00 9.00 0.15 0.23 0.16 0.01
queen10 10 10.00 10.00 10.00 0.23 0.44 0.24 0.01
queen11 11 11.00 11.00 11.00 0.46 0.47 0.47 0.01
queen12 12 12.00 12.00 12.00 0.67 0.68 0.71 0.04
queen13 13 13.00 13.00 13.00 0.76 0.64 0.80 0.04
queen14 14 14.00 14.00 14.00 1.27 0.82 1.32 0.04
queen15 15 15.00 15.00 - 1.38 1.26 - 0.04
queen16 16 16.00 16.00 16.00 1.84 1.46 1.90 0.06
myciel3 2.40 2.40 2.40 0.01 0.13 0.04 0.03
myciel4 2.53 2.53 2.53 0.04 0.18 0.04 0.01
myciel5 2.64 2.64 2.64 0.41 0.41 0.23 0.02
myciel6 2.73 2.73 2.73 1.73 1.16 0.51 0.04
myciel7 2.82 2.82 2.82 7.35 7.60 1.34 0.24
mug88 1 3.00 3.00 3.00 11.78 29.45 0.35 0.24
mug88 25 3.00 3.00 3.00 20.81 47.43 0.35 0.43
mug100 1 3.00 3.00 3.00 19.59 84.51 0.46 0.31
mug100 25 3.00 3.00 3.00 26.20 84.97 0.46 0.39
abb313GPIA 8.00 8.00 8.01 615.04 2949.22 55.61 4.48
ash331GPIA 3.38 3.38 3.38 125.34 17.85 38.24 1.01
ash608GPIA 3.33 3.33 3.31 265.72 41.34 129.25 1.34
ash958GPIA 3.33 3.33 - 529.68 124.35 0.00 2.51
will199GPIA 6.10 6.10 6.10 156.39 32.11 124.61 1.22
1-Insertions 4 2.23 2.23 2.23 1.93 1.01 0.34 0.07
1-Insertions 5 2.28 2.28 2.28 19.71 15.04 2.64 0.56
1-Insertions 6 2.31 2.31 2.31 337.22 100.65 22.80 3.29
2-Insertions 3 2.10 2.10 2.10 0.38 0.57 0.18 0.04
2-Insertions 4 2.13 2.13 2.13 25.27 9.06 1.59 0.36
2-Insertions 5 2.16 2.16 2.16 544.91 109.90 52.67 4.99
3-Insertions 3 2.07 2.07 2.07 1.22 1.00 0.31 0.06
3-Insertions 4 2.09 2.09 2.09 125.48 29.79 8.39 2.37
3-Insertions 5 - 2.10 2.11 - 3568.47 130.38 17.94
4-Insertions 3 2.05 2.05 2.05 2.39 2.75 0.38 0.08
4-Insertions 4 2.06 2.06 2.06 563.58 130.23 8.89 6.64
1-FullIns 3 3.06 3.06 3.06 0.32 0.35 0.13 0.05
1-FullIns 4 3.12 3.12 3.12 4.37 2.45 1.39 0.10
1-FullIns 5 3.18 3.18 3.18 71.27 17.55 18.65 1.52
2-FullIns 3 4.03 4.03 4.03 1.34 0.39 0.74 0.08
2-FullIns 4 4.06 4.06 4.06 57.51 9.21 26.76 1.64
2-FullIns 5 4.08 4.08 4.08 2670.31 184.26 381.59 19.29
3-FullIns 3 5.02 5.02 5.02 6.12 1.18 4.47 0.15
3-FullIns 4 5.03 5.03 5.03 329.51 24.03 58.31 4.94
3-FullIns 5 - 5.05 5.04 - 1769.01 2965.54 18.40
4-FullIns 3 6.01 6.01 6.01 21.19 2.30 1.65 0.32
4-FullIns 4 6.02 6.02 6.02 1979.86 88.40 283.54 16.15
4-FullIns 5 - - - - - - 14.11
5-FullIns 3 7.01 7.01 7.00 61.22 2.72 12.48 0.71
5-FullIns 4 - 7.01 7.01 - 207.83 137.49 21.11
wap01a - 41.00 40.38 - 309.86 3575.61 20.34
wap02a 40.00 40.00 - 538.62 473.42 - 3.29
wap03a 40.00 40.00 40.00 1594.69 2668.31 1507.80 10.12
wap04a 40.00 40.00 40.00 2175.13 2658.54 2179.94 13.84
wap05a 50.00 50.00 50.00 1099.11 24.19 918.93 11.72
wap06a 40.00 40.00 - 63.35 69.47 - 0.74
wap07a 40.00 40.00 40.00 309.93 426.97 145.89 3.00
wap08a 40.00 40.00 - 278.67 224.35 - 2.26
qg.order30 30.00 30.00 - 32.22 21.30 - 0.30
qg.order40 40.00 40.00 - 153.25 82.68 - 1.08
qg.order60 60.00 60.00 - 1684.60 496.86 - 9.74

Table 4: Results on ϑ̄+(G), graphs from the second DIMACS implementation challenge.
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bounds on χ(G) CPU times

Graph ADAL SDPNAL+ BestBound ADAL SDPNAL+ BestBound post-proc

ϑ̄(G) + 1000 inequalities from [18]

DSJC500.5 22.90 22.90 22.90 15.97 38.73 13.77 0.54
DSJC1000.1 8.36 8.36 8.36 34.43 154.79 25.85 0.56
DSJC1000.5 32.11 32.11 32.11 33.33 154.82 34.50 1.18
myciel7 2.85 2.85 2.85 255.84 13.77 13.39 6.77
mug88 25 3.00 3.00 - 17.81 33.92 - 0.25
mug100 25 3.00 3.00 - 22.33 97.57 - 0.28
abb313GPIA 8.00 8.00 8.00 661.22 3466.57 178.77 4.49
1-Insertions 6 2.33 2.33 2.33 1001.29 233.15 65.62 8.98
2-Insertions 5 2.18 2.18 2.18 850.44 373.95 100.30 7.21
3-Insertions 5 - - 2.11 - - 415.32 18.32
4-Insertions 4 2.07 2.07 2.07 632.60 363.73 87.32 6.53
1-FullIns 5 3.19 3.19 3.19 1955.97 141.02 59.14 35.67
5-FullIns 4 - 7.01 7.01 - 257.83 132.12 21.35
wap03a 40.00 - 40.00 1629.48 - 1496.25 11.16
wap04a 40.00 - 40.00 2297.75 - 2302.30 13.66

ϑ̄(G) + 2500 inequalities from [18]

DSJC500.5 22.90 22.90 22.90 79.62 43.81 79.92 0.60
DSJC1000.1 8.36 8.36 8.36 38.74 167.61 29.44 0.57
DSJC1000.5 32.11 32.11 32.11 100.35 157.33 91.06 2.39
myciel7 2.87 2.87 2.87 341.20 13.80 63.14 3.51
mug88 25 3.00 3.00 3.00 83.45 81.22 36.93 1.22
mug100 25 3.00 3.00 3.00 91.18 97.93 85.68 1.43
abb313GPIA 8.00 8.00 8.00 685.60 2611.71 250.42 4.60
1-Insertions 6 2.34 2.34 2.34 827.90 553.82 111.23 6.91
2-Insertions 5 2.19 2.19 2.19 790.06 576.61 157.16 5.79
3-Insertions 5 - 2.13 2.12 - - 1133.88 18.54
4-Insertions 4 2.08 2.08 2.08 625.78 537.75 143.96 4.82
1-FullIns 5 - 3.19 3.19 - 145.95 270.64 34.75
5-FullIns 4 - 7.01 7.01 - 308.79 149.04 20.10
wap03a 40.00 - 40.00 1932.11 - 1935.99 10.83
wap04a 40.00 - 40.00 2629.88 - 2011.30 14.42

ϑ̄(G) + 5000 inequalities from [18]

DSJC500.5 22.90 22.90 22.90 464.82 46.24 456.20 1.14
DSJC1000.1 8.36 8.36 8.36 63.50 163.05 48.59 0.70
DSJC1000.5 32.11 32.11 32.11 589.69 168.79 590.91 2.12
myciel7 2.89 2.89 2.89 583.55 15.44 132.16 3.90
mug88 25 3.00 3.00 3.00 199.32 116.73 78.35 1.56
mug100 25 3.00 3.00 3.00 216.21 154.84 190.52 1.39
abb313GPIA 8.00 - 8.00 744.60 - 356.07 4.36
1-Insertions 6 2.36 2.36 2.36 1351.80 258.02 218.89 8.25
2-Insertions 5 2.19 2.19 2.19 904.85 572.94 274.81 5.39
3-Insertions 5 - - 2.12 - - 1737.21 15.49
4-Insertions 4 2.09 2.09 2.09 736.69 831.07 315.23 4.01
1-FullIns 5 - 3.19 3.19 - 179.80 554.77 22.29
5-FullIns 4 - 7.01 7.01 - 344.28 293.47 17.54
wap03a 40.00 - 40.00 2591.76 - 2383.76 15.00
wap04a - - 40.00 - - 3129.61 18.72

Table 5: Results on bounds on χ(Ḡ).
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5 Conclusions

We propose a numerical comparison between ADAL, an ADMM method for SDPs in general
form and SDPNAL+, the state-of-the-art method for solving large-scale SDPs that has been
awarded with the Beale-Orchard-Hays Prize in 2018. We consider random instances as well
as instances from the SDP relaxations of the graph coloring problem and the maximum clique
problem. Despite SDPNAL+ is more robust than ADAL, we are generally faster on the random
instances considered and we are able to detect valid bounds on the chromatic number and the
clique number in a much lower amount of time on some classes of graphs. The post-processing
procedure used is developed to obtain a dual feasible solution which in turn gives a bound
on the optimal primal value. From a practical point of view, as long as we use SDPs to
address combinatorial optimization problems, the post-processing procedure allows to stop
the execution of the ADMM as soon as a “good” bound is obtained, even if the convergence
criterion is far to be met. Furthermore, the fact that a dual feasible solution is detected, allows
to use reoptimization techniques within branch-and-bound frameworks and this is what we
plan to focus on in the near future.
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