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Abstract

The COVID-19 pandemic has had an unprecedented impact on global health and the economy since its
inception in December, 2019 in Wuhan, China. Non-pharmaceutical interventions (NPI) like lockdowns and
curfews have been deployed by affected countries for controlling the spread of infections. In this paper,
we develop a Mixed Integer Non-Linear Programming (MINLP) epidemic model for computing the optimal
sequence of NPIs over a planning horizon, considering shortages in doctors and hospital beds, under three
different lockdown scenarios. We analyse two strategies - centralised (homogeneous decisions at the national
level) and decentralised (decisions differentiated across regions), for two objectives separately - minimization
of infections and deaths, using actual pandemic data of France. We linearize the quadratic constraints and
objective functions in the MINLP model and convert it to a Mixed Integer Linear Programming (MILP)
model. A major result that we prove analytically, is that the optimal sequence of NPIs always follows a
decreasing severity pattern. Using this property, we further simplify the MILP model into an Integer Linear
Programming (ILP) model, reducing computational time up to 99%. Our numerical results show that a
decentralised strategy is more effective in controlling infections for a given severity budget, yielding up to

20% lesser infections, 15% lesser deaths and 60% lesser shortages in healthcare resources.

Keywords: COVID-19 ; Non-Pharmaceutical Interventions; Epidemiologic model ; Multi-periodic plan-

ning ; Scheduling ; Integer Programming

1 Introduction

Influenza outbreaks have always posed significant challenges to societies because of its adverse impact on
public health and economic development, resulting in widespread loss of lives and unemployment. The
novel coronavirus 2019 (SARS - CoV-2) originated in Wuhan, China in December, 2019 (WHO 2020a) and
was declared a pandemic by WHO on 11th March, 2020 after 118 countries were affected with the virus.
Coronaviruses (CoV) belong to a large family of viruses that cause a wide range of illnesses from the common
cold to respiratory disorders and more severe diseases. The novel coronavirus (nCoV) is a virus strain that
has been newly identified in humans and has been subsequently named the ’"COVID-19 virus’ (WHO 2020b).



COVID-19 has infected more than 180 million people across 213 countries as of 23rd June, 2021, with more
than 3.9 million reported deaths (Worldometers 2021) with a projected economic loss of 3.94 trillion USD
(Statista 2020). The last time the world witnessed a pandemic of such large proportions was back in 1918. The
1918 influenza pandemic, better known as 'The Spanish Flu’ was caused by an HIN1 virus with genes of avian
origin. The deadly virus outbreak originated in USA during the spring of 1918 and resulted in approximately
500 million infections, 50 million deaths across the world (CDC 2019), lowering the average life expectancy
in the United States by 12 years (Jester et al. 2018). Other notable infectious disease outbreaks which have
emerged in the last century are severe acute respiratory syndrome (SARS), Middle East respiratory syndrome
(MERS), Ebola, Human Immunodeficiency Virus (HIV).

In this paper, we look at the policymaker’s problem of managing an epidemic outbreak, balancing its
sanitary and economic impacts, by factoring in finite healthcare capacity. In the absence of a vaccine, it is
imperative for affected countries to implement containment measures to check the epidemic spread. These
interventions which do not involve any kind of immunization or medical action are called non-pharmaceutical
interventions (NPIs). CDC (2020) defines NPI as "actions, apart from getting vaccinated and taking medicine,
that people and communities can take to help slow the spread of illnesses like pandemic influenza". NPIs
can range from mild measures like self-isolation of symptomatic individuals to more severe ones like travel
restrictions, ban on public gatherings, school closures, service closures, with the most stringent being a com-
plete lockdown. Each of these containment measures come with varying economic and social costs. There
are immediate direct costs like lost revenue and profits and far-reaching indirect effects like increased unem-
ployment, suicide rates. The stringency of these measures has an impact on the infection rate and helps in
controlling the rapid multiplication in the virus. The basic reproduction number, Ry, pronounced “R naught”,
also called the basic reproduction ratio, is an epidemiological metric used to describe the contagiousness of
infected individuals (Delamater et al. 2019). Ry is one of the most fundamental metrics for the study of
infectious disease dynamics (Pellis et al. 2012). Dietz et al. (1993) defines Ry as “the number of secondary
cases one case would produce in a completely susceptible population.”When the Ry for an outbreak is greater
than 1, it leads to an epidemic because of the exponential growth of the pathogen in the population (Diek-
mann et al. 1990). The objective of deploying NPIs is to reduce the Ry as much as possible. The trade-off
lies in the fact that the most draconian NPIs with the highest reduction in Ry are also the most expensive

to execute and sustain.

The timing of implementing NPIs play a crucial role in epidemic decision making. NPIs at the early and
later stages of the epidemic have different levels of impact in controlling the infection spread. Pei et al. (2020)
reported that if a lockdown had been imposed a week earlier in USA, there would have been 36000 fewer
deaths due to COVID-19. Most countries have faced the extremely difficult dilemma of safeguarding lives
versus livelihoods in controlling the pandemic, without derailing the economy. This excruciating dilemma
is real and unavoidable (Loayza and Pennings 2020). Different nations have adopted varying strategies for
tackling this challenging situation. While countries like South Korea, Taiwan have resorted to extensive
testing and contact tracing for isolating the infected, European countries, namely France, Germany, Spain,
Italy have imposed restrictive lockdowns for checking the spread. On the other hand, countries like Brazil,
Sweden, USA have been late to react to the epidemic situation and allowed it to increase rapidly. Another
important consideration for policymaking has been the implementation of decentralised (localised) and cen-
tralised containment measures. Lockdowns are not only economically expensive, but lead to social fatigue
(Ouardighi et al. 2020) and political instability, as has been observed during the first wave of the COVID-19

pandemic. During the second wave, UK and Germany have enforced localised restrictions in order to allow



the least affected regions to mobilize the economy. Hence, the comparative effectiveness of decentralised
and centralised measures will serve as an important insight for decision making for policymakers, till the

finalization of a vaccine.

In this paper, we propose a mixed integer linear programming (MILP) formulation for modelling the
progression and control of the epidemic. We develop optimization models to address two strategies - cen-
tralised and decentralised, and compare the effectiveness of both in controlling the epidemic. The models
combine the epidemiological dynamics with operations research for devising an optimal policy for managing

the COVID-19 pandemic. The research questions that we are exploring are the following:

1. What is the optimal sequence of non-pharmaceutical interventions (NPIs) for controlling an epidemic,

considering economic constraints and healthcare resource shortages?

2. What is the benefit of a decentralised strategy (differentiated decisions across regions) in terms of

reduction of infections and deaths?

Based on the study of extant literature, the unique contributions of this paper are the following:

1. This paper is the first to implement a Mixed Integer Linear Programming (MILP) model for scheduling
an optimal sequence of non-pharmaceutical interventions (NPIs) for epidemic control. We also consider
various restrictions on lockdowns implemented based on social fatigue and economic viability. Contrary
to other papers evaluating a restricted subset of scenarios or policies, we consider all potential sequences

of NPIs over the planning horizon.

2. We compare the decentralised and centralised strategies for epidemic control and evaluate their effec-
tiveness in checking the growth of infections under multiple scenarios, using the data of the 13 French

regions.

3. We factor in the phenomenon of the infection spread affecting healthcare professionals as a part of
the epidemiological model and consider shortages in healthcare capacity in terms of regular beds and
Intensive Care Unit (ICU) beds. This is an important consideration related to COVID-19 as it has
been observed in many countries at the peak of their infection spread that a high number of doctors
and medical workers have succumbed to the infection or have been inactive from service. On April 2,
2020, Spain was reported to have around 15,000 medical workers infected with COVID-19, making up
14% of the confirmed cases then (Nugent 2020). They were self-isolating and unable to render their

services.

4. We show that the optimal sequence of NPIs necessarily follows a decreasing severity pattern, i.e., the
most severe measures like lockdowns are scheduled first in the optimal sequence for a given severity
budget. Based on this property, we simplify the MILP to an Integer Linear Program (ILP), which is

computationally more efficient and accessible to the policymaker.

The remainder of the paper is organized as follows. In Section 2, we review the literature in two parts,
we first look at papers with optimization models addressing operational challenges related to epidemic man-
agement and then analyse recent COVID-19 papers on containment strategies specifically. In Section 3,
we introduce the epidemic compartmental model and notations. In Section 4, we explain the Time-based
optimization models for the decentralised and centralised strategies. In Section 5, we discuss the Sequence-

based optimization model. In Section 6, we report the numerical results and the relative performance of



both strategies considering data from France. In Section 7, we discuss the managerial implications of the
strategies to inform policy-making. In Section 8, we summarize our findings and propose future extensions

of our work.

2 Literature Review

Here, we review the literature in two different sections, first we focus on epidemic logistics papers in the
field of Operations Research, encompassing various operational issues faced during an epidemic outbreak and

second, we discuss papers exclusive to COVID-19 control.

2.1 Epidemic Logistics Models

A couple of key papers provide an exhaustive review of the different types of problems and methodologies
implemented in epidemic logistics research. Dasaklis et al. (2012) review the literature for epidemic contain-
ment and characterize three major streams of research: first, where pharmaceutical containment like vaccines
is planned and executed, second, where non-pharmaceutical interventions like school closure, lockdowns are
imposed, third, where a combination of both are deployed. The authors also classify the research streams
based on pre-epidemic, post-epidemic and integrated while looking at the various logistical problems like
facility location, network design, vehicle routing, transportation of medical supplies, encompassing different
solution approaches like mathematical programming, game theory, queueing theory, data simulation etc.
for stochastic and deterministic problems. Most of these papers look at compartmental models based on
the classical SIR framework proposed by Kermack and McKendrick (1932). Dimitrov and Meyers (2010)
provide a detailed comparison of various mathematical approaches for analysing epidemic spreads. They
infer that compartmental models are less complex computationally, compared to contact network models and
agent-based simulations, although the latter are more accurate in capturing the progression of the epidemic.

Facility location layout, distribution and logistics related problems during an epidemic have been widely
covered in this area of research for both influenza epidemics and man-made epidemics (bio-terrorism). Jia
et al. (2007) analyse a maximal covering facility location problem of a large scale emergency response for
medical supplies distribution by implementing different optimization solution approaches. A multi-objective
stochastic optimization model using genetic algorithms and Monte Carlo simulations is presented by Wang
et al. (2009) for constructing an emergency epidemic logistics network. Liu and Liang (2013) propose a three
level dynamic optimization model for allocating medical resources in epidemic controlling, using the epidemic
diffusion model for forecasting demand. Ekici et al. (2014) develop a food distribution network model using
Mixed Integer Linear Programming during an influenza pandemic. A novel epidemic control objective function
is addressed by He and Liu (2015), where they minimize psychological suffering for infected individuals who
remain undiagnosed or untreated because of relief supply shortage, using an epidemic optimization model.
Liu and Zhang (2016) model medical resource allocation in the light of an influenza outbreak (time discretized
SEIR model) and divide their analysis in different phases for forecasting, planning and execution.Anparasan
and Lejeune (2019) determine the optimal number, size and location of medical facilities and deployment
of resources to attend medically ill patients, based on the cholera outbreak of Haiti in 2010. Other types
of epidemic outbreak include planned bio-terrorist attacks where a pathogen is deliberately released in a
population, for eg. smallpox (Kaplan et al. 2002, Dasaklis et al. 2017), anthrax (Craft et al. 2005, Wanying
et al. 2016), influenza (Longini Jr et al. 2004).



There has been very few papers analysing non-pharmaceutical interventions for controlling an epidemic.
Yaesoubi and Cohen (2011) develop a Markov Decision Process framework for dynamic policymaking for
handling an influenza outbreak considering social distancing and vaccines as the two major types of interven-
tions. The paper extends the SEIR epidemiological model with transition probabilities and defines actions as
NPIs along with a reward function which captures the health benefits and economic costs owing to infections
and interventions.

The non-linearity of the epidemic compartmental model poses challenges for mathematical programming
approaches and has been approximated linearly for tackling epidemic logistics problems. Biiyiliktahtakin et al.
(2018) devise a Mixed Integer Linear Programming (MILP) model to study the spatial spread of the Ebola
epidemic and derive the optimal number, time and location of healthcare facilities under budget constraints.
This paper relaxes the bilinear transmission dynamics of susceptible and infected individuals and uses a linear
epidemic equation avoiding the computational complexities arising out of non-linearity. Liu et al. (2020) use
a similar relaxation of the epidemic equations as Biiyiiktahtakin et al. (2018) and propose a Mixed Integer
Linear Programming model for an HIN1 epidemic where the decision variables are the number of healthcare

facilities to open and close for minimizing fatalities, subject to budget constraints.

We build on the simplified epidemic equations as introduced by Biiyiiktahtakin et al. (2018) and furthered
by Liu et al. (2020), because it enables tractability in the MILP approach. Although we borrow this linear
approximation of Buyuktahtakin’s model, a lot of the other attributes are different and unique. We model
the implementation of NPIs for controlling the epidemic, instead of modelling facility location decisions. We
do not assume any spatial element in the population in terms of influx and exodus from other regions, but
consider differing transmission rates for the different regions based on population density. We also assume
a common national budget for managing the economic costs of implementing NPIs for all regions combined.
There are other papers in the past which have linearized the epidemic equations for ensuring tractability
of the models. Reveller et al. (1969) study the resource allocation problem for minimizing infections for a
tuberculosis outbreak by implementing an integer programming model. They linearize the epidemic equations
by assuming an average number of active infected people during the planning horizon. Zaric and Brandeau
(2001) model interventions for controlling an epidemic spread and maximizing quality-adjusted life years of
the population under budget constraints. The authors argue that the non-linear functions lead to increased

computational complexity and hence propose some approximations and heuristics to tackle them.

2.2 COVID-19 Containment

We now look at some of the influential papers which have analysed the impact of various containment strate-
gies in the context of the COVID-19 pandemic. Ferguson et al. (2020) carry out a comparative study between
a counterfactual, unmitigated model, mitigation and suppression for the population of UK for different sce-
narios. They consider the implementation of five NPI measures individually and in combination. For the
mitigation approach, the healthcare capacity is overwhelmed multiple times. For suppression, the combina-
tion of all NPIs at the same time yields the highest impact on transmission reduction. Walker et al. (2020)
from the same Imperial College team extend the analysis to contrast mitigation and suppression strategies for
Low, Middle and High Income countries. The authors argue that owing to a bigger unorganized sector in low
income countries, the compliance to stringent lockdowns will be lower in comparison to higher income coun-
tries. Loayza and Pennings (2020) contends that indiscriminate lockdowns can be counter-productive leading

to displacement of labourers and further aggravation of the spread. Also, when compliance to lockdowns is



low, it results in low marginal gains and eventually leads to second and third waves of infections. Barnett-
Howell and Mobarak (2020) point out that the economic value generated by comparable social distancing
measures is approximately 240 times larger for the United States, 70 times larger for Germany compared to

the value created in Pakistan or Nigeria, according to their analysis.

Eichenbaum et al. (2020) analyse the interaction between epidemic modelling and economic decisions using
an agent based modelling technique for various containment scenarios. They look at “smart containment"
where the infection condition of the entire population is known to the policymaker with the help of extensive
testing and hence enables the maximization of social welfare of the population by using a tailored intervention
policy. Alvarez et al. (2020) analyse the policymaker’s problem to handle the trade-off between output costs
of lockdown policies and fatality costs because of infections by combining the SIR epidemiology framework
in an optimal control model. The paper looks at various degrees of lockdown from 60% of the population
being confined to 10% of the population with a parameterized effectiveness of the lockdown policy, and the
subsequent impact on the economy in terms of GDP contraction. They argue that if the lockdown is not very
effective, healthcare capacity is not ramped up, the severity and duration of the lockdown should be lowered.
Ouardighi et al. (2020) compare the effectiveness of mobility restrictions and secured social interactions for
epidemic control, factoring in ill-preparedness of the policymaker and population social fatigue, whereas
Caulkins et al. (2021) model the optimal duration of lockdown using optimal control. Charpentier et al.
(2020) model the optimal lockdown level, level of testing efforts for Type 1 (antigen) and Type 2 (antibody)
using optimal control, by considering the combined impact of the epidemic on healthcare, economic and social

costs.

Mehrotra et al. (2020) propose a multi-period mixed integer linear programming model for allocation of
ventilators to different regions from the centre, based on stochastic demand for the COVID-19 pandemic.
Acemoglu et al. (2020) study a Multi-Group SIR model for three different demographic groups- young,
middle-aged and old and devise a customized lockdown strategy for minimizing economic damage and infec-
tions. The authors suggest a differential lockdown policy with targeted shielding of the elderly and testing,
tracing, isolation of all symptomatic patients for improving the economic and health impacts of lockdowns.
Di Domenico et al. (2020) propose a stochastic age structured epidemic transmission model for capturing the
progression of the epidemic in the Ile-de-France region in France, evaluating possible exit strategies after the
lockdown. Davies et al. (2020) carry out a similar study for United Kingdom, and analyse various NPIs for
controlling the epidemic across 186 counties. They compare local and national control strategies and consider

various triggers for initiating lockdowns based on healthcare capacity.

Note that in the above papers, when government policies are evaluated for controlling Covid-19 (lockdowns
or other NPIs), only a few scenarios are generated, evaluated (often with optimal control techniques) and
compared, but no optimization approach has been proposed so far for designing the best sequence (or optimal
mix) of NPIs over a planning horizon among the huge set of all potential sequences. We did not find either
a comparison of decentralised vs centralised strategies for epidemic control. In the next section we present

our epidemic and decision models.



3 Epidemic model and notations

3.1 Epidemic model

In this section, we introduce the compartmental model for computing the epidemic spread of COVID-19 in
a given population, based on classical model of Kermack and McKendrick (1932). The entire population is
subdivided into the compartments of Susceptible, Infected, Critical, Recovered, Dead for a given time period
t. The Susceptible compartment comprises of individuals who are vulnerable to the virus but have not been
infected yet; Infected are the active infections in the population at time ¢; Critical represents the number of
individuals who require any kind of hospitalization; Recovered constitutes the number of people who have
been cured, Dead are the fatalities owing to COVID-19 specifically. The epidemic model considered here is
discrete-time and deterministic. Each time unit has been assumed to be equivalent to one week. We assume

a weekly review and situational assessment from the policymaker’s perspective.

Figure 1: Epidemic Compartmental Model
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Figure 1 captures the compartmental model schematically. The individuals in the susceptible compart-
ment transition into the Infected compartment at a rate of 5. The infected population comprises of non-severe
(mild or asymptomatic) and severe infections, where the latter require hospitalization. The proportion of
severe infections is denoted by p. Severe infections enter the Critical or hospitalised state at a rate of ¢
per week, from symptom onset. Non-severe infections recover at a rate of u per week. From the Infected
compartment, people transition into either the Critical compartment for hospitalisation or to the Recovered
compartment directly, if non-severe. Individuals in the Critical compartment who are hospitalized, recover at
a rate of v. We assume that when a patient requires hospitalisation (Critical), he is admitted to a regular bed
or an ICU bed (subject to availability). A is the proportion of the hospitalised individuals who recover weekly
and 1 — X is the proportion of people who die weekly. For the schematic model, we represent the rates and
proportions for ICU and non-ICU patients to be the same. However, in the numerical analysis we consider
different rates based on empirical observations. The Dead and Recovered are terminal compartments with

no exit. Conversely, the Susceptible compartment has no inflow from other compartments.

The assumptions for the epidemic compartmental model are the following:

e The transmission between Susceptible and Infected is assumed to be dependent only on the Infected

population of the previous period, for linearizing the epidemic state equation (Biiyiliktahtakin et al.



2018).

e The infection transmission rate (8 is a function of the population density of the region. Hence, densely
populated clusters will have a higher rate of spread than sparsely populated regions. (Gerritse 2020) em-
pirically shows that a population density multiplier of two leads to a 0.06 point increase in transmission

rate.

e When an infected individual recovers, he is no longer susceptible to the virus, since the proportion of
reinfection cases with respect to the total is negligible (less than 1 %) according to recent findings (Hall
et al. 2020).

e Patients requiring hospitalisation avail either a regular bed or a Intensive Care Unit (ICU) bed, and
not both (Di Domenico et al. 2020).

e A shortage of regular beds and doctors delays the recovery process and a shortage of ICU beds leads
to deaths. Lin (2021) reports that COVID-19 mortality rates are strongly associated with ICU bed

availability from an empirical study and we base our assumption on this.
e Deaths are accounted for only the infections which require hospitalization (Di Domenico et al. 2020).
e A given proportion of severe symptom infections self-isolate. Based on a recent study in the UK (Smith

et al. 2021), it was reported that only 18% of COVID-19 patients self-isolated themselves.

3.2 Model notations

Table 1 summarizes the various NPI levels for controlling the pandemic. In Table 2, we report the optimization

model notations and constant parameters. Table 3 lists the primary and auxiliary decision variables for the

model.
Table 1: NPT List
Parameter Description
Self-Isolation (I) Isolation or Quarantine of vulnerable/ symptomatic people for 7 days
Travel Restrictions (T) Travel restrictions within and across regions based on distance.
School Closure (S) Closure of schools and universities - primary, secondary, UG, PG.

Public Gathering Ban (G) Restriction on gatherings for public events >50 people

Full Lockdown (L) Full service closure, curfew, mass restriction of movement

NPI Combinations

I Level 1 NPIs
I4+T, I+G, I+S Level 2 NPIs
I+T+8S, I+T+G, I+S+G  Level 3 NPIs
I+T+S+G. Level 4 NPIs
L Level 5 indicates Lockdown




Table 2: Optimization Model Notations

Parameter Description

Indices

t Index for time period (weeks), t = {1,...,T}

i Index for NPI level, : € N = {1,2,3,4,5}

k Index for region, k = {1, ..., K}

r Index for medical resource,r € Res = {1,2,3},1 = Doctors,2 = ICU,3 = Regular (Beds)

Epidemic parameters
B Weekly transmission rate of infections per infected person for region k
i Weekly transmission rate of infections per doctor for region k
Percentage of infected people who become Critical (hospitalised)
Weekly rate at which a non-severe infection recovers
Weekly rate at which an Infected person enters the hospital

Weekly Rate at which a Critical infection leaves the hospital

> 2 S T D

Percentage of Critical people who recover

Other parameters

T Average time to recover after being infected.

Ci Severity cost of implementing NPI ¢ per period and per person.

o Maximum reduction in transmission rate, a=Max{a;|i € N}

m Number of patients attended by one doctor

b,k Number of ICU beds in region k

b3,k Number of Regular beds in region &

0 Proportion of Critical patients requiring ICU beds

Nkt Proportion of resource r allocated for non-COVID cases in period ¢, region k
lo Maximum number of changeovers of NPIs

I1 Maximum number of weeks of lockdown over the T" weeks

lo Maximum number of consecutive weeks of lockdown

1, Minimum number of weeks between two successive blocks of lockdowns
B Upper bound on the average severity of NPIs per individual (budget).
Vit Theoretical Lower bound of Infections for period ¢, region k

Imax Theoretical Upper bound of Infections for all periods.

€ % of Critical patients who do not self isolate.

P Total population of the country

Pk Population in region k

Ik1,Cra, Hia Epidemic state values for period 1 for region k, vk e {1,..,K}




Table 3: Decision variables for MINLP and MILP models

Variables Description

PRIMARY

Thit =1 if NPI level i is selected for week t and region k, 0 otherwise

AUXILIARY

Epidemic

Trt Number of Infected people at week ¢t in region k

Cht Number of Critical people at week ¢ in region k

Hy: Number of active hospital doctors at week t in region k

Shortage

Srkt Shortage between demand and capacity of resource r at time ¢ in region k

20, kt =1 if shortage of doctors is less than regular beds, 0 otherwise, at time ¢,
region k.

Zrkt =1 if resource r demand exceeds supply, 0 otherwise, at time ¢ and region k

Qo,kt Max of doctor shortage and regular beds shortage at time ¢ and regon k

Qrit Min of resource r supply and demand at time ¢ in region k

Linearization of quadratic terms

KXkit Replacement for it ((1 — a;)(1 — pe)Ixt

Yo, kt Replacement for Hyt21 gt

Yokt Replacement for Chizrkt

Urkt Replacement for s,x:20,kt, Vr € {1,3}

Changeover

Wit =1, if NPI level i is not selected in week t—1 and selected in week ¢, 0 otherwise

As indicated in Table 1, we group the NPIs in different levels, from 1 to 5. For each level (for Level 2,3,4

since Level 1 and 5 have only one combination), we assign a single combination corresponding to the best
reduction factor based on our estimations and other empirical studies (Ferguson et al. 2020, Haug et al. 2020,
Lin 2021).

Before delving into the model further, we take a closer look at the variables used, as listed in Table 3. The
primary decision variable is the NPI level, xx;;. The epidemic state variables defined by the compartmental
model are the auxiliary variables. Out of the state variables, we consider only Infected and Critical (Dead can
be expressed as a function of Critical), since the rest do not directly impact the policy maker’s decisions. We
also model the epidemic impact on doctor availability with variable Hy;. Variable s,x; captures the shortage
between the demand and supply of medical resource r € Res at time period ¢ and region k. The three
forms of unserviced healthcare demand, in terms of doctors, ICU beds, regular beds indicate the number of
untreated infected patients for all three cases. Hence, s ;: indicates the shortage of doctors, ms; i+ is the

number of COVID-19 patients untreated due to lack of doctors, where m is the number of patients 1 doctor

10



treats on average. The combination of the z.,; and @, variables are used to ensure that s,; is exactly
equal to the shortage between demand and supply of the medical resource r.

For analysing the optimal policy making for containing the spread of COVID-19, we first introduce a
Mixed Integer Non Linear Programming (MINLP) optimization model. We linearize the bilinear terms in
the MINLP model subsequently to convert it into a Mixed Integer Linear Programming (MILP) model. We
further simplify it using model properties into an Integer Linear Programming (ILP) model and compare the
computational efficiency of both in the numerical section. We refer to the MINLP and MILP formulations as
‘time-based’ because the NPI decision variables are associated with each week, whereas we refer to the ILP
formulation as ’sequence-based’ because entire sequences of NPI choices spanning the planning horizon are
decided.

4 Time-based optimization models

4.1 Decentralised MINLP model

Here, we define the Time-based Mixed Integer Non-Linear Programming (MINLP) model for the decentralised

strategy, with the aim to minimize the total number of unique infections:

K T
Minimize Y > Y Be((1— ;) (1 = pe))akirIne (1)
k=17€N t=1
Subject to:
> g =1 vie{l,..., T}, Vke{l,.. K} (2)
iEN
1 K T
ﬁ Z Z Z CiPkTrit < B (3)
7 k=14i€EN t=1
~ Ci21 kit
S1,kt = T — (1 — nl,kt)Hktzl,kt vVt € {1, ...,T}, Vk € {1, ,K} (4)
S0kt = Gthth — (1 — 772,kt)b2,k227kt Vt € {1, ...,T}, Vk € {1, vty K} (5)
83kt = (1 — G)thZS,kt — (1 — Ug’kt)bg,kzgs,kt Vvt € {1, ...,T}, Vk € {]., ceey K} (6)
Cri(1—2z
Qure = (1= ) Herzape + w vte{1,..,T}, Vke{l,. . K} (7)
Ql,kt < (1 - ’I’]th)Hk;t Vt S {17 ...,T}7 Vk S {1, 7K} (8)
C
Qi < ﬁ Vte{l,..T}, Vke{l,.. K} (9)
Q2,kt = (1 — 772,}ct)b2,k22,kt + 90}@(1 — Zg’kt) Vt € {1, ...7T}, Vk € {17 e K} (10)
Q2.1t < (1 —m211)b2 i vte{l,..,.T}, Vke{l,..,K} (11)
Q2,1 < OC: vte{l1,..,T}, Vke{l,., K} (12)
QB,kt = (1 — ﬂg,kt)bgykzgykt + (]. — Q)th(l — Zg’kt) Vt € {1, ...,T}7 Vk € {1, ceny K} (13)

11



Qs.1t < (1 — 03ke) b3,k vte{l,...,T}, Vke{l,.., K} (14)

Qe < (1 —0)Chy vee{l,..,T}, Vke{l,..,K} (15)

Qo.it = ms1 k(1 — 20.kt) + 83 k20,1t vie{l1,..,T}, Vke{l,., K} (16)

Qo kt = MS1 kt vte{l,...,T}, Vke{l,..,K} (17)

Qo kt = S3 kt vie{l,..,T}, Vke{l,.,K} (18)

I 41 = It + Br Z((lfai)(lfpe)x;ﬂ-tfktf(p¢+,u(1fp))fkt vte{l,..,T}, Vke{l,..,K} (19)
ieN

Chrit1 = Crt + pdIe — (WA + (1 = N)Cri + Qo.kt — S2,kt vee{l,..,T}, Vke{l,..,K} (20)

Hy 41 = H}ct—ﬁg(Qz,kt‘f‘QS,kt—M(QQ,k,t—l“!‘QB,k,tfl)) Vte{l,..,T}, Vke{l, ., K}

(21)

it € {0,1} Vke{l,..,.K}, ieN, te{l,..T} (22)

Tty Ch, Hy = 0 Vke {1, K}, tel{l,..T} (23)

Srkt, Qo kt, Qrit = 0 Vr € Res, Vke{l,..,K}, vte{l,..,T} (24)

In our model, we capture the shortage between healthcare demand and capacity and evaluate its impact
on the epidemiological state variables. The shortage in capacity, in terms of doctors, regular beds, ICU beds
gets added to number of critical and dead patients, influencing the NPI level selected by the policymaker
subsequently.

The objective function in (1) minimizes the sum of unique infections over the T weeks. Constraint (2)
implies that exactly one NPI can be chosen every week ¢ in each region k. Constraint (3) ensures that the
average severity of NPIs over the whole population and the horizon of T° weeks stays within the national
severity budget B. This severity budget is an indicator of both the permissible loss in productivity that the
policymaker is willing to afford for the country, and compliance of the population with measures limiting
their freedom. The metric can be interpreted as labour hours lost due to containment measures. We assume
that the economic impact of the contact reduction «; is a convex, quadratic function of «; as analysed by
(Charpentier et al., 2020), i.e., ¢; = o . Constraints (4)-(6) imply that the shortage due to unserviced health-
care demand of medical resources r in terms of doctors, ICU Beds, regular beds is defined by max(Resource
demand — Resource supply, 0). To ensure that the binary variables z,; truly indicate if the demand of
resource r exceeds supply, we introduce another set of continuous variables Q,r; defined as the minimum
between demand and supply for resource r. We add three constraints to achieve this as in (Biiyliktahtakin
et al. 2018). The first constraint computes Q.+ = zrgt ¥ Supply + (1-z44¢)* Demand. The second and third
constraints imply Q¢ is less than the supply and demand, respectively. Constraints (7) to (9),(10) to (12),
(13) to (15) are the system of constraints for medical resources’ demand and supply for all resources Vr € Res.
Constraints (16) to (18) are introduced to compute the maximum between doctor shortage and regular bed
shortage. Constraints (19) to (21) are the epidemic state equations based on the Kermack and McKendrick
(1932) compartmental model. The choice of NPI level zy;; for time period ¢ and region k, reduces the new
infections by a reduction factor «; for level i. A proportion € of people with severe infections self isolate
and the rest are subjected to the NPI (self-isolation is common to all NPIs). The Critical (C) compartment

increases by the extent of the maximum between untreated patients due to shortage of doctors and shortage
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of regular beds, whereas the number of deaths increases by the extent of untreated patients due to shortage
in ICU beds. This implies that patients who are unable to avail regular beds or doctors due to shortages
continue to stay in the critical state and their recovery is delayed, and patients who do not get ICU Beds, die.
Constraint (21) captures the state equation for hospital doctors for time period ¢t and region k. In constraint
(21), we assume that the infections in doctors are directly impacted by the number of actual hospitalizations
in regular and critical beds and the number m of patients attended per doctor. We consider the minimum
of demand and capacity to be precise, as captured by variables Q2 x: and Q3 i+ respectively. The rate of
infection for doctors is given by 3f. Hence, the number of recovered doctors from the last period is added
back to the constraint based on the effective recovery rate M. Constraints (22), (23) and (24) are

integrality and non-negativity constraints on variables.

We also test another objective function of minimizing the total number of deaths caused by the pandemic.
We compute deaths due to the epidemiological progression, and due to ICU shortage captured by variable
s2.kt- The time horizon considered is T' + 3 weeks because the impact of the NPI in week T' (zx;7) impacts
the Infected state in 7'+ 1, Critical infections C}, 742 of week T+ 2, which in turn affects the deaths in week

T + 3. The objective function becomes:

K T+2
Minimize Z Z(l — N Cht + S2,k1 (25)

k=1 t=1

For the centralised model, the NPI decision variables xy;; are replaced by z;; because of homogeneous
decisions across regions, the assignment constraint (2) is no more for each region k and the sum over k
disappears in the budget constraint (3). The rest of the constraints are identical with the decentralised
model. Infection and Critical variables and the corresponding shortage variables are still computed at a

regional level k because of differentiated infection rate and capacities across regions.

4.2 MILP reformulation

In order to convert the former MINLP model into a Mixed Integer Linear Programming (MILP) model,
we linearize the quadratic parts of the model in the following way. We define four sets of auxiliary vari-
ables Xuit, Yo ke, Yok, Urke for linearizing the products of zpi (1 — o;)(1 — pe) I, Hir 21 kt,Chit Zrkts SrktZ0 ki

respectively.

Linearization of (1 — a;)(1 — pe)xpitlre = Xpir:

Xrit 2 Vit Yie N, vte{l,..,T}, Vke{l, ., K} (26)
Xit < ImasThit Vie N, Vte{l,.,T}, Vke{l, .. K} (27)
Xiit = (1 — )(1 = pe)) it — Imaw(1 — Thit) Vie N, vte{l,..T}, Vke{l,.,K} (28)
Xpir < (1 — @) (1 — pe) It — Viee (1 — it Vie N, Vte{l,..T}, Vke{l,., K} (29)

Linearization of Hy:21 gt = Yo,k
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Youe =0 vte{1,..,T}, Vke{l,.,K} (30)

Yo ue < Hroz1,kt YVt € {1, ...,T}7 Vk € {17 7K} (31)
Yb,kt >Hkt*HkO(1*21,kt) Vt € {1,...,T}, Vk € {1,,K} (32)
YO,kt < Hy Vit € {1, ...,T}, Vk € {1, ,K} (33)

Linearization of Crizyke = Yere:

Youe = pViet 2ot Vte{1,..,T), Vke{l,..,K}, Vre Res (34)

Yiit < plinas ekt vte{1,..,T}, Vke{l,.,K}, Vré€ Res (35)

Yokt = Crt — plnae (1 — 2rkt) vte{l,..,T}, Vke{l,..,K}, Vre€ Res (36)
Ykt < Crt — pVier(1 — zpgt) vte{l1,..,T}, Vke{l,.,K} Vré& Res (37)

Linearization of s,4:20 1t = Ure:

Urkt 20 vte{l,..,T}, Vke{l,.,K}, Vre{l,3} (38)

Urkt < Imaz2o kt vte{l1,..,T}, Vke{l,.,K}, Vre{l,3} (39)

Urkt = Srit — Imaz (1 — 20.kt) Vie{l,..,T}, Vke{l,.,K}, Vre{l,3} (40)
Uit < Spkt vte{l1,.., T}, Vke{l,.,K} Vre{l,3} (41)

For linearization of bi-linear terms in the objective function and Constraint (19), constraints (26) to
(29) have been used. Glover (1975) linearization method, as implemented in Biiyiiktahtakin et al. (2018)
has been used, where n auxiliary variables and 4n constraints are introduced. The lower bound and upper
bound for the corresponding continuous variable I;; has been defined as Vi, I g, respectively. The rationale
behind defining the lower bound as time dependent is to make it tighter and improve the computational
time. Hence, the lower bound for total active infected people at week ¢ is derived by considering that the
strongest NPI (Level 5) is applied in all periods leading up to t. The auxiliary variable Xy is a replacement
of zgit(1 — ;)(1 — pe)I. The lower bound for Iy, is given by Vi 41 = Vit (1 + k(1 — & — (p — p(1 — p))).
Constraints (30) to (33) are implemented for linearizing the bilinear terms corresponding to available doctors
in region k and time t, given by Hy.z; . Constraints (34) to (37) are introduced for linearizing the product
of Cyt and z,¢. Constraints (38) to (41) are introduced for linearizing the product of shortage variables s,k
and the indicator variable zp x¢. The lower bound for Cy; is assigned as pVj; and the upper bound as plyqx

for each time period t and region k.

4.3 Additional constraints on NPI sequences

In this subsection we introduce three scenarios S0, S1 and S2, of additional policy constraints in order to

make the containment policy enforceable and sustainable from an implementation point of view.

Scenario SO:
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Restricted changeovers. No more than [y changeovers across T weeks:

Thit + Y Trjuo1 > 2Whis vte{l,.., T}, Vke{l,., K} (42)
JEN\{i}
Thit + Y Thjeo1 — Wit < 1 vte{1,..,T}, Vke{l,.,K} (43)
JEN\{i}

T
SN Wi <lo VE e {1,..,K} (44)

t=14ieN
Two week rule: If an NPI is selected, it should be on for at least two consecutive weeks, whenever
applied.
Thit+1 > Wit Vi € N, Vt € {1, ...,T}, Vk € {1, ,K} (45)

Thit+1 2 Thit Vie N, Vte {1,T — 1}, vk € {1, ,K} (46)

Scenario S1: No more than [; weeks of lockdown
T
ka&t <h Vk e {l,...,K} (47)
t=1

Scenario S2: Maximum Iy weeks of consecutive lockdowns, Minimum gap of I5 weeks in between phases

t'+1
> ks <l vte{l,., T}, Vke{l,.,K} (48)
t=t/
t' -2 4
Z Trst < (l; — 1)(2 — Tp5,t—2 — Zxki’t_l) YVt € {1, ..,T}, Vk € {1, ,K} (49)
t=t/ i=1

Scenario S0 is the default model, where there are restrictions on NPIs in general. Scenario S1 and 52,
impose additional restrictions on implementation of lockdowns specifically and are tested separately.

Constraints (42) to (44) limit the number of changeovers in NPIs across the planning horizon. This is
done in order to make the policy practically sustainable. Switching between NPI modes from 1 to 5 rapidly
will be chaotic to enforce and populations will find it difficult to comply with. Constraints (42) and (43)
record the number of changeovers between NPIs. Constraint (44) puts an upper bound ly on the number
of changeovers. Constraints (45) and (46) ensure that every NPI, whenever it is introduced, stays on for
two weeks at least. For Scenario S1, constraint (47) ensures that the total number of lockdowns is less than
Iy, as set by the policymaker. Constraints (48) and (49) together represent Scenario S2, which implies that
there cannot be more than Iy successive weeks of lockdowns (Constraint (48)), with a gap of at least [}, weeks
between two phases of lockdowns. We test the centralised and decentralised strategy for all scenarios S0, S1

and S2 separately.

5 Sequence-based optimization model

In this section, we present a simplification of the MILP model based on nice properties of optimal solutions

stated in Propositions 1 and 2, that are corollaries of the following lemmas.
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Lemma 1. For a given feasible solution, if for some region the NPIs at two periods t1 and ty, with t1 < ta,

are swapped, then the infection level in period ta + 1 stays the same.

Lemma 2. If a solution satisfies Tp i, 1, = 1 and Ty iy 1, = 1 with t1 < t2 and a;, < oy, (i.e NPI iy is less
effective than is), then making the NPI swap xy;, ¢, = 1 and xy i, 1, = 1 will strictly improve the objective

value (for both minimization of infections and deaths).

The proofs of the lemmas can be found in the Appendix. We now introduce the two propositions (corol-

laries of Lemma 2 that enable to turn the time-based model into a tractable sequence-based model.

Proposition 1. For Scenario SO and S1, the optimal NPI sequence is always ordered from higher severity

to lower severity (for both minimization of infections and deaths).

Proposition 2. For Scenario S2, the optimal NPI sequence always follows an ordered sequence from higher to
lower severity for every sub-sequence containing a lockdown, and for non-lockdown NPIs across sub-sequences

(for both minimization of infections and deaths).

Using Propositions 1 and 2, one can switch to a tractable 'sequence-based’ model, where a pre-processing
can easily compute the set Seq of all sequences satisfying the property of descending severity, together with
the budget constraint and the constraints of scenarios S0,S1 and S2. Doing so, the state variables and

shortage variables become constants in the model. The cost of each sequence s € Seq is given by

T
Cs = Z Z qsitCi

iEN t=1

where binary parameter gg;; is equal to 1 if NPT level i is assigned to week ¢ in sequence s, 0 otherwise.
Iist, Crst, Hisr Tepresent the state values corresponding to sequence s at week t and region k. Qi Qo,kt
and §,.x; represent the demand — supply values and shortage values for healthcare resources. As a result of

this simplification, all the linearization variables of section 4.2 are discarded.

We discuss only the decentralised strategy, because this simplification turns the centralised optimization
problem just into an enumeration problem (generate all sequences in Seq, evaluate the objective value of
each and pick the best one). The sequence-based decentralised formulation is still an NP-hard Integer Linear
Programming model, though much simpler than the earlier MILP formulation. For this ILP model we define

a new decision variable:
1 if sequence s € Seq is selected for region k
Yks —
0 otherwise

and the sequence-based model can be written as follows:

Minimization of Infections
K T
Minimize Z Z Zﬂk(l — ast)(1 — p€) lstYrs (50)
k=1seSeq t=1

Minimization of Deaths

T+2

K
Minimize Z Z Z((l — A)Chst + 52, kst ) Yks (51)

k=1s€Seq t=1
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Subject to:

S gs=1 Vke({l,..K)} (52)
s€Seq
| X
Pi Z Z pkcsyks X (53)
" k=1s€Seq
yps € {0,1} Vs € Seq, ke{l,...,K} (54)

The objective function (50) minimizes the sum of infections for the planning horizon, whereas objective
(51) minimizes deaths. Constraint (52) implies that for each region &, only one sequence is assigned from the
feasible set Seq. Similarly, Constraint (53) is the budget constraint, weighted by population, factoring in the
NPI cost ¢, for each sequence s. We demonstrate the advantage of the sequence-based formulation over the

time-based formulation in terms of computational efliciency in the next section.

6 Numerical analysis

In this section we discuss a case study based on the COVID-19 spread in the metropolitan region of France in
Europe. We compare the containment models for both decentralised and centralised strategies by considering
various lockdown constraints separately as scenarios (S0, S1, S2, as defined earlier). For the decentralised
strategy, we study the epidemic spread in the 13 metropolitan regions of France. For our analysis, we have
incorporated data from French national archives and databases for demographics and healthcare capacities.
We consider population density, healthcare capacity in terms of regular beds, ICU beds, general practitioner
for all 13 regions. Based on Salje et al. (2020), Di Domenico et al. (2020), we calibrate the various epidemic
parameters pertaining to the regions and at a national level. Naturally, the decentralised model can be
implemented at a finer granularity than the region level, e.g. at French "départements" or city level, however
we chose a division of the country into regions since we had available data for the 13 regions, and the benefit

of decentralisation is already shown with no ambiguity at this level.

6.1 Calibration of parameters

For quantifying the impact of various NPIs on the reduction of infection transmission and Ry, we resort to
social contact matrices. Social contact matrices divide the population into age groups and define the per day
contact between different age groups. Several empirical studies have been carried out in the past to record
actual social contact patters in different countries. Prem et al. (2017), developed social contact matrices for
152 countries based on contact surveys and demographic data. Béraud et al. (2015) carried out one of the
first large population contact based surveys for France and computed social contact matrices for modelling
infection spread in the population.

Based on these studies we consider contact matrices for the French population for age groups (0-19, 20-
39, 40-59, 60 -75, 75+) and modes of contacts such as home, school, work, other locations and calibrate the
contacts for different NPIs. For consideration of reduction in contacts for different NPIs our assumptions are
closely related to Di Domenico et al. (2020) and Davies et al. (2020). We report the final contact matrices
considered for our analysis in Table 8 (See Appendix), in terms of resultant contacts after implementation of

the corresponding level of NPI. For severity index of different NPIs, we have scaled the cost impacts of NPIs
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on a scale of 0 to 10. Each of the levels correspond to the degree of combination of NPIs, from 1 to 4, with
5 indicating a Lockdown. Details of NPI calibration are explained in the Appendix. In Tables 9 and 10 (see
Appendix) we report the epidemic parameter values for France, based on French government archives and
empirical papers, as indicated.

In order to reduce the computational complexity for executing the models, we have not considered age
specific variables. Instead, we have factored in weighted averages for the age-centric epidemic parameters
and contact data. For S1 scenario we assume [; = 0.57 and for S2 scenario we assume lo = I, = 3. For
changeovers, we consider lg = 0.27'. For initiating the progression of the epidemic, we considered 0.004% of

the population of each region to be infected already at the beginning of the planning horizon.

6.2 Gain of decentralization

The MILP and ILP models for decentralised and centralised strategies were executed on CPLEX 12.10 on
Mac OSX, 8 GB RAM system. In Table 4 and Table 11 (Appendix), we report the results of the optimization
model for minimization of infections and cumulative deaths respectively, for a time horizon of 8 and 10 weeks,
three different severity budgets (B = 5,6.5,8), and for each scenarios S0, S1 and S2. Not surprisingly given
its higher flexibility, the decentralised strategy consistently exhibits a better objective function value in all
scenarios and instances compared to the centralised strategy, with a reduction in infections up to 20% and
reduction in deaths up to 15%. We can also observe that the objective function values follow the relationship
in all instances: SO < S1 < S52. This is logical because in scenarios S1 and S2 we add restrictions on

lockdowns which results in more infections and deaths in comparison to S0.

Analysis of deaths due to ICU bed shortage

In Table 5, we depict a particular instance, where we assume a skewed spread of initial infections, considering
regions with higher population (> 5 millions) have a higher initial infections to population ratio in comparison
to the rest. We consider the objective of minimization of deaths, for T=8, B=4 in this case. The table
indicates the peak ICU demand to capacity ratio for the 8 weeks at a regional level. When it is more than
100%, it implies that there was a shortage in ICU beds, which resulted in as many deaths. In terms of
NPT allocation, for the centralised strategy, we can see that every region gets the same allocation of severity
index. As a result, there is a very high skew in demand to capacity ratio, as high as 231% for Ile-de-France,
whereas in the decentralised model, the ratios stay within 150%. This leads to a much higher level of shortage
in ICU beds in the centralised strategy, and hence more deaths. The total deaths due to shortage in the
decentralised strategy is 1096, in comparison to 2704 for the centralised strategy, 60% lesser. The weighted
peak demand to capacity ratio is 148.2% for Centralised and 119 % for Decentralised strategy. In terms of
allocation of NPIs, if we observe Bretagne and Normandie regions, both have the same population of 3.3
millions, however, Bretagne’s severity index of NPI is 3.4, in comparison to 2.62 for Normandie. This can be
explained by the fact that, Bretagne has a population density of 122.8 people per square kilometres and an
ICU density of 6.9 beds per 1000 people, in comparison to Normandie’s population density of 111.6 people
per square kilometres and ICU density of 8.3 beds per 1000 people. Population density directly impacts
the infection spread, hence a higher population density coupled with lower ICU density indicates a greater
risk, necessitating more stringent measures for safeguarding the sanitary situation. Hence, these kind of
allocations at the regional level in the decentralised model result in a better management of the pandemic,

with lesser infections and deaths, for the same economic loss, as compared to the centralised strategy.
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6.3 Gain of sequence-based model

In Table 6, we report the number |Seq| of sequences generated for the ILP model compliant with Proposition
1 for scenarios S0, S1, and with proposition 2 for scenario S2. the table shows there is a reduction of 99%
from the total number 57 of possible sequences. In Table 7, we compare the computational efficiency between
the time-based (MILP) and sequence-based (ILP) formulations. We can check that both formulations yield
the exact same objective value for infections. However, there is a drastic reduction in CPU time, as high as

99.7% in comparison to the time based MILP formulation.

6.4 Sensitivity analysis

In Figure 2, we highlight the optimal NPI sequences for scenarios S0 for both objectives of infections and
deaths minimization, for decentralised and centralised strategies respectively. We observe that the optimal
NPI sequences for the two objectives are different. For the minimization of deaths, the total number of
lockdowns across regions are greater with a more drastic shift to lower severity NPIs towards the end of the
planning horizon, in comparison to the minimization of infections. In Figure 3, we demonstrate the evolution
of infections for scenarios S0 and S2 for the centralised strategy, performing a sensitivity analysis on NPI
budget B for T = 14 weeks. It can be clearly seen that the infections explode exponentially with a fall
in budget B. An unlimited budget would naturally allow continuous lockdowns over the T weeks, which
would not be accepted by the population for a large T'. Also, for S2, the pattern follows alternating rises
and falls, owing to the consecutive lockdown condition, with higher peaks and troughs in comparison to SO.
Finally, in Table 12 we perform a sensitivity analysis based on «, the reduction factor, by varying it in a
range [—20%, +20%)] of the estimated values. We test it for scenario S0, three budgets B € {5,6.5,8} and
time horizon T' = 8 weeks. These three budgets B = 5,6.5 and 8 correspond to different values of average
severity per individual, between Level 4 corresponding to B = 5, and Level 5 corresponding to B = 10 (the
cost is non-linear with the NPI level; see Appendix C for more details on the scaling of severity costs ¢; and
calibration of coefficients c; used in the calculus of ¢; = a?). We observe that the decentralised strategy still

performs better for minimization of infections (up to 10%).

Figure 2: Differentiated NPI decisions across regions, (S0, B=6.5, T=10)

(Inf*) linimize Deaths ( Deaths*)
Pop Region wi| w2 | w3 |wa| ws | we| w7 | wa | wo |wio Pop Region wi | w2 | w3 |wa| ws | we | w7 | wa | wo |wio
03 Corse 5 5 5 5 5 5 2 2 1 1 03 Corse 5 5] 5] 5 5 3] 3] 1 1 1
Bourgogne- Bourgogne-
2.8 | Franche-Comté | 5 5 5 5 5 5 2 2 1 1 238 Franche-Comté 5 5 5 5 5 5 2 2 1 1
Nouvelle- Nouvelle-
6.0 Aquitaine 5 5 b b 5 3 3 3 2 2 6.0 Aquitaine 5 5 = 5 5 = 2 2 1 1
5.9 Occitanie 5 5 3 5 5] 3 3 3 2 2 59 Occitanie 5 5) 5) 5 5 5) 2 2 1 1
Centre-Val-de- Centre-Val-de-
26 Loire 5} 5] 5] 5 5] 5] 3 3 1 1 2.6 Loire 5 5 5] 5 5 5 3]
5.5 Grand Est 5 S| S S S| S| 2 2 1 1 5.5 Grand Est 5 5] 5] 5 5 5) 2 2 1 i
Auvergne-Rhéne- Auvergne-Rhéne-
8.0 Alpes 5 5 5 5] 5l 3 3] 3 2 2 8.0 Alpes 5 5 5 5 5 5 2 2 1 1
33 I 5 5 5 5 S 3 3 2 2 2 33 Normandie 5 5 5 5 5 3 3 1 1 1
33 Bretagne 5 5 ) S 5 5 2 2 ik al 33 Bretagne 5] 5) 5) 5 5 5] 2 2 i i
3.8 | Paysdelaloire | 5 5 5 5 5 3 3 3 2 2 38 Pays de la Loire 5 5 5 5 5 5 2 2 1 1
Provence-Alpes- Provence-Alpes-
5.1 Cote d'Azur D) Bl B 5 Bl 5 3 3 1 1 5.1 Cote d'Azur 5 5] 5} 5 5 5} 2 2 il 1
6.0 | Hauts-de-France | 5 5 i 5 5] 5 3 3 1 1 6.0 Hauts-de-France L 5 ) 5 5 I 2
12.3 | fle-de-France 5 5 5 5 5 5 5 2 2 2 123 Tle-de-France 5 5 5 5 5 5 5 1 1 1
Centralised Model Centralised Model
Pop Country wa | ws | we | w7 | ws | wo |wio Pop Country wi | w2 | w3 | wa| ws | we | w7 | ws | wo |wio
[6ao [ France ['s [s[ s ["s [ s [Faad 2 [ 22 649 | France | 5 | 5 | s | s | s | 's [ 2 [ 2 [ 1 [ 1]
Scenario SO Centralised Decentralised Variation
B T CPU cpPU
Inf* |Deaths|Time (s) | Inf |Deaths|Time(s)| I(A) | D(A)
6.5 10 |11310| 307 0.73 ]10291| 291 | 65.97 | -9% 5%
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Table 4: Gain of Decentralisation for Inf* (* = Optimization Criterion)

Scenario SO Centralised Decentralised Variation
B T #Inf* #Deaths| Time(s) | #Inf* #Deaths| Time(s) | A Inf A Deaths
5 8 19370 473 0.55 18036 439 6.2 1% -7%
6.5 | 8 10826 290 0.6 9819 276 6.4 -9% -5%
8 8 7146 223 0.49 7008 222 6.4 2% -0.4%
5 10 25746 621 1.12 22251 553 66.5 -14% -11%
6.5 | 10 10906 308 0.84 10221 293 65.3 -6% -5%
8 10 7432 238 0.83 7038 230 65.3 -5% -3%
Scenario S1 Centralised Decentralised Variation

5 8 19370 473 0.78 18036 439 6.4 -T% -T%
6.5 | 8 10826 290 0.53 10028 284 6.2 -1% 2%
8 8 8273 253 0.92 8273 253 6.0 0% 0%

5 10 25746 621 2.49 22251 553 66.5 -14% -11%
6.5 | 10 10906 308 1.09 10537 303 68.2 -3% -1.6%
8 10 8499 268 0.98 8499 268 67.2 0% 0%
Scenario S2 Centralised Decentralised Variation

5 8 19370 473 0.73 18244 444 10.9 -6% -6%
6.5 | 8 11591 321 0.8 10821 310 11.2 -1% -3%
8 8 10219 301 0.88 8747 279 11.0 -14% 1%
5 10 28736 688 2.37 23226 591 222.3 -19% -14%
6.5 10 15103 420 1.41 12608 374 225.2 -17% -11%
8 10 11236 362 1.07 9780 321 223.1 -13% -11.3%

7 Managerial insights

Based on the output of the optimization model, we deduce some key takeaways for policymakers. Although

there is a degree of ambiguity surrounding the epidemic parameter values and the exact economic and health

impact of NPIs, we can identify some broad trends.

The first key finding is with respect to the optimal sequence of NPIs. For both the decentralised and
centralised strategies, the NPIs follow a pattern of decreasing severity across the planning horizon. This
indicates that the policymaker needs to impose heavier restrictions in the beginning, in order to check
the transmission in the population and utilise that time to ramp up healthcare capacity to prevent
a health crisis. Initially, a few countries like UK had contemplated implementing the herd immunity
strategy which would allow a sizeable proportion (around 70%) of the population to be infected and
develop antibodies against it. However, the sharp increase in hospitalizations and overwhelming of
healthcare capacity did not allow them to go ahead with it. Hence, the optimal strategy for controlling
COVID-19 would be to put heavier NPIs in the beginning followed by less severe ones, for minimizing

infections or deaths within a given budget constraint.

The second takeaway is the benefit of a decentralised strategy. Based on our numerical analysis of
the French regions, we observe that the decentralised strategy yields better results for all instances,
with up to 20% lesser infections and 15% lesser deaths. It is natural that the objective value improves
when giving more flexibility to the model, but the gain appears to be quite substantial here. This is an
important consideration for policymaking in a pandemic, where vaccine development takes time and
NPIs need to be sustained over a longer horizon to keep the infection transmission at a manageable level.
Exhaustive confinement and lockdowns at a national level leads to social fatigue and is economically
unsustainable. Given these limitations, it is pragmatic for the policymaker to follow a more customised

strategy at a regional/ state/ city/ district level, considering the demographics, healthcare capacity
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Table 5: Heterogeneity of NPI severity & ICU shortage across regions (Scenario S0, B=4, T=8, Deaths*)

Regional Data Peak Demand/Cap | #Deaths (Shortage) Severity
Pop.D | ICU.D | Pop | Region Cap. | Cent. Decent. | Cent. Decent. Cent. Decent
39.7 6.1 0.3 Corse 16 8% 138% 0 6 3.98 3.25
58.2 11.5 2.8 Bourgogne-Franche-Comté 240 59% 106% 0 14 3.98 2.95
714 7.9 6.0 | Nouvelle-Aquitaine 400 141% 140% 162 190 3.98 3.85
81.5 10.0 5.9 Occitanie 480 116% 116% 79 75 3.98 3.85
65.4 6.8 2.6 Centre-Val-de-Loire 160 88% 119% 0 31 3.98 3.40
96.0 7.6 5.5 Grand Est 320 173% 120% 262 63 3.98 4.45
115.2 7.1 8.0 | Auvergne-Rhone-Alpes 480 151% 150% 246 321 3.98 3.85
111.6 8.3 3.3 Normandie 240 57% 123% 0 55 3.98 2.62
122.8 6.9 3.3 Bretagne 160 101% 138% 2 60 3.98 3.40
118.5 7.5 3.8 Pays de la Loire 240 75% 114% 0 33 3.98 3.25
161.0 7.9 5.1 Provence-Alpes-Cote d’Azur | 320 173% 118% 250 59 3.98 4.45
188.0 11.2 6.0 Hauts-de-France 560 121% 83% 119 0 3.98 4.45
1022.2 | 10.2 12.3 | le-de-France 1140 | 231% 118% 1584 189 3.98 4.79
D= Deunsity, Pop = Population (in millions) 4756 | 148.2%| 119% 2704 1096 3.98 4.0

Table 6: Number of sequences generated for scenarios 5$0,51,52

Time | #Total Sequences | #Feasible Sequences in Seq
T Total = 57 S0 S1 52
8 390625 115 106 100
10 9765625 225 206 180

8

and the transmission dynamics observed initially. We conclude that a decentralised strategy not only
results in better performance in terms of epidemic control but also aids in mobilising the economy
wherever feasible. This conclusion holds regardless of the practical difficulty to manage differentiated
measures from one region to another, but actually this geographical differentiation has already been
implemented in France (in Ile-de-France region, the city of Nice, the "département" of Moselle, to cite

a few examples), and in other countries.

Finally, a very crucial aspect of pandemic management is to identify capacity risks and bottlenecks
and take proactive measures. Our analysis of the decentralised and centralised strategies considering
shortages in ICU beds, reveals how the former leads to a better allocation of NPIs, resulting in lesser
shortages (up to 60 %) and consequently lesser deaths. This policymaking tool allows the policy think
tank to identify capacity risks based on various scenarios and increase capacities accordingly to avoid

an unfortunate overwhelming of the healthcare system.

Conclusion

In this paper, we develop an epidemic optimization model for controlling COVID-19 infections in a given

population, considering budget constraints on the set of NPIs decided by the policymaker, and health-

care resource shortages. The classical SIR epidemic compartmental model of Kermack and McKendrick

(1932) is incorporated with certain extensions in order to capture the dynamics of COVID-19. We factor in

healthcare resource shortages in terms of doctors, ICU beds, regular beds. We linearize the initial MINLP

time-based model, and then use a (proven) property of decreasing severity of NPIs over time to convert it

into a ’sequence-based’ ILP model, which can be solved in a much faster way (time reduction of up to 99%).
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Table 7: Computational gain of the Sequence-based model (Inf*)

Scenario SO Time based Sequence based CPU Time (s)
B T #Inf* #Deaths | #Inf* #Deaths | Time Sequence | Reduction
based based (A)
7 6 8109 228 8109 228 114 3.32 -70.9%
6.5 | 6 9076 248 9076 248 44.9 3.29 -92.7%
6 6 10372 270 10372 270 1081.3 3.3 -99.7%
7 7 8341 242 8341 242 11.18 6.23 -44.3%
8 8 7008 222 7008 222 3814.2 11 -99.7%
8.5 10 6630 222 6630 222 1820.1 295.1 -83.8%
104Centralised, (SQ, Inf*, T:14) 104(lentraulised, (SO, Inf*, T=14 )
16T 77777 7T 16— 777777
148 B=5 . 148 B=5 .
—-=- B=6 —-=- B=6
12*%3:7 n 12*%3:7 B
%’ = B=38 %’ B=28
ge B=9 e = B=9
%0.8* B =10 N %0‘87 B =10 |
= 06 . = 06| |
04+ . 04} i
a_ . D"‘E\
[ = = S | [ |
o7 SEETT s | o e ]
) Oy O B oL 11 ~H=F =ail
012345678910111213141516 012345678910111213141516
Period Period

Figure 3: Evolution of the optimal number of infections with budget B

Two strategies are analysed - centralised and decentralised, where NPIs are modelled for the entire country
for the former, and at a regional level for the latter. We use social contact matrices from empirical studies
and actual epidemic and demographic data from French archives for developing a case study on the spread
of COVID-19 in France. Our results indicate that the decentralised model performs better in terms of lesser
infections (up to 20%), lesser deaths (up to 15 %), lesser shortages (up to 60 %) for a given budget. Despite
the evolving nature of the pandemic and the uncertainty around data, these findings offer some direction
to the policymaker for implementing NPIs optimally, weighting both the sanitary and economic impact of
their decisions. We believe that this analysis will be valuable not only from the perspective of COVID-19,
but also for managing future occurrences of epidemics of any kind, by leveraging some of the insights as
rule of thumb. In terms of limitations of our research, although our analysis establishes the decentralized
strategy to be better, compliance of populations with too many differential restrictions might pose chal-
lenges to the administration. Our motivation is to demonstrate the benefits of a decentralized strategy from

a scientific standpoint, and the solutions obtained do not show too chaotic patterns across regions in any case.

We suggest some further extensions to this research. First, application of machine learning methods in
combination with mathematical programming can be used for a more data driven approach to policy making,
where an adaptive rolling plan of NPIs can be modelled based on population compliance data. Data obtained
from the first wave of the pandemic can be used to train algorithms to predict compliance of the population

to NPIs in subsequent waves and build more robust, predictive models for policymaking. Second, capacity
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increase, facility location and layout, are some of the other dimensions of the epidemic control problem which
can be explored. Third, for the sequence based model, column generation can be implemented when the

number of various NPIs is large, in order to tackle the explosion of sequences.

Finally, this paper restricts to non-pharmaceutical interventions at the early stage of the spread a new
virus like COVID-19, before efficient vaccines can be found. An extension to the MILP model can be made
for considering vaccine administration along with NPIs simultaneously. A considerable number of approved
vaccines have emerged since December, 2020 for inoculating the global population against COVID-19, namely
Pfizer /BioNtech, Moderna, AstraZeneca, Johnson and Johnson, Sputnik V (Healthdata 2021). One could
modify the objective function applying to the rate of infections a discount factor based on the percentage of
an age group vaccinated with dose 1 and dose 2 at each week and region, along with the effectiveness of each
dose (% of people getting sufficient immunity by dose 1 and 2). Older age groups should be prioritized ideally
for preventing criticalities. The quantity of each dose made available at each time period in each region could
be modelled as a supply chain problem, considering lead time, capacity, logistics and budget constraints. A
new decision model could then indicate the optimal vaccine production and distribution plan along with the

optimal NPI sequence.
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Appendices

Appendix A: Proof of model properties
Proof of Lemma 1

Proof. Let x be a feasible solution. Let us fix region k, and assume we swap two NPIs between time periods
t1 and ty for that region, such that 1 < t; < to < 7T. We skip index k in the sequel and to ease the reading,
by a slight abuse of notation we note a; the reduction factor at week ¢ in solution x, i.e. the «; such that
Trit = 1. So oy, and «y, are the reduction factors at weeks ¢; and ¢2 in « before the swap. Note that the
swap that does not change the budget consumption, so the swapped solution remains feasible.

The infected state equation for the centralised model is given by:

Iy 441 = Tie + Br Z((l —a;)(1 = pe)zitlit — (pd + (1 — p)) It vte{l,..,T}
iEN
which we can rewrite as:

Liii =L+ (1 — o)l — Qa1 (55)

where 1 = B(1 — pe) and Qo = (pd + u(l — p)). Hence, we can write the general term of the state

equation as follows:

t
It+1 = Il H (1 + Ql(l — O[t/) — QQ) (56)
t'=1

Since I;,4+1 is a product of the constant terms comprising the reduction factors from 1 to t2, swapping
NPIs between t; and to, keeps the overall product the same. Therefore, I;, 1 is the same for the original
and swapped case. Additionally, we can say that for the period T+ 1, the infection level will be same for

the swapped and original solutions. Since it is true for any region k, this concludes the proof of the lemma. [J

Proof of Lemma 2: Minimization of Infections

Proof. Let us start with some feasible solution z and as in the proof of Lemma 1 we fix region k and omit
the index k in the notation. Let us assume that we swap two NPIs between time periods ¢t; and to, such that

1<ty <t T, with a4, < oy, (same notations as in the proof of Lemma 1).
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The unique infections generated each period t is given by Qi(1 — «;)I;. We define the set of infection
state equations for the original solution and the swapped solution, by I; and I; respectively. For the original
solution, the equations for t; + 1 and ¢ + 1 can be derived from (55)

Now, the swapped infection state equations are given by:
Iy =1y + (1 — oy ) 1y, — Qo
I =15, + (1 — o ) I7, — Qa1
For period t; + 1, the relationship between the original and swapped equation is given by
Loy =T = Doy, — o)l = A (57)

For the general term, we define

An = Itsl-&-n - It1+n

By induction we have for n > 2:

t14n—1
Ap =y, —a)l, [ @+ 20— ar) - Q)
t=t1+1
Now, using (55), we get:
t14n—1 I
Ap =y, —as,)l, ] tj—“ (58)
t
t=t1+1
_ It1+n
- Ql(atl - atg)-[tl I (59)
t1+1

We now compare the sum of infections between ¢; and to, because t; + 1 onwards the sum is the same for
both the original and swapped cases (Lemma 1) and before ¢, there is no swap, hence they are identical. For
the original and swapped solutions, the sum of unique infections between period t; and to are respectively
given by:

to
U= Z Ql(l - Ozt)It
t=t1
t2—1
U=l —ap,)l, + Y (1= o)l + (1 — a5,
t=t1+1
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Hence,

- to—1

0 U = o, — o)l Y (= a(Ef = 5+ (= a)E, = (- o)

- t=t1+1
_ to—t1—1

= (o, — )+ Y (T= o)A+ (1=, )Tty + Agyy,) — (1— at2)1t2:|
L =1
r ! to—t1—1

= |(ar, —a)(T, = I)+ Y ((1 - at1+n)An> +01- atl)Atz—tl}
- n=1

using I}, — I, +n = Ay, from (8). Making the substitution Q1 (1 — oy, 4n) = Lusnit _ 14 Q) and using the

It1+n

expression (59) of A,, we get:

Ity in Ity 4n
(1=t 4n)An = (t;++1 -1+ Q2> (= ) T, =
t14+n

to—t1—1
I n I in I
Us-U=M (at1 _at2)(It1 _Itz) + Z ((tlJ’_H -1 +Q2)(at1 —04752)1151 - ) + ( A ! +92)(at1 _atZ)Itlrt
ty

n=1 It1+n It1+1 Itl
- to—t1—1 I I T I
= Ql(atl — Oth) (Itl - It2) + Z (( btntl - 1 + QQ)Itl ItlJrn) + ( tll+1 - 1 + Q2)It1 I = :|
L n=1 ti+n t1+1 t tit1
_ to—t1—1
Lt 4nv1 — Ity 4 Ity 4n I
=0 - I, +1, L L Q-1 Qo — 1)1,
1, —at,) | ut iy ; ( It 1 * 2It1+1 - ( 2 ) " Ity 41
L 1 to—t1—1 7 I
_q R P Pt /S U Q,tn Qp — 1)1, —2—
1oy, atz) 4 + 1y Iin + Iy, ; 2It1+1 +( 2 ) th Ty
r to—t1—1 It n I
o) — I Qe | + Qa1
1(04751 Oét2) i t1 nz::l ( It1+1> + {2 t1 It1+1:|
[ >
= Moy, —ag,) |1, 2o (1 + tI nt ﬂ
L t1+1
Z?:r +2 Iy
Now, (o, —ay,) <0, and I;; Q|14+ =F1=—| > 0.

Tty 41
Therefore, U® < U when there is a swap of NPIs between ¢; and t2 and oy, < ay,, which means the sum

of total infections is strictly lower for the swapped case. This concludes the proof of the lemma.
O

Proof of Proposition 1 (minimization of Infections)

Proof. (i) For Scenario S0, the proof is a direct corollary from Lemma 2. A solution = with x4, +, = 1 and
Tk,iyt, = 1 for some region k with t; <t and oy, < oy, cannot be optimal. Hence, for all (¢1,t2), t1 < 2, we
have oy, > ay, for each region (or for the centralized model which corresponds to having a single index k).
Therefore, the optimal sequence of NPIs always follows an ordered sequence from higher to lower severity,
for both decentralised and centralised strategies.

(ii) For scenario S1, we restrict the total number of weeks of lockdown to l;. For a given budget B, let
X% and XL denote the set of feasible solutions for scenarios SO and S1 respectively. We have XL C X%.
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Therefore, since Proposition 1 is true for any solution in X% |, then it is also true for any solution in X1.
O

Proof of Proposition 1 (minimization of Deaths)

Proof. The state equation for Critical can be written as:

Cip1 =1 —=7)ACe + pol, + Qo — S24
C
= (1 —=)ACy + pol; + max(m(max(ﬁ — H;,0)),max((1 —0)Cy — (1 —n3.¢)b3.4,0))
— maX(QCt — (1 — ng,t)bg,t, 0)

the last two terms of the sum corresponding to the maximum between doctor and non-ICU shortages, and

to the shortage in ICU beds, respectively. The cumulative deaths at period ¢ 4+ 1 can be written as:
Dt+1 = (1 — v)AC} —+ max(@C’t — (1 — 772,t)b2,t7 0)

Hence, the objective function for minimization of deaths we can rewritten as:

T42

DT+3 = Z <(1 — ’}/)/\Ct —+ maX(GCt — (1 — 772,t)b2,ta 0)) (60)

t=1

Now let us start with some feasible solution z and assume that for some region k we swap two NPIs
between time periods t; and ¢a, such that 1 <3 <to < T where ay, < ay,.

From the above recursive definition of C;, we have that C; is an increasing function of vector (Iy,..., ;1)
associated with solution . So the objective function (60) is also an increasing function of vector (I, ..., IT41).
Therefore in order to prove the Proposition, it is sufficient to show that the swap between t; and to gets a
vector of infections (Iy,..., 1, 1,1} ..., 17, ) that is less than the initial vector (/1,...,Iry1). This holds

because:
o I}y <Ijqrsince (14+Q1(1—ag,) — )0, < (14+Qu(1—ap,) — Q) 13, with oy, < g,
o <L fort=1t;+1,...,ts, similarly,
o I 1 =1It,11, due to Lemma 1, and the equality also holds for all weeks t after the swap.

. We deduce that I} < I; for each t = 1,...,T + 1 with a strict inequality I} < I; for t = ¢; +1,... 19,
so the objective (60) strictly decreases with the swap. Therefore, the solution we started out with cannot
be optimal, and an optimal solution necessarily satisfies for each region & (or for the centralized model):
oy, > oy, for tg < tg, ie. it follows a decreasing severity pattern. The same can be established for scenarios
S1 and S2 scenarios using the same arguments as in the proof for minimization of infections.

O

Proof of Proposition 2

Proof. For the S2 scenario, we restrict the total number of consecutive weeks of lockdowns to ls and the
minimum gap between two blocks of lockdowns to be I weeks. Let z* be an optimal solution for S2 for a
budget B. Solution x* is necessarily composed of sub-sequences of NPIs such that each first NPI of the sub-
sequence is a lockdown and at most Iy weeks of lock-downs are placed at the beginning of each sub-sequence,

followed by non-lockdown NPIs to complete the sub-sequence. If there is a sub-sequence of z* (except the
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last one) with strictly less than lo lockdowns, then it cannot be optimal as swapping the first non-lockdown
NPT of the sub-sequence and a lock-down of the next sub-sequence would strictly improve the objective value
(since a5 > a4, i € {1,2,3,4}), based on Proposition 1. So each sub-sequence but the last one contains
exactly lo weeks of lockdowns. Furthermore, if the gap between two consecutive blocks of lockdowns were
greater than 5 weeks, then the solution could be improved again by swapping the non-lockdown NPI at
position 15 + 1 after the lockdown block, and a lockdown of next sub-sequence, using again Proposition 1.
Therefore an optimal solution x* is composed of L sub-sequences such that each sub-sequence g =1,...,L—1
is composed of a block of exactly lo weeks of lockdowns followed by exactly I5 non-lockdown NPIs, and the
last sub-sequence ¢ = L has a a block of at most lo weeks of lockdowns followed by at least I weeks of
non-lockdown NPIs. Now let us suppose that there exists two subsequences g and ¢’ (¢ < ¢’) with some
non-lockdown NPI in sub-sequence g being less effective (lower coefficient «) than some non-lockdown NPI
in ¢’. Again by Proposition 1 making the swap would stricty improve the value of the solution. Hence the
non-lockdown NPIs in z* are necessarily in a non-increasing order of severity.

0

Appendix B: Additional numerical tables

Table 8: Social Contact matrices for NPIs and Cost Impact

Social Distancing (S.D) Isolation (S.I) Aggregated Effect
Level Others| Home | School | Work | Contacts S.D S.I Cost Scaled
Cost
Level 1 | 100% 100% 100% 100% 0% 0% 16.2% | 0.03 0.4
Level 2 | 80% 105% 0% 100% 0% 16% 16.2% | 0.11 1.6
Level 3 | 70% 110% 0% 80% 0% 26% 16.2% | 0.17 2.5
Level 4 | 40% 115% 0% 60% 0% 43% 16.2% | 0.35 5.1
Level 5 | 10% 120% 0% 10% 0% 66% 16.2% 0.68 10

Table 9: Epidemic Parameters (Non Age Specific)

Metric | Value Source

RO 2.8 SantePubliqueFrance (2021)
a 0.09 Prem et al. (2017)

I5] 1.4 Derived

c 2.21 Prem et al. (2017)

@ 1 Salje et al. (2020)

I 0.4 Di Domenico et al. (2020)
71 0.33 Di Domenico et al. (2020)
Y2 0.7 Salje et al. (2020)
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Table 10: Epidemic Parameters(Age Specific)
Parameter 0-19 20-39 40-59 60-75 75+ Source
A1 0.8 0.76 0.76 0.54 0.54 Di Domenico et al. (2020)
A2 0.99 0.98 0.95 0.82 0.61 Di Domenico et al. (2020)
P 0.1 0.1 0.2 0.2 0.2 Di Domenico et al. (2020)
0 0.1 0.24 0.24 0.24 0.24 Di Domenico et al. (2020)
Table 11: Gain of Decentralisation for Deaths*
Scenario S0 Centralised Decentralised Variation
B T #Inf #Deaths*| Time | #Inf #Deaths*| Time | I (A) D (4)
5 8 19370 473 0.55 18276 436 6.27 -6% -8%
6.5 | 8 10826 286 0.52 10020 274 5.92 -7% -4%
8 8 7146 223 0.54 7013 221 6.27 -2% -0.9%
5 10 25746 621 1.04 22478 536 65.99 -13% -14%
6.5 | 10 11310 307 0.73 10291 291 65.97 -9% -5%
8 10 7432 238 0.88 7049 229 73.59 54% -4%
Scenario S1 Centralised Decentralised Variation
5 8 19370 473 0.55 18442 436 6.06 -5% -8%
6.5 8 10826 290 0.54 10125 280 5.69 -6% -3%
8 8 8273 253 0.5 8273 253 12.67 0% 0%
5 10 25746 621 1.09 22478 536 65.2 -13% -14%
6.5 | 10 10906 308 0.88 10663 302 66.4 -2% -2%
8 10 8499 268 0.77 8499 268 67.52 0% 0%
Scenario S2 Centralised Decentralised Comparison
5 8 19370 473 0.64 18389 442 10.82 | -5% -7%
6.5 8 11591 321 0.64 10821 310 11.03 -7% -3%
8 8 10219 301 0.55 8747 279 10.79 -14% -7.3%
5 10 28736 688 0.96 23621 582 226.13 | -18% -15%
6.5 | 10 15103 420 0.84 12608 374 237.53 | -17% -11%
8 10 11236 362 0.8 9814 321 238.59 | -13% -11.3%
Table 12: Sensitivity analysis of reduction factor « for Inf*
S0 B=5T=8 B=65T=8 B=8,T=38
o Centralised Decentralised Centralised Decentralised Centralised Decentralised
Rangeg #Inf* | #D #Inf* | #D #Inf* | #D #Inf* | #D #Inf* | #D #Inf* | #D
0.8 44460 1008 39803 933 27126 642 23964 607 17667 475 16857 466
0.9 30344 710 27760 671 17481 436 15707 415 11313 327 10925 322
1.0 19370 473 18036 439 10826 290 9819 276 7146 223 7008 222
1.1 13203 337 12391 315 7299 210 6835 204 5236 172 5174 171
1.2 8589 246 7580 225 4693 160 4564 158 3862 144 3846 144
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Appendix C: Calibration of NPI reduction coefficients o;

For calibrating NPIs we use social contact matrices of the French population. We use the data from Prem et al.
(2017), where contacts are recorded for four different location categories - home, school, work, others, based
on age groups. We define five age groups - 0-19, 20-39, 40-59, 60-75, 75-+. We start with the baseline matrix,
when there is no NPI in place, and modify these matrices by adjusting the contacts by a reduction factor
based on the type of NPI (Di Domenico et al. 2020, Davies et al. 2020). For example, for school closure, we
assume 100% of school contacts are reduced and 5% of home contacts increase, because of children spending
more time at home. We then apply a weight for each category (home, school etc.) in the final matrix for

each NPI level . The notation is as follows:

Table 13: NPI Calibration based on Social Contact Matrices
Parameter Description

g,4 Index for age group, g,g’ € {1,2,3,4,5}
Index for NPI level, i € N = {1,2,3,4,5}
d; Percentage change in contact for NPI level 7 from baseline.

Index for location category,a € A = {1,2,3,4},1 = Home,2 = School, 3 = Work, 4 = Others

Baseline contact.

Wq Weight of contact location a, a € A.
Cigg’ - Number of contacts between age group g and g’ for NPI level i
Cagg’ Number of contacts between age group g and ¢’ in baseline scenario o, for location a.

Dg Population of age group g

Cigg' = Z diwaCyyy (61)
acA

S (g )(%)

5 o
g=1 acA Zg’:l wacagg’

From equation (61) we calculate the effective number of contacts between age group g and ¢’ for NPI
level 4, (g,¢9" € {1,2,3,4,5}), summed across all contact locations a € A, based on the weights w, and the
change in contacts from baseline, given by d;. From equation (62), we compute the effective reduction factor
corresponding to NPT level 7. We first sum up the contacts between a given age group g and all age groups
g €{1,2,3,4,5} for NPI level ¢ and divide it by the sum of contacts between age group g and all age groups
g’ across all contact locations a € A, in the baseline scenario. This is basically the ratio of total contacts of
age group g for NPI level ¢ corresponding to the baseline. Hence, by subtracting this ratio from 1, we get the
effective reduction in contacts for age group g. We multiply the this reduction ratio by the population ratio
of age group ¢ and sum for all g € {1,2,3,4,5}. This gives us the weighted reduction factor for NPI level 4

across all age groups.
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