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Abstract. Bilinear terms naturally appear in many optimization problems.
Their inherent non-convexity typically makes them challenging to solve. One
approach to tackle this difficulty is to use bivariate piecewise linear approxi-
mations for each variable product, which can be represented via mixed-integer
linear programming (MIP) formulations. Alternatively, one can reformulate
the variable products as a sum of univariate functions. Each univariate func-
tion can again be approximated by a piecewise linear function and modeled
via a MIP formulation. In the literature, heterogeneous results are reported
concerning which approach works better in practice, but little theoretical anal-
ysis is provided. We fill this gap by structurally comparing bivariate and
univariate approximations with respect to two criteria. First, we compare
the number of simplices sufficient for an ε-approximation. We derive upper
bounds for univariate approximations and compare them to a lower bound for
bivariate approximations. We prove that for a small prescribed approximation
error ε, univariate ε-approximations require fewer simplices than bivariate
ε-approximations. The second criterion is the tightness of the continuous
relaxations (CR) of corresponding sharp MIP formulations. Here, we prove
that the CR of a bivariate MIP formulation describes the convex hull of a
variable product, the so-called McCormick relaxation. In contrast, we show by
a volume argument that the CRs corresponding to univariate approximations
are strictly looser. This allows us to explain many of the computational effects
observed in the literature and to give theoretical evidence on when to use which
kind of approximation.

1. Introduction

Many real-world optimization problems contain bilinear terms. For example, the
modelling of economic interactions quite often results in products of prices and
(production) quantities in optimization models; see e.g. [9, 16]. Other applications
of bilinear programming include water management [18], gas network optimization
[11, 12, 29], or pooling problems [31]. In practice, such bilinear terms of continuous
variable products xy are often approximated by piecewise linear functions, because
they can be modelled using mixed-integer linear formulations; see e.g. [6, 13, 15, 24,
28, 37, 42]. For any pre-specified ε > 0, this can be done in such a way that the
maximum approximation error, given as the maximum absolute pointwise deviation
between the pwl. approximation and the non-linear function, is at most ε for each
term. One straightforward approach is to use mixed-integer programming (MIP)
formulations for bivariate piecewise linear functions that approximate xy; see e.g.
[14, 27, 45, 48]. At the same time, it is well known that xy can be reformulated
as a sum of univariate functions using additional variables and constraints. For
example, in [3, 26, 36, 47], the authors suggest to use the substitution xy = p2

1 − p2
2
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with p1 := 1
2 (x + y) and p2 := 1

2 (x − y). The monomials p2
1 and p2

2 can then be
approximated by two univariate piecewise linear functions, using a separate MIP
formulation for each of these functions. This raises the main question of this article:
which approach is more efficient in which situation?

In [34], it is suggested that there is no clear answer as to whether or not to
reformulate products of variables by several univariate functions. This claim is
supported by heterogeneous computational results from the literature. On the one
hand, it is shown in [48] in a small computational study in the context of planning
decentralized energy grids that a bivariate piecewise linear approximation may
outperform a quadratic univariate formulation on certain instances. On the other
hand, in [1], the authors obtain very good computational results with a quadratic
univariate reformulation. Similarly, [19] and [39] report good results for a univariate
logarithmic reformulation. The authors of the latter articles suspect that this is
due to the smaller number of simplices required by the MIP formulations they use.
From the computational experience in the literature reviewed above, we conclude
that the actual choice of univariate and bivariate piecewise linear functions used
to approximate xy is crucial for their respective performance. From a theoretical
point of view, the literature offers much fewer analysis of the two approaches.
Firstly, the best choice of a bivariate piecewise linear approximation – uniquely
determined by the given triangulation of the domain – is not straightforward. In
particular, finding an explicit construction rule for the optimal triangulation (w.r.t.
the number of triangles) of a rectangular domain in order to approximate xy is
still an open problem. In [27], the author gives an implicit construction via a
mixed-integer quadratically constrained program. In the univariate case, there exist
algorithms that can compute optimal piecewise linear approximations, for example
for continuous functions (see [33]). However, these algorithms do not provide an
algebraic expression of the approximation error. Further, [19] is the only theoretical
analysis on the topic of univariate reformulations we are aware of. The authors
derive an upper bound for the approximation error of a univariate logarithmic
reformulation. They use it to construct ε-approximations that are more compact
than direct bivariate piecewise linear approximations on problem instances from the
field of paper production. However, as the triangulations are chosen heuristically,
their results are not sufficient to state that in general univariate reformulations
require less simplices.

Altogether, there is no rigorous comparison up to now which allows a comparison
of the two approximation approaches with respect to the required number of simplices.
Apart from the mentioned studies, there is to the best of our knowledge no theoretical
analysis that would give a recommendation under which circumstances any one of
the approaches is preferable. Furthermore, we are not aware of any works which
analyse the continuous relaxations of the corresponding MIP formulations. A tighter
continuous relaxation results in a tighter root relaxation of the branch-and-bound
tree and therefore helps to keep the tree small. Since the number of simplices
determines the number of necessary binary variables, less simplices directly lead to
a smaller branch-and-bound tree.

In this paper, we fill the observed gap in the literature concerning a theoreti-
cal comparison of univariate and bivariate MIP formulations for piecewise linear
approximations of xy. We establish hierarchies among them with respect to the
following two criteria:

(i) the number of simplices that are required to guarantee an approximation
of xy with a given accuracy;

(ii) the tightness of the continuous relaxation of an MIP formulation with
respect to the graph of xy in terms of the enclosed volume.
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Naturally, both aspects are crucial for the efficient solution of optimization problems
containing bilinear terms with branch-and-cut algorithms. In this respect, we will
highlight two important findings. First, we prove that commonly used monomial
univariate reformulations always require fewer simplices than any bivariate approxi-
mation, as long as the prescribed error is small. Second, we show that the continuous
relaxations of bivariate approximations always equal the McCormick relaxations and
are genuinely tighter than the continuous relaxations of univariate reformulations.
In addition, we derive a hierarchy among the univariate reformulations with respect
to both questions.

The remainder of this paper is structured as follows. In Section 2, we introduce
the general notation and concepts that are used throughout the paper. Afterwards,
we compare structural properties of the bivariate and univariate approximations in
Section 3. In particular, in Section 3.1, we compare the number of required simplices
and in Section 3.2 the strength of the continuous relaxations of MIP formulations.
In Section 3.3, we discuss how these results can be used for practical applications.
We show why approximations with as few simplices as possible are advantageous
for setting up good piecewise linear relaxations of xy and explain how to convert
known cutting planes for quadratic expressions into univariate reformulation models.
Finally, we draw our conclusion in Section 4.

2. Piecewise Linear Functions, Approximations, and MIP Formulations

We start by collecting the relevant background needed for this work. We introduce
piecewise linear functions, discuss their use in approximating non-linear functions
and present the concept of MIP formulations to model piecewise linear functions.

2.1. Piecewise Linear Functions and Approximations. A piecewise lin-
ear (pwl.) function is linear on each element of a given domain partition. In
general, it is possible to use any family of polytopes to construct such a partition.
However, in practice most often triangulations are used, see e.g. [45]. Therefore, we
limit ourselves to pwl. functions over triangulations. This is without loss of generality
as a pwl. function defined on a polytopal partition can always be represented by a
pwl. function over a triangulation, namely by triangulating each polytope.

In the following, we formally introduce the relevant definitions in this context.
For the sake of simplicity, we restrict ourselves to continuous functions over compact
domains. Further, we use the notation V (P ) for the vertex set of a polyhedron
P ⊂ Rd.
Definition 1. A k-simplex S is the convex hull of k+ 1 affinely independent points
in Rd. We call S a full-dimensional simplex if k = d holds.

A triangulation is a partition consisting of full-dimensional simplices as defined
next.
Definition 2. A set of full-dimensional simplices T := {S1, . . . , Sk}, with Si ⊂ Rd

for i = 1, . . . , n, is called a triangulation of a compact set B ⊆ Rd if both B = ∪k
i=1Si

holds and the intersection of the relative interiors int(Si), int(Sj) of any two simplices
Si, Sj ∈ T is empty, i.e. int(Si)∩ int(Sj) = ∅. Further, we denote the set of vertices
of a triangulation T by N(T ) := ∪k

i=1V (Si).
Using the above definition of a triangulation, we can define pwl. functions as

follows.
Definition 3. Let B ⊂ Rd be a compact set, and let T := {S1, . . . , Sk}, k ∈ N, be
a triangulation of B. A continuous function g : B → R is called piecewise linear if
there exist vectors mi ∈ Rd and constants ci ∈ R for i = 1, . . . , k such that

g(x) = m>i x+ ci if x ∈ Si. (1)
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In particular, for univariate pwl. functions g : [
¯
x, x̄] → R the simplices Si in a

triangulation of [
¯
x, x̄] correspond to intervals [xi−1, xi] with xi−1 < xi, x0 =

¯
x > −∞

and xk = x̄ <∞.
Piecewise linear functions can be used to approximate non-linear functions, as

shown in the next definition.

Definition 4. Let B ⊂ Rd be a compact set, and let T := {S1, . . . , Sk}, k ∈ N, be
a triangulation of B. We call a pwl. function g : B → R a pwl. approximation of a
continuous function G : B → R if g(x) = G(x) holds for all x ∈ N(T ).

Note that in this definition of a pwl. approximation, we restrict ourselves to
interpolations. This is partly because some mixed-integer programming models of
pwl. functions require continuity of the approximation, and partly because some of
the results from the literature presented here have been developed specifically for
interpolations (cf. [20, 27, 38]). Usually, the error of a pwl. approximation is measured
by the maximum absolute pointwise deviation between the pwl. approximation itself
and the non-linear function to be approximated; see e.g. [19, 20, 34, 48]. In the
following, we also use this definition of the approximation error and extend it to
separable functions by introducing the so-called combined approximation error. The
latter reflects the cancellations between positive and negative local approximation
errors of the individual univariate summands a separable function decomposes into.

Definition 5. Consider a triangulation T of a compact set B ⊂ Rd and let g : B →
R be a pwl. approximation of a continuous function G : B → R w.r.t. to T . We call

Eg,G : B → R, Eg,G(x) := g(x)−G(x)
the error function of g w.r.t. G and

εg,G(S) := max
x∈S
|Eg,G(x)|

the approximation error on a simplex S ∈ T . Consequently, we define the approxi-
mation error of g (or, equivalently, of T ) w.r.t. G over the domain B as

εg,G(T ) := max
S∈T

εg,G(S).

In the special case that G(x) =
∑n

i=1Gi(xi) is a separable function and g(x) =∑n
i=1 gi(xi) is a separable pwl. approximation of G with pwl. approximations gi

of Gi, we define the combined approximation error as

εg,G((Ti)i∈n) := max
x∈B

∣∣∣∣∣
n∑

i=1
Egi,Gi

(xi)

∣∣∣∣∣ .
Given some ε > 0, we call g an ε-approximation and T (or (Ti)i∈n) an ε-
triangulation (or an ε-family of triangulations) if the (combined) approximation
error is less than or equal to ε.

For our results regarding the approximation error of univariate reformulations
of non-linear functions, we use the following straightforward upper bound for the
combined approximation error of a separable function.

Lemma 1. Consider a compact set B and a separable continuous function G : B ⊂
Rd → R, G(x) =

∑d
i=1Gi(xi). Further, let g : B ⊂ Rd → R, g(x) =

∑d
i=1 gi(xi) be

a separable pwl. approximation of G where each gi is a pwl. approximation of Gi.
Then the combined approximation error fulfills

εg,G ((Ti)i=1,...,d) ≤ max
x∈B

{
d∑

i=1
max{0, Egi,Gi

(xi)},

∣∣∣∣∣
d∑

i=1
min{0, Egi,Gi

(xi)}

∣∣∣∣∣
}
.
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2.2. Mixed-Integer Formulations of Pwl. Functions. Consider a continuous
function G : B → R and its pwl. approximation g : B → R. In the following, we
focus on representations of the graph of g, defined as

graB̄(g) := {(x, z) ∈ B̄ × R : z = g(x)},
where we allow the restriction of g to a subset B̄ ⊆ B. When solving optimization
problems where g occurs in the objective function or in the constraints, it is impracti-
cal to work with Definition 3 directly. Instead, we need an explicit representation of
the “if”-condition in Equation (1). Very often this is done by expressing g in terms
of gra(g). For example, minimizing over g is equivalent to minimizing z subject
to (x, z) ∈ gra(g). The graph of a pwl. function can be modelled with the help of
additional auxiliary continuous and binary variables as well as linear constraints (cf.
[22–25]).

Definition 6. Let g : B → R be a pwl. function. We call the set Mg ⊆ Rd+1 ×
[0, 1]p × {0, 1}q an MIP formulation of gra(g) if

(x, z) ∈ gra(g) ⇐⇒ ∃(λ, u) ∈ [0, 1]p × {0, 1}q s.t. (x, z, λ, u) ∈Mg.

Furthermore, we call the polyhedron
C(Mg) := {(x, z, λ, v) ∈ Rd+1 × [0, 1]p × [0, 1]q : ∃(x, z, λ, u) ∈Mg}

the continuous relaxation (CR) of the MIP formulation Mg and
proj(x,z) C(Mg)

its projected continuous relaxation (PCR), where proj(x,z) C(Mg) is the projection
of C(Mg) onto the (x, z)-space.

In [44], several such MIP formulations for the graph of a pwl. function are
presented, e.g. the incremental method or the multiple-choice method. All MIP
formulations mentioned there have the desirable property to be sharp. In order to
define sharpness, we need some more notation. For this reason, we define the terms
convex envelope and concave envelope, which we use to describe the convex hull of
the graph.

Definition 7. Consider a continuous function G : B → R over a compact set
B ⊂ Rn. We define the functions convenvB̄(G) : B̄ → R and caveenvB̄(G) : B̄ → R
via

convenvB̄(G)(x) := sup{h(x) | h : B → R convex ∧ h(x) ≤ G(x)∀x ∈ B̄},
caveenvB̄(G)(x) := inf{h(x) | h : B → R concave ∧ h(x) ≥ G(x)∀x ∈ B̄},

as the convex envelope and the concave envelope of G with respect to B̄ ⊂ B.

We have
conv(graB(G)) = {(x, z) ∈ B × R : convenvB(g)(x) ≤ z ≤ caveenvB(g)(x)} (2)

for the convex hull of gra(g). For brevity, we use the notation gra(g) := graB(g),
convenv(g) := convenvB(g) and caveenv(g) := caveenvB(g).

An MIP formulation of a graph is called sharp if the projection of its CR onto
the graph-space coincides with the convex hull of the graph.

Definition 8. Let g : B → R be a continuous pwl. function. An MIP formulationMg

of gra(g) is called sharp if
conv(gra(g)) = proj(x,z) C(Mg).
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3. Structural Properties of Univariate and Bivariate Piecewise
Linear Approximations

Our work focuses on the structural analysis of pwl. approximations of the non-
linear function

F : D → R, F (x, y) = xy,

where D := [
¯
x, x̄] × [

¯
y, ȳ] ⊂ R2 is a box domain with

¯
x < x̄ and

¯
y < ȳ. It is a

straightforward idea to approximate F via a bivariate pwl. function f : D → R.
Using an MIP formulation Mf , we can then model gra(f) as

gra(f) = {(x, y, z) ∈ D × R | (x, y, z, λ, u) ∈Mf} (3)
in order to obtain a mixed-integer linear representation of f .

Alternatively, we can equivalently reformulate F as a sum of univariate functions in
order to approximate F by approximating each individual function in the sum. This
reformulation can be done in various ways. Table 1 summarizes – to the best of our
knowledge – all univariate reformulations of F used in the optimization literature. It
shows the corresponding variable substitutions, the additionally required constraints
as well as bibliographical references for the use of each reformulations in optimization.

Table 1. Univariate reformulations of the bivariate product xy.

Label Substitution add. Constraints Ref.
Bin1 xy = p2

1 − p2
2 p1 = 1

2 (x+ y), p2 = 1
2 (x− y) [3, 26, 36, 47]

Bin2 xy = 1
2 (p2 − x2 − y2) p = x+ y [1, 34]

Bin3 xy = 1
2 (x2 + y2 − p2) p = x− y [48]

Ln xy = p ln(p) = ln(x) + ln(y) [19–21, 39]

Although we also list the logarithmic reformulation Ln in Table 1, we will not
discuss it further in this work for various reasons. Firstly, the literature reports
numerical difficulties in connection with the use of this reformulation in practice
(see [8, 20, 48]), which is plausible given the asymptotic behavior of the logarithm
for inputs close to zero. Secondly, Ln is only applicable in the case

¯
x > 0 and

¯
y > 0. Although this condition can always be fulfilled via a simple bound-shifting
trick (see [19]), a shifted approximation does not retain its accuracy in general, as
elementary examples show. Further, the upper bounds on the combined error of
a pwl. approximation based on Ln stated in [19] deteriorate with increasing shift
values as well.

In the following, we exemplarily derive an MIP formulation for a univariate
approximation of gra(F ) via reformulation Bin1 from Table 1. First, the graph of F
can be stated as

gra(F ) =
{

(x, y, p2
1 − p2

2) ∈ R3 | p1 = 1
2(x+ y), p2 = 1

2(x− y), (x, y) ∈ D
}
. (4)

The domains of the additional variables p1 and p2 are consequently given by

D1 := [
¯
p1, p̄1] :=

[
1
2(

¯
x+

¯
y), 1

2(x̄+ ȳ)
]
⊂ R,

D2 := [
¯
p2, p̄2] :=

[
1
2(

¯
x− ȳ), 1

2(x̄−
¯
y)
]
⊂ R.
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Now, let fBin1
1 : D1 → R and fBin1

2 : D2 → R be pwl. approximations of FBin1
1 : D1 →

R, FBin1
1 (p1) = p2

1 and FBin1
2 : D2 → R, FBin1

2 (p2) = p2
2 respectively, with corre-

sponding triangulations T Bin1
1 and T Bin1

2 . We define fBin1 : D → R via
fBin1(x, y) := fBin1

1 (p1)− fBin1
2 (p2),

with p1 = 1
2(x+ y), p2 = 1

2(x− y).

Further, letMBin1
1 ⊆ D×R×[0, 1]pBin1

1 ×{0, 1}qBin1
1 andMBin1

2 ⊆ D×R×[0, 1]pBin1
2 ×

{0, 1}qBin1
2 be sharp MIP formulations of the graphs gra(fBin1

1 ) and gra(fBin1
2 ). We

can then model an approximation of gra(F ) as
gra(fBin1) = {(x, y, z) ∈ D × R | (x, y, z, λ1, u1, λ2, u2) ∈MfBin1}, (5)

together with the MIP formulation
MfBin1 :={(x, y, z, λ1, u1, λ2, u2) ∈ D × R

× [0, 1]p
Bin1
1 × {0, 1}qBin1

1 × [0, 1]p
Bin1
2 × {0, 1}qBin1

2 |
∃(p1, z1, λ1, u1) ∈MBin1

1 , (p2, z2, λ2, u2) ∈MBin1
2 s.t.

z = z1 − z2, p1 = 1
2(x+ y), p2 = 1

2(x− y), (x, y) ∈ D}.

Corresponding MIP formulations for Bin2 and Bin3 are stated in Appendix A.
In the remainder of this section, we will compare bivariate MIP formulations

for the approximation of gra(F ) as given in (3) to univariate MIP formulations,
such as (5), using two different metrics of efficiency. In Section 3.1, we analyze the
number of simplices required in each case to construct an ε-approximation. We will
show that using Bin1, Bin2, and Bin3, we can construct ε-families of triangulations
with a smaller number of simplices than needed for any bivariate ε-triangulation if
the prescribed approximation accuracy ε is sufficiently small. Furthermore, we will
prove that a particular equidistant family of triangulations is ε-optimal for Bin1.
In Section 3.2, we then investigate the tightness of the continuous relaxations of
univariate and bivariate MIP formulations. On the one hand, we show that the
PCR of any bivariate MIP formulation coincides with the convex hull of gra(F ),
which is known as the McCormick relaxation [30]. On the other hand, we show
how to compute the PCRs of the considered univariate MIP formulations and prove
that these are indeed weaker relaxations of gra(F ) than the McCormick relaxation.
Moreover, we show that using Bin1 yields the tightest continuous relaxation among
the studied univariate reformulations. Finally, we indicate in Section 3.3 how to
use these theoretical results in practice. In particular, we outline how to overcome
the fact that univariate MIP formulations yield weaker continuous relaxations by
adding the linear inequalities describing the convex hull, which are known as the
McCormick cuts, to the univariate MIP formulations in a reformulated fashion, as
done in [1]. Furthermore, we suggest under which circumstances which univariate
reformulation should be chosen.

3.1. Number of Simplices. We start our comparison between bivariate and uni-
variate pwl. approximations of the bilinear function F by considering the size of the
resulting MIP formulation. In this respect, the overall number of binary variables
is a crucial factor for the computational complexity of the resulting optimization
problem. This number, however, strongly depends on the specific modelling of
the MIP formulation, see [45]. The number of binary variables can be reduced
significantly, for example, by a logarithmic encoding of the simplices, compared
to a straightforward modelling approach as shown in [27, 46]. Therefore, we will
instead compare pwl. approximations by the number of simplices required to obtain
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a prescribed approximation guarantee, which directly impacts the number of binary
variables in any modelling of the arising MIP formulation.

To this end, we introduce the concept of ε-optimal triangulations for the pwl.
approximation of a non-linear function. We use the same definition as in [27, 39]
and refer to [5] for more context on optimal triangulations and possible alternative
definitions.

Definition 9. Let B ⊆ Rd be a compact set, and let g : B → R be a pwl. ε-
approximation of the continuous function G : B → R w.r.t. to the underlying ε-
triangulation T of B. We say that T is ε-optimal if |T | is minimal among all
ε-triangulations of B.

In the special case that G(x) =
∑n

i=1Gi(xi) is a separable function and g(x) =∑n
i=1 gi(xi) is a pwl. approximation of G, such that each gi is a pwl. approximation

of Gi, we say that the corresponding family of triangulations (Ti)i=1,...,n is ε-optimal
if
∑n

i=1|Ti| is minimal among all ε-families of triangulations.

It is not obvious how to determine ε-optimal triangulations in general. To the
best of our knowledge, the complexity status of this problem is still open. The only
related result we are aware of is the NP-hardness of finding minimum edge-weighted
triangulations, where the aim is to minimize the sum of the edge weights, see [35].
However, finding a ε-optimal triangulation corresponds to minimizing the maximum
edge weight in the chosen triangulation, as shown in [27]. Thus, we will mostly
work with lower and upper bounds on the required number of simplices for a pwl.
approximation. More precisely, we will show that for a sufficiently small prescribed
approximation accuracy ε > 0, we can construct ε-families of triangulations for
Bin1, Bin2, and Bin3, such that the corresponding number of simplices is smaller
than that of any bivariate ε-triangulation.

3.1.1. Univariate Pwl. Approximations. We will now consider the construction
of ε-approximations for univariate reformulations of F . For this purpose, we
study equidistant triangulations for pwl. approximations of univariate quadratic
functions. We then prove that a particular family of equidistant triangulations is
ε-optimal for reformulation Bin1. Finally, we derive upper bounds for the size of
ε-optimal triangulations in the reformulations Bin2 and Bin3 by using equidistant
triangulations.

Finding ε-triangulations for univariate functions has been extensively covered in
the literature under the term minimax approximation. For an overview, we refer
to [33]. Therein, the author also provides an algorithm for finding an ε-optimal
piecewise polynomial approximation of degree n for a given continuous univariate
function. In particular, this algorithm can be used to find pwl. approximations.
Another approach can be found in [40]. Here, the authors present a mixed-integer
non-linear optimization program (MINLP) for computing an ε-optimal continuous
pwl. approximation for a given univariate function. However, both approaches do not
provide closed functional relations for the required number of simplices depending
on ε. In contrast, our main focus here will be on deriving functional relations for
the number of simplices of ε-families of triangulations in Bin1, Bin2, and Bin3. We
start with a relation for ε-optimal families of triangulations in reformulation Bin1.
In order to do so, we make use of the following lemma about linear approximations
of univariate quadratic functions, which is straightforward to prove via differential
calculus.

Lemma 2. Let G : [
¯
x, x̄]→ R, G(x) = αx2 + βx+ γ with α, β, γ ∈ R be a quadratic

function, and let L : [
¯
x, x̄]→ R be the linear interpolant of G between

¯
x and x̄. Then
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the maximum approximation error of L w.r.t. to G over [
¯
x, x̄] is given by

max
x∈[

¯
x,x̄]
|L(x)−G(x)| = |α| (x̄− ¯

x)2

4 .

It is attained at the center of the domain, i.e. at x∗ := ¯
x+x̄

2 .

The following result extends Lemma 2 to pwl. approximations of univariate
quadratic functions. It says that an equidistant placement of vertices minimizes the
approximation error.

Lemma 3. Given G : [
¯
x, x̄] → R, G(x) = x2, let T be the triangulation of [

¯
x, x̄]

formed by an equidistant placement of the n+1 vertices x0 :=
¯
x < . . . < xn := x̄ ∈ R.

Further, let g : [
¯
x, x̄] → R be the pwl. approximation of G w.r.t. to T . Then the

corresponding approximation error is given by

εg,G(T ) = (x̄−
¯
x)2

4n2 .

Furthermore, the approximation error of g is minimal among all pwl. approximations
of G over n simplices.

Proof. Let the triangulation T := {S0, S1, . . . , Sn−1} be given by the simplices Si :=
[xi, xi+1] = [xi, xi +hi] with respective diameters hi := xi+1−xi, i = 0, 1, . . . , n− 1.
As the corresponding pwl. approximation g is linear over each Si and coincides
with G at the vertices, its linear segments are given by functions gi : Si → R with

gi(x) = (2xi + hi)x− (x2
i + xihi).

Lemma 2 states that the approximation error over each simplex Si is attained at
the respective midpoint, with

εg,G(Si) = 1
4h

2
i .

Thus, the approximation error is minimized by an equidistant placement of the
vertices, i.e. for hi := (x̄−

¯
x)/n, i = 0, 1, . . . , n− 1. �

Note that the approximation error for a univariate quadratic function only depends
on the diameter of the domain and the number of simplices of the triangulation.
and is thus invariant under shifts of the domain itself.

We can now prove that particular equidistant families of triangulations are
ε-optimal for reformulation Bin1.

Lemma 4. Let fBin1 = fBin1
1 − fBin1

2 be a pwl. approximation of FBin1, with a
corresponding family of triangulations (T Bin1

i )i=1,2 defining fBin1
1 and fBin1

2 , and
let ni := |T Bin1

i |, i = 1, 2. Then the combined approximation error of (T Bin1
i )i=1,2

is at least
ε̄ := 1

16(x̄−
¯
x+ ȳ −

¯
y)2 max

{
1
n2

1
,

1
n2

2

}
.

In particular, it is attained if T Bin1
1 and T Bin1

2 are equidistant triangulations.
Conversely, an ε̄-optimal family of triangulations (T Bin1

i )i=1,2 is given by a pair
of equidistant triangulations with

|T Bin1
i | =

⌈
( 1

2 (x̄−
¯
x+ ȳ −

¯
y))2

2
√
ε̄

⌉
, i = 1, 2.

Proof. First, note that D1×D2 is a quadratic box with a width of (x̄−
¯
x+ ȳ−

¯
y)/2.

Furthermore, the feasible domain of the variable substitution in Bin1, given by
I := {(p1, p2) ∈ D1 ×D2 | ∃(x, y) ∈ D : p1 = 0.5(x+ y) ∧ p2 = 0.5(x− y)},
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is a rhombus inscribed into this box. This situation is depicted in Figure 1. Let
pi,0, . . . , pi,ni

with pi,j < pi,j+1, pi,0 =
¯
pi and pi,ni

= p̄i be the vertices in N(Ti),
with i = 1, 2. W.l.o.g., we assume n1 ≤ n2. Further, for any p∗1 ∈ D1 and p∗2 ∈ D2,
we define the projections of I onto the coordinate axes as

Ip∗1
:= {p2 ∈ D2 | ∃(x, y) ∈ D : p∗1 = 0.5(x+ y) ∧ p2 = 0.5(x− y)},

Ip∗2
:= {p1 ∈ D2 | ∃(x, y) ∈ D : p1 = 0.5(x+ y) ∧ p∗2 = 0.5(x− y)}

respectively. We consider now the following two exhaustive cases 1) and 2):

1) p1,i− p1,i−1 ≤
x̄−

¯
x+ȳ−

¯
y

2n1
∀i = 1, . . . , n1 ∧ p2,j − p2,j−1 ≤

x̄−
¯
x+ȳ−

¯
y

2n1
∀j = 1, . . . , n2:

From this assumption it follows that T1 has to be equidistant. Moreover, we know
from Lemma 3 that εfBin1

1 ,F Bin1
1

(T1) = ε̄. By the same arguments, we also know that
εfBin1

2 ,F Bin1
2

(T2) ≤ ε̄. Now let p∗i be the midpoint of an arbitrary interval [p1,i−1, p1,i].
According to Lemma 2, we have EfBin1

1 ,F Bin1
1

(p∗i ) = ε̄. It is obvious by geometric
reasoning that the diameter of the projection Ip∗1

is longer than (x̄−
¯
x+ ȳ−

¯
y)/(2n1),

see Figure 1(a). As a result, there must be at least one vertex p2,j contained
in Ip∗1

. As the approximation error at a vertex is always zero, it follows that the
approximation error at (p∗1, p2,j) is

EfBin1
1 ,F Bin1

1
(p∗1) + EfBin1

2 ,F Bin1
2

(p2,j) = ε̄.

In summary, we have
εfBin1,F Bin1((Ti)i=1,2) = ε̄.

2) ∃1 ≤ i ≤ n1 : p1,i − p1,i−1 >
x̄−

¯
x+ȳ−

¯
y

2n1
∨ ∃1 ≤ j ≤ n2 : p2,j − p2,j−1 >

x̄−
¯
x+ȳ−

¯
y

2n1
:

W.l.o.g., we assume that the interval [p1,i−1, p1,i] is longer than (x̄−
¯
x+ ȳ−

¯
y)/(2n1).

From Lemma 3, we know that EfBin1
1 ,F Bin1

1
(p∗1) > ε̄, where p∗1 is the midpoint of

[p1,i−1, p1,i]. Again, by geometric arguments, Ip∗1
must be longer than (x̄ −

¯
x +

ȳ −
¯
y)/2n1. However, due to the fact that the approximation error at a vertex is

always zero, Ip∗1
cannot contain any vertex p2,j ∈ N(T2) as this would imply that

we have a point in Ip∗1
at which the combined approximation error is greater than ε̄,

namely (p∗1, p2,j). Consequently, we have Ip∗1
⊆ [p2,j−1, p2,j ]. This means that at

the midpoint p∗2 of D2 (which is also the midpoint of Ip∗1
), EfBin1

2 ,F Bin1
2

(p∗2) > ε̄

holds. Obviously, Ip∗2
= D1, and therefore D1 cannot contain any points with an

approximation error of zero, which is a contradiction to the fact that fBin1
1 is a pwl.

approximation (interpolation).
�

It is not straightforward how to obtain a similar result as Lemma 4 for reformu-
lations Bin2 and Bin3. The difficulty stems from the fact that here, we have to
approximate three functions simultaneously, instead of only two as in Bin1. However,
we can still use equidistant triangulations to determine upper bounds on the number
of simplices for Bin2 and Bin3.

Lemma 5. Let fBin2 = 0.5(fBin2
1 −fBin2

2 −fBin2
3 ) be a pwl. approximation of FBin2

as defined in Appendix A. Then there is an ε̄-family of equidistant triangulations
(T Bin2

i )i=1,2,3 for the individual pwl. approximations fBin2
1 , fBin2

2 and fBin2
3 with

respective sizes

|T Bin2
1 | =

⌈
(x̄−

¯
x)

2
√
ε

⌉
, |T Bin2

2 | =
⌈ (ȳ −

¯
y)

2
√
ε

⌉
and |T Bin2

3 | =
⌈ (x̄−

¯
x) + (ȳ −

¯
y)

2
√

2ε

⌉
.

Proof. To obtain an ε-family of triangulations for Bin2, we use Lemma Lemma 3
to construct ε-triangulations for each of the two concave terms −x2, approximated
by −fBin2

2 and −y2, approximated by −fBin2
3 , as well as a 2ε-triangulation for the
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(
¯
p1,

¯
p2)

(
¯
p1, p̄2)

(p̄1,
¯
p2)

(p̄1, p̄2)

D1

D2

p∗1

Ip∗
1

(a) Case 1) of Lemma 4.

(
¯
p1,

¯
p2)

(
¯
p1, p̄2)

(p̄1,
¯
p2)

(p̄1, p̄2)

D1

D2

p∗1

Ip∗
1

p2,i−1

p2,i

p∗2
Ip∗

2
= D1

(b) Case 2) of Lemma 4.

Figure 1. Geometric arguments in the proof of Lemma 4.

convex term (x + y)2, approximated by fBin2
1 . This directly yields the number

of simplices stated in the claim. Taking into account the prefactor of 0.5 in the
variable substitution, Lemma 1 then certifies that we have indeed found an ε-family
of triangulations. �

The same result as above holds for Bin3, as it consists of the same quadratic
terms, only with switched signs. The upper bounds for ε-families of triangulations
derived so far are summarized in Table 2.

If we do not require ε-approximations for each of the terms −x2 (or x2) and −y2

(or y2) in Bin2 (or Bin3), but rather only require a 2ε-approximation for the
combined approximation of these two functions, we can still apply Lemma 1 to
obtain equidistant ε-families of triangulations, and it is possible in many cases to
improve the bounds presented in Table 2. We can determine these improved bounds
by solving a mixed-integer quadratically constrained program (MIQCP) as follows.

Remark 1. Let ε > 0 be a prescribed maximum combined error for a pwl. approxi-
mation of either FBin2 (or FBin3). Then we can compute the minimum possible
number of simplices for any corresponding family of equidistant ε-triangulations as
the optimal value n∗ of the following MIQCP:

n∗ := min
n1,n2,n3

n1 + n2 + n3

s.t. (x̄−
¯
x)2

4n2
1

+
(ȳ −

¯
y)2

4n2
2
≤ 2ε,

(x̄−
¯
x+ ȳ −

¯
y)2

4n2
3

≤ 2ε,

n1, n2, n3 ∈ N.

(6)

The variables n1, n2 and n3 model the number of simplices used for the triangulations
T Bin2

1 , T Bin2
2 and T Bin2

3 (or T Bin3
1 , T Bin3

2 and T Bin3
3 ) in the pwl. approximation

of the terms −x2, −y2 and +p2 (or x2, y2 and −p2) respectively, see Appendix A
for the complete models. The two inequality constraints of Problem (6) model the
max-expression in the upper bound on the combined approximation error provided
by Lemma 1; the respective terms on the left-hand sides stem from Lemma 3.

We cannot make a general hierarchical statement among the univariate reformula-
tion Bin1, Bin2, and Bin3, since we do not know ε-optimal families of triangulations
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for Bin2 and Bin3. However, the simple fact that in Bin1, we only approximate two
instead of three univariate functions suggests that ε-optimal families of triangulations
for Bin2 and Bin3 consist of more simplices than those for Bin1.

Table 2. Upper bounds on the minimal number of simplices in an
ε-family of triangulations in Bin1, Bin2 and Bin3. For Bin1, this is
also the size of an ε-optimal family of triangulations.

Reformulation Max. required number of simplices

Bin1
⌈ (x̄−

¯
x)+(ȳ−

¯
y)

4
√

ε

⌉
+
⌈ (x̄−

¯
x)+(ȳ−

¯
y)

4
√

ε

⌉
Bin2, Bin3

⌈
(x̄−

¯
x)

2
√

ε

⌉
+
⌈ (ȳ−

¯
y)

2
√

ε

⌉
+
⌈ (x̄−

¯
x)+(ȳ−

¯
y)

2
√

2ε

⌉

3.1.2. Bivariate Pwl. Approximations. Finding a bivariate ε-optimal triangulation
for the approximation of F over a rectangular domain is still an open problem, see
the elaborations in [27] and the references therein. However, it will be sufficient
for us to determine a lower bound on the number of simplices in an ε-optimal
triangulation to see that in essence bivariate pwl. approximations of F require more
simplices than univariate ones. In order to derive this lower bound, we first prove
the following rather general lemma, which has been presented in the dissertation [10]
of the second author. It gives sufficient conditions under which the maximum
approximation error between a non-linear function and its pwl. approximation is
attained at a facet of one of the simplices of the triangulation.

Lemma 6. Let G : B → R be a continuous function over a compact set B ⊂ Rd,
and let g : B → R be a pwl. approximation of G defined by a triangulation T of B.
If for each x ∈ B there is a line Lx ⊆ Rd containing x such that the function G
is linear along B ∩ Lx, then for each simplex S ∈ T there is a point on one of the
facets of S where εg,G(S) is attained.

Proof. Let S ∈ T , and let gS be the linear approximation of G over the simplex S.
Furthermore, let x ∈ S be a point in the interior of the simplex S, and let Lx be a
line such that G is linear along S ∩ Lx. Naturally, gS is also linear along S ∩ Lx,
which therefore also holds for the function gS−G. Thus, gS−G attains its minimum
on one end point of the line segment S ∩ Lx and its maximum on the other end
point. Therefore, the error function |gS −G| over S ∩ Lx attains its maximum, i.e.
the maximal approximation error, on one of the facets of S. As S ∈ T and x ∈ S
were chosen arbitrarily, this finishes the proof. �

With the help of the above lemma, we can now characterize the approximation
error of a bivariate pwl. approximation of F . Note that the following result is well
known in the literature. We show it again in order to demonstrate the utility of
Lemma 6 in delivering a concise proof.

Lemma 7 ([4, 27, 38, 48]). Let f be a pwl. approximation f of F and T its
underlying triangulation of D. Then the approximation error εf,F (S) over any
simplex S ∈ T is attained at the center of one of its facets. Further, if (x0, y0) and
(x1, y1) are the endpoints of a facet over which the approximation error is attained,
we have

εf,F (S) =
∣∣∣∣Ef,F

(
x1 − x0

2 ,
y1 − y0

2

)∣∣∣∣ = 1
4 |(x1 − x0)(y1 − y0)| .
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Proof. It is obvious that the prerequisites of Lemma 6 apply to F . In particular, for
each point in some simplex S ∈ T , F is linear along each of the two coordinate axes.
Consequently, the approximation error is attained over a facet e of S. We can now
parametrize the functions f|e and F|e, i.e. the restrictions of f and F onto e, using
the convex combination of its endpoints (x0, y0) and (x1, y1). By writing each point
(x, y) ∈ e as (x, y) = (x0, y0) + (1− λ)(x1, y1) for some λ ∈ [0, 1], we can express f|e,
F|e and Ef|e,F|e as functions in λ:

f|e(λ) := λ(x1y1 − x0y0) + x0y0,

F|e(λ) := (λ(x1 − x0) + x0)(λ(y1 − y0) + y0),
Ef|e,F|e(λ) := F|e(λ)− f|e(λ)− (λ(x1 − x0) + x0)(λ(y1 − y0) + y0)

= (−λ2 + λ)(x1 − x0)(y1 − y0).
Lemma 2 implies that the approximation error, i.e. the maximum of the quadratic
error function Ef|e,F|e , has a value of

εf,F (S) = |Ef|e,F|e(λ∗)| = 1
4 |(x1 − x0)(y1 − y0)|

and is attained at λ∗ = 0.5, corresponding to the center of e. �

From Lemma 7, we can conclude that the (maximum) error of a bivariate pwl.
approximation of F corresponding to a given triangulation of D is always attained at
the center of a facet of one of its simplices. In [27], the author uses this property to
formulate the determination of ε-optimal triangulations as an MIQCP. To the best of
our knowledge, this is the only work considering provably ε-optimal triangulations of
the rectangular domain D for the approximation of F . Unfortunately, due to the size
of the resulting optimization model, this approach is computationally intractable
even for small instances. However, in order to prove that univariate ε-families
of triangulations require fewer simplices than any bivariate ε-triangulation for a
sufficiently small approximation error ε, it suffices to derive a suitable lower bound
for the size of an ε-triangulation. The following lemma gives such a lower bound
by using so-called ε-optimal triangles. An ε-optimal triangle satisfies a prescribed
approximation error bound of ε while taking a maximum possible area.

Lemma 8 ([27]). An ε-optimal triangulation T of D for the approximation of F
requires at least

⌈ (x̄−
¯
x)(ȳ−

¯
y)

2
√

5ε

⌉
simplices.

Proof. In [38], the authors show with the help of a version of Lemma 7 that the
area of an ε-optimal triangle is 2

√
5ε. The area of the rectangular domain D is

(x̄−
¯
x)(ȳ −

¯
y). Assuming that we can triangulate D solely by ε-optimal triangles,

we obtain the indicated lower bound. �

Figure 2 shows two different 0.25-optimal triangles as an example. Together
they form a parallelogram. Therefore copies of the two triangles can be arranged
to obtain a triangulation of the R2 plane. However, it is unclear if or how we can
use ε-optimal triangles to triangulate polyhedral domains, such as boxes. For more
information about ε-optimal triangles, we refer the reader to [38] and [4]. It is easy
to see that the lower bound from Lemma 8 is not always tight. From Monsky’s
Theorem in [32], we know that we cannot triangulate a rectangle with an odd
number of simplices such that all simplices have the same area. As a consequence,
at least for all values of ε for which the lower bound is an odd number, we need at
least one additional simplex than the lower bound suggests.
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x

y
(-1,0)

(0,1)

(√
5−1
2

, 1−
√

5
2

)

(√
5+1
2

, 3−
√
5

2

)

Figure 2. Optimal triangles with an approximation error of 0.25
which can tile R2.

3.1.3. Comparison of Univariate and Bivariate Approximations. We close Section 3.1
by comparing univariate and bivariate approaches with respect to the required
number of simplices. Our main result concerning ε-approximations of F then says
the following: Via the reformulations Bin1, Bin2, and Bin3 we can always obtain
ε-families of triangulations with fewer simplices than any bivariate ε-triangulation,
if the approximation accuracy ε is sufficiently small. This finding is formally stated
in Theorem 1.

Theorem 1. For each univariate reformulation Bin1, Bin2, and Bin3 there exists a
corresponding threshold εBin1, εBin2, and εBin3 > 0 such that there are εBin1-, εBin2-
and εBin3-families of triangulations consisting of fewer simplices than those of any
bivariate εBin1-, εBin2- and εBin3-triangulation, respectively.

Proof. On the one hand, we have established upper bounds on the number of
simplices for univariate ε-families of triangulations stated in Lemma 4 and Lemma 5.
For ε-families of triangulations in Bin1, Bin2, and Bin3, these bounds grow with
O(1/ε), cf. Table 2. On the other hand, Lemma 8 gives a lower bound on the
number of simplices in any bivariate ε-triangulation. This lower bound in turn
increases with a higher rate in O(1/

√
ε). Therefore, the desired thresholds εBin1,

εBin2, and εBin3 exist. �

For any given ε, we can compare the bounds stated in Table 2 and Lemma 8
respectively in order to determine if univariate or bivariate approximation yields
smaller triangulations.

To illustrate Theorem 1, we provide some exemplary numerical results for the
concrete domain D = [0, 2]× [0, 6] in Table 3. We list the numbers of simplices in
the triangulations constructed via Lemma 4 for Bin1 and Remark 1 for Bin2 and
Bin3 together with the actual approximation error in the columns entitled |T | and
εf,F (T ) respectively. For the bivariate approximation, we list the lower bounds
from Lemma 8.

For all approximation accuracies lower than 0.25, the equidistant pair of tri-
angulations in Bin1 dominates all other triangulations. Further, for the smallest
considered approximation accuracy ε = 0.05, all univariate numbers fall below the
bivariate lower bound. In particular, Bin1 requires three times less simplices than
the bivariate lower bound postulates. This demonstrates the advantage of univariate
reformulations for pwl. approximations most clearly.

3.2. Envelopes and Strength of the Continuous Relaxations. An important
property of any MIP formulation is the tightness of its continuous relaxation (CR),
i.e. the set obtained by relaxing the integrality constraints. Very often, MIP
formulations of pwl. functions are used to represent or approximate the non-linear
parts of an optimization problem. The usual solution method is then a branch-and-
cut approach, in which a continuous relaxation of that problem is solved at each
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Table 3. Comparison of the number of simplices in univariate
reformulations and the bivariate lower bound. (D = [0, 2]× [0, 6])

Triangulation ε |T | εf,F (T ) Triangulation ε |T | εf,F (T )
Bin1 1.00 4 1.0000 Bivariate 1.00 3 –
(equidistant 0.5 6 0.4444 (Lower bound) 0.5 6 –
triangulations) 0.25 8 0.2500 Lemma 8 0.25 11 –
Lemma 4 0.1 14 0.0816 0.1 27 –

0.05 18 0.0494 0.05 54 –
Bin2 1.00 10 0.8889 Bin3 1.00 10 0.8889
(equidistant 0.5 14 0.5000 (equidistant 0.5 14 0.5000
triangulations) 0.25 19 0.2500 triangulations) 0.25 19 0.2500
Remark 1 0.1 31 0.0987 Remark 1 0.1 31 0.0987

0.05 43 0.0473 0.05 43 0.0473

node in the branch-and-bound tree to compute bounds on the objective function
value of the optimization problem. In general, a tighter relaxation is more desirable
as it yields a smaller branch-and-bound tree, which in turn often leads to shorter
computation times. Thus, when comparing MIP formulations for the approximation
of gra(F ) it is relevant to study the quality of the respective CRs.

In the following, we compare the bivariate MIP formulation (3) with the univariate
MIP formulations (5), (10) and (12), where the latter two are stated explicitly in
Appendix A. Since these MIP formulations require additional auxiliary variables, we
compare the quality of their respective continuous relaxation based on the volume
of their PCRs, i.e. after projection to the surrounding space of gra(F ). This will
lead to two main results. Firstly, we show that the PCR of any bivariate MIP
formulation equals conv(gra(F )). Secondly, we show that the PCRs of univariate
MIP formulations are strict relaxations of conv(gra(F )).

3.2.1. Continuous Relaxations of Bivariate Pwl. Approximations. According to
Definition 8, the PCR of a sharp MIP formulation actually coincides with the convex
hull of the modelled pwl. graph. This means that in this sense, all sharp MIP
formulations of a graph are equivalent. Sharpness is a property many well-known
MIP formulations fulfill, such as the convex-combination method, the multiple-choice
method and the incremental method (see [44]).

In the following, we consider sharp MIP formulations Mf for gra(f), where f
is a bivariate pwl. approximations of F . For these, we show that the PCR
proj(x,y,z)(C(Mf )) is not only independent of the chosen MIP formulation, but
also independent of the underlying triangulation that defines f . For this purpose, we
first recall some important notions concerning the convex and the concave envelope
of a given function; see [43] for a more extensive treatment of the subject.

Definition 10. Let B ⊂ Rn be a polytope with vertices V (B). We say that a
continuous function G : B → R has a vertex polyhedral convex envelope if

convenvB(G)(x) = convenvV (B)(G)(x)
holds for every x ∈ B. In this case, we also call the function G itself convex
polyhedral. Analogously, the function G has a vertex polyhedral concave envelope if

caveenvB(G)(x) = caveenvV (B)(G)(x)
holds for every x ∈ B; the function G is then called concave polyhedral.
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For functions that are convex or concave polyhedral, we can show that this
property also carries over to their pwl. approximations. This new result allows us
to directly give an algebraic representation of proj(x,z) C(Mf ) from the convex and
concave envelope of F .

Lemma 9. Let B ⊂ Rn be a polytope and G : B → R be a convex (concave)
polyhedral function. Further, let g be a pwl. approximation of G over B, defined by
a triangulation T . Then convenvB(g) (caveenvB(g)) is convex (concave) polyhedral
as well and convenvB(g) = convenvB(G) holds.

Proof. It suffices to show the statement for the convex polyhedral case as the concave
polyhedral one is analogous. As g is a pwl. approximation of G, we have g(x) =
G(x) for all x ∈ N(T ). Since V (B) ⊆ N(T ), this implies convenvV (B)(G)(x) =
convenvV (B)(g)(x) for all x ∈ B.

It remains to show that g(x) ≥ convenvV (B)(g)(x) for all x ∈ B. To this end,
let x ∈ B, and let S ∈ T be a simplex with vertices s0, . . . , sn, chosen such that
x ∈ S holds. Then there exist λi ≥ 0, i = 0, . . . , n, such that x =

∑n
i=0 λisi, with∑n

i=0 λi = 1. Thus, it follows

g(x) =
n∑

i=0
λiG(si) ≥

n∑
i=0

λi convenvV (B)(G)(si)

≥ convenvV (B)(G)
(

n∑
i=0

λisi

)
= convenvV (B)(G)(x)
= convenvV (B)(g)(x).

This results in convenvV (B)(g)(x) ≤ convenvB(g)(x). By definition it holds
that convenvV (B)(g)(x) ≥ convenvB(g)(x), which proves the claim that
convenvV (B)(g)(x) = convenvB(g)(x). �

This leads to the following central result for pwl. approximations f of F . It says
that the PCR of (3) is (i) independent of the actual choice of f and (ii) independent
of the MIP formulation modelling gra(f) as long as the MIP formulation is sharp.

Theorem 2. Let f be a pwl. approximation of F , and let Mf ⊂ R2+1 × [0, 1]p ×
{0, 1}q be a sharp MIP formulation for gra(f). Then we have

proj(x,z) C(Mf ) = conv(gra(F )).

Proof. In [41, Remark 1.3], it is shown that multi-linear functions on boxes are
both convex and concave polyhedral. Thus, F has a vertex polyhedral convex and
concave envelope. By Lemma 9, every pwl. approximation f of F is also convex and
concave polyhedral. In addition, F (x, y) = f(x, y) = xy holds for all (x, y) ∈ V (D).
It follows that

convenv(F ) = convenvV (D)(F ) = convenvV (D)(f) = convenv(f)
and

caveenv(F ) = caveenvV (D)(F ) = caveenvV (D)(f) = caveenv(f),
and therefore

conv(gra(F )) = conv(gra(f)).
From the sharpness of Mf for gra(f), we can conclude that

proj(x,z) C(Mf ) = conv(gra(f)) = conv(gra(F )),
which completes the proof. �
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From the literature, conv(gra(F )) is known as the McCormick relaxation of F
(cf. [30]). It is defined by the two functions CL : D → R and CU : D → R with

CL(x, y) := convenv(F )(x, y) = max{
¯
yx+

¯
xy −

¯
x
¯
y, ȳx+ x̄y − x̄ȳ},

CU (x, y) := caveenv(F )(x, y) = min{
¯
yx+ x̄y − x̄

¯
y, ȳx+

¯
xy −

¯
xȳ}.

The McCormick relaxation is the tightest relaxation of gra(F ) that any MIP for-
mulation can obtain. In the following remark, we discuss how the relaxation of
bivariate MIP formulations can be tightened when additional restrictions are added
for x and y.

Remark 2. We consider the special case where D is intersected with a compact
set Z ∈ R2. This might be the case if F occurs as a term in the objective function
or a constraint of an optimization problem. For this case, the set Z can model a
large variety of possible constraints involving the variables x and y. We know the
following:

conv(graD∩Z(f)) ⊆ conv(gra(f)) ∩ (Z × R)
= proj(x,z) C(Mf ) ∩ (Z × R)
= {(x, z) ∈ Rn+1 : (x, z, λ, u) ∈ C(Mf ), x ∈ Z}.

This means that the PCR of Mf restricted to D ∩ Z can potentially be tightened
by adding additional constraints. See [2], where the authors consider the set Z :=
{(x, y) ∈ R2 | xy ≤ u} for some u ∈ R and derive conv(graD∩Z(f)) by adding
additional linear and conic constraints to conv(gra(f)) ∩ (Z × R).

3.2.2. Continuous Relaxations of Univariate Pwl. Approximations. We now turn
to the PCRs of sharp univariate MIP formulations as in (5), (10) and (12). We
point out that univariate reformulations are described by separable functions over
rectangular domains. Such functions are known to be sum decomposable; see [43].
This means that the envelopes of separable functions are determined by the sum
of the envelopes of their univariate summands; see also [17]. As a consequence
of this, the convex and concave envelopes of pwl. univariate approximations of F ,
and thus the PCRs of the corresponding MIP formulations, depend on both the
choice of the univariate reformulation and the chosen triangulations defining the
pwl. approximations. The dependency on the triangulations is in contrast to the
result we had in the bivariate case. The consequence is that the tightness of the
PCR is influenced by the approximation error and thus depends on the number and
placement of the vertices of the triangulations. For further details we refer to [7],
where the effects of the approximation error on PCRs are discussed, and neglect the
approximation error in the following. We rather assume that the approximation
error is sufficiently small so that it does not interfere with the comparison of the
PCRs. Consequently, we focus on the envelopes that we obtain from the non-linear
univariate reformulations Bin1, Bin2 and Bin3, i.e. (4), (9), and (11).

Note that each of the univariate reformulation Bin1, Bin2, and Bin3 is a sum of
quadratic functions which are all either convex or concave. The convex (concave)
envelope of each convex (concave) summand is the convex (concave) function itself.
In contrast, a convex (concave) function is vertex polyhedral; its concave (convex)
envelope is therefore given as the linear interpolant which uses the domain bounds
as vertices. In Table 4, we list the convex and concave envelopes of the pwl.
approximations fBin1 : D → R of FBin1, fBin2 : D → R of FBin2 and fBin3 : D → R
of FBin3 that we obtain by exploiting sum decomposability as explained above. We
emphasize that these envelopes are strict under- resp. overestimators of F and thus
only give a relaxation of conv(gra(F )) in the sense of Equation (2). Further, we
also state the respective PCRs in Table 4. The following proposition compares the
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Table 4. Envelopes and PCRs in univariate reformulations Bin1,
Bin2, and Bin3.

Model Convex envelopes as functions D → R

Bin1 CL
1 (x, y) = 1

4 ((x+ y)2 − (x̄+
¯
x− ȳ −

¯
y)(x− y) + (

¯
x− ȳ)(x̄−

¯
y))

Bin2 CL
2 (x, y) = 1

2 ((x+ y)2 − (x̄+
¯
x)x+ x̄

¯
x− (ȳ +

¯
y)y + ȳ

¯
y)

Bin3 CL
3 (x, y) = 1

2 (x2 + y2 − (x̄+
¯
x− ȳ −

¯
y)(x− y) + (

¯
x− ȳ)(x̄−

¯
y))

Concave envelopes as functions D → R

Bin1 CU
1 (x, y) = 1

4 ((
¯
x+

¯
y + x̄+ ȳ)(x+ y)− (

¯
x+

¯
y)(x̄+ ȳ)− (x− y)2)

Bin2 CU
2 (x, y) = 1

2 ((
¯
x+

¯
y + x̄+ ȳ)(x+ y)− (

¯
x+

¯
y)(x̄+ ȳ)− x2 − y2)

Bin3 CU
3 (x, y) = 1

2 ((
¯
x+ x̄)x−

¯
xx̄+ (

¯
y + ȳ)y −

¯
yȳ − (x− y)2)

PCRs
Bin1 proj(x,y,z) C(MfBin1) = {(x, y, z) ∈ D × R : CL

1 (x, y) ≤ z ≤ CU
1 (x, y)}

Bin2 proj(x,y,z) C(MfBin2) = {(x, y, z) ∈ D × R : CL
2 (x, y) ≤ z ≤ CU

2 (x, y)}
Bin3 proj(x,y,z) C(MfBin3) = {(x, y, z) ∈ D × R : CL

3 (x, y) ≤ z ≤ CU
3 (x, y)}

volumes of these PCRs. It states that among the three univariate reformulations, the
PCR proj(x,z) C(MfBin1) is a tighter relaxation of gra(F ) than proj(x,z) C(MfBin2)
and proj(x,z) C(MfBin3), which coincide.

Lemma 10. The volumes V D
Bin1, V D

Bin2 and V D
Bin3 of the projections

proj(x,y,z) C(MfBin1), proj(x,y,z) C(MfBin2) and proj(x,y,z) C(MfBin3), respectively,
form the following hierarchy:

V D
Bin1 < V D

Bin2 = V D
Bin3.

Proof. For the volumes of the two projections proj(x,y,z) C(MfBin2) and
proj(x,y,z) C(MfBin3), we have

V D
Bin2 := V (proj(x,y,z) C(MfBin2)) =

∫ ȳ

¯
y

∫ x̄

¯
x

CU
2 (x, y)− CL

2 (x, y) dx dy

=
∫ ȳ

¯
y

∫ x̄

¯
x

CU
3 (x, y)− CL

3 (x, y) dx dy

= V (proj(x,y,z) C(MfBin3)) =: V D
Bin3.

Both volumes of V D
Bin2 and V D

Bin3 are given by

V D
Bin2 = 1

12(x̄−
¯
x)(ȳ −

¯
y)
(
2(x̄−

¯
x)2 + 3(x̄−

¯
x)(ȳ −

¯
y) + 2(ȳ −

¯
y)2) . (7)

The volume of the projection proj(x,y,z) C(MfBin1) is given as

V D
Bin1 := V (proj(x,y,z) C(MfBin1)) =

∫ ȳ

¯
y

∫ x̄

¯
x

CU
1 (x, y)− CL

1 (x, y) dx dy

= 1
12(x̄−

¯
x)(ȳ −

¯
y)
(
(
¯
x−

¯
x)2 + 3(

¯
x2 −

¯
x)(ȳ −

¯
y) + (ȳ −

¯
y)2) .

Together with (7), we obtain

V D
Bin2 − V D

Bin1 = V D
Bin3 − V D

Bin1 = 1
12((x̄−

¯
x)2︸ ︷︷ ︸

>0

+ (ȳ −
¯
y)2︸ ︷︷ ︸

>0

) > 0,
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which completes the proof. �

3.2.3. Comparison of the Univariate and Bivariate Continuous Relaxations. We now
compare the PCRs that result from the univariate and bivariate MIP formulations.
The following theorem says that the PCRs of the univariate MIP formulations
always yield looser relaxations of gra(F ) than PCR of a bivariate MIP formulation.

Theorem 3. The PCR of the MIP formulations in the reformulations Bin1, Bin2,
and Bin3 are weaker relaxations of gra(F ) than the PCR of a bivariate MIP formu-
lation. In particular, the following applies:

The volumes V D
Bin1, V D

Bin2 and V D
Bin3 of the PCRs proj(x,y,z) C(MfBin1),

proj(x,y,z) C(MfBin2) and proj(x,y,z) C(MfBin3) are larger than the volume V D
McC of

the PCR proj(x,y,z) C(Mf ).

Proof. From Theorem 2, we know that proj(x,y,z) C(Mf ) of a bivariate MIP formula-
tion Mf is equivalent to the McCormick relaxation. The volume of the McCormick
relaxation is given by

V D
McC :=

∫ ȳ

¯
y

∫ x̄

¯
x

CU (x, y) dx dy −
∫ ȳ

¯
y

∫ x̄

¯
x

CL(x, y) dx dy = 1
6(x̄−

¯
x)2(ȳ −

¯
y)2.

Further, we know from Lemma 10 that Bin1 provides the tightest CR among the
univariate reformulations. It now holds that the difference of these two volumes is
always greater than zero, i.e.

V D
Bin1 − V D

McC = 1
12((x̄−

¯
x)2︸ ︷︷ ︸

>0

+ (ȳ −
¯
y)2︸ ︷︷ ︸

>0

+ (x̄−
¯
x)(ȳ −

¯
y)︸ ︷︷ ︸

>0

) > 0.

Thus,
V D

Bin2 = V D
Bin3 > V D

McC .

also holds. �

To quantify this downside of the univariate MIP formulations, we calculate the
ratio between the volume of their PCRs to the volume of conv(gra(F )). We denote
the ratios by

RD
Bin1 := V D

Bin1
V D

McC

=
(x̄−

¯
x)2 + (ȳ −

¯
y)2

2(x̄−
¯
x)(ȳ −

¯
y) + 3

2 ,

RD
Bin2 := V D

Bin2
V D

McC

, RD
Bin3 := V D

Bin3
V D

McC

=
(x̄−

¯
x)2 + (ȳ −

¯
y)2

(x̄−
¯
x)(ȳ −

¯
y) + 3

2 .

Obviously, the ratios RD
Bin1 and RD

Bin2 are invariant under axial shifts of the domain
D. This means that the ratios depend only on the length of the axes (x̄−

¯
x) and

(ȳ −
¯
y). In Fig. 3, we plot RD

Bin1 and RD
Bin2 with respect to the elongation and

scaling of the domain by varying (x̄−
¯
x) and (ȳ−

¯
y). In accordance with Theorem 3,

Bin1 always yields a better ratio than Bin2 or Bin3. Furthermore, it is noteworthy
that the more rectangularly stretched D is, the worse the ratios of the univariate
reformulations become. The ratios start from 2.5 (Bin1) and 3.5 (Bin2, Bin3) on
the quadratic domain D = [0, 1]× [0, 1] and then increase towards infinity as the
domain becomes more rectangular.

To illustrate the shapes of the different PCRs, we have plotted them exemplarily
for the quadratic domain D = [0, 1]×[0, 1] in Fig. 4. Although the volumes V D

Bin2 and
V D

Bin3 are the same, it can be shown that CL
2 is a tighter convex underestimator for F

over D than CL
3 . The opposite is true for the concave overestimators, where CU

3 is a
tighter convex overestimator than CU

2 . These observations are of particular interest
in the context of an optimization problem. If for example F appears in the objective
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Figure 3. Volume ratios between univariate PCRs and the Mc-
Cormick relaxation of F (x, y) = xy over D = [

¯
x, x̄]× [

¯
y, ȳ].

function of a minimization problem, Bin2 gives a tighter convex underestimator,
while Bin3 gives a tighter convex overestimator if F instead appears in the objective
function of a maximization problem. However, this clear hierarchy does not hold
for Bin1, which yields tighter or less tight relaxations than Bin2 or Bin3 depending
on the elongation of the domain and the optimization sense. Formal proofs of these
hierarchical observations are given Section A.1.

3.3. Discussion and Guidelines for Practice. In Section 3.1, we have shown
that univariate MIP formulations are superior to bivariate MIP formulations when
it comes to the size of the underlying triangulation required to attain a certain
approximation guarantee for F . However, this is in part bought by the fact that
their corresponding PCRs are looser, as we showed in Section 3.2. In this section,
we discuss some consequences of these observations for the practical use of pwl.
approximations in the modelling of optimization problems.

On the one hand, if we are only interested in obtaining a tight PCR of a certain
feasible set defined by bilinear constraints, a bivariate approximation is favourable, as
Theorem 3 states. This is all the more true as the PCR of a bivariate approximation
does not depend on the number of simplices used. A very useful application of tight
relaxations when solving mixed-integer non-linear programs (MINLPs), for example,
is bound tightening. An optimality-based bound tightening, for instance, determines
lower and upper bounds for the variables by minimizing (resp. maximizing) each
variable subject to the constraints describing the feasible set. Since these two
optimization problems solved for each variable are of similar complexity as the
original MINLP, the constraint set is often replaced by a relaxation. Consequently,
a tighter PCR allows to determine tighter bounds with this approach. In turn, the
tighter the bounds are, the smaller becomes the feasible region that the optimization
approach has to search and consequently the shorter the solution times.

On the other hand, if instead the optimal solution of a high-accuracy MIP
approximation of a certain MINLP is required, the results of Sect. 3.1 suggest to
pursue a univariate reformulation scheme, as it requires less simplices to obtain an ε-
approximations for some prescribed guarantee ε. To compensate for the disadvantage
of looser PCRs in this case, we can easily tighten the univariate reformulation by
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(b) Bin1: PCR over quadratic domain.
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(c) Bin2: PCR over quadratic domain.
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(d) Bin3: PCR over quadratic domain.

Figure 4. PCRs of univariate and bivariate MIP formulations.

incorporating a univariate variant of the well-known McCormick cuts, which are
known to completely describe the convex hull of F . To this end, we can simply
replace the term xy in the corresponding univariate reformulation of the constraint
at hand. We exemplarily state the resulting version of the McCormick cuts for the
reformulation Bin1:

p2
1 − p2

2 ≥ ¯
xy + x

¯
y −

¯
x
¯
y

p2
1 − p2

2 ≥ x̄y + xȳ − x̄ȳ
p2

1 − p2
2 ≤ x̄y + x

¯
y − x̄

¯
y

p2
1 − p2

2 ≤ ¯
xy + xȳ −

¯
xȳ.

(8)

For Bin2 and Bin3, the corresponding McCormick cuts are straightforward to
compute as well. With an increasing prescribed accuracy of a pwl. approximation,
a bivariate approach requires unproportionally more simplices and consequently
binary variables. Hence, a univariate reformulation approach together with the
addition of the four inequalities (8) quickly becomes the cheaper alternative in terms
of complexity. This recommendation is in line with the results of [1], where pwl.
approximations are utilized to solve MINLPs arising in the context of alternating
current optimal power flow. The authors reformulate the bilinear terms in their
original model for the problem by the univariate reformulation Bin2. Additionally,
they add the reformulated McCormick cuts shown in (8). It turns out that the
resulting univariate model is solved much faster than the bivariate one, while the
solutions of both models are of the same approximation quality. To the best of our
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knowledge, the authors of [1] are the first who use such a univariate reformulation
enhanced with additional cutting planes.

Although the figures stated in Table 3 suggest that Bin1 compares favourably to
Bin2 and Bin3 in terms of the number of required simplices, the structure of the
constraint set of the considered optimization problem is crucial. If, for instance,
bounds for the term x− y are known a priori, for example inferred from the problem
data, using Bin3 can be advantageous (cf. [48]). The same holds for Bin2, if bounds
for the term x+ y are available. Moreover, in case that for a subset x1, x2, . . . , xn of
the variables at hand many of the bilinear terms xixj with i, j ∈ {1, 2, . . . , n} occur
in the constraints of the problem, using Bin2 or Bin3 can again be beneficial. The
reason for this is the following general observation. If the same non-linear function G
occurs multiple times in an optimization problem (except for linear factors), we can
replace this function with the same variable g̃ everywhere in the model and add the
constraint g̃ = G only once. This way, we need only one pwl. approximation for all
occurrences of G. Thus, if we reformulate the terms xixj via Bin2 or Bin3, for each
of the O(n) many quadratic monomials x2

i and x2
j only one pwl. approximation

has to be constructed. Apart from this, we only need one pwl. approximation for
each of the O(n2)-many p2

i,j = (xi + xj)2. In case of Bin1, however, we need two
different pwl. approximations for each of the O(n2)-many p2

1,i,j, = ( 1
2 (xi + xj))2

and p2
2,i,j = ( 1

2 (xi − xj))2.

4. Conclusion and Discussion

In this paper, we studied MIP formulations for pwl. approximations of bilinear
terms in optimization models. More precisely, we compared MIP formulations for
direct bivariate pwl. approximations of variable products to MIP formulations for
pwl. approximations after univariate reformulations with respect to two different
metrics of efficiency. First, we proved that for a sufficiently small prescribed
approximation error ε, all considered univariate reformulations allow more compact
ε-approximations than any bivariate ε-approximation requires – as measured by the
number of simplices in the underlying triangulation. In this sense, concerning the size
of the resulting pwl. approximations, and consequently the required number of binary
variables, our results are a strong indication for using univariate reformulations
in optimization problems. Second, we showed that, in contrast, all univariate
reformulations lead to genuinely weaker continuous relaxations than bivariate MIP
formulations. These two opposing characteristics of the respective MIP formulations
explain many of the mixed computational results found in the literature. Finally,
we discussed our theoretical results with regard to their application in practice.
Notably, the looser relaxations of the univariate reformulation approaches can be
improved to equal those of a bivariate pwl. approximation by adding linear cutting
planes, the so-called McCormick cuts. A first algorithmic approach constructed
in this fashion can already be found in the literature ([1]), reporting very good
computational results for the considered application. In this way, the authors
profit from compact MIP formulations as well as from tight relaxations at the same
time. Both our theoretical results and these first empirical evidence indicate that it
would be promising to study generic algorithms for MIQCPs based on univariate
reformulations as part of future research on the topic.

Acknowledgements

This research was supported by the Bavarian Ministry of Economic Affairs,
Regional Development and Energy through the Center for Analytics – Data –
Applications (ADA-Center) within the framework of “BAYERN DIGITAL II” (20-
3410-2-9-8). This research has been performed as part of the Energie Campus



REFERENCES 23

Nürnberg and is supported by funding of the Bavarian State Government. Moreover,
we thank the DFG for their support within Projects B07 and B08 in CRCTRR154.

References

[1] K.-M. Aigner, R. Burlacu, F. Liers, and A. Martin. Solving AC Optimal
Power Flow with Discrete Decisions to Global Optimality. 2020. url: http:
//www.optimization-online.org/DB_HTML/2020/08/7981.html.

[2] K. M. Anstreicher, S. Burer, and K. Park. Convex Hull Representations for
Bounded Products of Variables. 2020. url: https://arxiv.org/pdf/2004.
07233.pdf.

[3] G. M. Appa, L. Pitsoulis, and H. P. Williams. Handbook on modelling for
discrete optimization. Vol. 88. Springer Science & Business Media, 2006.

[4] D. Atariah, G. Rote, and M. Wintraecken. “Optimal triangulation of saddle
surfaces.” In: Beiträge zur Algebra und Geometrie/Contributions to Algebra
and Geometry 59.1 (2018), pp. 113–126.

[5] F. Aurenhammer and Y.-F. Xu. “Optimal triangulations.” In: Encyclopedia of
Optimization. Springer, 2008, pp. 2757–2764.

[6] A. Balakrishnan and S. C. Graves. “A Composite Algorithm for a Concave-Cost
Network Flow Problem.” In: Networks 19.2 (1989), pp. 175–202.

[7] B. Beach, R. Hildebrand, and J. Huchette. Compact mixed-integer programming
relaxations in quadratic optimization. 2021. url: https://arxiv.org/pdf/
2011.08823.pdf.

[8] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan.
“Mixed-integer nonlinear optimization.” In: Acta Numerica 22 (2013), pp. 1–
131.

[9] T. Böttger, V. Grimm, T. Kleinert, and M. Schmidt. “The Cost of Decoupling
Trade and Transport in the European Entry-Exit Gas Market With Linear
Physics Modeling.” In: European Journal of Operational Research (2021).
url: https : / / www . sciencedirect . com / science / article / abs / pii /
S0377221721005506.

[10] R. Burlacu. “Adaptive Mixed-Integer Refinements for Solving Nonlinear Prob-
lems with Discrete Decisions.” PhD thesis. 2020.

[11] R. Burlacu, B. Geißler, and L. Schewe. “Solving Mixed-Integer Nonlinear
Programmes Using Adaptively Refined Mixed-Integer Linear Programmes.”
In: Optimization Methods and Software 35.1 (2020), pp. 37–64.

[12] C. M. Correa-Posada and P. Sánchez-Martín. “Gas Network Optimization: A
Comparison of Piecewise Linear Models.” In: Optimization Online (2014).

[13] K. L. Croxton, B. Gendron, and T. L. Magnanti. “A Comparison of Mixed-
Integer Programming Models for Nonconvex Piecewise Linear Cost Minimiza-
tion Problems.” In: Management Science 49.9 (2003), pp. 1268–1273.

[14] C. D’Ambrosio, A. Lodi, and S. Martello. “Piecewise Linear Approximation of
Functions of Two Variables in MILP models.” In: Operations Research Letters
38.1 (2010), pp. 39–46.

[15] G. B. Dantzig. “On the Significance of Solving Linear Programming Problems
with Some Integer Variables.” In: Econometrica, Journal of the Econometric
Society (1960), pp. 30–44.

[16] J. Egerer, V. Grimm, T. Kleinert, M. Schmidt, and G. Zöttl. “The impact
of neighboring markets on renewable locations, transmission expansion, and
generation investment.” In: European Journal of Operational Research 292.2
(2021), pp. 696–713. url: https://www.sciencedirect.com/science/
article/abs/pii/S0377221720309486.

http://www.optimization-online.org/DB_HTML/2020/08/7981.html
http://www.optimization-online.org/DB_HTML/2020/08/7981.html
https://arxiv.org/pdf/2004.07233.pdf
https://arxiv.org/pdf/2004.07233.pdf
https://arxiv.org/pdf/2011.08823.pdf
https://arxiv.org/pdf/2011.08823.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0377221721005506
https://www.sciencedirect.com/science/article/abs/pii/S0377221721005506
https://www.sciencedirect.com/science/article/abs/pii/S0377221720309486
https://www.sciencedirect.com/science/article/abs/pii/S0377221720309486


24 REFERENCES

[17] J. E. Falk. “Lagrange multipliers and nonconvex programs.” In: SIAM Journal
on Control 7.4 (1969), pp. 534–545.

[18] D. C. Faria and M. J. Bagajewicz. “Novel Bound Contraction Procedure for
Global Optimization of Bilinear MINLP Problems With Applications to Water
Management Problems.” In: Computers & Chemical Engineering 35.3 (2011),
pp. 446–455.

[19] A. Fügenschuh, C. Hayn, and D. Michaels. “Mixed-integer linear methods for
layout-optimization of screening systems in recovered paper production.” In:
Optimization and Engineering 15.2 (2014), pp. 533–573.

[20] B. Geißler. “Towards Globally Optimal Solutions for MINLPs by Discretization
Techniques with Applications in Gas Network Optimization.” PhD thesis. 2011.

[21] B. Geißler, A. Martin, A. Morsi, and L. Schewe. “Using piecewise linear func-
tions for solving minlp s.” In: Mixed integer nonlinear programming. Springer,
2012, pp. 287–314.

[22] R. G. Jeroslow. “Representability in Mixed Integer Programming, I: Charac-
terization Results.” In: Discrete Applied Mathematics 17.3 (1987), pp. 223–
243.

[23] R. G. Jeroslow. “Representability of Functions.” In: Discrete Applied Mathe-
matics 23.2 (1989), pp. 125–137.

[24] R. G. Jeroslow and J. K. Lowe. “Experimental Results on the New Tech-
niques for Integer Programming Formulations.” In: Journal of the Operational
Research Society 36.5 (1985), pp. 393–403.

[25] R. G. Jeroslow and J. K. Lowe. “Modeling With Integer Variables.” In: Math-
ematical Programming Study 22 (1984), pp. 167–184.

[26] U. G. Knight. Power Systems Engineering and Mathematics: International
Series of Monographs In Electrical Engineering. Vol. 3. Elsevier, 2017.

[27] K. Kutzer. “Using Piecewise Linear Approximation Techniques to Handle
Bilinear Constraints.” PhD thesis. 2020.

[28] H. M. Markowitz and A. S. Manne. “On the Solution of Discrete Programming
Problems.” In: Econometrica: journal of the Econometric Society (1957),
pp. 84–110.

[29] A. Martin, M. Möller, and S. Moritz. “Mixed Integer Models for the Stationary
Case of Gas Network Optimization.” In: Mathematical programming 105.2-3
(2006), pp. 563–582.

[30] G. P. McCormick. “Computability of global solutions to factorable noncon-
vex programs: Part I—Convex underestimating problems.” In: Mathematical
programming 10.1 (1976), pp. 147–175.

[31] R. Misener and C. A. Floudas. “Advances for the Pooling Problem: Modeling,
Global Optimization, and Computational Studies.” In: Appl. Comput. Math
8.1 (2009), pp. 3–22.

[32] P. Monsky. “On dividing a square into triangles.” In: The American Mathe-
matical Monthly 77.2 (1970), pp. 161–164.

[33] A. Morsi. “Solving MINLPs on Loosely-Coupled Networks with Applications
in Water and Gas Network Optimization.” PhD thesis. 2013.

[34] A. Morsi, B. Geißler, and A. Martin. “Mixed Integer Optimization of Water
Supply Networks.” In: Mathematical Optimization of Water Networks. Vol. 162.
Springer, 2012, pp. 35–54.

[35] W. Mulzer and G. Rote. “Minimum-weight triangulation is NP-hard.” In:
Journal of the ACM (JACM) 55.2 (2008), pp. 1–29.

[36] T. Nowatzki, M. Ferris, K. Sankaralingam, C. Estan, N. Vaish, and D. Wood.
“Optimization and Mathematical Modeling in Computer Architecture.” In:
Synthesis Lectures on Computer Architecture 8.4 (2013), pp. 1–144.



REFERENCES 25

[37] M. Padberg. “Approximating Separable Nonlinear Functions Via Mixed Zero-
One Programs.” In: Operations Research Letters 27.1 (2000), pp. 1–5.

[38] H. Pottmann, R. Krasauskas, B. Hamann, K. Joy, and W. Seibold. “On piece-
wise linear approximation of quadratic functions.” In: Journal for Geometry
and Graphics 4.1 (2000), pp. 31–53.

[39] S. Rebennack and J. Kallrath. “Continuous piecewise linear delta-
approximations for bivariate and multivariate functions.” In: Journal of
Optimization Theory and Applications 167.1 (2015), pp. 102–117.

[40] S. Rebennack and J. Kallrath. “Continuous piecewise linear delta-
approximations for univariate functions: computing minimal breakpoint
systems.” In: Journal of Optimization Theory and Applications 167.2 (2015),
pp. 617–643.

[41] A. D. Rikun. “A Convex Envelope Formula for Multilinear Functions.” In: J.
of Global Optimization 10.4 (1997), pp. 425–437.

[42] H. D. Sherali. “On Mixed-Integer Zero-One Representations For Separable
Lower-Semicontinuous Piecewise-Linear Functions.” In: Operations Research
Letters 28.4 (2001), pp. 155–160.

[43] F. Tardella. “On the existence of polyhedral convex envelopes.” In: Frontiers
in Global Optimization. Ed. by C. A. Floudas and P. Pardalos. Boston, MA:
Springer US, 2004, pp. 563–573.

[44] J. P. Vielma. “Mixed integer linear programming formulation techniques.” In:
SIAM Review 57.1 (2015), pp. 3–57.

[45] J. P. Vielma, S. Ahmed, and G. Nemhauser. “Mixed-Integer Models for Nonsep-
arable Piecewise-Linear Optimization: Unifying Framework and Extensions.”
In: Operations Research 58.2 (2010), pp. 303–315.

[46] J. P. Vielma, A. B. Keha, and G. L. Nemhauser. “Nonconvex, Lower Semicon-
tinuous Piecewise Linear Optimization.” In: Discrete Optimization 5.2 (2008),
pp. 467–488.

[47] W. Wei and J. Wang. Modeling and Optimization of Interdependent Energy
Infrastructures. Springer, 2019.

[48] A. Zelmer. “Designing Coupled Energy Carrier Networks By Mixed-Integer
Programming Methods.” PhD thesis. 2010.



26 REFERENCES

Appendix A. MIP Formulations

In this part, we derive the MIP formulations of the pwl. approximation in the
reformulations Bin2, Bin3, and Ln. We proceed analogously to reformulation Bin1
in Section 3.

We start with reformulation Bin2:
gra(F ) =

{
(x, y, p2 − x2 − y2) ∈ R3 | p = x+ y, (x, y) ∈ D

}
. (9)

Now, let fBin2
1 : [

¯
x, x̄]→ R be a pwl. approximation of x2 with triangulation T Bin2

1 ,
fBin2

2 : [
¯
y, ȳ]→ R a pwl. approximation of y2 with triangulation T Bin2

2 , and fBin2
3 : [

¯
x+

¯
y, x̄+ ȳ]→ R a pwl. approximation of p2 with triangulation T Bin2

3 .
We can model an approximation of gra(F ) by fBin2 : D → R,

fBin2(x, y) := 1
2(fBin2

3 (p)− fBin2
1 (x)− fBin2

2 (y)),

p = x+ y.

Further, let MBin2
1 ⊆ D×R× [0, 1]pBin2

1 × {0, 1}qBin2
1 , MBin2

2 ⊆ D×R× [0, 1]pBin2
2 ×

{0, 1}qBin2
2 and MBin2

3 ⊆ D × R × [0, 1]pBin2
3 × {0, 1}qBin2

3 be sharp MIP formula-
tions of the graphs gra(fBin2

1 ), gra(fBin2
2 ) and gra(fBin2

3 ). We can then model an
approximation of gra(F ) as:

gra(fBin2) = {(x, y, z) ∈ R3 | (x, y, z, λ1, u1, λ2, u2, λ3, u3) ∈MfBin2} (10)
together with the MIP formulation

MfBin2 :={(x, y, z, λ1, u1, λ2, u2, λ3, u3) ∈ D × R× [0, 1]p
Bin2
1 × {0, 1}qBin2

1 ×

[0, 1]p
Bin2
2 × {0, 1}qBin2

2 × [0, 1]p
Bin2
3 × {0, 1}qBin2

3 |
(p1, z1, λ1, u1) ∈MBin2

1 , (p2, z2, λ2, u2) ∈M2,

(p3, z3, λ3, u3) ∈MBin2
3 ,

z = 1
2(z1 − z2 − z3), p = x+ y, (x, y) ∈ D}

Next, we apply Bin3:
gra(F ) =

{
(x, y, x2 + y2 − p2) ∈ R3 | p = x+ y, (x, y) ∈ D

}
. (11)

The domains of the additional variable q is given by
Dp := [

¯
p, p̄] := [

¯
x+

¯
y, x̄+ ȳ] ⊂ R.

Now, let fBin3
1 : Dx → R be a pwl. approximation of x2 with triangulation T Bin3

1 ,
fBin3

2 : Dy → R a pwl. approximation of y2 with triangulation T Bin3
2 , and

fBin3
3 : Dp → R a pwl. approximation of p2 with triangulation T Bin3

3 .
We can model an approximation of (4) by

fBin3(x, y) := 1
2(fBin3

1 (x) + fBin3
2 (y)− fBin3

3 (p)),

p = x+ y.

Further, let MBin3
1 ⊆ D×R× [0, 1]pBin3

1 × {0, 1}qBin3
1 , MBin3

2 ⊆ D×R× [0, 1]pBin3
2 ×

{0, 1}qBin3
2 andMBin3

3 ⊆ D×R× [0, 1]pBin3
3 ×{0, 1}qBin3

3 be sharp MIP formulations of
the graphs gra(fBin3

1 ), gra(fBin3
2 ) and gra(fBin3

3 ). We can model an approximation
of gra(F ) as:

gra(fBin3) = {(x, y, z) ∈ R3 | (x, y, z, λ1, u1, λ2, u2, λ3, u3) ∈MfBin3} (12)
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together with the MIP formulation

MfBin3 :={(x, y, z, λ1, u1, λ2, u2, λ3, u3) ∈ D × R× [0, 1]p
Bin3
1 × {0, 1}qBin3

1 ×

[0, 1]p
Bin3
2 × {0, 1}qBin3

2 × [0, 1]p
Bin3
3 × {0, 1}qBin3

3 |
(p1, z1, λ1, u1) ∈MBin3

1 , (p2, z2, λ2, u2) ∈MBin3
2 ,

(p3, z3, λ3, u3) ∈MBin3
3 ,

z = 1
2(z1 + z2 − z3), p = x+ y, (x, y) ∈ D}

Finally, we apply Ln:
gra(F ) =

{
(x, y, p) ∈ R3 | ln(p) = ln(x) + ln(y), (x, y) ∈ D

}
.

The domain of the additional variable u is given by
Dp := [

¯
p, p̄] := [

¯
x
¯
y, x̄ȳ] ⊂ R.

Now, let fLn
1 : Dx → R be a pwl. approximation of ln(x) with triangulation T Ln

1 ,
fLn

2 : Dy → R a pwl. approximation of ln(y) with triangulation T Ln
2 , and fLn

3 : Dp →
R a pwl. approximation of ln(p) with triangulation T Ln

3 .
We can model an approximation of gra(F ) by

fLn(x, y) :=p,
fLn

3 (p) = fLn
1 (x) + fLn

2 (y), (x, y) ∈ D.

Further, let MLn
1 ⊆ D × R × [0, 1]pBin2

1 × {0, 1}qBin2
1 , MLn

2 ⊆ D × R × [0, 1]pBin2
2 ×

{0, 1}qBin2
2 and MLn

3 ⊆ D × R× [0, 1]pBin2
3 × {0, 1}qBin2

3 be sharp MIP formulations
of the graphs gra(fLn

1 ), gra(fLn
2 ) and gra(fLn

3 ). We can model an approximation
of gra(F ) as:

gra(fLn) = {(x, y, z) ∈ R3 | (x, y, z, λ1, u1, λ2, u2, λ3, u3) ∈MfLn}
together with the MIP formulation

MfLn :={(x, y, z, λ1, u1, λ2, u2, λ3, u3) ∈ D × R× [0, 1]p
Ln
1 × {0, 1}qLn

1 ×

[0, 1]p
Ln
2 × {0, 1}qLn

2 × [0, 1]p
Ln
3 × {0, 1}qLn

3 |
(p1, z1, λ1, u1) ∈MLn

1 , (p2, z2, λ2, u2) ∈MLn
2 ,

(p3, z3, λ3, u3) ∈MLn
3 , z3 = z1 + z2, (x, y) ∈ D}
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A.1. A Hierarchy of Convex Underestimators. In the following, we derive a
hierarchy for the convex underestimators that result from the continuous relaxations
of the univariate reformulations (see Table 4). The following results are useful, for
example, if F occurs as a term in the objective function to be minimized in some
optimization problem. This is because the choice of convex underestimators deter-
mines the tightness of the resulting continuous relaxation (while the overestimators
of F are not relevant due to the optimization sense).

We start by comparing the convex underestimators CL
1 with CL

3 , belonging to
Bin1 and Bin3 respectively.

Proposition 1. The convex envelope CL
1 : D → R resulting from the univariate

reformulation Bin1 is a tighter convex underestimator of F over D than the convex
envelope CL

3 : D → R resulting from the univariate reformulation Bin3, i.e. we have
CL

1 (x, y)− CL
3 (x, y) ≥ 0 ∀(x, y) ∈ D,

and there exists a point (x, y) ∈ D with
CL

1 (x, y)− CL
3 (x, y) > 0.

Proof. We note that the first condition is equivalent to proving that the optimal
objective value of the maximization problem

max
(x,y)∈D

C31(x, y), (13)

with C31 : D → R and
C31(x, y) := 4(CL

3 (x, y)− CL
1 (x, y))

= (x− y)2 − (x̄+
¯
x− ȳ −

¯
y)(x− y) + (

¯
x− ȳ)(x̄−

¯
y),

is less than or equal to 0, which we do in the following.
In Problem (13), we maximize a univariate convex quadratic function in x− y,

which means that the maximum is attained at one of the two bounds of the domain
of x − y over D, i.e. at either at (

¯
x, ȳ) or at (x̄,

¯
y). Evaluating C31 at these two

points yields
C31(

¯
x, ȳ) = (

¯
x− ȳ)2 − (x̄+

¯
x− ȳ −

¯
y)(

¯
x− ȳ) + (

¯
x− ȳ)(x̄−

¯
y)

= (
¯
x− ȳ)(

¯
x− ȳ − x̄−

¯
x+ ȳ +

¯
y + x̄−

¯
y)

= 0
and

C31(x̄,
¯
y) = (x̄−

¯
y)2 − (x̄+

¯
x− ȳ −

¯
y)(x̄−

¯
y) + (

¯
x− ȳ)(x̄−

¯
y)

= (x̄−
¯
y)(x̄−

¯
y − x̄−

¯
x+ ȳ +

¯
y +

¯
x− ȳ)

= 0
This means that the optimal objective value of Problem (13) is indeed 0. Now
consider the point (

¯
x,

¯
y). We have

C31(
¯
x,

¯
y) = (

¯
x−

¯
y)(

¯
x−

¯
y − x̄−

¯
x+ ȳ +

¯
y) + (

¯
x− ȳ)(x̄−

¯
y)

=
¯
xȳ +

¯
yx̄−

¯
x
¯
y − ȳx̄ = (x̄−

¯
x)(

¯
y − ȳ)

< 0.

Thus, CL
1 is strictly tighter than CL

3 . �

The same results as above also holds with respect to CL
2 and CL

3 , belonging to
Bin2 and Bin3 respectively.
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Proposition 2. The convex envelope CL
2 : D → R resulting from the univariate

reformulation Bin2 is a tighter convex underestimator of F over D than the convex
envelope CL

3 (x, y) resulting from the univariate reformulation Bin3, i.e. , we have
CL

2 (x, y)− CL
3 (x, y) ≥ 0 ∀(x, y) ∈ D,

and there exists a point (x, y) ∈ D with
CL

2 (x, y)− CL
3 (x, y) > 0.

Proof. Consider the optimization problem
min

(x,y)∈D
C23(x, y), (14)

with C23 : D → R and
C23(x, y) := 2(CL

2 (x, y)− CL
3 (x, y))

= 2xy − (ȳ +
¯
y)x− (x̄+

¯
x)y +

¯
x
¯
y + x̄ȳ.

Problem (14) minimizes a bilinear function over a box. It is obvious that C23 is linear
along both the x-axis and the y-axis, i.e. along the edges of the box. This means
that C23 is edge-concave, and therefore the minimum of C23 over D is attained at
one of the vertices VD = {(

¯
x, ȳ), (x̄,

¯
y), (

¯
x,

¯
y), (x̄, ȳ)} of the box. By evaluation, we

obtain:
C23(

¯
x, ȳ) = 2

¯
xȳ − (ȳ +

¯
y)

¯
x− (x̄+

¯
x)ȳ +

¯
x
¯
y + x̄ȳ

= 2
¯
xȳ −

¯
xȳ −

¯
x
¯
y − x̄ȳ −

¯
xȳ +

¯
x
¯
y + x̄ȳ

= 0,
C23(x̄,

¯
y) = 2x̄

¯
y − (ȳ +

¯
y)x̄− (x̄+

¯
x)

¯
y +

¯
x
¯
y + x̄ȳ

= 2x̄
¯
y − x̄ȳ − x̄

¯
y − x̄

¯
y −

¯
x
¯
y +

¯
x
¯
y + x̄ȳ

= 0
and

C23(
¯
x,

¯
y) = 2

¯
x
¯
y − (ȳ +

¯
y)

¯
x− (x̄+

¯
x)

¯
y +

¯
x
¯
y + x̄ȳ

=
¯
x
¯
y −

¯
xȳ +

¯
x
¯
y + x̄ȳ = (x̄−

¯
x)(ȳ −

¯
y)

> 0,
C23(x̄, ȳ) = 2x̄ȳ − (ȳ +

¯
y)x̄− (x̄+

¯
x)ȳ +

¯
x
¯
y + x̄ȳ

= x̄ȳ −
¯
xȳ − x̄

¯
y +

¯
x
¯
y = (x̄−

¯
x)(ȳ −

¯
y)

> 0,
which proves the claim. �

Between CL
1 and CL

2 , belonging to Bin1 and Bin2 respectively, CL
2 is the tighter

convex underestimator; however, this only holds over square-shaped domains.

Proposition 3. The convex envelope CL
2 : D → R resulting from the univariate

reformulation Bin2 is a tighter convex underestimator of F over D than the convex
envelope CL

1 (x, y) resulting from the univariate reformulation Bin1 if D is a square.
In this case, we have

CL
2 (x, y)− CL

1 (x, y) ≥ 0 ∀(x, y) ∈ D,
and there exists a point (x, y) ∈ D with

CL
2 (x, y)− CL

1 (x, y) > 0.
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Proof. Consider the optimization problem
min

(x,y)∈D
C21(x, y), (15)

with C21 : D → R and
C21 := 4(CL

2 − CL
1 ) = (x+ y)2 − (x̄+

¯
x+ ȳ +

¯
y)(x+ y) + (

¯
x+ ȳ)(x̄+

¯
y).

Since we assume that D is a square, we have x̄−
¯
x = ȳ−

¯
y and equivalently x̄+

¯
y =

¯
x+ ȳ. Therefore, we can simplify the minimization problem (15) to

min
(x,y)∈D

−2(x̄+
¯
y)(x+ y) + (x̄+

¯
y)2 + (x+ y)2.

This means that Problem (15) minimizes a convex quadratic univariate function
in x+y. Using a first-order argument, the minimum is attained at a point (x∗, y∗) ∈
D that fulfils x∗ + y∗ = x̄+

¯
y. It is straightforward to see that C21(x∗, y∗) = 0, i.e.

the minimum objective value of Problem (15) is 0.
Finally, we obtain

C21(
¯
x,

¯
y) = (

¯
x+

¯
y)2 − 2(x̄+

¯
y)(

¯
x+

¯
y) + (x̄+

¯
y)2

= (x̄−
¯
x)2 + (2

¯
y)2

> 0.

In other words, there exists a point (x, y) ∈ D with CL
2 (x, y)− CL

1 (x, y) > 0. �
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