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Abstract

The `1-ball is a nicely structured feasible set that is widely used in many
fields (e.g., machine learning, statistics and signal analysis) to enforce some
sparsity in the model solutions. In this paper, we devise an active-set strategy
for efficiently dealing with minimization problems over the `1-ball and embed
it into a tailored algorithmic scheme that makes use of a non-monotone first-
order approach to explore the given subspace at each iteration. We prove
global convergence to stationary points. Finally, we report numerical exper-
iments, on two different classes of instances, showing the effectiveness of the
algorithm.
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1 Introduction

In this paper, we focus on the following problem:

min ϕ(x)

‖x‖1 ≤ τ,
(1)

where ϕ : Rn → R is a function whose gradient is Lipschitz continuous with constant
L > 0, ‖x‖1 denotes the `1-norm of the vector x and τ is a suitably chosen positive
parameter.

Problem (1) includes, as a special case, the so called LASSO problem, obtained
when

ϕ(x) = ‖Ax− b‖2,
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with A and b being a m× n matrix and a m-dimensional vector, respectively. Here
and in the following, ‖ · ‖ denotes the Euclidean norm. Loosely speaking, in LASSO
problems the `1-norm constraint is able to induce sparsity in the final solution, and
then these problems are widely used in statistics to build regression models with a
small number of non-zero coefficients [17, 32].

Standard optimization algorithms (like, e.g., interior-point methods), besides
being very expensive when the number of variables increases, do no properly exploit
the main features and structure of the considered problem. This is the reason why,
in the last decade, a number of first-order methods have been considered in the
literature to deal with problem (1). Those methods can be divided into two main
classes: projection-based approaches, like, e.g., gradient-projection methods [15, 31]
and limited-memory projected quasi-Newton methods [30], which efficiently handle
the problem by making use of tailored projection strategies [8, 16], and projection-
free methods, like, e.g., Frank-Wolfe variants [5, 6, 25, 26], that embed a cheap linear
minimization oracle.

As highlighted before, the main goal when using the `1 ball is to get very sparse
solutions (i.e., solutions with many zero components). In this context, it hence makes
sense to devise strategies that allow to quickly identify the set of zero components
in the optimal solution. This would indeed guarantee a significant speed-up of the
optimization process. A number of active-set strategies for structured feasible sets
is available in the literature (see, e.g., [3, 4, 7, 9, 10, 13, 18, 19, 22, 23, 24, 28] and
references therein), but none of those directly handles the `1 ball.

In this paper, inspired by the work carried out in [10], we propose a tailored
active-set strategy for problem (1) and embed it into a first-order projection-based
algorithm. At each iteration, the method first sets to zero the variables that are
guessed to be zero at the final solution. This is done by means of the tailored
active-set estimate, which aims at identifying the manifold where the solutions of
problem (1) lie, while guaranteeing, thanks to a descent property, a reduction of
the objective function at each iteration. Then, the remaining variables, i.e., those
variables estimated to be non-zero at the final solution, are suitably modified by
means of a non-monotone gradient-projection step.

The paper is organized as follows. In Section 2, we describe the active-set strat-
egy and analyze the descent property connected to it. We then devise, in Section
3, our first-order optimization algorithm and carry out a global convergence anal-
ysis. We further report a numerical comparison with some well-known first order
methods using two different classes of `1-constrained problems (that is, LASSO and
constrained sparse logistic regression) in Section 4. Finally, we draw some conclu-
sions in Section 5.
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2 The active-set estimate

Since the feasible set of problem (1) is convex and can be written as convex combi-
nation of the vectors ±τei, i = 1, . . . , n, we can characterize the stationary points
as follows.

Definition 2.1. A feasible point x∗ of problem (1) is stationary if and only if

∇ϕ(x∗)T (τei − x∗) ≥ 0, i = 1, . . . , n,

∇ϕ(x∗)T (−τei − x∗) ≥ 0, i = 1, . . . , n.
(2)

In the next proposition, we state some “complementarity-type” conditions for
stationary points of problem (1).

Proposition 2.2. Let x∗ be a stationary point of problem (1). Then

(i) x∗i > 0 ⇒ ∇ϕ(x∗)T (τei − x∗) = 0,

(ii) x∗i < 0 ⇒ ∇ϕ(x∗)T (−τei − x∗) = 0.

Proof. If |x∗i | = τ , then x∗ = τ sgn(x∗i ) ei and the result trivially holds. To prove
point (i), now let 0 < x∗i < τ . Taking into account (2), by contradiction we assume
that

∇ϕ(x∗)T (τei − x∗) > 0. (3)

Let d+ ∈ Rn be defined as follows:

d+ =
x∗i

τ − x∗i
(x∗ − τei).

We have

‖x∗ + d+‖1 =

(
1 +

x∗i
τ − x∗i

)∑
j 6=i

|x∗j |+
∣∣∣∣x∗i +

x∗i
τ − x∗i

(x∗i − τ)

∣∣∣∣
≤
(

1 +
x∗i

τ − x∗i

)
(τ − |x∗i |) = τ,

(4)

so that d+ is a feasible direction in x∗. Therefore, (3) and (4) imply that d+ is
a feasible descent direction for ϕ(·) in x∗. This contradicts the fact that x∗ is a
stationary point of problem (1) and point (i) is proved. To prove point (ii), we
can use the same arguments as above, considering −τ < x∗i < 0 and, assuming by
contradiction that ∇ϕ(x∗)T (−τei − x∗) > 0, we obtain that

d− =
|x∗i |
τ + x∗i

(x∗ + τei)

is such that ‖x∗ + d−‖1 ≤ τ , that is, d− is a feasible and descent direction for ϕ(·)
in x∗, leading to a contradiction.
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With little abuse of standard terminology, given a stationary point x∗ we say
that a variable x∗i is active if x∗i = 0, whereas a variable x∗i is said to be non-active
if x∗i 6= 0. We can thus define the active set Ā`1(x

∗) and the non-active set N̄`1(x
∗)

as follows:

Ā`1(x
∗) = {i : x∗i = 0}, N̄`1(x

∗) = {1, . . . , n} \ Ā`1(x∗).

Now, we show how we estimate these sets starting from any feasible point x of
problem (1). In order to obtain such an estimate we first need to suitably reformulate
our problem (1) by introducing a dummy variable z. Let ϕ̄(x, z) : Rn+1 → R be the
function defined as ϕ̄(x, z) = ϕ(x) for all (x, z). Problem (1) can then be rewritten
as

min ϕ̄(x, z)

‖x‖1 + z ≤ τ,

z ≥ 0.

(5)

Every feasible point of problem (5) can be expressed as convex combination of
{±τe1, . . . ,±τen, τen+1} ⊂ Rn+1. Therefore, we can define the following matrix,
where I denotes the n× n identity matrix:

M̄ = τ

 I −I
0
...
0

0 . . . 0 0 . . . 0 1

 ∈ R(n+1)×(2n+1),

and we obtain the following reformulation of (1) as a minimization problem over
the unit simplex:

min f(y) = ϕ̄(M̄y)

eTy = 1,

y ≥ 0.

(6)

Note that, given any feasible point x of problem (1), we can compute a feasible point
y of problem (6) such that

yi =
1

τ
max{0, xi}, i = 1, . . . , n,

yn+i =
1

τ
max{0,−xi}, i = 1, . . . , n,

y2n+1 =
τ − ‖x‖1

τ
.

(7)

The rationale behind our approach is sketched in the three following points:

(i) For any feasible point x of problem (1), by (7) we can compute a feasible point
y of problem (6) such that

yi = 0 ⇔ xi ≤ 0 and yn+i = 0 ⇔ xi ≥ 0, i = 1, . . . , n. (8)
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(ii) According to (8), for every feasible point x of problem (1) we have that

xi = 0 ⇔ yi = yn+i = 0, i = 1, . . . , n. (9)

Thus, it is natural to estimate a variable xi as active at x∗ if both yi and yn+i
are estimated to be zero at the point corresponding to x∗ in the y space. To
estimate the zero variables among y1, . . . , y2n+1 we use the active-set estimate
described in [10], specifically devised for minimization problems over the unit
simplex.

(iii) Then, we are able to go back in the original x space to obtain an active-set es-
timate of problem (1) without explicitly considering the variables y1, . . . , y2n+1

of the reformulated problem.

Remark 2.3. The introduction of the dummy variable z is needed in order to get
a reformulation of problem (1) as a minimization problem over the unit simplex
satisfying (8). Since every feasible point x of problem (1) can be expressed as a
convex combination of the vertices of the polyhedron {x ∈ Rn : ‖x‖1 ≤ τ}, a
straightforward reformulation of problem (1) would then be the following:

min{ϕ(My) : eTy = 1, y ≥ 0}, (10)

with M = τ
[
I −I

]
. However, this reformulation does not work for our

purposes, as there exist feasible points x of problem (1) for which no y feasible for
problem (10) satisfying (8) can be found. In particular, if x is in the interior of the
`1-ball (e.g., the origin), we cannot find any y feasible for problem (10) such that (8)
holds.

Considering problem (6) and using the active-set estimate proposed in [10] for
minimization problems over the unit simplex, given any feasible point y of prob-
lem (6) we define:

A(y) = {i : yi ≤ ε∇f(y)T (ei − y)}, (11)

N(y) = {i : yi > ε∇f(y)T (ei − y)}, (12)

where ε is a positive parameter. A(y) contains the indices of the variables that are
estimated to be zero at a certain stationary point and N(y) contains the indices of
the variables that are estimated to be positive at the same stationary point (see [10]
for details of how these formulas are obtained). As mentioned above, taking into
account (9), we estimate a variable xi as active for problem (1) if both yi and yn+1

are estimated to be zero. Namely,

A`1(x) =
{
i ∈ {1, . . . , n} : i ∈ A(y) and (n+ i) ∈ A(y)

}
, (13a)

N`1(x) =
{
i ∈ {1, . . . , n} : i ∈ N(y) or (n+ i) ∈ N(y)

}
. (13b)

5



Now we show how A`1(x) and N`1(x) can be expressed without explicitly consid-
ering the variables y and the objective function f(y) of the reformulated problem.
This allows us to work in the original x space, avoiding to double the number of
variables in practice.

To obtain the desired relations, first observe that

∇f(y) = M̄T∇ϕ̄(x) = τ

 ∇ϕ(x)
−∇ϕ(x)

0

T , (14)

and
∇f(y)Ty = ∇ϕ̄(x)TM̄y =

[
∇ϕ(x)T 0

]
M̄y = ∇ϕ(x)Tx.

Let us distinguish two cases:

(i) xi ≥ 0. Recalling (11)–(12), we have that i ∈ A(y) if and only if

0 ≤ 1

τ
xi = yi ≤ ε∇f(y)T (ei − y) = ε(∇if(y)−∇f(y)Ty)

= ε(τ∇iϕ(x)−∇ϕ(x)Tx) = ε∇ϕ(x)T (τei − x)
(15)

and (n+ i) ∈ A(y) if and only if

−1

τ
xi ≤ 0 = yn+i ≤ ε∇f(y)T (en+i − y) = ε(∇n+if(y)−∇f(y)Ty)

= ε(−τ∇iϕ(x)−∇ϕ(x)Tx) = −ε∇ϕ(x)T (τei + x).
(16)

(ii) xi < 0. Similarly to the previous case, we have that i ∈ A(y) if and only if

1

τ
xi < 0 = yi ≤ ε∇f(y)T (ei − y) = ε(∇if(y)−∇f(y)Ty)

= ε(τ∇iϕ(x)−∇ϕ(x)Tx) = ε∇ϕ(x)T (τei − x)
(17)

and (n+ i) ∈ A(y) if and only if

0 < −1

τ
xi = yn+i ≤ ε∇f(y)T (en+i − y) = ε(∇n+if(y)−∇f(y)Ty)

= ε(−τ∇iϕ(x)−∇ϕ(x)Tx) = −ε∇ϕ(x)T (τei + x).
(18)

From (15), (16), (17) and (18), we thus obtain

A`1(x) = {i : ε τ∇ϕ(x)T (τei + x) ≤ 0 ≤ xi ≤ ε τ∇ϕ(x)T (τei − x) or

ε τ∇ϕ(x)T (τei + x) ≤ xi ≤ 0 ≤ ε τ∇ϕ(x)T (τei − x)},
(19)

N`1(x) = {1, . . . , n} \ A`1(x). (20)
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Let us highlight again that A`1(x) and N`1(x) do not depend on the variables y
and on the objective function f(y) of the reformulated problem, so no variable
transformation is needed in practice to estimate the active set of problem (1). In
the following, we prove that under specific assumptions, Ā`1(x

∗) is detected by our
active-set estimate, when evaluated in points sufficiently close to a stationary point
x∗.

Proposition 2.4. If x∗ is a stationary point of problem (1), then there exists an
open ball B(x∗, ρ) with center x∗ and radius ρ > 0 such that, for all x ∈ B(x∗, ρ),
we have

A`1(x) ⊆ Ā`1(x
∗), (21)

N̄`1(x
∗) ⊆ N`1(x). (22)

Furthermore, if the following “strict-complementarity-type” assumption holds:

x∗i = 0 ⇒ ∇ϕ(x∗)T (τei − x∗) > 0 ∧ ∇ϕ(x∗)T (τei + x∗) < 0, (23)

then, for all x ∈ B(x∗, ρ), we have

A`1(x) = Ā`1(x
∗), (24)

N̄`1(x
∗) = N`1(x). (25)

Proof. Let i ∈ N`1(x
∗), then |x∗i | > 0. Proposition 2.2 implies that either

∇ϕ(x∗)T (τei − x∗) = 0 if x∗i > 0,

or
∇ϕ(x∗)T (−τei − x∗) = 0 if x∗i < 0.

Then, the continuity of ∇ϕ and the definition of N`1(x) imply that there exists an
open ball B(x∗, ρ) with center x∗ and radius ρ > 0 such that, for all x ∈ B(x∗, ρ), we
have that i ∈ N`1(x). This proves (22) and, consequently, also (21). If (23) holds,
the definition of N`1(x) and the continuity of ∇ϕ ensures that Ā`1(x

∗) ⊆ A`1(x) for
all x ∈ B(x∗, ρ), implying that (24) and (25) hold.

2.1 Descent property

So far, we have obtained the active and non-active set estimates (19)–(20) passing
through a variable transformation which allowed us to adapt the active and non-
active set estimates proposed in [10] to our problem (1).

In [10], the active and non-active set estimates, designed for minimization prob-
lems over the unit simplex, guarantee a decrease in the objective function when
setting (some of) the estimated active variables to zero and moving a suitable esti-
mated non-active variable (in order to maintain feasibility).

In the following, we show that the same property holds for problem (1) using the
active and non-active set estimates (19)–(20). To this aim, in the next proposition
we first introduce the index set J`1(x) and relate it with N`1(x).
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Proposition 2.5. Let x ∈ Rn be a feasible non-stationary point of problem (1) and
define

J`1(x) =
{
j : j ∈ Argmax

i=1,...,n

{
|∇iϕ(x)|

}}
.

Then, J`1(x) ⊆ N`1(x).

Proof. Let y be the point given by (7) and consider the reformulated problem (6).
Let A(y) and N(y) be the index sets given in (11)–(12), that is, the active and
non-active set estimates for problem (6), respectively.

From the expression of ∇f(y) given in (14), and exploiting the hypothesis that
x is non-stationary (implying that ∇ϕ(x) 6= 0), it follows that

min
i=1,...,2n+1

{∇if(y)} < 0. (26)

Since ∇2n+1f(y) = 0 (again from (14)), it follows that

(2n+ 1) /∈ Argmin
i=1,...,2n+1

{∇if(y)}.

From Proposition 1 in [10], there exists ν ∈ {1, . . . , 2n} such that

ν ∈ Argmin
i=1,...,2n

{∇if(y)}, (27)

ν ∈ N(y). (28)

In particular, we can rewrite (27) as

∇νf(y) = τ min
i=1,...,n

{∇1ϕ(x), . . . ,∇nϕ(x),−∇1ϕ(x), . . . ,−∇nϕ(x)}.

Taking into account (26), we obtain

−|∇νf(y)| ≤ −τ |∇iϕ(x)|, ∀i = 1, . . . , n. (29)

Now, let j ∈ {1, . . . , n} be the following index:

j =

{
ν, if ν ∈ {1, . . . , n},
ν − n, if ν ∈ {n+ 1, . . . , 2n}.

(30)

Using again (14), we get |∇νf(y)| = |∇jf(y)| = τ |∇jϕ(x)|. This, combined
with (29), implies that

j ∈ Argmax
i=1,...,n

{
|∇iϕ(x)|

}
.

Finally, using (28) and (30), it follows that at least one index between j and (n+ j)
belongs to N(y). Therefore, from (13b) we have that j ∈ N`1(x) and the assertion
is proved.
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Now, we need an assumption on the parameter ε appearing in (19)–(20). It will
allow us to prove the subsequent proposition, stating that ϕ(x) decreases if we set
the variables in A`1(x) to zero and suitably move a variable in J`1(x).

Assumption 2.6. Assume that the parameter ε appearing in the estimates (19)–
(20) satisfies the following conditions:

0 < ε ≤ 1

τ 2nL(2C + 1)
,

where C > 0 is a given constant.

Proposition 2.7. Let Assumption 2.6 hold. Given a feasible non-stationary point
x of problem (1), let j ∈ J`1(x) and I = {1, . . . , n} \ {j}. Let Â`1(x) be a set of
indices such that Â`1(x) ⊆ A`1(x). Let x̃ be the feasible point defined as follows:

x̃Â`1 (x)
= 0; x̃I\Â`1 (x)

= xI\Â`1 (x)
; x̃j = xj − sgn(∇jϕ(x))

∑
h∈Â`1 (x)

|xh|.

Then,
ϕ(x̃)− ϕ(x) ≤ −CL‖x̃− x‖2,

where C > 0 is the constant appearing in Assumption 2.6.

Proof. Define
Â+ = Â`1(x) ∩ {i : xi 6= 0}. (31)

Since∇ϕ is Lipschitz continuous with constant L, from known results (see, e.g., [29])
we can write

ϕ(x̃) ≤ ϕ(x) +∇ϕ(x)T (x̃− x) +
L

2
‖x̃− x‖2

= ϕ(x) +∇ϕ(x)T (x̃− x) +
L(2C + 1)

2
‖x̃− x‖2 − CL‖x̃− x‖2

and then, in order to prove the proposition, what we have to show is that

∇ϕ(x)T (x̃− x) +
L(2C + 1)

2
‖x̃− x‖2 ≤ 0. (32)

From the definition of x̃, we have that

‖x̃− x‖2 =
∑
i∈Â+

x2i +

(∑
i∈Â+

|xi|

)2

≤
∑
i∈Â+

x2i + |Â+|
∑
i∈Â+

x2i

= (|Â+|+ 1)
∑
i∈Â+

x2i .

(33)
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Furthermore,

∇ϕ(x)T (x̃− x) = −
∑
i∈Â+

∇iϕ(x)xi − |∇jϕ(x)|
∑
i∈Â+

|xi|

=
∑
i∈Â+

|xi|(−∇iϕ(x) sgn(xi)− |∇jϕ(x)|).
(34)

Since j ∈ J`1(x), from the definition of J`1(x) it follows that −|∇iϕ(x)| ≥ −|∇jϕ(x)|
for all i ∈ {1, . . . , n}. Therefore, we can write

∇ϕ(x)Tx =
n∑
i=1

∇iϕ(x) sgn(xi) |xi| ≥
n∑
i=1

−|∇jϕ(x)| |xi|

= −|∇jϕ(x)| ‖x‖1 ≥ −|∇jϕ(x)| τ.
(35)

Using (19) and (35), for all i ∈ Â+ we have that

xi ≤ ετ(∇iϕ(x)τ −∇ϕ(x)Tx) ≤ ετ 2(∇iϕ(x) + |∇jϕ(x)|),
−xi ≤ −ετ(∇iϕ(x)τ +∇ϕ(x)Tx) ≤ ετ 2(−∇iϕ(x) + |∇jϕ(x)|),

and then,

|xi| = sgn(xi)xi ≤ ετ 2(∇iϕ(x) sgn(xi) + |∇jϕ(x)|), ∀i ∈ Â+.

Combining this inequality with (33), we obtain

‖x̃− x‖2 ≤ ετ 2(|Â+|+ 1)
∑
i∈Â+

|xi|(∇iϕ(x) sgn(xi) + |∇jϕ(x)|) (36)

From (34) and (36), it follows that the left-hand side term of (32) is less than or
equal to(

ετ 2
L(2C + 1)

2
(|Â+|+ 1)− 1

)∑
i∈Â+

|xi|(∇iϕ(x) sgn(xi) + |∇jϕ(x)|)

The desired result is hence obtained, since inequality (32) follows from the as-
sumption we made on ε, using the fact that |Â+| ≤ n − 1 (as a consequence of
Proposition 2.5) and

∑
i∈Â+ |xi|(∇iϕ(x) sgn(xi) + |∇jϕ(x)|) ≥ 0 (as a consequence

of (36)).

We would like to highlight that the parameter ε depends on n by Assumption 2.6.
However, from the proof of the above proposition, it is clear that n could be replaced
by |Â+|+1, with Â+ defined as in (31). Note that |Â+| might be much smaller than
n.
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3 The algorithm

Based on the active and non-active set estimates described above, we design a suit-
able active-set algorithm for solving problem (1), exploiting the property of our
estimates and using an appropriate projected-gradient direction. At the beginning
of each iteration k, we have a feasible point xk and we compute A`1(x

k) and N`1(x
k),

which, for ease of notation, we will refer to as Ak`1 and Nk
`1

, respectively. Then, we
perform two main steps:

• first, we produce the point x̃k as explained in Proposition 2.7, obtaining a
decrease in the objective function (if xk 6= x̃k);

• afterward, we move all the variables in Nk
`1

by computing a projected-gradient
direction dk over the given non-active manifold and using a non-monotone
Armijo line search. In particular, the reference value ϕ̄ for the line search
is defined as the maximum among the last nm function evaluations, with nm
being a positive parameter.

In Algorithm 1, we report the scheme of the proposed algorithm, named Active-Set

algorithm for minimization over the `1-ball (AS-`1).

Algorithm 1 Active-Set algorithm for minimization over the `1-ball
(AS-`1)

1 Choose a feasible point x0 and choose ε > 0

2 For k = 0, 1, . . .

3 If xk is a stationary point, then STOP

4 Compute Ak`1 = A`1(xk) and Nk
`1

= N`1(xk)

5 Compute Jk`1 = J`1(xk), choose j ∈ Jk`1 and define Ñk
`1

= Nk
`1
\ {j}

6 Set x̃k
Ak`1

= 0 , x̃k
Ñk
`1

= xk
Ñk
`1

and x̃kj = xkj − sgn(∇jϕ(xk))
∑
h∈Ak`1

|xkh|

7 Compute a projected-gradient type direction dk such that dk
Ak`1

= 0

8 Compute a stepsize αk ∈ [0, 1] by Algorithm 2

9 Set xk+1 = x̃k + αkdk

10 End for

The search direction dk at x̃k (see line 7 of Algorithm 1) is made of two subvectors:
dk
Ak`1

and dk
Nk
`1

. Since we do not want to move the variables in Ak`1 , we simply set

dk
Ak`1

= 0. For dk
Nk
`1

, we compute a projected gradient direction in a properly defined

manifold. In particular, let BNk
`1

be the set defined as

BNk
`1

= {x ∈ Rn : ‖x‖1 ≤ τ, xi = 0, ∀i /∈ Nk
`1
} (37)
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Algorithm 2 Non-monotone Armijo line search

0 Choose δ ∈ (0, 1), nm > 0 and γ ∈ (0, 1)

1 Update ϕ̄k = max
0≤i≤min{nm,k}

ϕ(x̃k−i)

2 If ∇ϕ(x̃k)Tdk < 0 then

3 Set α = 1

4 While ϕ(x̃k + αdk) > ϕ̄k + γ α∇ϕ(x̃k)Tdk

5 Set α = δα

6 End while

7 Else

8 Set α = 0

9 End if

10 Set αk = α

and let P (·)B
Nk
`1

denote the projection onto the BNk
`1

. We also define

x̂k = P
(
x̃k −mk∇ϕ(x̃k)

)
B
Nk
`1

, (38)

where 0 < m ≤ mk ≤ m < ∞ and with m, m being two constants. Then, dk
Nk
`1

is

defined as
dkNk

`1

= x̂k − x̃k. (39)

In the practical implementation of AS-`1, we compute the coefficient mk so that
the resulting search direction is a spectral (or Barzilai-Borwein) gradient direction.
This choice will be described in Section 4.

3.1 Global convergence analysis

In order to prove global convergence of AS-`1 to stationary points, we need some
intermediate results. We first point out a property of our search directions, using
standard results on projected directions.

Lemma 3.1. Let Assumption 2.6 hold and let {xk} be the sequence of points pro-
duced by AS-`1. At every iteration k, we have that

∇ϕ(x̃k)Tdk ≤ − 1

m
‖dk‖2 (40)

and {dk} is a bounded sequence.

Proof. Using the properties of the projection, at very iteration k we have

(x̃k −mk∇ϕ(x̃k)− x̂k)T (x− x̂k) ≤ 0, ∀x ∈ BNk
`1
,

12



with BNk
`1

and x̂k being defined as in (37) and (38), respectively. Choosing x = x̃k

in the above inequality and recalling the definition of dk given in (39), we get

∇ϕ(x̃k)Tdk ≤ − 1

mk
‖dk‖2.

Since mk ≤ m, for all k we obtain (40).
Furthermore, from the property of the projection we have that

‖dk‖ = ‖P (x̃k −mk∇ϕ(x̃k))− x̃k‖ ≤ mk‖∇ϕ(x̃k)‖.

Since mk ≤ m and {∇ϕ(x̃k)} is bounded, it follows that {dk} is bounded.

We now prove that the sequence {ϕ̄k} converges.

Lemma 3.2. Let Assumption 2.6 hold and let {xk} be the sequence of points pro-
duced by AS-`1. Then, the sequence {ϕ̄k} is non-increasing and converges to a value
ϕ̄.

Proof. First note that the definition of ϕ̄k ensures ϕ̄k ≤ ϕ(x̃0) and hence ϕ(x̃k) ≤
ϕ(x̃0) for all k. Moreover, we have that

ϕ̄k+1 = max
0≤i≤min{nm,k+1}

ϕ(x̃k+1−i) ≤ max{ϕ̄k, ϕ(x̃k+1)}.

Since ϕ(x̃k+1) ≤ ϕ̄k by the definition of the line search, we derive ϕ̄k+1 ≤ ϕ̄k, which
proves that the sequence {ϕ̄k} is non-increasing. This sequence is bounded from
below by the minimum of ϕ over the unit simplex and hence converges.

The next intermediate result shows that the distance between {xk} and {x̃k}
converges to zero and that the sequences {ϕ(xk)} and {ϕ(x̃k)} converge to the same
point, using similar arguments as in [20].

Proposition 3.3. Let Assumption 2.6 hold and let {xk} be the sequence of points
produced by AS-`1. Then,

lim
k→∞
‖x̃k − xk‖ = 0, (41)

lim
k→∞

ϕ(x̃k) = lim
k→∞

ϕ(xk) = ϕ̄. (42)

Proof. For each k ∈ N, choose l(k) ∈ {k−min(k, nm), . . . , k} such that ϕ̄k = ϕ(x̃l(k)).
From Proposition 2.7 we can write

ϕ(x̃l(k)) ≤ ϕ(xl(k))− CL‖x̃l(k) − xl(k)‖2. (43)

Furthermore, from the instructions of the line search and the fact that the sequence
{ϕ(x̃l(k))} is non-increasing, for all k ≥ 1we have

ϕ(xl(k)) ≤ ϕ(x̃l(k−1)) + γαl(k)−1∇ϕ(x̃l(k)−1)Tdl(k)−1,

13



and then,

ϕ(x̃l(k)) ≤ ϕ(x̃l(k−1)) + γαl(k)−1∇ϕ(x̃l(k)−1)Tdl(k)−1 − CL‖x̃l(k) − xl(k)‖2. (44)

Since {ϕ(x̃l(k))} converges to ϕ̄, we have that (43) and (44) imply

lim
k→∞
‖x̃l(k) − xl(k)‖ = 0, (45)

lim
k→∞

αl(k)−1∇ϕ(x̃l(k)−1)Tdl(k)−1 = 0.

Furthermore, from Lemma 3.1 we have

∇ϕ(x̃l(k)−1)Tdl(k)−1 ≤ − 1

m
‖dl(k)−1‖2,

and then the following limit holds:

lim
k→∞

αl(k)−1‖dl(k)−1‖ = 0. (46)

Considering that xl(k) = x̃l(k)−1 + αl(k)−1dl(k)−1, (46) implies

lim
k→∞
‖x̃l(k)−1 − xl(k)‖ = 0.

Furthermore, from the triangle inequality, we can write

‖x̃l(k)−1 − x̃l(k)‖ ≤ ‖x̃l(k)−1 − xl(k)‖+ ‖xl(k) − x̃l(k).‖

Then,
lim
k→∞
‖x̃l(k)−1 − x̃l(k)‖ = 0 (47)

and in particular, from the uniform continuity of ϕ over {x ∈ Rn : ‖x‖1 ≤ τ}, we
have

lim
k→∞

ϕ(x̃l(k)−1) = lim
k→∞

ϕ(x̃l(k)) = ϕ̄. (48)

Let
l̂(k) = l(k + nm + 2).

We show by induction that, for any given j ≥ 1,

lim
k→∞
‖xl̂(k)−(j−1) − x̃l̂(k)−(j−1)‖ = 0, (49)

lim
k→∞
‖x̃l̂(k)−(j−1) − x̃l̂(k)−j‖ = 0, (50)

lim
k→∞

ϕ(x̃l̂(k)−j) = lim
k→∞

ϕ(x̃l(k)). (51)

If j = 1, since {l̂(k)} ⊂ {l(k)} we have that (49), (50) and (51) follow from (45),
(47) and (48), respectively.
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Assume now that (49), (50) and (51) hold for a given j. Then, reasoning as in
the beginning of the proof, from the instructions of the line search and considering
that {ϕ(x̃l(k))} is non-increasing, we can write

ϕ(x̃l̂(k)−j) ≤ ϕ(xl̂(k)−j)− CL‖x̃l̂(k)−j − xl̂(k)−j‖2

and
ϕ(xl̂(k)−j) ≤ ϕ(x̃l̂(k−(j+1))) + γαl̂(k)−(j+1)∇ϕ(x̃l̂(k)−(j+1))>dl̂(k)−(j+1).

Therefore we get

ϕ(x̃l̂(k)−j) ≤ϕ(x̃l̂(k−(j+1))) + γαl̂(k)−(j+1)∇ϕ(x̃l̂(k)−(j+1))Tdl̂(k)−(j+1)+

− CL‖x̃l(k)−j − xl(k)−j‖2,

so that

lim
k→∞

αl̂(k)−(j+1)∇ϕ(x̃l̂(k)−(j+1))Tdl̂(k)−(j+1) = 0, (52)

lim
k→∞
‖x̃l(k)−j − xl(k)−j‖ = 0. (53)

The limit in (53) implies (49) for j + 1. The properties of the direction stated in
Lemma 3.1, combined with (52), ensure that

lim
k→∞

αl̂(k)−(j+1)‖dl̂(k)−(j+1)‖ = 0. (54)

Furthermore, since xl̂(k)−j = x̃l̂(k)−(j+1) + αl̂(k)−(j+1)dl̂(k)−(j+1), we have that (54)
implies

lim
k→∞
‖x̃l̂(k)−(j+1) − xl̂(k)−j‖ = 0.

Using the triangle inequality, we can write

‖x̃l̂(k)−(j+1) − x̃l̂(k)−j‖ ≤ ‖x̃l̂(k)−(j+1) − xl̂(k)−j‖+ ‖xl̂(k)−j − x̃l̂(k)−j‖.

Then,

lim
k→∞
‖x̃l̂(k)−(j+1) − x̃l̂(k)−j‖ = 0

and in particular, from the uniform continuity of ϕ over {x ∈ Rn : ‖x‖1 ≤ τ}, we
can write

lim
k→∞

ϕ(x̃l̂(k)−(j+1)) = lim
k→∞

ϕ(x̃l̂(k)−j) = ϕ̄.

Thus we conclude that (50) and (51) hold for any given j ≥ 1. Recalling that

l̂(k)− (k + 1) = l(k + nm + 2)− (k + 1) ≤ nm + 1,

‖x̃k+1 − x̃l̂(k)‖ ≤
l̂(k)−1∑
j=k+1

‖x̃j+1 − x̃j‖,
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we have that (50) implies

lim
k→∞
‖x̃k+1 − x̃l̂(k)‖ = 0. (55)

Furthermore, since

‖xk+1 − x̃l̂(k)‖ ≤ ‖xk+1 − x̃k+1‖+ ‖x̃k+1 − x̃l̂(k)‖,

from (55) and (49) we have

lim
k→∞
‖xk+1 − x̃l̂(k)‖ = 0. (56)

Since {ϕ(x̃l̂(k))} has a limit, from the uniform continuity of ϕ over {x ∈ Rn : ‖x‖1 ≤
τ}, (56) and (55) it follows that

lim
k→∞

ϕ(xk+1) = lim
k→∞

ϕ(xk) = lim
k→∞

ϕ(x̃l̂(k)) = ϕ̄

and
lim
k→∞

ϕ(x̃k+1) = lim
k→∞

ϕ(x̃k) = lim
k→∞

ϕ(x̃l̂(k)) = ϕ̄,

proving (42). From the instructions of the algorithm and Proposition 2.7, we can
write

ϕ(x̃k) ≤ ϕ(xk)− CL‖x̃k − xk‖2,
and then from (42) we have that (41) holds.

The following proposition states that the directional derivative ∇ϕ(x̃k)Tdk tends
to zero.

Proposition 3.4. Let Assumption 2.6 hold and let {xk} be the sequence of points
produced by AS-`1. Then,

lim
k→∞
∇ϕ(x̃k)Tdk = 0. (57)

Proof. To prove (57), assume by contradiction that it does not hold. Lemma 3.1
implies that the sequence {∇ϕ(x̃k)Tdk} is bounded, so that there must exist an
infinite set K ⊆ N such that

∇ϕ(x̃k)Tdk < 0, ∀k ∈ K, (58)

lim
k→∞, k∈K

∇ϕ(x̃k)Tdk = −η < 0, (59)

for some real number η > 0. Taking into account (41) and the fact that the feasible
set is compact, without loss of generality we can assume that both {xk}K and {x̃k}K
converge to a feasible point x∗ (passing into a further subsequence if necessary).
Namely,

lim
k→∞, k∈K

xk = lim
k→∞, k∈K

x̃k = x∗. (60)
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Moreover, since the number of possible different choices of Ak and Nk is finite,
without loss of generality we can also assume that

Ak = Â, Nk = N̂ , ∀k ∈ K,

and, using the fact that {dk} is a bounded sequence, that

lim
k→∞, k∈K

dk = d̄ (61)

(passing again into a further subsequence if necessary). From (59), (60), (61) and
the continuity of ∇ϕ, we can write

∇ϕ(x∗)T d̄ = −η < 0. (62)

Taking into account (58), from the instructions of AS-`1 we have that, at every
iteration k ∈ K, a non-monotone Armijo line search is carried out (see line 2 in
Algorithm 2) and a value αk ∈ (0, 1] is computed such that

ϕ(xk+1) ≤ ϕ(x̃l(k)) + γ αk∇ϕ(x̃k)Tdk,

or equivalently,
ϕ(x̃l(k))− ϕ(xk+1) ≥ γ αk |∇ϕ(x̃k)Tdk|.

From (42), the left-hand side of the above inequality converges to zero for k →∞,
hence

lim
k→∞, k∈K

αk |∇ϕ(x̃k)Tdk| = 0.

Using (59), we obtain that lim
k→∞, k∈K

αk = 0. It follows that there exists k̄ ∈ K such

that
αk < 1, ∀k ≥ k̄, k ∈ K.

From the instructions of the line search procedure, this means that ∀k ≥ k̄, k ∈ K

ϕ
(
x̃k +

αk

δ
dk
)
> ϕ(x̃l(k)) + γ

αk

δ
∇ϕ(x̃k)Tdk ≥ ϕ(x̃k) + γ

αk

δ
∇ϕ(x̃k)Tdk. (63)

Using the mean value theorem, ξk ∈ (0, 1) exists such that

ϕ
(
x̃k +

αk

δ
dk
)

= ϕ(x̃l(k)) +
αk

δ
∇ϕ
(
x̃k + ξk

αk

δ
dk
)T
dk, ∀k ≥ k̄, k ∈ K. (64)

In view of (63) and (64), we can write

∇ϕ
(
x̃k + ξk

αk

δ
dk
)T
dk > γ∇ϕ(x̃k)Tdk, ∀k ≥ k̄, k ∈ K. (65)

From (60), and exploiting the fact that {ξk}K , {αk}K and {dk}K are bounded se-
quences, we get

lim
k→∞, k∈K

x̃k + ξk
αk

δ
dk = lim

k→∞, k∈K
x̃k = x∗.
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Therefore, taking the limits in (65) we obtain that ∇ϕ(x∗)T d̄ ≥ γ∇ϕ(x∗)T d̄, or
equivalently, (1−γ)∇ϕ(x∗)T d̄ ≥ 0. Since γ ∈ (0, 1), we get a contradiction with (62).

We are finally able to state the main convergence result.

Theorem 3.5. Let Assumption 2.6 hold and let {xk} be the sequence of points
produced by AS-`1. Then, every limit point x∗ of {xk} is a stationary point of
problem (1).

Proof. From Definition 2.1, we can characterize stationarity using condition (2). In
particular, we can define the following continuous functions Ψi(x) to measure the
stationarity violation at a feasible point x:

Ψi(x) = max{0,−∇ϕ(x)T (τ ei − x),−∇ϕ(x)T (−τ ei − x)}, i = 1, . . . , n,

so that a feasible point x is stationary if and only if Ψi(x) = 0, i = 1, . . . , n.
Now, let x∗ be a limit point of {xk} and let {xk}K , K ⊆ N, be a subsequence

converging to x∗. Namely,
lim

k→∞, k∈K
xk = x∗. (66)

Note that x∗ exists, as {xk} remains in the compact set {x ∈ Rn|‖x‖1 ≤ τ}. Since
the number of possible different choices of Ak and Nk is finite, without loss of
generality we can assume that

Ak = Â, Nk = N̂ , ∀k ∈ K

(passing into a further subsequence if necessary).
By contradiction, assume that x∗ is non-stationary, that is, an index ν ∈ {1, . . . , n}

exists such that
Ψν(x

∗) > 0. (67)

First, suppose that ν ∈ Â. Then, from the expressions (19), we can write

0 ≤ xkν ≤ ετ∇ϕ(xk)T (τeν − xk) or 0 ≥ xkν ≥ ετ∇ϕ(xk)T (τeν + xk),

so that Ψν(x
k) = 0, for all k ∈ K̄. Therefore, from (66), the continuity of ∇ϕ and

the continuity of the functions Ψi, we get Ψν(x
∗) = 0, contradicting (67).

Then, ν necessarily belongs to N̂ . Namely, x∗ is non-stationary over BNk
`1

, with

BNk
`1

defined as in (37). This means that

x∗ 6= P
(
x∗ −m∇ϕ(x∗)

)
B
Nk
`1

. (68)

Using Proposition 3.4 and Lemma 3.1, we have that limk→∞, k∈K ‖dk‖ = 0, that is,
recalling the definition of dk given in (38)–(39),

lim
k→∞, k∈K

∥∥∥∥∥x̃k − P(x̃k −mk∇ϕ(x̃k)
)
B
Nk
`1

∥∥∥∥∥ = 0.
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From the properties of the projection we have that∥∥∥∥∥x̃k − P(x̃k −mk∇ϕ(x̃k)
)
B
Nk
`1

∥∥∥∥∥ ≥
∥∥∥∥∥x̃k − P(x̃k −m∇ϕ(x̃k)

)
B
Nk
`1

,

∥∥∥∥∥
so that the following holds

lim
k→∞, k∈K

∥∥∥∥∥x̃k − P(x̃k −m∇ϕ(x̃k)
)
B
Nk
`1

∥∥∥∥∥ = 0.

Using (66), the continuity of the projection and taking into account (41) in Propo-
sition 3.4, we obtain ∥∥∥∥∥x∗ − P(x∗ −m∇ϕ(x∗)

)
B
Nk
`1

∥∥∥∥∥ = 0.

This contradicts (68), leading to the desired result.

4 Numerical results

In this section, we show the practical performances of AS-`1 on two classes of prob-
lems frequently arising in data science and machine learning that can be formulated
as problem (1):

• LASSO problems [32], where

ϕ(x) = ‖Ax− b‖2, (69)

for given matrix A ∈ Rm×n and vector b ∈ Rm;

• `1-constrained logistic regression problems, where

ϕ(x) =
l∑

i=1

log(1 + exp(−yixTai)), (70)

with given vectors ai and scalars yi ∈ {1,−1}, i = 1, . . . , l.

In our implementation of AS-`1, we used a non-monotone line search with mem-
ory length nm = 10 (see Algorithm 2) and a spectral (or Barzilai-Borwein) gradient
direction for the variables in Nk

`1
. In particular, the coefficient mk appearing in (38)

was set to 1 for k = 0 and, for k ≥ 1, we employed the following formula, adapting
the strategy used in [2, 4, 11]:

mk =



max{m, mk
a}, if 0 < mk

a < m,

max
{
m, min{m, mk

b}
}
, if mk

a ≥ m,

max

{
m, min

{
1,
‖∇Nk

`1
ϕ(x̃k)‖

‖x̃k
Nk
`1

‖

}}
, if mk

a ≤ 0,
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where m = 10−10, m = 1010, mk
a =

(sk−1)Tyk−1

‖sk−1‖2
, mk

b =
‖yk−1‖2

(sk−1)Tyk−1
, sk−1 = x̃k

Nk
`1

−

x̃k−1
Nk
`1

and yk−1 = ∇Nk
`1
ϕ(x̃k)−∇Nk

`1
ϕ(x̃k−1).

The ε parameter appearing in the active-set estimate (19) should satisfy Assump-
tion 2.6 to guarantee the descent property established in Proposition 2.7 and the
convergence of the algorithm. Since the Lipschitz constant L is in general unknown,
we approximate ε following the same strategy as in [9, 10, 12], where similar estimates
are used. Starting from ε = 10−6, we update its value along the iterations, reducing
it whenever the expected decrease in the objective, stated in Proposition 2.7, is not
obtained.

In our experiments, we implemented AS-`1 in Matlab and compared it with the
two following first-order methods, implemented in Matlab as well:

• a spectral projected gradient method with non-monotone line search, which
will be referred to as NM-SPG, downloaded from Mark Schmidt’s webpage
https://www.cs.ubc.ca/~schmidtm/Software/minConf.html;

• the away-step Frank-Wolfe method with Armijo line search [5, 6], which will
be referred to as AFW1.

For every considered problem, we set the starting point equal to the origin and
we first run AS-`1, stopping when

‖xk − P
(
xk −∇ϕ(xk)

)
`1
‖ ≤ 10−6,

where P (·)`1 denotes the projection onto the `1-ball. Then, the other methods were
run with the same starting point and were stopped at the first iteration k such that

ϕ(xk) ≤ f ∗ + 10−6(1 + |f ∗|),

with f ∗ being the objective value found by AS-`1. A time limit of 3600 seconds was
also included in all the considered methods.

In NM-SPG, we used the default parameters (except for those concerning the
stopping condition). Moreover, in AS-`1 and NM-SPG we employed the same projec-
tion algorithm [8], downloaded from Laurent Condat’s webpage https://lcondat.

github.io/software.html.
In all codes, we made use of the Matlab sparse operator to compute ϕ(x) and

∇ϕ(x), in order to exploit the problem structure and save computational time. The
experiments were run on an Intel Xeon(R) CPU E5-1650 v2 @ 3.50GHz with 12
cores and 64 Gb RAM.

The AS-`1 software is available at https://github.com/acristofari/as-l1.

1AFW was run by reformulating (1) as an optimization problem over the unit simplex, exploiting
the fact that the feasible set is a convex combination of the vectors ±τei, i = 1, . . . , n.
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Table 1: Comparison on 10 LASSO instances. For each method, the first column
(Obj) indicates the final objective value, the second column (CPU time) indicates
the required time in seconds, where a star means that the time limit of 3600 seconds
was reached, and the third column (%zeros) indicates the percentage of zeros in the
final solution, with a tolerance of 10−5. For each problem, the fastest algorithm is
highlighted in bold.

AS-`1 NM-SPG AFW

Obj CPU time %zeros Obj CPU time %zeros Obj CPU time %zeros

54.20 315.85 97.49 54.20 ∗ 97.49 54.20 2762.90 97.49
52.32 366.90 97.50 5823.87 ∗ 80.69 52.32 3046.89 97.50
53.95 449.67 97.50 1040.99 ∗ 85.12 53.95 3023.94 97.50
54.04 292.83 97.50 2215.88 ∗ 83.45 54.04 3050.17 97.50
52.98 330.65 97.50 841.57 ∗ 85.21 52.98 2798.97 97.50
53.54 387.79 97.50 53.56 ∗ 97.50 53.54 3006.38 97.50
52.71 806.80 97.50 3927.10 ∗ 82.23 52.71 2837.90 97.50
53.58 580.89 97.50 4108.25 ∗ 81.93 53.58 2768.45 97.50
52.61 402.03 97.50 1750.54 ∗ 83.37 52.61 2924.38 97.50
53.36 535.10 97.50 53.89 ∗ 97.49 53.36 2948.41 97.50

4.1 Comparison on LASSO instances

We considered 10 artificial instances of LASSO problems, where the objective func-
tion ϕ(x) takes the form of (69). Each instance was created by first generating a
matrix A ∈ Rm×n with elements randomly drawn from a uniform distribution on
the interval (0, 1), using n = 215 and m = n/2. Then, a vector x∗ was generated
with all zeros, except for round(0.05m) components, which were randomly set to 1
or −1. Finally, we set b = Ax∗+0.001v, where v is a vector with elements randomly
drawn from the standard normal distribution, and the `1-sphere radius τ was set to
0.99‖x∗‖1.

The detailed comparison on the LASSO instances is reported in Table 1. For
each instance and each algorithm, we report the final objective function value found,
the CPU time needed to satisfy the stopping criterion and the percentage of zeros
in the final solution, with a tolerance of 10−5. In case an algorithm reached the
time limit on an instance, we consider as final solution and final objective value
those related to the last iteration performed. NM-SPG reached the time limit on all
instances, being very far from f ∗ on 6 instances out of 10, with a difference of even
two order of magnitude. AFW gets the same solutions as those obtained by AS-`1,
being however an order of magnitude slower than AS-`1.

The same picture is given by Figure 1, where we report the average optimization
error f(xk) − fbest over the 10 instances, with fbest being the minimum objective
value found by the algorithms. We can notice that AS-`1 clearly outperforms the
other two methods.
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Figure 1: Average optimization error over LASSO instances (y axis) vs CPU time
in seconds (x axis). The y axis is in logarithmic scale.

4.2 Comparison on logistic regression instances

For the comparison among AS-`1, NM-SPG and AFW on `1-constrained logistic re-
gression problems, where the objective function ϕ(x) takes the form of (70), we
considered 11 datasets for binary classification from the literature, with a number of
samples l between 100 and 25, 000, and a number of attributes n between 500 and
100, 000. We report the complete list of datasets in Table 2.

Table 2: Datasets used in the comparison on `1-constrained logistic regression prob-
lems, where l is the number of instances and n is the number of attributes.

Dataset l n Reference

Arcene (training set) 100 10, 000 [14, 21]
Dexter (training set) 300 19, 999 [14, 21]

Dorothea (training set) 800 100, 000 [14, 21]
Farm-ads-vect 4, 143 54, 877 [14]

Gisette (training set) 6, 000 5, 000 [1, 14, 21]
Madelon (training set) 2, 000 500 [1, 14, 21]

Rcv1 train.binary (training set) 20, 242 47, 236 [1, 27]
Real-sim 72, 309 20, 958 [1]

Swarm (Aligned) 24, 016 2, 400 [14]
Swarm (Flocking) 24, 016 2, 400 [14]
Swarm (Grouped) 24, 016 2, 400 [14]

For each dataset, we considered different values of the `1-sphere radius τ , that is,
0.01n, 0.03n and 0.05n. The final results are shown in Table 3. As before, for each
instance and each algorithm, we report the final objective function value found, the
CPU time needed to satisfy the stopping criterion and the percentage of zeros in
the final solution, with a tolerance of 10−5. In case an algorithm reached the time

22



limit on an instance, we consider as final solution and final objective value those
related to the last iteration performed. Excluding the instance obtained from the
Rev1 train.binary dataset with τ = 0.05n, the three solvers get very similar solutions
on all instances, with a difference of 0.02 at most in the final objective values. When
considering τ = 0.01n, AS-`1 is the fastest solver on 4 instances out of 11. Note that
on the instance from the Farm-ads-vect dataset, AS-`1 is able to get the solution in a
third of the CPU time needed by the other two solvers. On the other instances, the
CPU time needed by AS-`1 is always comparable with the one needed by the fastest
solver. Looking at the results for larger values of τ , we can notice that the instances
get more difficult and in general less sparse. For τ = 0.03n and τ = 0.05n, AS-`1 is
the fastest solver on all the instances but two, those obtained from the Arcene and
the Dorothea datasets, which are however addressed within 2 seconds. On other
instances, such as those built from the Real-sim and the Rev1 train.binary datasets,
AS-`1 is one or even two orders of magnitude faster with respect to NM-SPG and AFW.
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Figure 2: Average optimization error over `1-constrained logistic regression instances
(y axis) vs CPU time in seconds (x axis). The y axis is in logarithmic scale.

In Figure 2 we report the average optimization error f(xk) − fbest over the 11
instances, for each value of τ , with fbest being the minimum objective value found by
the algorithms. We can notice that AFW is outperformed by the other two algorithms,
which have similar performance when considering the average optimization error
above 10−2. When considering the average optimization error below 10−2, we see
that AS-`1 outperforms NM-SPG too.

5 Conclusions

In this paper, we focused on minimization problems over the `1-ball and described
a tailored active-set algorithm. We developed a strategy to guess, along the itera-
tions of the algorithm, which variables should be zero at a solution. A reduction in
terms of objective function value is guaranteed by simply fixing to zero those vari-
ables estimated to be active. The active-set estimate is used in combination with a
projected spectral gradient direction and a non-monotone Armijo line search. We
analyzed in depth the global convergence of the proposed algorithm. The numerical
results show the efficiency of the method on LASSO and sparse logistic regression
instances, in comparison with two widely-used first-order methods.
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