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Abstract

In the context of decentralized portfolio management, understanding how to distribute a fixed budget among

decentralized intermediaries is a relevant question for financial investors. We consider the Nash bargaining

partitioning for a class of decentralized investment problems, where intermediaries are in charge of the

portfolio construction in heterogeneous local markets and act as risk/disutility minimizers. We propose a

reformulation that is valid within a class of risk/disutility measures (that we call quasi-homogeneous mea-

sures) and allows the reduction of a complex bilevel optimization model to a convex separable knapsack

problem. As numerically shown using stock returns data from U.S. listed enterprises, this modelling reduc-

tion of the Nash bargaining solution in decentralized investment (driven by the notion of quasi-homogeneous

measures), allows solving the vast majority of large-scale investment instances in less than a minute.

Keywords: Financial intermediaries, Nash bargaining solution, Portfolio management, Bilevel

optimization, Knapsack problem

1. Introduction

In modern theory on portfolio selection, there has been an increasing interest in the decentralized invest-

ment problem, where an individual investor delegates the construction of a portion of a global investment to

financial intermediaries, who take decisions rationally and independently. They are frequently affiliates of

large organizations, such as asset management firms, and implement investment strategies in disjoint sets

of assets, under regulations from a common headquarter. Financial intermediaries can also act as expert

advisors for asset allocation and compete for budget resources from investors (Greenbaum et al., 2015).1

An economic oriented strain of research has focused on compensation contracts between the individual

investor and financial intermediaries, as well as their implications for the asset pricing (Bhattacharya and

Pfleiderer, 1985; Ou-Yang, 2003; Nagurney and Ke, 2006; Stracca, 2006; Maug and Naik, 2011).2 Others
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r.nessah@ieseg.fr (Rabia Nessah)

1Pension funds are appropriate examples, constituting 20.2% of the U.S. gross domestic product in 2017 (retrieved from

the Organisation for Economic Co-operation and Development Statistics and Data Directorate).
2In a seminal study on delegated portfolio management, Bhattacharya and Pfleiderer (1985) proposed a model where the

investor solicited higher-quality information on the rate of return on a risky asset from a better informed agent. The delegated

portfolio management approach is a principal–agent relationship of hidden information between the investor (principal) and a

better informed portfolio manager (agent).



studies have focused on the optimal design of delegation rules in principal-intermediary-agent hierarchy

(Liang, 2013), as well as on the role of the topology of principals-agents linkages among market partici-

pants (Fainmesser, 2019). From the optimization perspective, recent contributions have studied alternative

solution techniques, when the decentralized investment problem grows large and complex (Thi et al., 2012;

Benita et al., 2019; Leal et al., 2020). On this respect, solving this class of problems by state-of-the-art

approaches has been proved to be both theoretically (Stoughton, 1993; Stracca, 2006; Liang, 2013) and

computationally challenging (Benita et al., 2019; Leal et al., 2020).

With a view to provide an efficient answer to the decentralized investment problem, this article identifies

a class of portfolio optimization problems that can be solved as continuous convex separable knapsack

problems. Specifically, this class consists in finding the Nash bargaining solution (hereafter referred to as

NBS) to split a fixed investment budget into m portions (Nash Jr, 1950; Van Damme, 1986; Conley and

Wilkie, 1996). Each portion is assigned to one intermediary aiming at minimizing quasi-homogeneous risk

or disutility measures. The concept of quasi-homogeneity is introduced in this work to characterize the

aforementioned class and constitutes the theoretical cornerstone of the proposed methodology.

For its desirable properties, Rocheteau et al. (2020) integrated and extended the NBS notion into models

of decentralized investment. To justify its appropriateness in our context, we elucidate hereafter the financial

implications of the four NBS axioms as a result of multilateral negotiations to build an equilibrium portfolio.3

• The invariance of the equilibrium portfolio to affine transformations implies that risk or disutility

behave as preference representations over budget allocations. In the case of quasi-homogeneity, it shall

be seen that the invariance to affine transformations translates into the invariance of the intermediary

best responses to budget allocations.

• The symmetry entails the lack of bias or propensity for intermediaries having equal disagreement

points and equal best responses to budget allocations.

• The Pareto efficiency implies that the assigned budget must be used, when it gives rise to a reduction

in the risk or an increase in the utility at the intermediary level.

• If an equilibrium portfolio is independent of irrelevant alternatives then including financial constraints

and regulations to the budget allocation doesn’t impact the equilibrium portfolio, as long as the

equilibrium portfolio remains feasible under these constraints.

Altogether these are desirable features for a centralized coordination of a decentralized portfolio se-

lection. With a view to translate the search for a decentralized portfolios satisfying these axioms into a

treatable optimization problems, the first aim of this work is to establish an algebraic characterization of the

aforementioned class of quasi-homogeneous risk or disutility functions. We show that quasi-homogeneous

risk or disutility generalize the portfolio moments, the conditional value at risk of portfolio losses (hereafter

3Throughout this paper the terms equilibrium portfolio, equilibrium investment, equilibrium budget partition, and equilib-

rium budget allocation are used indistinctly.
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referred to as CVaR), as well as other well-known disutility measures. Secondly, we prove that for this class

of risk or disutility functions, the NBS can be efficiently found, reducing a complex bilevel optimization

model (resulting from the extensive formulation of the NBS) to a continuous convex separable knapsack

problem.

On the empirical side, we assess the correctness and efficiency of the proposed methodology by solving the

aforementioned knapsack problem for large-scale portfolio instances of 7,256 U.S. listed enterprises within

the period 1999–2014 (available from the Center for Research in Security Prices). We consider a collection

of m = 73 industries, classified by the grouped-industry code from the Standard Industrial Classification

(hereafter referred to as SIC), where intermediaries operate. Therefore, the resulting bargaining consists

in partitioning a fixed budget among the 73 industries, while disutility levels are set as a best response of

intermediaries to budget partition, resulting in a nested (bilevel) decision setting.

The rest of this paper is organized as follows. Section 2 introduces a bargaining game among m financial

intermediaries and a characterization of a class of risk measures. Section 3 establishes the equivalence

between this class of problems and a convex separable knapsack problem. Section 4 presents numerical tests

using real financial data. Section 5 concludes this paper.

2. The decentralized portfolio as a bargaining game

We consider an investment context where a collection M (with |M| = m) of financial intermediaries

have to split a fixed budget. We define as Z ⊆ [0, 1]m, the space of m-partitions of the interval [0, 1].

Each intermediary aims at investing its portion of the budget within its local market, where a set Nk (with

|Nk| = nk) of investment options are available. They have preferences represented by payoff functions

uk : Z → R, for each k ∈M, which are constructed as the solution to the following disutility minimization

problem within each local market:

uk(z) =


−min

xk

Gk(xk) subj. to xk ∈ Ωk(z) when Gk is a risk function,

max
xk

Gk(xk) subj. to xk ∈ Ωk(z) when Gk is a utility function,

(1)

where z = [z1, . . . , zm]> ∈ Z characterizes the m-partition; the objective function Gk : Rnk → R captures

the risk or disutility measure associated with the local investment x1,k, . . . , xnk,k (namely, the portion

invested in asset i ∈ Nk in the kth);4 the strategy set (once the partitioning is established) is

Ωk(z) = {xk ∈ [0, 1]nk : x>k e = zk, x>k r̂k ≥ ρkzk}.

The exogenous parameters r̂ik and ρk are the expected rate of return of asset i ∈ Nk (with vector

form r̂k = [r̂1,k, . . . , r̂nk,k]>), and the margin requirement of expected return, as a proportion of the residual

budget, respectively. Since Ωk only depends on the kth component of z, we can equivalently use the notation

Ωk(zk) in place of Ωk(z).

4We sometimes refer Gk by simply G when no confusion is possible.
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The game of decentralized investment bargaining (hereafter referred to as DIB) among the m financial

intermediaries is defined as a pair (U ,d), where

U = {(v1 . . . vm) ∈ Rm : vk = uk(z), k ∈M, z ∈ Z} ,

and d = [d1, . . . , dm]> denotes the vector of disagreement points, corresponding to the intermediaries’

payoffs if negotiations break down.5

In what follows, we identify a class of risk and utility measures that will allow for a fundamental reduction

of the DIB game, as explored in the next section. This is done by requiring Gk to have the following quasi-

homogeneous behavior.

Assumption 1. (Quasi-homogeneity) The risk (utility) functions Gk : Rnk → R are strictly convex

(concave), continuously differentiable, and verify the following property. There exists a vector-valued func-

tion ζ : R → Rnk and a real-valued function δ : R → R, such that for every x ∈ Rnk and for every

z > 0,

∇G(zx) = δ(z)∇G(x) + ζ(z)e.

By letting Rik be the random rate of return of asset i ∈ Nk in intermediary k ∈ M and Rk =

[R1,k, . . . , Rn,k]>, we note that the portfolio moments, the CVaR, the hyperbolic absolute risk aversion

utility function (hereafter referred to as HARA), and the Cobb Douglass utility function (hereafter referred

to as CD) satisfy Assumption 1.

Remark 1 (Moments). Consider the jth moment (with j ∈ J ) of a portfolio return: G(x) = E
[
(R>x)j

]
and note that ∇G(x) = jE

[
R(R>x)j−1

]
, so that when x = zy, we have

∇G(zy) = zj−1jE
[
R(R>y)j−1

]
= zj−1∇G(y).

The convexity can be assessed by noticing that the Hessian matrix of G(x) verifies the following:

∇2G(x) = j(j − 1)E
[
RR>(R>x)j−2

]
,

so that

u>∇2G(x)u = j(j − 1)E
[
u>RR>(R>x)j−2u

]
= j(j − 1)E

[
W 2
]
≥ 0,

where W = (u>R)(R>x)(j−2)/2.

Remark 2 (Gaussian CVaR). Consider the CVaR of the portfolio loss and define the intermediaries’

objectives as G(x) = E
[
z −R>x | z −R>x ≥ F−1(y, α)

]
, where F−1(x, α) = inf {q : F (x, q) ≥ α} is

the left-continuous quantile function of the random quantity z − R>x (i.e. its α-quantile) and F (x, η) =

5Note that this bargaining game formulation can be translated into a non-cooperative game by simply replacing the parti-

tioning quantity zk at the kth local market with the residual budget x−k =
∑

i∈M:i 6=k

∑
j∈Ni

xij , as a response from m− 1

players. Therefore, the kth intermediary strategy set is [0, 1]nk , and its payoff is Gk. This would have an uncountable number

of Nash equilibria, corresponding to each partitioning in Z.
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P
{
z −R>x ≤ η

}
is its distribution function (based on a suitable definition of the probability measure P),

at the point η. When R is distributed as a multivariate Gaussian, we have

G(x) = E
[
z −R>x | z −R>x ≥ F−1(y, α)

]
= z − r̂>x +

(
E
[
((R− r̂)>x))>(R− r̂)>x))

])1/2
B, (2)

where r̂ is the expectation of R, B = 1/(α
√

2π) exp(−(φ−1(α))2), and φ−1(α) is the standard normal

quantile. Therefore, we obtain the following:

∇G(zy) = − r̂ +
1

z (E [(R− r̂)>y))>(R− r̂)>y))])
1/2

zE
[
(R− r̂)((R− r̂)>y)

]
B = ∇G(y).

Remark 3 (Expected HARA utility). We consider the expected HARA utility of the portfolio return

G(x) = E
[
(ζe>x + R>x)1−θ/(1− θ)

]
and note that ∇G(x) = E

[
(ζe + R)((ζe + R)>x)−θ

]
, so that when

x = zy, we have

∇G(zy) =
1

zθ
E
[
(ζe + R)((ce + R)>y)−θ

]
=

1

zθ
∇G(y).

The concavity can be assessed by noticing that the Hessian matrix of G(x) verifies the following:

∇2G(x) = − θE
[
RR>(1/R>x)θ+1

]
,

so that for any real vector u, we have

u>∇2G(x)u = − θE
[
u>RR>(1/R>x)θ+1u

]
= − θE

[
W 2
]
≤ 0,

where W = (u>R)(1/R>x)(θ+1)/2.

Remark 4 (Conditional expectation of the CD utility). Consider the conditional expectation of a

Cobb Douglas utility with random elasticities:

G(x) = E

[∏
i∈N

(xi)
ĥik

∣∣∣∣∣ ∑
i∈N

ĥik = rhk

]
, ∇G(x) = E

[∏
i∈N

ĥik(xi)
ĥik−1

∣∣∣∣∣ ∑
i∈N

ĥik = rhk

]
,

where ĥik = h(1 +Rki), with h : R −→ [0, 1]. When x = zy, we have

∇G(zy) = zr
h
kE

[∏
i∈N

ĥik(yi)
ĥik−1

∣∣∣∣∣ ∑
i∈N

ĥik = rhk

]
. = zr

h
k∇G(y).

A sufficient condition for the concavity is of this specification of G can be directly deduced from the determin-

istic case, studied by Avvakumov et al. (2010) and by Kojić (2021). In fact, G is concave if
∑
i∈N ĥik < 1.

These four remarks show relevant cases that can be accommodated within the functional form imposed

by Assumption 1. We refer to this functional form as quasi-homogeneous functions.
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3. The NBS and the separable knapsack problem

The NBS has been extensively used to determine a unique partitioning that satisfies the axioms of scale

invariance, symmetry, efficiency, and independence of irrelevant alternatives (Nash Jr, 1950; Van Damme,

1986; Conley and Wilkie, 1996).6 We discussed in Section 1 the supporting arguments that make these prop-

erties being desirable features of a budget partitioning in the context of decentralized portfolio management.

For this DIB problem, the NBS is obtained by solving the following bilevel problem:



max
x̃1,...,x̃m

F (x̃1, . . . , x̃m)

s.t. x̃k ∈

optimize
xk

Gk(xk), s.t. xk ∈ Ωk

(
1−

∑
h6=k

∑
i∈Nh

x̃ih

) , ∀k ∈M,

Gk(x̃k) ∈ [`k, υk], ∀k ∈M,

(3a)

(3b)

(3c)

where optimize stands for either argmin or argmax, depending on whether Gk is a risk of utility function,

respectively; Ω1(z)× Ω2(z) . . .× Ωm(z) is closed, convex and bounded; and

F (x̃1, . . . , x̃m) =



∏
k∈M

(dk −Gk(x̃k)) when Gk is a risk function,

∏
k∈M

(Gk(x̃k)− dk) when Gk is a utility function,

[`k, υk] ≡


[0, dk] when Gk is a risk function,

[dk, 0] when Gk is a utility function.

As noted by Dempe and Dutta (2012), bilevel models such as (3) can be seen as non-convex programs

with implicitly defined feasible regions, whose solution require single-level reformulations. Different available

alternatives can be used for this purpose (Luo et al., 1996). It is shown hereafter that the quasi-homogeneity

assumption allows approaching the optimal solution of (3) by solving a convex separable knapsack problem.

This relies upon the linearity of the intermediaries’ best responses, as established in the next proposition.

Proposition 1 (Linearity of intermediaries’ best response to partitioning). Consider problem (1)

and suppose Assumption 1 holds. Let us define the intermediaries’ best response to a partitioning z ∈ Z as

Ψk(z) = optimize
xk

Gk(xk) subj. to xk ∈ Ωk(z).

We have Ψk(z) = zkΨk(1), with |Ψk(1)| = 1 for all k ∈M.

6Different contributions tried to relax of replaced the independence of irrelevant alternative axiom. For instance, Peters and

Van Damme (1991) provided a characterization of the NBS that does not require the independence of irrelevant alternative

axiom, but relies upon changes in the disagreement point. This is relevant for the interpretation of the NBS in our DIB context.

In fact, this axiom has two important implications: (i) the inclusion of a new asset in any of the intermediaries’ local markets

can only give rise to a change in the equilibrium partitioning if it is capable of reducing the risk at the corresponding market

with the same budget allocation; (ii) including financial constraints and regulations to the budget allocation doesn’t impact

the equilibrium portfolio, as long as the equilibrium portfolio remains feasible under these constraints.
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Proof:. In this proof we drop the subindex k, as the result is valid for every local market. We differentiate

two cases. When z = 0, we can see that Ψ(z) = 0, so that the condition Ψ(z) = zΨ(1) is verified. When

z ∈ (0, 1], we consider the Karush-Kuhn Tucker conditions of problem (1) and define Ψ(1) as the optimal

solution of problem (1) for z = 1. Then, Ψ(1) must solve the following Karush-Kuhn Tucker conditions:

KKT (1) :



Ψ(1)>e = 1

Ψ(1)>r̂ ≥ ρ

∇GF (Ψ(1)) + λ− γ − µ = 0

µiΨi(1) = 0, i = 1, . . . , n

Ψ(1) ≥ 0

(µ, γ) ≥ 0,

where µ = [µ1, . . . , µn]> is the vector of Lagrangian multipliers of x ≥ 0, λ is the Lagrangian multiplier of

x>e = 1, and γ is the Lagrangian multiplier of x>r̂ ≥ ρ. We now show that zΨi(1) will necessarily solve

KKT (z) (the optimality conditions of Ψ(z)), for any z ∈ (0, 1]:

KKT (z) :



zΨ(1)>e = z

zΨ(1)>r̂ ≥ ρz

∇GF (zΨ(1)) + λ̂− γ̂ − µ̂ = 0

µ̂izΨi(1) = 0, i = 1, . . . , n

Ψ(1)z ≥ 0

(µ, γ) ≥ 0.

Starting from the feasibility, it is sufficient to note that for any z > 0, we have that x ≥ 0 is equivalent

to zx ≥ 0, and the following linear systems admit the same x solutions:
x>e = 1

x>r̂ ≥ ρ,
and


zx>e = z

zx>r̂ ≥ ρz.

Concerning the complementarity, the existence of µi ≥ 0 satisfying

µiΨi(1) = 0

is equivalent to the existence of µ̂i ≥ 0 satisfying

µ̂izΨi(1) = 0.

Finally, the stationarity conditions are verified by virtue of Assumption 1. In fact, the local markets’

objective function is such that there must exist two real-valued functions ζ : R → R and δ : R → R, such

that for every Ψ(1) ∈ Rnk and for every z > 0:

∇G(zΨ(1)) + λ̂− γ̂ − µ̂ = ∇G(Ψ(1)) +
1

δ(z)

(
λ̂+ ζ(z)e

)
− 1

δ(z)
γ̂ − 1

δ(z)
µ̂ = 0,
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which implies

λ =
1

δ(z)

(
λ̂+ ζ(z)e

)
, γ =

1

δ(z)
γ̂, and µ =

1

δ(z)
µ̂.

We conclude that Ψ(z) = zΨ(1). Note that the Lagrangian multipliers are not required to be the same, as

they depends on z.

�

From this result, we deduce an interesting reformulation of problem (3), as the feasibility conditions

(3b)-(3c) can be replaced by the following functional relationship:

x̃k =

1−
∑
h6=k

∑
i∈Nh

x̃ih

Ψk(1).

Therefore, problem (3) reduces to the following a convex separable knapsack problem:

max
z

F
(
z1Ψ̂1, . . . , zmΨ̂m

)
, subj. to z>e = 1, d̃L ≤ z ≤ d̃U , (4)

where we used the shorter notation Ψ̂k = [Ψ̂1,k . . . Ψ̂nk,k]>, instead of Ψk(1) = [Ψ1,k(1) . . .Ψnk,k(1)]>, to

denote the best response of the kth intermediary to a budget allocation zk = 1. The variable bounds d̃L

and d̃U are predefined by setting the lower and upper limits of zk for which Gk
(
zkΨ̂k

)
≤ dk (for the case

of risk) or Gk
(
zkΨ̂k

)
≥ dk (for the case of utility).

As noted by Rubinstein et al. (1992), the very simplicity of the NBS is in itself an attractive feature

of this axiomatic approach. This claim is even more appropriate in the specific DBI context with quasi-

homogeneous measures, as a result of the reduction obtained by virtue of Proposition 1. Additionally, based

on the quasi-homogeneity, the invariance to affine transformation axiom translates into the invariance of

the intermediary best responses to budget allocations. In fact, for any αk and βk, we have

Ψk(z) = optimize
xk

αk + βkGk(xk) subj. to xk ∈ Ωk(z).

The next proposition provides a characterization of the equilibrium allocation, based on the quasi-homogeneity

of Gk, suggesting an alternative algorithmic resolution, next to well-known approaches to convex separable

knapsack problems.

Proposition 2 (NBS characterization). Let M0 = {k ∈ M : d̃L,k < zk < d̃U,k} be a set of local

markets. For all i, i′ ∈M0, the solution of problem (3) satisfies

δ(zi)bi + ζ(zi)

δ(zi′)bi′ + ζ(zi′)
=


di −Gi(ziΨ̂i)

di′ −Gi′(zi′Ψ̂i′)
when Gk is a risk function,

Gi(ziΨ̂i)− di
Gi′(zi′Ψ̂i′)− di′

when Gk is a utility function.

(5)

where bi = Ψ̂
>
i ∇Gi(Ψ̂i) and δ and ζ are known functions defined in Assumption 1.

Proof:. Firstly, using the equivalent problem (4) we consider

max
z

logF
(
z1Ψ̂1, . . . , zmΨ̂m

)
, subj. to z>e = 1, d̃L ≤ z ≤ d̃U ,

8



By virtue of Assumption 1, the Karush-Kuhn Tucker conditions corresponding to k ∈M0 implies
δ(zk)bk + ζ(zk)

dk −Gk(zkΨ̂k)
+ λ = 0 when Gk is a risk function,

δ(zk)bk + ζ(zk)

Gk(zkΨ̂k)− dk
+ λ = 0 when Gk is a utility function.

Therefore, the equality (5) follows with few simplifications.

�

To complement this closed-form analysis of the DBI, the following illustrative examples provide an

explicit relationship between the returns distribution and the equilibrium budget allocation. The main focus

is on the impact of stock correlations and the disagreement points on the equilibrium budget allocation,

based on different returns distributions.

Example 1 (Illustrative example: Moments). Consider two identical intermediaries with two stocks

each, namely m = 2, n1 = 2 and n2 = 2, and assume that Rk ∼ N (r̂k,Σk), with r̂1,k > r̂2,k and ρk ≤ r1,

for k ∈ {1, 2}. When G is taken to be the j central moment, the intermediaries problems become:

Ψk(zk) =



argmin
xk

(j − 1)!!
(
x21,kσ

2
1,k + x22,kσ

2
2,k + 2σ1,kσ2,kckx1,kx2,k

)j/2
subj. to x1,k + x2,k = zk

x1,kr̂1,k + x2,kr̂2,k ≥ ρzk

x1,k, x2,k ≥ 0,

(6a)

(6b)

(6c)

(6d)

where (j − 1)!! denotes the double factorial of (j − 1). Let us define bk = σ2
2,k(1 − ckσ2

1,k)/(σ2
1,k + σ2

2,k −

2ckσ1,kσ2,k) and ak = ((ρk − r2)/(r1,k − r2,k))
+

. The intermediary’s best response is

Ψ̂1,k =


1, if bk ≥ 1

bk, if ak < bk < 1

ak, otherwise

and Ψ̂2,k = 1− Ψ̂1,k.

The single level reformulation is constructed by defining

Hk = (j − 1)!!
(

(Ψ̂1,k)2σ2
1 + (1− Ψ̂1,k)2σ2

2 + 2σ1σ2cΨ̂1,k(1− Ψ̂1,k)
)j/2

and obtaining

max
z1∈[0,1]

(
d1 − zj1H1

) (
d2 − (1− z1)jH2

)
. (7)

Figure 1 depicts the relationship between the equilibrium budget z∗1 (obtained by solving (7)) and the

correlation, c, between the two stocks. Not surprisingly, when the two stocks of each market are highly

correlated, diversification requires a well-balanced budget allocation: z∗1 = z∗2 = 0.5. This is specially true

when the two stocks have the same variances. Next, when stock returns are uncorrelated, the equilibrium

budget favours the market with a higher disagreement point, so that z∗1 < z∗2 . This effect seems to be lightened

when higher conditional moments are used ((b) panel of Figure 1).
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(a) j = 2. (b) j = 4.

Figure 1: The equilibrium budget z∗1 as a function of the correlation, c, between returns with d1 = 0.1 and d2 = 1. The black

dotted line corresponds to the case σ1 = σ2 = 40, whereas the red dashed line to the case σ1 = 40 and σ2 = 1. The plot on

the left panel differs from the one on the right panel with respect to the moment j.

Example 2 (Illustrative example: CVaR). Consider two identical intermediaries with two stocks each,

namely m = 2, n1 = 2 and n2 = 2. Assume that Ri ∼ N (µ,Σ), with B2
(
σ2
1 + σ2

2 − 2cσ1σ2
)

+ r̂2 > r̂1 > r̂2

and ρk ≤ r1, for k ∈ {1, 2}. When G is taken to be the α-CVaR. The intermediaries’ problems become:

Ψk(zk) =



argmin
xk

z − r̂1x1,k − r̂2x2,k +
(
x21,kσ

2
1 + x22,kσ

2
2 + 2σ1σ2cx1,kx2,k

)1/2
B

subj. to x1,k + x2,k = zk

x1,kr̂1 + x2,kr̂2 ≥ ρzk

x1,k, x2,k ≥ 0,

(8a)

(8b)

(8c)

(8d)

To characterize Ψk(1), we solve

min
xk

− r̂1x1,k − r̂2(1− x1,k) +
(
x21,kσ

2
1 + (1− x1,k)2σ2

2 + 2σ2
1σ

2
2cx1,k(1− x1,k)

)1/2
B subj. to x1,k ∈ [ak, 1]

By the first order conditions(
B

2

)
2x1,kσ

2
1 − 2(1− x1,k)σ2

2 + 2σ2
1σ

2
2c(1− 2x1,k)(

x21,kσ
2
1 + (1− x1,k)2σ2

2 + σ2
1σ

2
2cx1,k(1− x1,k)

)1/2 = r̂1 − r̂2.

The intermediaries’ best response is

Ψ̂1,k =



1, if h ≥ 1

h, if ak < h < 1

ak, otherwise

and Ψ̂2,k = 1− Ψ̂1,k,

where ak = ((ρk − r2)/(r1 − r2))
+

and

h =
cσ1σ2 − σ2

2

2cσ1σ2 − σ2
1 − σ2

2

±
√
F

σ2
1 + σ2

2 − 2cσ1σ2
, with F =

(r1 − r2)(1− c2)

B2 (σ2
1 + σ2

2 − 2cσ1σ2) + r2 − r1
.

Note that, since B2
(
σ2
1 + σ2

2 − 2cσ1σ2
)

+ r2 ≥ r̂1 > r̂2, we have that F ≥ 0. The single level reformulation

is constructed by defining

Hk = 1− r1Ψ̂1,k − r2(1− Ψ̂1,k) +
(

(Ψ̂1,k)2σ2
1 + (1− Ψ̂1,k)2σ2

2 + 2σ1σ2cΨ̂1,k(1− Ψ̂1,k)
)j/2

,
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and obtaining

max
z1∈ [0,1]

(d1 − z1H1) (d2 − (1− z1)H2) .

The results in Figure 2 are consistent with the ones of Figure 1. Specifically, the diversification pattern

is less sensitive to the correlation level when the variances between the two stocks are identical. In this

case, only a highly negative correlation between stocks (close to −1) can push the equilibrium towards the

intermediary with less tolerance dk (more restrictive disagreement point). Alternatively, when the variance

of one stock is larger than the one of the other, the disagreement points play a stronger role in determining

the winning intermediary, so that z∗1 < z∗2 , when d1 < d2, and z∗2 < z∗1 , when d2 < d1.

(a) d1 = 0.1 and d2 = 0.5. (b) d2 = 0.5 and d1 = 0.1

Figure 2: The equilibrium budget z∗1 as a function of the correlation, c, between returns. We used αk = 0.9. The black dotted

line corresponds to the case σ1 = σ2 = 40, whereas the red dashed line to the case σ1 = 40 and σ2 = 1. The plot on the left

panel differs from the one on the right panel with respect to the disagreement points.

Example 3 (Illustrative example: HARA utility). Consider the case of two identical intermediaries

with two stocks each, namely m = 2, n1 = 2 and n2 = 2, and assume that Rk is uniformly distributed within

the support {(x, y) ∈ [0, 1]2 : y ≥ x}. Let κk = 2
(2−θk)(3−θk) . When G is taken to be the HARA utility,

using x1,k + x2,k = 1, we have

E
[
(ζ + x1,kr̂1 + x2,kr̂2)

1−θk
]

=

∫ 1

0

∫ 1

1−r2
2
[
(ζ + x1,kr̂1 + x2,kr̂2)

1−θk
]
dr1dr2

= κk

[
(ζ + 1)3−θk − (ζ + x1,k)

3−θk

x1,k(1− x1,k)
− (ζ + 1− x1,k)

3−θk − (ζ + x1,k)
3−θk

x1,k(1− 2x1,k)

]

when x1,k 6= 1/2 and

E
[
(ζ + x1,kr̂1 + x2,kr̂2)

1−θk
]

=
2

21−θk

∫ 1

0

∫ 1

1−r2

[
(2ζ + r̂1 + r̂2)

1−θk
]
dr1dr2

=
2

21−θk(2− θk)

[
(2ζ + 2)

3−θk − (2ζ + 1)
3−θk

3− θk
− (2ζ + 1)

2−θk

]
when x1,k = x2,k = 1/2. As long as ρk ≤ 1/2, the followers problems become:

Ψ1,k(1) = argmax
xk

− 1

1− θk
E
[
(ζ + x1,kr̂1 + x2,kr̂2)

1−θk
]

subj. to x1,k ∈ [0, 1].
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This problem attains its optimal solution when x1,k = 1/2, independently from θk. The single level refor-

mulation is constructed by defining

Hk =
E
[
(2ζ + r̂1 + r̂2)

1−θ
]

(1− θk)2(1−θk)
=

2θk

(1− θk)(2− θk)

[
(2ζ + 2)

3−θk − (2ζ + 1)
3−θk

3− θk
− (2ζ + 1)

2−θk

]
,

and obtaining

max
z1∈[0,1]

(
z1−θ11 H1 − d1

)(
(1− z1)1−θ2H2 − d2

)
.

The optimal solution is either zero or one or the solution the first-order equation

H2
1

(1− z1)θ2

(
(z1)1−θ1H1 − d1

)
= H1

1

(z1)θ
(
(1− z1)1−θ2H2 − d2

)
.

Figure 3 pinpoint how sensitive are HARA’s bargaining outcomes to changes in disagreement payoffs.

(a) ζ = 1. (b) ζ = 2.

Figure 3: The equilibrium budget z∗1 as a function of d1/d2. The black dotted line corresponds to the case θ1 = θ2 = 1
3

,

whereas the red dashed line to the case θ1 = 1
10

and θ2 = 2
3

. The plot on the left panel differs from the one on the right panel

with respect to the utility parameter ζ.

Unmistakably, under identical intermediaries (i.e., d1 = d2 and θ1 = θ2) the equilibrium budget allocation

is z∗1 = z∗2 = 0.5. The sensitivity to the disagreement point becomes higher when ζ is small (panel (a) in

Figure 3), as Hk is decreasing in ζ.

Example 4 (Illustrative example: CD utility). Consider two identical followers with two stocks each,

namely m = 2, n1 = 2 and n2 = 2, and assume that Rk is uniformly distributed in {(x, y) ∈ [0, 1]2 : y ≥ x}.

When G is taken to be the conditional expectation of the CD utility, using x1,k + x2,k = 1, we have

E
[
(x1)R1(1− x1)R2

∣∣ R1 +R2 = r] =

∫ 1

0

∫ 1

1−r2
[(x1)r1(1− x1)r2 ] dr1dr2∫ r

0

∫ r

r−r2
dr1dr2

=
2

r2
1

log x1

[
1− 2x1

log x1 − log(1− x1)
− x21

log(1− x1)

]
,

when x1,k ∈ (0, 1/2) ∪ (1/2, 1),

E
[
(x1)R1(1− x1)R2

∣∣ R1 +R2 = r] = 0,

12



when x1,k ∈ {0, 1} and

E
[
(x1)R1(1− x1)R2

∣∣ R1 +R2 = r] = 1
2r ,

when x1,k = 1/2. As long as ρk ≤ 1/2, the followers problems become:

Ψ1,k(1) = argmax
xk

− E
[
(x1)R1(1− x1)R2

∣∣ R1 +R2 = r] subj. to x1,k ∈ [0, 1].

This problem attains its optimal solution when x1,k = 1/2, independently from r. The single level reformu-

lation is constructed as follows

max
z1∈[0,1]

(zr11 /2
r1 − d1) ((1− z1)r2/2r2 − d2)

The optimal solution is either zero or one or the solution the first-order equation

r2(1− z1)r2−1 ((z1)r1/2r2 − d1)

2r2
=
r1(z1)r1−1 ((1− z1)r2/2r2 − d2)

2r1

Figure 4 depicts the relationships between the equilibrium budget z∗1 and the difference in disagreement points

d1 and d2.

(a) r1 = r2 = 3
4 (r1 = r2 = 1) in black

dotted (red dashed).

(b) r1 = 3
4 , r2 = 1 (r1 = 1, r2 = 3

4 ) in

black dotted (red dashed).

Figure 4: The optimal budget z∗1 as a function of d1/d2. The plot on the left panel differs from the one on the right panel

with respect to the combination of r values.

Differently from the pattern shown in Figure 3 for the HARA utility, the diversification pattern in the

CD case is highly sensitive to the disagreement points, pushing the equilibrium allocation from one side to

the opposite when d1/d2 varies.

These four illustrative examples provide stylized figures about how the dependencies in stocks correlations

and intermediaries’ disagreement points translate into Nash bargaining partitions of the global budget. In

line with these illustrative figures, the analysis of large-scale financial investments with real stock returns

remains to be performed, as explored next in Section 4.

4. Computational and empirical analysis

To characterize the solution in real investment settings, we take advantage of the continuous convex

separable knapsack reformulation (4), and explore quasi-homogeneous measures in the form of the even
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moments of the portfolio return, the CVaR of portfolio losses, the HARA utility, and the CD utility, using

real data from U.S. listed enterprises.

Efficient algorithms for continuous convex separable knapsack problems have been proposed by the last

decades (Bretthauer and Shetty, 2002). One of the most promising methods is the recent penalty approach

by Hoto et al. (2020), which is applied hereafter to analyze a decentralized portfolio optimization context in

which the fixed budget is slit into different industries. The data set of U.S. listed enterprises is presented in

Section 4.1, while the numerical analysis of the resulting DIB problem is presented in 4.2, by applying the

aforementioned penalty approach (a detailed description of its algorithmic applicability to problem (4) is

provided in Appendix A). All optimization procedures are coded in MATLAB and CVX (Grant and Boyd,

2014). The experiments were run on a R5500 work-station with processor Intel(R) Xeon(R) CPU E5645

2.40 GHz, and 64 Gbytes of RAM.

4.1. Data set on stock prices

To test the proposed modelling framework, data from the Center for Research in Security Prices are

considered for the entire population of 7,256 U.S. listed enterprises within the period 1999–2014.7 We

assume that a collection of decentralized intermediaries M is composed of m = 73 industries, classified

by the grouped-industry code from the Standard Industrial Classification (SIC) in the Center for Research

in Security Prices platform. In other words, intermediaries operate as expert advisors, each specialized in

one of the 73 disjoint groups of stocks belonging to the different industries. Figure 5 displays the number

of stocks per SIC industry. As we can observe, Banks (SIC code 401010) and Technology Hardware &

Equipment 1 (SIC code 452040) are the intermediaries with the largest and smallest number of different

stocks to invest in, respectively.

Figure 5: Number of stocks per follower; 73 SIC industries (only labels of 37 SIC codes) over 1999–2014.

7See Nasini and Erdemlioglu (2019) for a detailed description of the data set.
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Figure 6 illustrates the dynamics of the stock returns in the data set in terms of the mean (black solid

line) and plus/minus standard deviation (red dashed lines), within the period 1999–2014.

Figure 6: Average monthly stock returns along the observed time horizon.

These apparent variations motivate the use of a 16 year time window to assess the solution of the DIB

problem, where the fixed budget is dynamically partitioned into the 73 industries.

4.2. Numerical tests

In this computational experiment, we explore the change in investment strategies for portfolios based on

two settings for each risk and expected utility models. For investment portfolios minimizing risk we consider

moments the second and fourth central moments (j ∈ {2, 4}). In CVaR we consider losses which are exceeded

with 50% and 10% probability (α ∈ {0.5, 0.9}). Alternatively, when the investor wants to maximize expected

utility, we examine optimal portfolios for θ ∈ {0.5, 0.9} in the HARA utility, and elasticity h ∈ {0.001, 0.01}

in the CD utility. To generate instances, we set ρk =
∑
i
rik
nk
ρ̂ at different levels, with ρ̂ ∈ {0.7, 1.3}. For

each year of the dataset and combination of hyperparameters, we solve one instance of the DIB by applying

the recent penalty approach by Hoto et al. (2020). Details of the customized algorithm are given in the

Appendix 5.

Table 1 compares the NBS (column Optimal) with two benchmark policies (budget partitioning), namely

constant proportions (column Constant) and non-diversified (column ND). In the constant proportions

policy, a uniform budget of 1/m is allocated to each intermediary, whereas in the ND selection criterion,

the whole budget is assigned to the intermediary with the minimum risk or maximum utility. The latter

requires solving problem (1) m times by alternatively fixing zk = 1 for each k ∈M and picking k′ ∈M, for

which either Gk′(Ψ̂k′) ≤ Gk(Ψ̂k) (risk minimization) or Gk′(Ψ̂k′) ≥ Gk(Ψ̂k) (utility maximization), for all

k ∈ M. For both Optimal and ND, the percentage of years in which the most recurrent intermediary was

listed as the top industry is reported in parenthesis.

The managerial inside of Table 1 is the identification of the leading industries in receiving budget, under

the NBS, as well as under the non-diversified strategy. We notice that the four risk and utility settings

yield different patterns of equilibrium portfolios (optimal solution of the resulting knapsack problem (4)).
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Table 1: Comparison of investment policies. The percentage of years in which the intermediary was listed as the top local

market is reported in parenthesis.

logF Top intermediary

j/α/θ/h ρ̂ Optimal Constant ND Optimal ND

Moments

2 0.7 -845.22 -839.95 -839.00 Specialty Retail (18.75%) Ind. Power & Renew. Electr. Prod. (50%)

2 1.3 -799.32 -792.13 -791.18 Specialty Retail (18.75%) Ind. Power & Renew. Electr. Prod. (50%)

4 0.7 -1492.90 -1492.90 -1491.69 Household Products (12.5%) Ind. Power & Renew. Electr. Prod. (50%)

4 1.3 -1398.64 -1398.64 -1397.43 Specialty Retail (18.75%) Ind. Power & Renew. Electr. Prod. (50%)

CVaR

0.5 0.7 -116.39 -109.81 -104.36 Health Care Tech. (18.75%) Ind. Power & Renew. Electr. Prod. (50%)

0.5 1.3 -116.14 -109.59 -104.15 Health Care Tech. (12.5%) Ind. Power & Renew. Electr. Prod. (50%)

0.9 0.7 -110.43 -95.77 -90.33 Diversified Telcom. (18.75%) Ind. Power & Renew. Electr. Prod. (50%)

0.9 1.3 -111.37 -95.14 -89.69 Health Care Prov. & Svcs. (25%) Ind. Power & Renew. Electr. Prod. (50%)

HARA

0.5 0.7 -236.99 -235.19 -257.29 Real Estate & Dev. (100%) Energy Eqpt. & Svcs. (56.2%)

0.5 1.3 -236.99 -235.19 -257.29 Real Estate & Dev. (100%) Energy Eqpt. & Svcs. (68.75%)

0.9 0.7 -259.10 -242.59 -345.61 Real Estate & Dev. (100%) Ind. Power & Renew. Electr. Prod. (50%)

0.9 1.3 -259.10 -242.59 -345.61 Real Estate & Dev. (100%) Ind. Power & Renew. Electr. Prod. (50%)

CD

0.001 0.7 560.42 564.30 319.44 Household Products (31.25%) Ind. Power & Renew. Electr. Prod. (50%)

0.001 1.3 560.90 564.72 319.86 Household Products (31.25%) Ind. Power & Renew. Electr. Prod. (50%)

0.010 0.7 3278.45 3279.18 3187.33 Software & Services (18.75%) Ind. Power & Renew. Electr. Prod. (50%)

0.010 1.3 3282.63 3283.36 3191.52 Software & Services (18.75%) Ind. Power & Renew. Electr. Prod. (50%)

For instance, the intermediary related to Specialty Retail (SIC code 255040) is the most recurrent leading

industry, when even moments have to be minimized. In the expected HARA utility maximization, larger

proportions of budget are allocated to the Real Estate Management & Development industry (SIC code

601020). Interestingly, regardless of the risk-based or expected utility models, partitions favoring markets

that engage in the generation and distribution of electricity using renewable sources (SIC code 551050) will

lead to optimal strategies under non-diversified policy investments (namely, when all the budget has to be

assigned to a unique intermediary).

To provide a visual illustration, Figures 7 - 10 present stacked bar charts with the equilibrium budget

partition in each year over the period 1999-2014. The red dotted line corresponds to the scaled expected

returns (in [0, 1]) from solving (4). We notice a pattern in which larger proportions of the budget may be

concentrated in few industries, when certain risk or utility measures are considered, while full diversification

occurs when other measures are taken into account. For instance, the minimization of the fourth moment

results in a stronger diversification than the second moment. Similarly, the maximization of the conditional

expectation of the CD utility gives rise to a stronger diversification than the one of the expected HARA

utility. Despite these differences, the order of the intermediaries with respect to the assigned budget is

mostly stable when passing from the minimization of the moments and CVaR to the maximization of the

expected HARA utility and conditional expectation of the CD utility.
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(a) (j, ρ̂) = (2, 0.7).
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(b) (j, ρ̂) = (2, 1.3).
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(c) (j, ρ̂) = (4, 0.7).
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(d) (j, ρ̂) = (4, 1.3).

Figure 7: Minimization of higher order moments (j ∈ {2, 4}) of portfolio’s risk with ρ̂ ∈ {0.7, 1.3} and partitioning of 73

intermediaries. The expected returns (dotted line) is scaled into the interval [0, 1].
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(a) (α, ρ̂) = (0.5, 0.7).
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(b) (α, ρ̂) = (0.5, 1.3).
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(c) (α, ρ̂) = (0.9, 0.7).
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(d) (α, ρ̂) = (0.9, 1.3).

Figure 8: CVaR minimization with α ∈ {0.5, 0.9} for ρ̂ ∈ {0.7, 1.3} and partitioning of 73 intermediaries. The expected returns

(dotted line) is scaled into the interval [0, 1].
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(a) (θ, ρ̂) = (0.5, 0.7).

Year

2000 2005 2010 2015

P
a

rt
it

io
n

 a
n

d
 R

is
k

0

0.2

0.4

0.6

0.8

1

(b) (θ, ρ̂) = (0.5, 1.3).
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(c) (θ, ρ̂) = (0.9, 0.7).
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(d) (θ, ρ̂) = (0.9, 1.3).

Figure 9: HARA maximization with θ ∈ {0.5, 0.9} for ρ̂ ∈ {0.7, 1.3} and partitioning of 73 intermediaries. The expected

returns (dotted line) is scaled into the interval [0, 1].
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(a) (h, ρ̂) = (0.001, 0.7).
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(b) (h, ρ̂) = (0.001, 1.3).
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(c) (h, ρ̂) = (0.01, 0.7).
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(d) (h, ρ̂) = (0.01, 1.3).

Figure 10: Conditional expected CD utility maximization with h ∈ {0.001, 0.01} for ρ̂ ∈ {0.7, 1.3} and partitioning of 73

intermediaries. The expected returns (dotted line) is scaled into the interval [0, 1].
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A key insight drawn from the figures is that our experimental setup captures the volatility of the 2007–

2009 global financial crisis sparked by US subprime mortgage turmoil. We observe how all four instances

illustrated in Figures 7–10 show the drop in expected returns and speculative activities in 2008 followed

by a strongly rebound in the following year. Therefore, the equilibrium portfolio mirror the well expected

returns dynamics.

Lastly, Table 2 summarizes average CPU time performance as well as the average iterations performed

by the algorithm of Hoto et al. (2020), when solving these large instances of problem (4). The CPU time

column includes the time taken for solving each intermediary independently (as stated in Proposition 1).

Indeed, the vast majority of the computational effort is taken by the generation of Ψ̂1 . . . Ψ̂73. The average

values correspond to the arithmetic means of the yearly problems solved over the 16–year time span.

Table 2: Average CPU time and number of iterations per year.

j/α/θ/h ρ̂ CPU time (sec) Iterations

Moments

2 0.7 21.38 47816.06

2 1.3 22.23 63673.44

4 0.7 25.94 307.81

4 1.3 28.15 639.56

CVaR

0.5 0.7 26.86 281727.0

0.5 1.3 31.67 282615.9

0.9 0.7 36.80 385150.7

0.9 1.3 34.27 366114.4

HARA

0.5 0.7 18.06 251.50

0.5 1.3 17.66 251.50

0.9 0.7 32.22 146.31

0.9 1.3 31.48 146.31

CD

0.001 0.7 545.79 25.62

0.001 1.3 554.73 23.69

0.010 0.7 530.74 50.88

0.010 1.3 515.18 49.25

For these large instances involving 7,256 U.S. listed enterprises groped into 73 industries, we clearly see

that the minimization of the moments, the CVaR and the maximization of the expected HARA utility can

be performed in less than a minute (and mostly in twenty of thirty seconds). Instead, the maximization of

conditional expectation of the CD utility is slower in terms of CPU performance, mainly due to the time

needed to solve each intermediary’s problem in turn. Thus, parallel computing techniques are recommended
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here to speed up computations. Overall, the computational performance is sensitive to the specific parameter

configuration, but it remains limited to less than few minutes even for the most challenging instances.

5. Concluding remarks

We examined a new class of decentralized investment problems while a margin requirement of expected

return is guaranteed. This class of problems, based on quasi-homogeneity, comprises the minimization of

well-known risk functions (central moments and Conditional Value-at-Risk) as well as utility maximization

(Hyperbolic Absolute Risk Aversion and Cobb–Douglas). In our formulation, financial intermediaries reach

an equilibrium partitioning characterized by the Nash Bargaining Solution. We showed that the linearity of

intermediaries’ best response further leads to a reduction of a complex bilevel problem into a convex separable

knapsack problem. This reformulation allows the implementation of numerically efficient algorithms to solve

in less than one minute large-scale instances, e.g., dozens of intermediaries with hundreds of financial assets

each. Our empirical evidence (based on monthly stock prices of 7,256 U.S. listed enterprises over the period

1999-2014) illustrates the operationality of our framework.

Our findings could be extended in many ways. For instance, we have assumed that the investor is

able to recognize in advance the intermediaries’ best responses. This an important limitation, as optimal

delegated decentralized investment could also depend on intermediaries’ differentiated advantageous position

of trading. The inclusion of incomplete information would capture the belief of the investor on the actual

returns distribution that intermediaries face. By including possible types of local markets per intermediary,

the investor could describe the actual probability distribution of the individual rate of returns. Similarly,

the inclusion of transaction costs of intermediaries meant to anticipate the rational behavior of investors

may yield further extensions of this class of models.

Overall, the ambition of the proposed approach for the Nash bargaining partitioning in decentralized

portfolio selection is to advance the frontiers of game theory and its applications to the domains of financial

investment. Specifically, the reduction of this complex bilevel portfolio optimization problem to a convex

separable knapsack problem opens the possibility of further reductions in the aforementioned directions,

translating difficult leader-follower games into treatable optimization problems.
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Appendix A: Application of the penalty algorithm for convex separable knapsack problem to

the DIB game

The penalty algorithm proposed by Hoto et al. (2020), deals with convex separable knapsack problem

in the following form:

min
z1...zm

∑
k∈M

fk(zk, Ψ̂1) subj. to
∑
k∈M

zk = 1, zk ∈ [0, 1], ∀ k ∈M.

Let us consider a optimization (3a)-(3c). We can rewrite the objective function as a logarithmic transfor-

mation for each of the four cases studied in Section 2:

logF
(
z1Ψ̂1, . . . , zmΨ̂m

)
=
∑
k∈M

fk(zk, Ψ̂k)

Based on Proposition 1 (and the subsequent form of problem (4)) each term has the following form:

fk(zk, Ψ̂k) =


log
(
dk − Ck

(
zk
)Ak
)

when Gk is a risk function,

− log
(
Ck
(
zk
)Ak − dk

)
when Gk is a utility function.

where Ak and Ck are defined in Table 1A for the four specific cases of the risk and utility functions studied

in remarks 1, 2, 3, and 4.

Table 1A: Parameter values for each of the four cases in remarks 1, 2, 3, and 4. (Note: a, for risk; b for utility.)

Type Ck Ak

Momentsa E
[(

R>k Ψ̂k

)j]
j

GCVaRa 1 + r̂>k Ψ̂k + E
[(

R>k Ψ̂k

)2]1/2
B 1

HARAb 1
1−θE

[(
R>k Ψ̂k

)1−θ]
1− θ

CDb E
[∏

i∈Nk
(Ψ̂ik)ĥik

∣∣∣∑i∈N ĥik = rhk

]
rhk

The gradient of the objective function is:

d

dzk
fk(zk, Ψ̂k) =



AkCk
(
zk
)Ak−1

dk − Ck
(
zk
)Ak

when Gk is a risk function,

−
AkCk

(
zk
)Ak−1

Ck
(
zk
)Ak − dk

when Gk is a utility function.

The application of the penalty algorithm to problem (3a)-(3c) proceeds in the following steps.
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Initialization: Set k′ = 0; Define {ρk′}k′∈N, {βk′}k′∈N; Set (zk
′

1 , . . . , z
k′

m) = (1/m, . . . , 1/m); Set a Tolerance level.

Step 1. Compute the step-length

αk′ =
βk′

max
{

1, ‖∇ logF
(
zk

′
1 Ψ̂1, . . . , zk

′
mΨ̂m

)
‖
}

Step 2. Compute the projection:

zk
′+1
l =

zk
′

l exp
{
−αk′ [∇ logF

(
zk

′

1 Ψ̂1, . . . , z
k′

mΨ̂m

)
]l

}
∑
h∈M zk

′
h exp

{
−αk′ [∇ logF

(
zk

′
1 Ψ̂1, . . . , zk

′
mΨ̂m

)
]h

} , l ∈M.

Step 3. Define the gap between subsequent solutions zk
′+1
k and zk

′

k . If GAP < Tolerance level, then stop.

Otherwise, set k′ = k′ + 1 and return to Step 1.

The notation ∇ logF
(
zk

′

1 Ψ̂1, . . . , z
k′

mΨ̂m

)
referees to the gradient vector of logF

(
zk

′

1 Ψ̂1, . . . , z
k′

mΨ̂m

)
; for

a vector x, we denoted its two-norm as ||x||2 and its `th position as [x]`. The convergence conditions for

the penalty algorithm proposed by Hoto et al. (2020) require that the two positive sequences {ρk′}k′∈N ⊂

R+, {βk′}k′∈N ⊂ R+ satisfy

+∞∑
k′=1

βk′ = +∞,
+∞∑
k′=1

β2
k′ <∞, ρk′ > 0, lim

k′→∞
(ρ′kβ

′
k) = 0.

22



References

Avvakumov, S., Kiselev, Y.N., Orlov, M. and Taras’ev, A. (2010). Profit maximization problem for Cobb–

Douglas and CES production functions. Computational Mathematics and Modeling 21(3):336–378.

Benita, F., Lopez-Ramos, F. and Nasini, S. (2019). A bi-level programming approach for global investment

strategies with financial intermediation. European Journal of Operational Research 274(1):375 – 390.

Bhattacharya, S. and Pfleiderer, P. (1985). Delegated portfolio management. Journal of Economic Theory

36(1):1–25.

Bretthauer, K.M. and Shetty, B. (2002). The nonlinear knapsack problem–algorithms and applications.

European Journal of Operational Research 138(3):459–472.

Conley, J.P. and Wilkie, S. (1996). An extension of the Nash bargaining solution to nonconvex problems.

Games and Economic Behavior 13(1):26–38.

Dempe, S. and Dutta, J. (2012). Is bilevel programming a special case of a mathematical program with

complementarity constraints? Mathematical Programming 131(1-2):37–48.

Fainmesser, I.P. (2019). Exclusive intermediation in unobservable networks. Games and Economic Behavior

113:533–548.

Grant, M. and Boyd, S. (2014). Cvx: Matlab software for disciplined convex programming, version 2.1.

Greenbaum, S.I., Thakor, A.V. and Boot, A. (2015). Contemporary Financial Intermediation. Third ed.

San Diego: Academic Press.

Hoto, R., Matioli, L. and Santos, P. (2020). A penalty algorithm for solving convex separable knapsack

problems. Applied Mathematics and Computation 387:124855.
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