
On implementation details and numerical
experiments for the HyPaD algorithm to solve

multi-objective mixed-integer convex optimization
problems

Gabriele Eichfelder∗, Leo Warnow∗

August 22, 2023

Abstract

In this paper, we present insights on the implementation details of the hybrid
patch decomposition algorithm (HyPaD) for multi-objective mixed-integer con-
vex optimization problems. We discuss three methods to implement the SNIA
procedure which is basically a black box algorithm in the original work by Eich-
felder and Warnow. In addition, we present and discuss numerical results for
various test instances. We also give some advice on how to choose the parameter
ε for the width of the computed enclosure of the nondominated set.

Key Words: multi-objective optimization, mixed-integer optimization, numerical experi-
ments, enclosure

Mathematics subject classifications (MSC 2010): 90C11, 90C26, 90C29

1 Introduction
Multi-objective optimization problems that have some continuous and also some integer
variables are denoted multi-objective mixed-integer optimization problems. In our work
we consider the optimization problem

min
x

f(x) s.t. g(x) ≤ 0q, x ∈ X := XC ×XI (MOMICP)

for once continuously differentiable convex objective functions fi : Rn+m → R, i ∈ [p]
and once continuously differentiable convex constraint functions gj : Rn+m → R, j ∈ [q]
where [p] := {1, . . . , p}, f = (f1, . . . , fp) : Rn+m → Rp, g = (g1, . . . , gq) : Rn+m → Rq

and 0q ∈ Rq denotes the all-zeros vector. We assume that XC := [lC , uC] ⊆ Rn is a
nonempty box with lC , uC ∈ Rn and XI := [lI , uI] ∩ Zm is a (finite) nonempty subset
of Zm with lI , uI ∈ Zm. We write x = (xC , xI) for all x ∈ X to distinguish be-
tween the continuous and integer variables of the optimization problem (MOMICP).

∗Institute of Mathematics, Technische Universität Ilmenau, Po 10 05 65, D-98684 Ilmenau, Ger-
many, {gabriele.eichfelder,leo.warnow}@tu-ilmenau.de

1

The feasible set of (MOMICP) is denoted by S and is assumed to be nonempty. More-
over, we define the set of all feasible integer assignments by

SI = {xI ∈ Zm | ∃ xC ∈ Rn : (xC , xI) ∈ S}

and call every xI ∈ SI a feasible integer assignment. For every x̂I ∈ SI we denote by
Sx̂I

:= {x ∈ S | xI = x̂I} the subset of feasible points for (MOMICP) with exactly
that assignment of the integer variables.

In [9] we presented the Hybrid Patch Decomposition algorithm (HyPaD) to compute
an enclosure of the nondominated set of (MOMICP). We make use of the enclosure
concept as presented in [7], but restricted to finite sets L,U ⊆ Rp.

Definition 1.1 Let L,U ⊆ Rp be two finite sets such that N ⊆ L+Rp
+ and N ⊆ U−Rp

+.
Then L is called a lower bound set, U is called an upper bound set, and the set A which
is given as

A = A(L,U) := (L+ Rp
+) ∩ (U − Rp

+) =
⋃
l∈L

⋃
u∈U,
l≤u

[l, u]

is called the enclosure of the nondominated set N of (MOMICP) given L and U .

The HyPaD algorithm is guaranteed to compute such an enclosure with a width
of at most ε > 0, where ε is an input parameter of the algorithm. The width of an
enclosure A is denoted by w(A) and equals the optimal value of

max
l,u

s(l, u) s.t. l ∈ L, u ∈ U, l ≤ u (1.1)

where s(l, u) := min {ui − li | i ∈ [p]} denotes the shortest edge length of a box [l, u].
This concept is also presented in [7]. Using the width as a quality criterion, one can
assure that any x ∈ S with f(x) ∈ A(L,U) is an ε-efficient solution of (MOMICP) if
w(A) < ε for some ε > 0, see also [7, Lemma 3.1].

The main contribution of this paper is to extend the primarily theoretical results
from [9] in mainly two directions. First, we provide details on the theoretical and
practical realization of the HyPaD algorithm regarding steps that have originally been
considered as a black box. This includes the initialization of the algorithm in Section 2
and, more importantly, the realization of the SNIA procedure in Section 3 of this
paper. In fact, we present three methods to realize this fallback procedure which is
used within the HyPaD algorithm to compute new integer assignments xI ∈ XI in
order to guarantee progress and thus finiteness of the algorithm even in a worst case
scenario.

The second half of this paper, namely Section 4, then focuses on numerical experi-
ments to evaluate the strengths and weaknesses of the HyPaD algorithm. In Section 4.1,
we discuss the influence of the different realizations for the SNIA procedure presented
in Section 3 with regard to the overall performance of the algorithm. We further in-
vestigate the influence of the parameter ε that determines the width, i.e., the quality
of the computed enclosure, in Section 4.2. Finally, in Section 4.3, we compare the
HyPaD algorithm from [9] to the MOMIX algorithm from [3]. The latter was the first
and prior to the introduction of HyPaD the only algorithm in the literature that also
specifically addressed multi-objective mixed-integer convex optimization problems with
an arbitrary number of objective functions and that did not rely on a scalarization-first
approach.

2

We remark that in the remaining part of this paper we use many of the concepts
and notations from [9]. We briefly recall those concepts, like the SNIA procedure, that
are relevant for the discussions and results presented in this paper in the corresponding
sections. We also include the pseudocode of the algorithm and all its subroutines in
the appendix of this paper (starting from page 21). For everything beyond that we
refer the reader to [9].

2 Initialization
For the initialization of the HyPaD algorithm (Algorithm 5), we need a starting point
x̂ ∈ X and an initial box B := [z, Z] with f(S) ⊆ int(B).

In this paper, especially with regard to the numerical experiments in Section 4, we
always provide the initial box B manually and do not compute it within MATLAB.
However, if one wants to include a mechanism to compute an initial box within MAT-
LAB, then using interval arithmetic (for example via INTLAB [13]) would be a suitable
approach to do that. In fact, both ways for the initialization of B are included in our
implementation of the HyPaD algorithm which we provide on GitHub [8].

To obtain a starting point for Algorithm 5, we solve the following single-objective
continuous convex optimization problem which is basically a scalarization of the integer
relaxed formulation of (MOMICP):

min
x,t

t s.t. f(x)− z − t(Z − z) ≤ 0p,
g(x) ≤ 0q,
x ∈ XC × [lI , uI] ⊆ Rn+m, t ∈ R.

(Pinit)

We denote by (x̄, t̄) an optimal solution of (Pinit). Then we can split x̄ = (x̄C , x̄I) into
a first part with n components and a second part with m components. The starting
point x̂ ∈ X for Algorithm 5 is then obtained by rounding the last m components, i.e.,
x̂ = (x̄C , bx̄I + 0.5ec) ∈ X, where e ∈ Rm denotes the all-ones vector.

Besides the initialization of the overall HyPaD algorithm, we also need to initialize
new entries of the integer data structure D whenever a new feasible integer assignment
is computed. Let x̂I ∈ SI be such a new feasible integer assignment. We define the
corresponding patch (problem) as

min
xC

f(xC , x̂I) s.t. g(xC , x̂I) ≤ 0q, xC ∈ XC . (P(x̂I))

The entry D(x̂I) of the integer data structure D is used within the HyPaD algorithm
to collect and store data obtained for the patch problem (P(x̂I)). More precisely,
each entry D(x̂I) consists of four components. The first one is a set of lower bounds
for the nondominated set Nx̂I

of (P(x̂I)), denoted by D(x̂I).L. The second one is a
boolean value D(x̂I).S that indicates whether further computations for the patch prob-
lem (P(x̂I)) are needed. For example, this value is set to false in case it is recognized
that Nx̂I

does not contribute to the nondominated set N of (MOMICP). We call
the integer assignment x̂I active if D(x̂I).S is set to true and inactive otherwise. All
weakly efficient points x ∈ Sx̂I

of the subproblem (P(x̂I)) computed by the HyPaD
algorithm are saved in the set D(x̂I).E. Analogously, the final component D(x̂I).N
contains the weakly nondominated points y ∈ Rp of (P(x̂I)) that are computed within
the algorithm.

3

In [9] the initialization of D(x̂I) is almost treated as a black box and it is not
further specified how the first lower bound ẑ ∈ Rp with f(Sx̂I

) ⊆ {ẑ}+ int(Rp
+) for the

corresponding patch is computed. We present here the exact method that we actually
use for our numerical tests. This method is based on the computation of the ideal
point corresponding to (P(x̂I)). For i ∈ [p] we consider the single-objective continuous
convex optimization problem

min
xC

fi(xC , x̂I) s.t. g(xC , x̂I) ≤ 0q, xC ∈ XC . (PI(x̂I , i))

Let x̄iC be an optimal solution of (PI(x̂I , i)) and denote by z̄i := fi(x̄iC , x̂I) the cor-
responding optimal value. Then z̄ = (z̄1, . . . , z̄p) is the ideal point for the patch cor-
responding to the integer assignment x̂I ∈ SI . By using a small offset σ > 0 (e.g.,
σ = 10−3 ε) this allows us to initialize the integer data structure D(x̂I) as shown in
Algorithm 1.

Algorithm 1 Initialization of D(x̂I) for a new integer assignment x̂I ∈ SI
Input: New integer assignment x̂I ∈ SI , offset σ > 0
Output: Initialized entry D(x̂I) of the integer data structure

1: procedure InitIDS(x̂I)
2: For all i ∈ [p] solve (PI(x̂I , i)) with optimal solution x̄iC and

optimal value z̄i ∈ R
3: Compute ẑ ∈ Rp as ẑi := z̄i − σ for all i ∈ [p]
4: Initialize D(x̂I).L = {ẑ}, D(x̂I).E = {(x̄1

C , x̂I), . . . , (x̄
p
C , x̂I)},

D(x̂I).N = {f(x̄1
C , x̂I), . . . , f(x̄pC , x̂I)}, D(x̂I).S = true

5: end procedure

3 Realization of the SNIA procedure
The HyPaD algorithm is basically an interplay of computing integer assignments xI ∈
XI by solving the single-objective mixed-integer linear optimization problem

min
x,η,t

t s.t. η − l − t(u− l) ≤ 0p,
fi(x̂) +∇fi(x̂)>(x− x̂) ≤ ηi ∀i ∈ [p], ∀x̂ ∈ X ,
gj(x̂) +∇gj(x̂)>(x− x̂) ≤ 0 ∀j ∈ [q], ∀x̂ ∈ X ,
x ∈ X, η ∈ Rp, t ∈ R

(RSUP(X , l, u))

with l, u ∈ Rp, l < u, and a finite nonempty set X ⊆ Rn+m, and improving the coverages
of the nondominated sets Nx̂I

⊆ f(S) of patches which belong to feasible integer
assignments x̂I ∈ SI . Since all coverages on the patch level need to be improved only
finitely often, see [9, Lemma 6.4], it can happen that all integer assignments that have
been computed by HyPaD so far are either infeasible or inactive, i.e., the corresponding
coverages need no further improvement. For the correctness of the overall algorithm,
one needs to ensure that HyPaD will not get stuck in this situation. This can be
achieved by forcing HyPaD to compute a new integer assignment that has not been
computed yet. If we denote by X a set such that XI := {xI ∈ XI | x = (xC , xI) ∈ X}
contains all the integer assignments that have already been computed by HyPaD,
Algorithm 2 computes such a new integer assignment. More precisely, this is done in

4

Algorithm 2 Search new integer assignment
Input: Linearization points X , integer data structure D
Output: Updated set X , integer data structure D (, bound sets L,U)

1: procedure SNIA(X ,D)
2: Search new x̃ ∈ X such that there exists no x ∈ X with xI = x̃I

and D(x̃I) is not initialized
3: if no such x̃ exists then
4: Let L := {y ∈ D.L | y is nondominated given D.L w.r.t ≤}
5: Terminate HyPaD with output sets L,U
6: else if x̃I ∈ SI then
7: InitIDS(x̃I)
8: else
9: Solve (F(x̃I)) with optimal solution (x̄C , ᾱ)

10: Update linearization points: X = X ∪ {(x̄C , x̃I)}
11: end if
12: end procedure

line 2 of the algorithm and this is the only step that we consider in this section. For
more details on the remaining steps and details of Algorithm 2, we refer to [9].

Concerning the theory presented in [9], it is not important how the new integer
assignment is computed, see line 2 of Algorithm 2, as long as this is done within
a finite number of steps. However, in practice the method to compute a new integer
assignment can play an important role, for example in terms of the overall computation
time of the algorithm. In the following, we present and discuss three methods to realize
line 2 of Algorithm 2. We make us of the assumption that XI is finite and basically
given as a box XI := [lI , uI] ∩ Zm with lI , uI ∈ Zm. The total number of possible
integer assignments is denoted by k := |XI |.

3.1 Full enumeration
The first idea to discuss is a full enumeration of XI . Since there exists a bijection
between XI and [k] we can start with i = 1 and then count up to i = k with each
call of Algorithm 2. If the integer assignment belonging to i ∈ [k] has already been
computed, i.e., is contained in XI , then we just increment i further until we find an
assignment of i that corresponds to a new integer assignment or i > k which indicates
that all integer assignments have already been computed and the algorithm can be
terminated, see line 5 in Algorithm 2.

The full enumeration approach is the cheapest among the three methods presented
in this paper in terms of computation time of Algorithm 2. This is mainly because
this realization of the SNIA procedure avoids the computational overhead and effort of
more advanced procedures like creating certain substructures in the decision space, see
Sections 3.2 and 3.3. In particular, this makes full enumeration a very good choice for
two scenarios. The first one are problems (MOMICP) where the number k of integer
assignments is relatively small. Then a simple enumeration is just faster than any
other strategy that introduces additional overhead. The second one are such problems
(MOMICP) where promising candidates xI ∈ XI for feasible integer assignments are
known a priori. In that scenario, one could ensure that these candidates are explored
first. However, such specific knowledge regarding the set SI ⊆ XI is usually not given.

5

In particular, it could be that the feasible integer assignments are explored last by
the full enumeration approach. Especially if there exist only a few feasible integer
assignments and a large number k of possible integer assignments, this could be an
issue. For that reason, one might instead prefer approaches that are guaranteed to
explore the decision space and hence the set XI of integer assignments more evenly
in order to increase the chance to find feasible integer assignments early on. In the
following, we present two approaches that follow exactly this motivation.

3.2 Dynamic boxes
This approach is a branching technique and searches for a subbox of XI that contains
none of the visited integer assignments xI ∈ XI , see Algorithm 3. Since we adapt the
size of the considered boxes within the algorithm, we call this approach the dynamic
boxes approach. For that algorithm we assume that |XI | < k, which can be checked
beforehand.

Algorithm 3 Computing a new integer assignment by finding an empty subbox of XI

Input: Initial box XI := [lI , uI], set of visited integer assignments XI
Output: New integer assignment x̂I ∈ XI \ XI

1: procedure DynamicSNIA(XI ,XI)
2: while true do
3: Compute edge lengths w = uI − lI and branching points b = lI + w/2
4: Compute index of a largest edge length j ∈ argmax({wi, i ∈ [m]})
5: Compute cl =

∣∣∣{xI ∈ XI ∣∣∣ xI j ≤ bj
}∣∣∣ , cg =

∣∣∣{xI ∈ XI ∣∣∣ xI j ≥ bj
}∣∣∣

6: if cl < cg then
7: Update upper bound: uI j = bbjc
8: if cl < 1 then
9: break

10: end if
11: else
12: Update lower bound: lI j = dbje
13: if cg < 1 then
14: break
15: end if
16: end if
17: Update set of (relevant) visited integer assignments: XI = XI ∩ [lI , uI]
18: end while
19: Return new integer assignment x̂I = b(lI + uI)/2 + 0.5ec
20: end procedure

The idea behind this approach is to search for new integer assignments in the “most
unexplored” areas of XI . This is only a heuristic, but works quite well in practice.
Moreover, since all objective and constraint functions are continuous it is reasonable to
expect that integer assignments that are “close” to each other will also lead to image
points in roughly the same area. Hence, in order to evenly explore the criterion space
it makes sense to search for new integer assignments using this approach.

6

Nevertheless, this method will need an increasing amount of computation time if
the overall number of integer assignments is quite large and XI already contains a lot
of them. This may imply that a lot of branching steps are needed in order to finally
find an empty box (in the sense that it contains no elements of XI) and hence a new
integer assignment.

3.3 Fixed boxes
This final approach combines the techniques from the previous two sections. More
precisely, it uses a technique to create a predefined number of subboxes of XI and then
computes new integer assignments within those subboxes using full enumeration. As
the number and size of boxes is predefined for this approach, we call it the fixed boxes
approach.

Let b ∈ N be a number of branching steps. Then we compute 2b subboxes of
XI with equal edge lengths using the maximum edge length as branching criterion,
see Algorithm 4. When searching for a new integer assignment (Algorithm 2), we
determine the box BI ∈ BI with minimal |BI ∩ XI |. Within that box BI we search for
a new integer assignment by full enumeration as described in Section 3.1.

Algorithm 4 Dividing XI into a fixed number of subboxes
Input: Number of branching steps b ∈ N, initial box XI := [lI , uI]
Output: Set BI of subboxes

1: procedure InitSNIA(b,XI)
2: Compute edge lengths w = uI − lI
3: Initialize BI = {XI}
4: for i = 1 : b do
5: Compute index of a largest edge length j ∈ argmax({wi, i ∈ [m]})
6: if wj < 1 then
7: break
8: end if
9: Set B̂I = ∅, d = 0m, dj = dwj/2e

10: for B = [l, u] ∈ BI do
11: B̂I = B̂I ∪ {[l, u− d], [l + d, u]}
12: end for
13: Update BI = B̂I , wj = bwj/2c
14: end for
15: end procedure

This approach is the one that we actually use within [9] where we set b = 4. The
advantage of this technique is that the set of boxes BI has to be computed only once
in the beginning of the overall HyPaD algorithm, whereas the dynamic approach in
Section 3.2 needs to branch and compute new boxes with each call of Algorithm 2.
However, in most cases the difference between this approach and the dynamic boxes
approach is negligible.

7

4 Numerical experiments
In this section, we present numerical results for 35 test instances, see Table 1. Most
test problems are taken from [3], which allows us to compare our algorithm with the
algorithms MOMIX and MOMIXlight from that paper. The main motivation to compare
our algorithm with that from [3] is that, to the best of our knowledge, prior to HyPaD,
MOMIX and MOMIXlight were the only algorithms that were also able to solve multi-
objective mixed-integer convex optimization problems with an arbitrary number of
objective functions without using a scalarization-first approach. We want to point out
that the instances from [3] are used as test instances in other literature as well, see
[1, 5]. We also included two new test problems (T9), (T10) and another new scalable
test problem (H1). All of the problem formulations can be found in the appendix at the
end of this paper. For a survey and characterization of these and other test instances
for multi-objective mixed-integer nonlinear optimization, we refer to [6].

All results in this section have been computed using MATLAB R2021a on a machine
with Intel Core i9-10920X processor and 32GB of RAM. The average of the results of
bench(5) is: LU = 0.2045, FFT = 0.2127, ODE = 0.3666, Sparse = 0.3919, 2-D
= 0.1968, 3-D = 0.2290. Please be aware that these results of MATLAB’s internal
benchmarking function are version specific, see [12]. All single-objective continuous
convex subproblems, in particular (SUP(x̂I , l, u)), have been solved using fmincon.
We also tested other solvers such as IPOPT via the OPTI Toolbox [2], but this did not
lead to a significant difference concerning the overall performance of our algorithm. All
single-objective mixed-integer linear optimization problems (RSUP(X , l, u)) have been
solved using Gurobi 9.0.3 [11]. For all instances we set a time limit of 3600 seconds. If
this limit was exceeded, we indicate that by a “-” in the tables with the results.

For the initial box B = [z, Z] we provided z̃, Z̃ ∈ Rp as presented in Table 1 and
chose zi := z̃i − 10−3 ε, Zi = Z̃i + 10−3 ε for all i ∈ [p]. With the exception of the first
subsection, all results for HyPaD have been computed using the SNIA procedure using
fixed boxes (see Section 3.3) with b = 4.

The MATLAB implementation of the HyPaD algorithm is publicly available on
GitHub [8]. The raw data for the numerical experiments is provided on Zenodo [10].

4.1 Comparison of SNIA approaches
First, we compare the results for different realizations of the SNIA procedure, see also
Section 3. In Table 2 a comparison of the overall computation time, the number of
calls of the SNIA procedure, and the computation time needed for the SNIA procedure
for all three approaches from Section 3 is provided. A more detailed comparison of the
dynamic boxes and the fixed boxes approach that also contains the number of calls of
the subproblems (RSUP(X , l, u)) and (SUP(x̂I , l, u)) is shown in Tables 3 and 4.

We observe that for most instances there is almost no difference in terms of overall
computation time and the number of calls of SNIA between the full enumeration, the
dynamic boxes, and the fixed boxes approach. In fact, even the number of calls of
(RSUP(X , l, u)) and (SUP(x̂I , l, u)) is almost the same in most cases. This holds for
the dynamic and fixed boxes approach, see Tables 3 and 4, but also for the full enu-
meration approach. A possible explanation for this could be that in most cases only a
small number of integer assignments is computed by the SNIA procedure (Algorithm 2).

8

number name n m ε z̃> Z̃>

1 T3 2 1 0.10 (−2,−2) (2, 62)
2 T3 2 10 0.10 (−2,−2) (2, 80)
3 T3 2 20 0.10 (−2,−2) (2, 100)
4 T3 2 30 0.10 (−2,−2) (2, 120)
5 T4 2 1 0.10 (−3,−3) (3, 3)
6 T4 2 2 0.10 (−5,−5) (5, 5)
7 T4 2 3 0.10 (−7,−7) (7, 7)
8 T4 4 1 0.10 (−4,−4) (4, 4)
9 T4 2 10 0.10 (−21,−21) (21, 21)
10 T4 4 10 0.10 (−22,−22) (22, 22)
11 T4 8 10 0.10 (−24,−24) (24, 24)
12 T4 2 20 0.10 (−41,−41) (41, 41)
13 T4 2 20 0.50 (−41,−41) (41, 41)
14 T4 4 20 0.10 (−42,−42) (42, 42)
15 T4 2 30 0.10 (−61,−61) (61, 61)
16 T4 4 30 0.10 (−62,−62) (62, 62)
17 T4 8 30 0.10 (−64,−64) (64, 64)
18 T4 16 30 0.10 (−68,−68) (68, 68)
19 T5 3 1 0.50 (−3,−3,−1) (3, 3, 5)
20 T5 3 1 0.20 (−3,−3,−1) (3, 3, 5)
21 T5 3 1 0.10 (−3,−3,−1) (3, 3, 5)
22 T5 3 1 0.05 (−3,−3,−1) (3, 3, 5)
23 T9 4 4 0.10 (−3, 5) (13, 22)
24 T10 4 4 0.10 (−3, 5) (12, 22)
25 H1 4 10 0.10 (−14,−14) (34, 34)
26 H1 16 10 0.10 (−26,−26) (46, 46)
27 H1 64 10 0.10 (−74,−74) (94, 94)
28 T6 2 1 0.10 (−3,−1) (3, 8.5)
29 T6 2 1 0.05 (−3,−1) (3, 8.5)
30 T6 2 1 0.01 (−3,−1) (3, 8.5)
31 T4 200 2 0.10 (−14,−14) (14, 14)
32 T4 200 4 0.10 (−18,−18) (18, 18)
33 T4 200 6 0.10 (−22,−22) (22, 22)
34 T4 200 8 0.10 (−26,−26) (26, 26)
35 T4 200 10 0.10 (−30,−30) (30, 30)

Table 1: List of all computed instances

9

instance full enumeration dynamic boxes fixed boxes (b = 4)
time SNIA time SNIA time SNIA

calls time calls time calls time
1 3,48 2 0,01 3,80 3 0,03 3,42 2 0,01
2 14,01 0 0,00 13,35 0 0,00 13,33 0 0,00
3 391,31 0 0,00 374,66 0 0,00 373,15 0 0,00
4 - - - - - - - - -
5 1,59 1 0,00 1,53 1 0,00 1,48 1 0,00
6 3,57 2 0,03 3,39 2 0,03 3,37 2 0,03
7 5,89 7 0,08 5,47 6 0,07 5,53 7 0,08
8 1,97 1 0,00 1,90 1 0,00 1,87 1 0,00
9 21,51 16 0,16 19,56 12 0,12 19,67 11 0,12
10 31,81 20 0,22 30,92 23 0,25 30,96 23 0,25
11 - - - - - - - - -
12 62,31 30 0,29 60,28 30 0,30 60,61 30 0,31
13 10,06 0 0,00 9,46 0 0,00 9,48
14 105,27 48 0,51 103,51 48 0,52 103,50 48 0,52
15 161,76 60 0,63 160,19 52 0,53 159,89 52 0,59
16 213,62 59 0,68 212,60 58 0,64 213,74 59 0,71
17 304,07 62 0,76 741,70 189 2,18 - - -
18 - - - - - - - - -
19 1,23 3 0,03 1,16 3 0,03 1,06 3 0,03
20 3,44 3 0,03 3,15 3 0,03 3,20 3 0,03
21 9,22 3 0,03 8,74 3 0,03 8,78 3 0,03
22 28,32 3 0,03 27,00 3 0,03 27,22 3 0,03
23 5,85 0 0,00 5,13 0 0,00 5,11 0 0,00
24 5,08 29 0,49 4,80 28 0,49 4,82 28 0,48
25 133,10 0 0,00 202,93 0 0,00 203,08 0 0,00
26 302,17 0 0,00 407,82 0 0,00 406,87 0 0,00
27 1086,03 0 0,00 1378,83 0 0,00 1373,96 0 0,00
28 1,44 1 0,00 1,34 1 0,00 1,34 1 0,00
29 1,89 1 0,00 1,79 1 0,00 1,80 1 0,00
30 6,23 1 0,00 6,14 1 0,00 6,09 1 0,00
31 173,70 10 1,08 158,10 9 0,87 167,77 9 0,92
32 283,52 10 1,03 277,35 9 0,93 270,55 9 0,93
33 460,61 12 1,30 442,61 13 1,30 416,04 14 1,46
34 612,28 13 1,37 634,94 14 1,39 629,94 14 1,43
35 824,15 14 1,47 855,49 16 1,61 869,63 17 1,74

Table 2: Comparison of overall computation times, calls of the SNIA procedure, and
time spent on the SNIA procedure for all three realizations of the SNIA procedure

10

in
st
an

ce
dy

na
m
ic

bo
xe
s

fix
ed

bo
xe
s
(b

=
4)

tim
e

#
(R

SU
P)

#
(S
U
P)

SN
IA

tim
e

#
(R

SU
P)

#
(S
U
P)

SN
IA

ca
lls

tim
e

ca
lls

tim
e

1
3.
80

15
15

3
0.
03

3.
42

15
15

2
0.
01

2
13
.3
5

21
8

15
0

0
13
.3
3

21
8

15
0

0.
00

3
37
4.
66

26
98

15
0

0
37
3.
15

26
98

15
0

0.
00

4
-

-
-

-
-

-
-

-
-

-
5

1.
53

30
45

1
0.
00

1.
48

30
45

1
0.
00

6
3.
39

70
98

2
0.
03

3.
37

70
98

2
0.
03

7
5.
47

11
1

15
1

6
0.
07

5.
53

11
2

15
1

7
0.
08

8
1.
90

30
62

1
0.
00

1.
87

30
62

1
0.
00

9
19
.5
6

33
4

46
0

12
0.
12

19
.6
7

33
5

46
0

11
0.
12

10
30
.9
2

38
7

67
9

23
0.
25

30
.9
6

38
8

68
4

23
0.
25

11
-

-
-

-
-

-
-

-
-

-
12

60
.2
8

66
2

90
5

30
0.
30

60
.6
1

66
4

90
8

30
0.
31

13
9.
46

19
0

81
0

0
9.
48

19
0

81
0

0.
00

14
10
3.
51

77
27

13
50

48
0.
52

10
3.
50

77
6

13
55

48
0.
52

15
16
0.
19

10
39

14
04

52
0.
53

15
9.
89

10
37

14
00

52
0.
59

16
21
2.
60

10
89

19
45

58
0.
64

21
3.
74

10
92

19
50

59
0.
71

17
74
1.
70

19
61

34
23

18
9

2.
18

-
-

-
-

-
18

-
-

-
-

-
-

-
-

-
-

Ta
bl
e
3:

C
om

pa
ris

on
of

th
e
dy

na
m
ic

bo
xe
s
an

d
th
e
fix

ed
bo

xe
s
ap

pr
oa
ch

fo
r
th
e
SN

IA
pr
oc
ed
ur
e
(p
ar
t
1)

11

in
st
an

ce
dy

na
m
ic

bo
xe
s

fix
ed

bo
xe
s
(b

=
4)

tim
e

#
(R

SU
P)

#
(S
U
P)

SN
IA

tim
e

#
(R

SU
P)

#
(S
U
P)

SN
IA

ca
lls

tim
e

ca
lls

tim
e

19
1.
16

21
17

3
0.
03

1.
06

20
15

3
0.
03

20
3.
15

35
14
4

3
0.
03

3.
20

35
14
9

3
0.
03

21
8.
74

46
54
9

3
0.
03

8.
78

46
54
9

3
0.
03

22
27
.0
0

59
18
34

3
0.
03

27
.2
2

60
18
52

3
0.
03

23
5.
13

60
10
8

0
0

5.
11

60
10
8

0
0.
00

24
4.
80

66
71

28
0.
49

4.
82

66
71

28
0.
48

25
20
2.
93

63
4

36
3

0
0

20
3.
08

63
4

36
3

0
0.
00

26
40
7.
82

86
8

57
5

0
0

40
6.
87

86
8

57
5

0
0.
00

27
13
78
.8
3

94
0

91
2

0
0

13
73
.9
6

94
0

91
2

0
0.
00

28
1.
34

27
36

1
0.
00

1.
34

27
36

1
0.
00

29
1.
79

32
64

1
0.
00

1.
80

32
64

1
0.
00

30
6.
14

44
37
9

1
0.
00

6.
09

44
37
9

1
0.
00

31
15
8.
10

15
8

59
4

9
0.
87

16
7.
77

15
6

61
8

9
0.
92

32
27
7.
35

23
0

90
0

9
0.
93

27
0.
55

22
8

88
1

9
0.
93

33
44
2.
61

32
1

12
38

13
1.
30

41
6.
04

31
1

11
21

14
1.
46

34
63
4.
94

40
7

15
23

14
1.
39

62
9.
94

40
5

15
30

14
1.
43

35
85
5.
49

48
7

18
15

15
1.
61

86
9.
63

49
0

18
15

17
1.
74

Ta
bl
e
4:

C
om

pa
ris

on
of

th
e
dy

na
m
ic

bo
xe
s
an

d
th
e
fix

ed
bo

xe
s
ap

pr
oa
ch

fo
r
th
e
SN

IA
pr
oc
ed
ur
e
(p
ar
t
2)

12

This means that the procedure is called only a few times. In particular, there are
only 3 instances where more than 1% of the overall computation time of the HyPaD
algorithm is spent on the SNIA procedure. This indicates that in most cases this
procedure can really be considered as a fallback for the rarely occurring case that the
HyPaD algorithm has no more active integer assignments to work with. Hence, the
results match the motivation of the SNIA procedure as presented in [9].

The only instance with noticeable differences between the approaches is instance 17.
While the full enumeration and the dynamic boxes approach could solve that instance,
this was not the case for the fixed boxes approach. What is more, this is the only
instance with a noticeable difference in the number of calls of the SNIA procedure and
the overall computation time between the different approaches. In fact, the dynamic
boxes approach needs roughly three times as many calls of the SNIA procedure as
the full enumeration approach which results in roughly twice the overall computation
time. Nevertheless, that instance seems to be a rare exception in our experiments.
Consequently, the overall choice for one method over the other should not be based on
that one particular result. In fact, we decided to use the fixed boxes approach for all
the results in the remaining part of this paper and also in [9] since it is more predictable
than the dynamic boxes approach in the sense that we know exactly what and how
many boxes are created and since it explores the decision space more evenly than the
full enumeration approach.

4.2 Influence of the choice of ε
In this section, we briefly discuss the effects of the choice of the quality parameter ε.
For this, we consider the tri-objective test problem (T5) from [3] that also appears in
[1]. We have computed an enclosure of the nondominated set of (T5) for four different
choices of ε ∈ {0.5, 0.2, 0.1, 0.05}, see instances 19–22 in Table 1.

Considering computation time (see Table 5), we notice that halving ε roughly triples
the overall computation time. This also holds for the number of calls of fmincon
within HyPaD that make up roughly 80% of the overall computation time. This is
not surprising since in this examples there are exactly five integer assignments, which
are all feasible integer assignments. All the corresponding patches contribute to the
nondominated set and hence, HyPaD basically explores all these integer assignments
in the first iterations and computes the overall enclosure of the nondominated set as a
combination of the coverages corresponding to the patches. Since this happens almost
entirely on the patch level, the calls of fmincon make up most of the computation
time. This behavior is quite typical for a small number of possible integer assignments.

instance ε time |L| |U | # fmincon time fmincon
19 0.50 1.06 35 61 69 0.90
20 0.20 3.20 303 329 218 2.57
21 0.10 8.78 1103 1129 629 7.02
22 0.05 27.22 3709 3735 1946 20.90

Table 5: Results for (T5) with different choices of ε

13

Besides the overall computation time, another important aspect of the choice of ε is
the number of boxes at the end of the algorithm or, more precisely, the number of lower
and upper bounds that need to be computed. These numbers are also shown in Table 5.
Since the number of lower and upper bounds affects the loop sizes within HyPaD and
its subroutines, one should be clear that each iteration of the algorithm (i.e., each run
of the main while loop of HyPaD) gets more expensive in terms of computation time
when the number of lower and upper bounds increases. Hence, there is a noticeable
trade-off between the quality of the enclosure and the computation time of HyPaD.

(a) ε = 0.5 (b) ε = 0.2

(c) ε = 0.1 (d) ε = 0.05

Figure 1: Enclosure for (T5) computed by HyPaD for different values of ε

4.3 Comparison of HyPaD and MOMIX
In this final section, we compare our HyPaD algorithm with the MOMIX algorithm
from [3]. To make this comparison as fair as possible, we decided not to use the results
from [3], but to compute our own results using the MOMIX code provided on GitHub
[4]. Hence, both algorithms are using the same machine, the same versions of Gurobi
[11] and so on.

Before we present the actual results, we recap briefly the different properties and
operation modes of MOMIX. The MOMIX algorithm includes a procedure to ob-
tain tight lower bounds by solving a single-objective mixed-integer convex optimiza-
tion problem that is basically of the same type as the original problem (MOMICP).

14

For example, if the original problem is quadratically constrained, this holds for the
subproblems as well. Such optimization problems can be solved by Gurobi as long as
the objective and constraint functions are at least quadratic. Since not all convex func-
tions are quadratic functions, there is also a weaker version of MOMIX, called MOMIX
light, that uses another procedure for the computation of lower bounds. That proce-
dure is based on solving a single-objective continuous convex optimization problem
(using fmincon).

Both variants of the algorithm can use two different branching strategies, see [3,
Section 4.1]. The strategy (br1) is an integer first branching strategy. The second
strategy (br2) uses the largest edge length as branching criterion, even if it is related
to a continuous variable. In total this leads to four different operation modes of the
MOMIX algorithm and we present the results for all of them.

One difference between MOMIX and our algorithm HyPad is that MOMIX is a
branch-and-bound approach in the decision space while our algorithm is working almost
entirely in the criterion space. Since MOMIX works in the decision space, it also
computes a coverage of the set of efficient solutions. This is not the case for the
HyPaD algorithm. This also leads to a difference with respect to the quality criteria.
While we use the width of the enclosure w(A), which is a criterion space based measure,
MOMIX uses the box width in the decision space as termination criterion. At least
for MOMIX (not MOMIX light) there is a result related to our width concept of the
enclosure A, see [3, Theorem 3.13]. However, for most instances we set ε = δ = 0.1 and
for instances 19–22 we fixed δ = 0.5 and varied our parameter ε to demonstrate that
for the overall qualitative comparison of the two algorithms this has no major impact.

Another difference between HyPaD and MOMIX is that our single-objective mixed-
integer subproblem (RSUP(X , l, u)) is always linear and in that sense independent of
the type of objective and constraint functions of (MOMICP). As a result, we can
always use Gurobi to solve these subproblems, even if one of the objective or constraint
functions is non-quadratic. Since we include the results for both MOMIX and MOMIX
light, we leave it to the reader to decide which of them would make for the “fairest”
comparison to our algorithm. All results are shown in Table 6.

First of all, MOMIX light has either high computation times or exceeds the time
limit of 3600 seconds for most of the instances. Thus, when MOMIX is not an option
(e.g., in case of non-quadratic objective or constraint functions), one should definitely
consider using HyPaD over MOMIX light. One perfect example for this setting is
the test problem (T6) (instances 28–30) which has a non-quadratic objective function.
Even if there are only n = 2 continuous variables and a single integer variable (m = 1),
MOMIX light needs more than 1000 seconds to solve the corresponding instance with
δ = 0.1. HyPaD on the other hand profits from the small number of possible integer
assignments and computes an enclosure in less than 10 seconds even for ε = 0.01. For
a visual comparison of the results see Figure 2.

Also MOMIX has its strengths when it can be applied, i.e., when all objective and
constraint functions are quadratic. For the instances of problem (T3) with 20 and
30 integer variables, i.e., instances 3 and 4, MOMIX with (br2) clearly outperforms
HyPaD. However, this is only one of two (considering only MOMIX and not MOMIX
light) possible configurations of MOMIX and it is an open question whether there
is a method to detect beforehand that this is the right configuration to choose. In
particular, MOMIX with (br2) is not always the best option, see for example instance
21. A visualization of the results for test instance 3 is given in Figure 3.

15

instance HyPaD MOMIXlight MOMIX
(br1) (br2) (br1) (br2)

1 3.42 637.06 629.49 8.04 7.85
2 13.33 - - 13.86 13.53
3 373.15 - - 369.19 26.12
4 - - - - 45.19
5 1.48 171.48 128.03 22.65 24.41
6 3.37 2497.56 1980.76 129.13 135.79
7 5.53 - - 752.27 773.47
8 1.87 - - 1334.60 1318.00
9 19.67 - - - -
10 30.96 - - - -
11 - - - - -
12 60.61 - - - -
14 103.50 - - - -
15 159.89 - - - -
16 213.74 - - - -
17 - - - - -
18 - - - - -
21 8.78 - - 89.72 105.58
22 27.22 - - 89.72 105.58
28 1.34 - 1385.72
29 1.80 - 1385.72
30 6.09 - 1385.72
31 167.77 - - - -
32 270.55 - - - -
33 416.04 - - - -
34 629.94 - - - -
35 869.63 - - - -

Table 6: Comparison of computation times for HyPaD, MOMIX, and MOMIXlight

Regarding the instances of problem (T4), i.e., instances 5–18 and 31–35, HyPaD is
performing better than MOMIX and is also able to solve more of the given instances
within the specified time limit of 3600 seconds. For a comparison of the results, see
the visualization of test instance 8 in Figure 4. Compared to instances 3 and 4 where
MOMIX was able to handle a large number of integer variables, this seems not to be
the case for problem (T4), see instances 9–18.

We also used (T4) to test the performance of HyPaD on instances with a large
number of variables. For this reason, we chose a large number of continuous variables
(n = 200) and varied the number of integer variables m ∈ {2, 4, 6, 8, 10}, see instances
31–35. (The reason for fixing n = 200 is that for even larger instances there are
numerical issues when calling fmincon.) We also tested instances withm ∈ {10, 20, 30}
integer variables and a smaller number of continuous variables, see instances 9–18. First
of all, we realize that all instances with n = 200 continuous variables were solved within
the time limit of 3600 seconds. For m ∈ {10, 20, 30} the algorithm successfully solved
those instances with n < 8 continuous variables, but for n = 8 it exceeded the time

16

(a) Enclosure computed by HyPaD

-4 -2 0 2 4

f
1

-2

0

2

4

6

8

10

f 2

(b) Representation computed by
MOMIX

Figure 2: Results for test instance 30

(a) Enclosure computed by HyPaD

-2 -1 0 1

f
1

29

30

31

32

33

34
f 2

(b) Representation computed by
MOMIX

Figure 3: Results for test instance 3

limit, see instances 11 and 17. In particular, the HyPaD algorithm was able to solve
instance 35 with n = 200 and m = 10 within 869.63 seconds, but exceeded the time
limit for instance 11 with n = 8 and m = 10. A possible explanation for this could be
that the nondominated set of instance 11 has a more complex (more non-linear) shape
than the one of instance 35. Thus the nondominated set of instance 35 is probably
better approximated by the nondominated set of the corresponding linearized problems
(R(X)), which leads to a faster convergence of the global lower bound set L towards
the upper bound set U in that setting.

Also for problem (T5) in instances 21 and 22 HyPaD is clearly ahead of MOMIX.
The HyPaD algorithm is able to solve the problem for ε = 0.1 within only 9 seconds
and even for ε = 0.05 this only increases to 27 seconds which is roughly a third of the
best performance obtained by MOMIX with (br1).

17

(a) Enclosure computed by HyPaD

-4 -2 0 2 4

f
1

-4

-2

0

2

4

f 2

(b) Representation computed by
MOMIX

Figure 4: Results for test instance 8

5 Acknowledgements
This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) - Project-ID 432218631.

References
[1] R. S. Burachik, C. Y. Kaya, and M. M. Rizvi, Algorithms for generating

pareto fronts of multi-objective integer and mixed-integer programming problems,
Engineering Optimization, 54 (2022), pp. 1413–1425.

[2] J. Currie, OPTI toolbox. https://github.com/jonathancurrie/OPTI, 2019.
Accessed 2023-02-23.

[3] M. De Santis, G. Eichfelder, J. Niebling, and S. Rocktäschel, Solv-
ing multiobjective mixed integer convex optimization problems, SIAM Journal on
Optimization, 30 (2020), pp. 3122–3145.

[4] M. De Santis, G. Eichfelder, J. Niebling, and S. Rocktäschel,
MOMIX. https://github.com/mariannadesantis/MOMIX, 2021. Accessed 2023-
02-23.

[5] E. Diessel, An adaptive patch approximation algorithm for bicriteria convex
mixed-integer problems, Optimization, 71 (2022), pp. 4321–4366.

[6] G. Eichfelder, T. Gerlach, and L. Warnow, Test Instances for Multiobjec-
tive Mixed-Integer Nonlinear Optimization, Preprint 22458, Optimization Online,
2023.

[7] G. Eichfelder, P. Kirst, L. Meng, and O. Stein, A general branch-
and-bound framework for continuous global multiobjective optimization, Journal
of Global Optimization, 80 (2021), pp. 195–227.

18

https://github.com/jonathancurrie/OPTI
https://github.com/mariannadesantis/MOMIX

[8] G. Eichfelder and L. Warnow, HyPaD. https://github.com/LeoWarnow/
HyPaD, 2022. Accessed 2023-02-23.

[9] G. Eichfelder and L. Warnow, A hybrid patch decomposition approach
to compute an enclosure for multi-objective mixed-integer convex optimiza-
tion problems, Mathematical Methods of Operations Research, (2023). DOI:
10.1007/s00186-023-00828-x.

[10] G. Eichfelder and L. Warnow, Results of the numerical experiments of the
HyPaD algorithm. Zenodo, 2023. DOI: 10.5281/zenodo.8119013.

[11] Gurobi Optimization LLC, Gurobi. https://www.gurobi.com/, 2023. Ac-
cessed 2023-02-23.

[12] MATLAB, Matlab bench documentation. https://www.mathworks.com/help/
matlab/ref/bench.html, 2023. Accessed 2023-02-23.

[13] S. Rump, INTLAB - INTerval LABoratory, in Developments in Reliable Com-
puting, T. Csendes, ed., Kluwer Academic Publishers, 1999, pp. 77–104.

Appendix

Test problems
The following four test problems are taken from [3]. The first one is a bi-objective
optimization problem with quadratic objective and constraint functions. It has n = 2
continous variables and an arbitrary number m ∈ N of integer variables.

min
(
x1, x2 +

2+m∑
i=3

10(xi − 0.4)2
)>

s.t.
2+m∑
i=1

x2
i ≤ 4,

xC ∈ [−2, 2]2,
xI ∈ [−2, 2]m ∩ Zm

(T3)

The next test problem is also bi-objective. It has linear objective functions but a
quadratic constraint function. The number m ∈ N of integer variables can be chosen
arbitrarily. The number n ∈ N of continuous variables has to be even.

min
n/2∑
i=1

xi +
n+m∑
i=n+1

xi,
n∑

i=n/2+1
xi −

n+m∑
i=n+1

xi

> s.t.
n∑
i=1

x2
i ≤ 1,

xC ∈ [−2, 2]n,
xI ∈ [−2, 2]m ∩ Zm

(T4)

The following tri-objective problem has a fixed number of n = 3 continuous and m = 1
integer variables. It has a quadratic objective functions as well as a quadratic constraint
function.

min (x1 + x4, x2 − x4, x3 + x2
4)> s.t.

3∑
i=1

x2
i ≤ 1,

xC ∈ [−2, 2]3,
xI ∈ [−2, 2] ∩ Z

(T5)

19

https://github.com/LeoWarnow/HyPaD
https://github.com/LeoWarnow/HyPaD
https://www.gurobi.com/
https://www.mathworks.com/help/matlab/ref/bench.html
https://www.mathworks.com/help/matlab/ref/bench.html

The last test problem from [3] is also quadratically constrained, but has a non-quadratic
objective function. Both, the number n = 2 of continuous and the number m = 1 of
integer variables are fixed.

min (x1 + x3, x2 + exp(−x3))> s.t. x2
1 + x2

2 ≤ 1,
xC ∈ [−2, 2]2,
xI ∈ [−2, 2] ∩ Z

(T6)

The next two test problems are new and have been created to investigate the in-
fluence of a quadratic over a non-quadratic objective function. Both problems have
quadratic constraint functions and a fixed number of n = 4 continuous and m = 4
integer variables. The first problem is the one with purely linear (and thus quadratic)
objective functions.

min
(
x1 + x3 + x5 + x7
x2 + x4 + x6 + x8

)
s.t. x2

1 + x2
2 ≤ 1,

x2
3 + x2

4 ≤ 1,
(x5 − 2)2 + (x6 − 5)2 ≤ 10,
(x7 − 3)2 + (x8 − 8)2 ≤ 10,
xC ∈ [−20, 20]4,
xI ∈ [−20, 20]4 ∩ Z4

(T9)

Test problem (T10) is basically the same as (T9) just with a slightly changed first
objective function that is now non-quadratic.

min
(
x1 + x3 + x5 + exp(x7)− 1

x2 + x4 + x6 + x8

)
s.t. x2

1 + x2
2 ≤ 1,

x2
3 + x2

4 ≤ 1,
(x5 − 2)2 + (x6 − 5)2 ≤ 10,
(x7 − 3)2 + (x8 − 8)2 ≤ 10,
xC ∈ [−20, 20]4,
xI ∈ [−20, 20]4 ∩ Z4

(T10)

We want to mention that for both problems (T9) and (T10) the boxes XC and XI could
have been chosen smaller. However, we wanted our algorithm HyPaD to compute the
final approximation using the global lower bound set L that is computed using the
optimal solutions of the mixed-integer linear optimization problems (RSUP(X , l, u)).
This would not have happened if there was only a small number of possible integer
assignments (i.e., a small box XI).

The last test problem is a new scalable one with quadratic objective functions and
a quadratic constraint function that we introduced in [9]. Both the number n ∈ N of
continuous variables and the number m ∈ N of integer variables have to be even.

min

n/2∑
i=1

xi +
n+m/2∑
i=n+1

x2
i −

n+m∑
i=n+m/2+1

xi

n∑
i=n/2+1

xi −
n+m/2∑
i=n+1

xi +
n+m∑

i=n+m/2+1
x2
i

 s.t.
n∑
i=1

x2
i ≤ 1,

xC ∈ [−2, 2]n,
xI ∈ [−2, 2]m ∩ Zm

(H1)

20

HyPaD Algorithm
In this section we include the pseudocode for our HyPaD algorithm and its main
subroutines from [9]. As a prerequisite we need the procedure to search for an update
point. For x̂I ∈ SI and l, u ∈ Rp with l < u, this is done by solving

min
xC ,t

t s.t. f(xC , x̂I)− l − t(u− l) ≤ 0p,
g(xC , x̂I) ≤ 0q,
xC ∈ XC , t ∈ R.

(SUP(x̂I , l, u))

Further, we need the feasibility problem
min
xC ,α

α s.t. gj(xC , x̂I) ≤ α ∀j ∈ [q],
xC ∈ XC , α ∈ R

(F(x̂I))

where x̂I ∈ XI is an integer assignment.

Algorithm 5 Hybrid patch decomposition algorithm for (MOMICP)
Input: Initial point x̂ ∈ X, quality ε > 0, and initial bounds z, Z ∈ Rp

Output: Lower and upper bound sets L,U ⊆ Rp

1: procedure HyPaD(x̂, ε, z, Z)
2: Initalize L = {z}, U = {Z}, X = {x̂}, D = ()
3: Solve (F(x̂I)) with optimal solution (x̄C , ᾱ) and set x̄ := (x̄C , x̂I)
4: if ᾱ ≤ 0 then
5: InitIDS(x̂I) . see Algorithm 1
6: Update linearization points: X = X ∪ D.E
7: end if
8: while w(A(L,U)) > ε do
9: for l ∈ L do

10: if ({l + εe}+ int(Rp
+)) ∩ U 6= ∅ then

11: Select u ∈ ({l + εe}+ int(Rp
+)) ∩ U with maximal s(l, u)

12: Solve (RSUP(X , l, u)) with optimal solution (x̄, η̄, t̄)
13: Update lower bound set: L = UpdateLLB(L, η̄)
14: Solve (F(x̄I)) with optimal solution (x̂C , α̂) and set x̂ := (x̂C , x̄I)
15: if α̂ ≤ 0 then
16: Improve(x̂, ε, U,X ,D) . see Algorithm 6
17: Update linearization points: X = X ∪ D.E
18: else
19: Update linearization points: X = X ∪ {x̂}
20: end if
21: end if
22: end for
23: end while
24: end procedure

The main procedure of HyPaD is shown in Algorithm 5. The improvement step,
which also includes the SNIA procedure, is presented in Algorithm 6. For complete-
ness, we also included Algorithm 1 and Algorithm 7 that are used for initializing and
updating the coverages of the single patches. However, that part of the algorithm is
not discussed in this paper and hence, for more details on that we refer the reader to
the original paper [9].

21

Algorithm 6 Improvement Step on Patch-Level
Input: Feasible point x̂ ∈ S, quality ε > 0, upper bound set U , set of linearization

points X , and integer data structure D
Output: Updated sets U,X , and updated data structure D

1: procedure Improve(x̂, ε, U,X ,D)
2: if D(x̂I) is not initialized then
3: InitIDS(x̂I) . see Algorithm 1
4: else if D(x̂I).S == true then
5: UpdateIDS(x̂I , ε, U,D) . see Algorithm 7
6: else if ∃x′I ∈ SI with D(x′I) initialized and D(x′I).S == true then
7: UpdateIDS(x′I , ε, U,D) . see Algorithm 7
8: else
9: SNIA(X ,D) . see Algorithm 2

10: end if
11: end procedure

Algorithm 7 Updating D(x̂I) for an integer assignment x̂I ∈ SI
Input: Integer assignment x̂I ∈ SI , quality ε > 0, upper bound set U , and data

structure D
Output: Updated set U and updated integer data structure D

1: procedure UpdateIDS(x̂I , ε, U,D)
2: Initialize Lx̂I

= D(x̂I).L, done = true
3: Choose a small offset σ ∈ (0, ε/2)
4: for l ∈ Lx̂I

do
5: if ({l + εe}+ int(Rp

+)) ∩ U 6= ∅ then
6: done = false
7: Select u ∈ ({l + εe}+ int(Rp

+)) ∩ U with maximal s(l, u)
8: Solve (SUP(x̂I , l, u)) with optimal solution (x̄C , t̄) and set

x̄ := (x̄C , x̂I), ȳ := f(x̄) and ỹ := l + t̄(u− l)
9: if ỹ 6< Z then

10: Set t̄ := min {(Zi − li)/(ui − li) | i ∈ [p]} and
ỹ := l + t̄(u− l)− σe

11: end if
12: D(x̂I).E = D(x̂I).E ∪ {x̄}
13: D(x̂I).N = D(x̂I).N ∪ {ȳ}
14: D(x̂I).L = UpdateLLB(D(x̂I).L, ỹ)
15: U = UpdateLUB(U, ȳ)
16: end if
17: end for
18: if done == true then
19: Set integer assignment inactive: D(x̂I).S = false
20: end if
21: end procedure

22

	1 Introduction
	2 Initialization
	3 Realization of the SNIA procedure
	3.1 Full enumeration
	3.2 Dynamic boxes
	3.3 Fixed boxes

	4 Numerical experiments
	4.1 Comparison of SNIA approaches
	4.2 Influence of the choice of
	4.3 Comparison of HyPaD and MOMIX

	5 Acknowledgements

